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Symmetry Groups of

Differential Equations

System of differential equations
Az, u™) =0

G — Lie group acting on the space of independent
and dependent variables:

(57777’) =g (CB,U) — (E(xvu)vq)(xvu))



G acts on functions v = f(z) by transforming their
graphs:

2

\

Definition. G is a symmetry group of the system
A=0if f=g- f is a solution whenever f is.



Infinitesimal Generators

Vector field:

d
V|(x,u) — d_gg€ ' (x’u)|€:O

In local coordinates

0 0
vV = fou@qt ngaﬁua

1=1
generates the one-parameter group
dx’ : du®

R = &'(x,u) e = ¢%(z,u)

u~




Example. The vector field

0 N 0
V=—U—+T—
Ox ou
generates the rotation group
T = T COSE —usIne U = xsine + ucose
since N N
dx N du
= —u =

de de



Jet Spaces

r=(x',...,2°) — independent variables

u=(ul,...,u?) — dependent variables
ok

uG = = i partial derivatives

(z,u™) = (... 20 ... u™ ... ug ...)eJ"

— jet coordinates

dim J" = p + g™ =p+q<p;:n>



Prolongation to Jet Space

Since G acts on functions, it acts on their derivatives,
leading to the prolonged group action on the jet space:

(f)@(n)) _ pr(n) qg-(z, u(n))

—> formulas provided by implicit differentiation

Prolonged vector field or infinitesimal generator:

9,

(n)

prv=v+>Y ofz,u")—
ozZJ it duj



The coefficients of the prolonged vector field are given
by the explicit prolongation formula:

p .
05 =D;Q%+ > &uj,

i=1
Q=(Q'...,Q%) — characteristic of v
(1)
Q (ZB U 121 f 8xz

* Invariant functions are solutions to

Q(z,uP) = 0.



Symmetry Criterion

Theorem. (Lie) A connected group of transforma-
tions G is a symmetry group of a nondegenerate
system of differential equations A = 0 if and only if

prv(A) =0 (%)

whenever u is a solution to A = 0 for every infinitesi-
mal generator v of GG.

are the determining equations of the symmetry

* the det 1Nl ti f th t
group to A = 0. For nondegenerate systems, this
is equivalent to

prv(A)=A-A=> AA,



Nondegeneracy Conditions

Maximal Rank:

0A 0A
rank = — max
ox’ oug

Local Solvability: Any each point (z, u(()n>) such that
A(:co,uén)) =0
there exists a solution u = f(x) with
uy” = pr™ f(,)

Nondegenerate = maximal rank + locally solvable



Normal: There exists at least one non-characteristic di-

rection at (x, u(()n)) or, equivalently, there is a change

of variable making the system into Kovalevskaya form
0" u®

ot

= Iz, a™)

Theorem. (Finzi) A system of ¢ partial differential
equations A = 0 in ¢ unknowns is not normal if and
only if there is a nontrivial integrability condition:

DA=> DA, =Q order ) < order D + order A



Under-determined: The integrability condition follows

from lower order derivatives of the equation:
DA=0
Example:
Ay =u,, +v

Ty’ Ay = Ugy T Vyy

D,A,~ D A, =0

Over-determined: The integrability condition is genuine.

Example:

Ay =uy, +u, —v, Ay=u, +uv, +u,

D_A, — DyAl = Uy, + Uy



A Simple O.D.E.

u,... =0

Infinitesimal symmetry generator:

0 0
vV = 5(5677“1’) % -+ go(a:,u) %
Second prolongation:
0 0
(2) — il il
= o gy g, + a
(1) (2)
+ 901(337?1’ ) au + @2(567’& ) au )

x rxr



Y1 = P + (Spu o gsc)usc o Suuszw
Yo = Parx + (QSOZCU o Sxaz)u:c + (Spuu o 2§xu)u526 o
Symmetry criterion:

wy =0 whenever u,... = 0.



Symmetry criterion:

Determining equations:

— Linear!

