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Moving Frames

Classical contributions:
G. Darboux, E. Cotton, E. Cartan

Modern contributions:
P. Griffiths, M. Green, G. Jensen

“I did not quite understand how he [Cartan] does this in
general, though in the examples he gives the procedure
is clear.”

“Nevertheless, I must admit I found the book, like most of
Cartan’s papers, hard reading.”

— Hermann Weyl

“Cartan on groups and differential geometry”
Bull. Amer. Math. Soc. 44 (1938) 598-601
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Applications of Moving Frames

Differential geometry
Equivalence
Symmetry
Differential invariants
Rigidity
Joint Invariants and Semi-Differential Invariants
Invariant differential forms and tensors
Identities and syzygies
Classical invariant theory
Computer vision
o object recognition
o symmetry detection
Invariant numerical methods
Poisson geometry & solitons

Lie pseudogroups
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The Basic Equivalence Problem

M — smooth m-dimensional manifold.

G — transformation group acting on M

e finite-dimensional Lie group

e infinite-dimensional Lie pseudo-group

Equivalence:

Determine when two n-dimensional submanifolds

N and N c M

are congruent:

N=g-N for g¢geG

Symmetry:
Self-equivalence or self-congruence:

N=g N
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Classical Geometry

Equivalence Problem: Determine whether or not two given
submanifolds N and N are congruent under a group
transformation: N =g¢g- N.

Symmetry Problem: Given a submanifold N, find all its
symmetries (belonging to the group).

Euclidean group — G = SE(n) or E(n)
= isometries of Euclidean space
= translations, rotations (& reflections)

(R € SO(n) or O(n)

z— R-z2+4+a { acR"
[ z € R"
e FEqui-affine group: G = SA(n)
R € SL(n) — area-preserving
o Affine group: G =A(n)
R € GL(n)
e Projective group: G = PSL(n)

acting on RP"?~1

—> Applications in computer vision
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Classical Invariant Theory
Binary form:
" (n
o= 5 (D)o

k=0

Equivalence of polynomials (binary forms):

Q)= Ga o @ (25} 4= (2 7)ot

= multiplier representation of GL(2)
= modular forms

Transformation group:

. - (az+p u >
g (@ u) /(’}/LE—F(S,(’YLE—F(S)TL

Equivalence of functions <= equivalence of graphs

No ={(z,u) = (2,Q(z)) } € C°
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Moving Frames

Definition.

A mowving frame is a G-equivariant map

p: M — G
Equivariance:
g-p(z) left moving frame
plg-z) = . . .
p(z) g right moving frame

pleft(z) — pright(z)_l
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Theorem. A moving frame exists in a neighborhood of a
point z € M if and only if G acts freely and regularly
near z.

Necessity: Let z € M.
Let p : M — G