General solution:
E(x,u) = 2% + cyru + cax + cyu +

p(x,u) = c;ru + cou® + g + cou + cg



Symmetry algebra:

v, =0,
v, = 0,
vy =20,
v, =20,

Symmetry Group:

(2,11) i (

ar +bu+c dr+eu+f
hx + ju+k’ hx + ju+k

—> projective group



Prolongation

Infinitesimal symmetry

v =¢&(x,t u)%—i— (x,t,u)%—i—gp(a:,t,u)%
First prolongation
1. .0 0 0 0 r 0
A R TR VR W A 7y
Second prolongation
0 0 i O

(2) _ (1) xx 2 xt I
priv =prove e 8um+gp ou T Ou,,

xt



where N
Y = D.CUQ + fuwaz + Tua:t

' = D,Q + §u, + Tuy,

Spa:x — D:%Q —|— gu:m:t + Tu:z:tt
Characteristic

Q=p—ECu, —Tu,



Spaj — DZEQ + guazaz + Tua:t 5

— P + (Spu o g:p)uaj — TpUy — fuux — T U Uy

' = D,Q + §uy, + Tuy,
9

— P — ftuaz T (Spu o 7-t)ut _ guu:nut — Ty Uyt

90:1:3: — D:%Q T fuwazt + Tua:tt
= Pra T (29093u o fa:a:)ua: — T Uy

-+ (Spuu o 2£wu)u:213 o 2Twuuwut o guuui_
o Tuuu?z:ut + (Spu o 25:1:)“31::1: o QTa:ua:t

o Sguu:nua::r — Ty WiUgy — 2Tuua:u:1:t



Heat Equation

ut — ua:a:

Infinitesimal symmetry criterion

o = p** whenever



Determining equations

Coefficient
0=-27,
0= —-27,
0=—71

0::'_£uu
0= Puu — 2€wu
_ft — QSOSU’LL o gaza:

Monomial

ua:ua:t



General solution
§ =cy + @+ 2¢5t + 4degat

T = 62 —1— 2C4t —1_ 4C6t2

Oy = @,



Symmetry algebra

v, =0, space transl.
v, = 0, time transl.
vy = ud, scaling

v, =z0, + 2t0, scaling

vy = 2t0, — zul,, Galilean

ve = 4atd, + 4120, — (z* + 2t)ud,, inversions

v, =a(x,t)0, linearity



Potential Burgers’ equation

_ 2
ut T ua:a: —1_ ua:

Infinitesimal symmetry criterion



Determining equations

Coefficient Monomzal
0=-27, U, Uy
0=-27, Uy

—Ty =T, Uga
—2T, = — Ty, — 9T, uium
=&y = =27y, — 3§, — 27, Uy Uy
o =Ty = —Typ T, — 28, Uyg
—Tyw = ~Tuu — 27, Ug
&y = 2Ty = Cuu — 27, — 2, U
Pu = Te = ~Tg T Puu — 2650, + 200, — 26, ug
=& = 204y — &ae T 200, Uy,
Q= Q... 1



General solution
§ =cy + @+ 2¢5t + 4degat

T = Cy + 2¢,t + degt?
= Cq — CsT — 2¢6t — cex® + afw,t)e

at — &mx



Symmetry algebra

Vlzaa:
vy =0,
VSZau

v, =z0, + 2t0,
vy = 2t0, — 20,
ve = 4atd, + 4t°0, — (z* + 2t)0,

v, =az,t)e” "0,

Hopf-Cole w = e* maps to heat equation.



Symmetry—Based Solution Methods

Ordinary Differential Equations
Lie’s method
Solvable groups
Variational and Hamiltonian systems
Potential symmetries
Exponential symmetries

Generalized symmetries



Partial Differential Equations

Group-invariant solutions
Non-classical method

Weak symmetry groups
Clarkson-Kruskal method
Partially invariant solutions
Differential constraints
Nonlocal Symmetries

Separation of Variables



Integration of O.D.E.’s

First order ordinary differential equation

d
% = F(x,u)
Symmetry Generator:
v =~¢(x u)g%— (x u)g
— S\ Gy TR G,
Determining equation
OF OF
—E)F — ¢ F =
Py + (py = E)F =&, 5 TP

& Trivial symmetries

so
Yo F
§



Method 1: Rectify the vector field.
V‘(wo,uo) # 0

Introduce new coordinates

y =n(x,u) w = ((z,u)
near (x,,u,) so that
0

V = —

ow
These satisfy first order p.d.e.’s

Ny +on, =0 G +e¢, =1
Solution by method of characteristics:

dx du _@
E(x,u)  p(z,u) 1




The equation in the new coordinates will be invariant
if and only if it has the form

and so can clearly be integrated by quadrature.



Method 2: Integrating Factor
Ifv=¢(0,+ ¢0,is a symmetry for
P(x,u)dr 4+ Q(z,u)du =0

then .
R(x,u) =
(&) EP+¢Q
is an integrating factor.
& If
v__ P
§ Q

then the integrating factor is trivial. Also, rectification
of the vector field is equivalent to solving the original
ordinary differential equation.



Higher Order Ordinary Differential Equations
Az, u™) =0

If we know a one-parameter symmetry group

0 0
vV = f(x,u)%+¢(x,u)%

then we can reduce the order of the equation by 1.



Method 1: Rectify v. = 0,. Then the equation is
invariant if and only if it does not depend on w:

A(y,w', ... ;w,)=0

Set v = w’ to reduce the order.



Method 2: Differential invariants.
hlpr™ g - (z,u™)] = h(z,u™), geG

Infinitesimal criterion: pr v(h) = 0.

Proposition. If n, ¢ are n'® order differential invari-

ants, then
dn _ D,n

d¢ D¢

is an (n + 1)%* order differential invariant.

Corollary. Let

y — 77(337 u)? w = C(x7 u? u/)
be the independent first order differential invariants



for G. Any n*" order o.d.e. admitting G as a symmetry
group can be written in terms of the differential
invariants y, w, dw/dy, ... ,d" " tw/dy™ .

In terms of the differential invariants, the n'® order
o.d.e. reduces to

Ay, w" V) =0

For each solution w = g(y) of the reduced equation, we
must solve the auxiliary equation

((z,u,u') = g[n(z, u)]
to find v = f(x). This first order equation admits G as
a symmetry group and so can be integrated as before.



Multiparameter groups

e ( - r-dimensional Lie group.

Assume pr(™) G acts regularly with r dimensional
orbits.

Independent 7t order differential invariants:
y = n(z,u") w = ((z,ul)
Independent n*" order differential invariants:
dw d" " w

d—y 9 e e s dy’n,—’r' .

Yy, w,



In terms of the differential invariants, the equation
reduces in order by r:

Ay, w™ ) =0

For each solution w = g(y) of the reduced equation, we
must solve the auxiliary equation

C(a,ul) = gln(a, ul)]

to find v = f(z). In this case there is no guarantee
that we can integrate this equation by quadrature.



Example. Projective group G = SL(2)

au-+b
cu-+d

(r,u) (x,
Infinitesimal generators:

0

u?

), ad—bc=1.

(%) u? o

u’ (v

Differential invariants:
20’ " =3 u//2

u/2
— Schwarzian derivative

x, w =

Reduced equation
Ay, w™3)) =0



Let w = h(x) be a solution to reduced equation.

To recover u = f(x) we must solve the auxiliary
equation:
2u/ u/// . 3u”2 _ u/2 h(:lf),

which still admits the full group SL(2).
Integrate using d,,:

W=z 227" —2%=2"h(x)
Integrate using u 0, = z 0,:

v = (log z)’ 2v" + v? = h(x)

No further symmetries, so we are stuck with a Riccati
equation to effect the solution.



Solvable Groups

e Basis vy,..., Vv, of the symmetry algebra g such
that N -
(Vi vl =2 vy 1<)
k<j

If we reduce in the correct order, then we are guaran-
teed a symmetry at each stage. Reduced equation for
subalgebra {v,...,v,}:

AWy, wH) =0

admits a symmetry v, _; corresponding to v, _ ;.



Theorem. (Bianchi) If an n*® order o.d.e. has a
(regular) r-parameter solvable symmetry group,
then its solutions can be found by quadrature
from those of the (n—r)*" order reduced equation.



Example.
v?u = f(ru —u)
Symmetry group:
v=2x0, w=x0_,
(v, w]|=—wv.
Reduction with respect to v:
z=xzu —u

Reduced equation:

still invariant under w = x d_, and hence can be solved
by quadrature.



Wrong way reduction with respect to w:
Yy = u, z=2(y) =xu
Reduced equation:

z(z' = 1) =h(z —y)

e No remaining symmetry; not clear how to integrate
directly.



Group Invariant Solutions

System of partial differential equations
Az, u™) =0
G — symmetry group

Assume G acts regularly on M with r-dimensional
orbits

Definition. u = f(z) is a G-invariant solution if
g-f=1f for all g€ Gq.

i.e. the graph I'y = {(z, f(z)) } is a (locally) G-
invariant subset of M.

e Similarity solutions, travelling waves, ...



Proposition. Let GG have infinitesimal genera-
tors vq,..., v, with associated characteristics
Q,-..,Q,.. A function v = f(z) is G-invariant
if and only if it is a solution to the system of first
order partial differential equations

Qy(x,u(l)) =0, v=1, ... ,r

Theorem. (Lie). If G has r-dimensional orbits,
and acts transversally to the vertical fibers
{x = const. }, then all the G-invariant solutions
to A = 0 can be found by solving a reduced sys-
tem of differential equations A/G = 0 in r fewer
independent variables.



Method 1: Invariant Coordinates.

The new variables are given by a complete set of
functionally independent invariants of G-

n,(g- (x,u)) =n,(z,u) for all ge (G
Infinitesimal criterion:
v[n,] =0, k=1, ... ,r.
New independent and dependent variables:
vy =mz,u), ooy, =1, (T, u)

w1:C1($,U), 7wq:<q(x7u)



Invariant functions:
w=n(y), le.  ((z,u)=nhn(r, u)
Reduced equation:
A/G(y,w™) =0

Every solution determines a G-invariant solution to
the original p.d.e.



Example. The heat equation U = Uy,

Scaling symmetry: r0,+2t0,+aud,
x
I i : = —, w=t "u
nvariants Y NG
u=t"wy), u=t"'(—iyuw' +aw), wu, =tw"

Reduced equation
w” + 12yw” — aw =0
Solution: w=eY/BU(2a+ Ty/V2)
— parabolic cylinder function

Similarity solution:

u(x,t) = t“e_w2/8tU(2a + 2, x/V2t)



Example. The heat equation U, = U,

Galilean symmetry: 2t0, —xu0,

. 2
Invariants: y =t w = % /4ty

Reduced equation: 2yw +w =

Source solution: w==ky /-, u =



Method 2: Direct substitution:

Solve the combined system

Az, u™)=0 Q. (z,uV)=0, k=1, ...

as an overdetermined system of p.d.e.

For a one-parameter group, we solve
Q(x, u(l)) =0

for
ou®  ® =l ¢l gy

oxP & &P Ot

Rewrite in terms of derivatives with respect to xq, ...

, L

, T

p—1°

The reduced equation has xP as a parameter. Dependence on
xP can be found by by substituting back into the characteristic

condition.



Classification of invariant solutions

Let G be the full symmetry group of the system A = 0. Let
H C G be a subgroup. If u = f(x) is an H-invariant solution,

and g € G is another group element, then f = g-f is an invariant

solution for the conjugate subgroup H =g - H - g~ 1.

e C(lassification of subgroups of G under conjugation.
e C(lassification of subalgebras of g under the adjoint action.

e Exploit symmetry of the reduced equation



Non-Classical Method

— Bluman and Cole

Here we require not invariance of the original partial differential
equation, but rather invariance of the combined system

Az, u™) =0 Qk(az,u(l)) =0, k=1, ...,r

e Nonlinear determining equations.

e Most solutions derived using this approach come from ordi-
nary group invariance anyway.



Weak (Partial) Symmetry Groups

Here we require invariance of

Az, u™)=0 Q. (z,uV)=0 k=1, ...

and all the associated integrability conditions
Every group is a weak symmetry group.
Every solution can be derived in this way.
Compatibility of the combined system?

Overdetermined systems of partial differential equations.



The Boussinesq Equation

ey + 5 (U%) e + Uy = 0
Classical symmetry group:
v, =0, v, = 0, vo=20,+2t0, —2ud,
For the scaling group
—Q=zu, +2tu, +2u=20

Invariants:

- w=tu u—lw L
VG - TtV

Reduced equation:

w””+%(wQ)”—kinw”%—Zyw’—ka:O



Uyy + %(U’Q)ZCQZ + Uppaxr = 0
Group classification:
v, =0, v, = 0, v =20,+2t0, —2u0,
Note:
Ad(evy) vy = e v, Ad(evy)v, = e*T v,
Ad(0vy +evy) vy =V — 0V, — eV,
so the one-dimensional subalgebras are classified by:
{vs} {vi} {vy} {vi+ vy} {vi—vy}

and we only need to determine solutions invariant under these
particular subgroups to find the most general group-invariant
solution.



Ugy + %(UQ)M T Upge = 0

Non-classical: Galilean group

v=t0, +0,—2t0,
Not a symmetry, but the combined system

Uy + 5(U7) 4 + Uy = 0 —Q=tu, +u, +2t=0
does admit v as a symmetry. Invariants:
y=ux— 1t w=u+ 17, u(z,t) = wy) — t°

Reduced equation:

w////+ww//+(w/)2_w/+2:0



utt + %(U?)xsc + u:c:c:z;:z; =0

Weak Symmetry: Scaling group: r0,+1t0,

Not a symmetry of the combined system
utt+%(u2)mx+ua;xa:x:0 Q:xux+tutzo

Invariants: y = T U Invariant solution: wu(x,t) = w(y)

The Boussinesq equation reduces to
=" 72 (w1 —y)w” + (w')? —yw'] =0
so we obtain an overdetermined system
w"" =0 (w+1—y)w” + (W) —yw =0
Solutions: w(y) =2y* — 1, or w = constant
2 2

Similarity solution: u(x, t) = 32 1



Symmetries and
Conservation Laws



Variational problems

Liu] = /Q Lz, u™) dx
Fuler-Lagrange equations
A= E(L)=0
Euler operator (variational derivative)

) 5L oL
E*(L) :M—QZZ(—D)J{),—U?;
7

Theorem. (Null Lagrangians)
E(L)=0 if and only if L =DivP



Theorem. The system A = 0 is the Euler-Lagrange
equations for some variational problem if and only if
the Fréchet derivative D, is self-adjoint:

DX = Dy4.

— Helmholtz conditions



Fréchet derivative

Given P(x,u!™), its Fréchet derivative or formal
linearization is the differential operator D, defined
by

d

Dplw] = g Plutew]|
E =

Example.
P=u,. +uu,

Dp=D>4+uD, +u,



Adjoint (formal)

D:EJ:AJDJ D*:EJJ(—D)J.AJ

Integration by parts formula:
PDQ=QD*P+DivA
where A depends on P, ().



Conservation Laws

Definition. A conservation law of a system of partial
differential equations is a divergence expression

DivP =0
which vanishes on all solutions to the system.

P:(Pl(xvu(k))v7P(:C7u(k)))

p
—> The integral
| p-ds

is path (surface) independent.



If one of the coordinates is time, a conservation law
takes the form

D,T+DivX =0

T' — conserved density X — flux

By the divergence theorem,

b b
/ T(z,t,u®) dz) ‘ :/ / X -dSdt
Q t=a a Q
depends only on the boundary behavior of the solution.

o If the flux X vanishes on 01, then [, T dz is
conserved (constant).



Trivial Conservation Laws

Type I If P = 0 for all solutions to A = 0, then
Div P = 0 on solutions too

Type IT  (Null divergences) If Div P = 0 for all
functions u = f(x), then it trivially vanishes on
solutions.

Examples:

]
o




Theorem.
Div P(z,u®)) =0

for all v if and only if
P = Curl Q(z, u'®)

1.e.



Two conservation laws P and P are equivalent if they
differ by a sum of trivial conservation laws:

P=P+P + P,
where

P; =0 on solutions  Div P;; = 0.



Proposition. Every conservation law of a system
of partial differential equations is equivalent to a
conservation law in characteristic form

DivP=Q -A=> Q,A,

Proof:
DivP =Y QJD’A,
v,J
Integrate by parts:
DivP =Y (-D)'Q7-A, Q, Z D)’Q?
v,J
() is called the characteristic of the conservation law.



Theorem. () is the characteristic of a conservation
law for A = 0 if and only if

DAQ + DHA =0.
Proof -
0 = E(DivP) = E(Q-A) = DAQ + D5A



Normal Systems

A characteristic is trivial if it vanishes on solutions.
Two characteristics are equivalent if they differ by a
trivial one.

Theorem. Let A = 0 be a normal system of
partial differential equations. Then there is a one-to-
one correspondence between (equivalence classes of)
nontrivial conservation laws and (equivalence classes
of ) nontrivial characteristics.



Variational Symmetries

Definition. A (restricted) variational symmetry is
a transformation (Z,%) = g - (x,u) which leaves the
variational problem invariant:

NLNN(”)dN:/L NP
| L@amydz = [ Lu™)da

Infinitesimal criterion:

prv(L)+ LDivE =0

Theorem. If v is a variational symmetry, then it is a
symmetry of the Euler-Lagrange equations.

* *x But not conversely!



Noether’s Theorem (Weak version). If v generates
a one-parameter group of variational symmetries of a
variational problem, then the characteristic () of v is
the characteristic of a conservation law of the Euler-
Lagrange equations:

DivP = Q E(L)



Elastostatics
/ W(x,Vu)dxr — stored energy
r,u € RP, p=23

Frame indifference

ur— Ru+a, R € SO(p)

Conservation laws = path independent integrals:

Div P = 0.



1. Translation invariance

ow
P =—
Loou
—> FEuler-Lagrange equations
2. Rotational invariance
o OW ow
P, =u u?

' 8115 K 5’U

3. Homogeneity : W = W (Vu) x+—z+a
P OW
P, = Z ut —— — W

Jau J

—> FEnergy-momentum tensor



4. Isotropy : W(Vu-Q) =W (Vu) Q € SO(p)
b - ow
P = Tud — xFue
. agl (2lus — x uj)@uf‘
5. Dilation invariance : W(AVu) = A"W (Vu)
_ p . . :
np > (ud; — 27uf) gﬂi + o'W
U;

a,)j=1

+ ((5;:13"C — 5L YW

P, =
n

5A. Divergence identity

Div P = pW
_ p W
P= > (u"d; —2/uf) ~— +a'W
j=1 du;

—> Knops/Stuart, Pohozaev, Pucci/Serrin



Generalized Vector Fields

Allow the coefficients of the infinitesimal generator to
depend on derivatives of u:

P 9, 0
_ i (k) (k)
ve Y ) g P
Characteristic :
Qulu®) = g7 = 3 g
1=1
Evolutionary vector field:
0

k
VQ—Z Q. a:u())@ua



Prolongation formula:

p .
prv=nprvg+ 'Zl ¢'D,
1=

J
prVQ_ZDQO‘(?uJ D, = Zuh@uj

— total derivative



Generalized Flows

e The one-parameter group generated by an evolu-
tionary vector field is found by solving the Cauchy
problem for an associated system of evolution
equations

ou®

g — Qa(x7u(n)) u‘szO — f(ilf)



0

Example. v = — generates the one-parameter

group of translations:

(z,y,u) +— (z+e,y,u)

Evolutionary form:

0
Voy = —U, —
@ T Ox
Corresponding group:
ou
— = —U
Oc v
Solution

u=flz,y) +— u=flz—ey)



Generalized Symmetries

of Differential Equations

Determining equations :
pr v(A) =0 whenever A=0
For totally nondegenerate systems, this is equivalent to

prv(A)=DA=> DA,

* Vv is a generalized symmetry if and only if its
evolutionary form v, is.
e A generalized symmetry is trivial if its characteristic

vanishes on solutions to A. Two symmetries are equivalent
if their evolutionary forms differ by a trivial symmetry.



General Variational Symmetries

Definition. A generalized vector field is a variational
symmetry if it leaves the variational problem invariant
up to a divergence:

pr v(L) 4+ LDivé = Div B

* Vv is a variational symmetry if and only if its evolu-
tionary form v is.

pr vg(L) = Div B



Theorem. If v is a variational symmetry, then it is a
symmetry of the Euler-Lagrange equations.

Proof
First, v, is a variational symmetry if
pr v(L) = Div P.
Secondly, integration by parts shows
prvo(L) = D, (Q) = QD7 (1)+DivA = QE(L)+Div A
for some A depending on (), L. Therefore
0 = Blprv(L)) = E(QE(L)) = E(QA) = DAQ + DhA
=D, Q + DEA =pr vo(A) + DEA



Noether’s Theorem. Let A = 0 be a normal system
of Euler-Lagrange equations. Then there is a one-to-
one correspondence between (equivalence classes of)
nontrivial conservation laws and (equivalence classes
of ) nontrivial variational symmetries. The characteris-
tic of the conservation law is the characteristic of the
associated symmetry.

Proof: Nother’s Identity:
QE(L) =prvg(L) —DivA = Div(P — A)



The Kepler Problem

xr
xtt+’i =0 L=1a-t

Generalized symmetries:
v=(z-2,)0,+x,(x0,)—2x(x, 0,)
Conservation law
prv(L) = D,R
where L

R:xt/\(x/\xt)—T

—> Runge-Lenz vector



Noether’s Second Theorem. A system of Euler-
Lagrange equations is under-determined if and only if
it admits an infinite dimensional variational symmetry
group depending on an arbitrary function. The associ-
ated conservation laws are trivial.

Proof: If f(x) is any function,
f(z)D(A) = AD*(f) + Div P[f, Al.
Set
Q = D*(f).



Example.

// 2 daz dy

Fuler-Lagrange equations:
A1 — Eu(L) = Upy + va:y

A, =FE°(L) =u,, +v,,
D, Ay — D, Ay =0
Symmetries

(U,”U) — (’U/—|— Py UV — 90:13)

=0

=0



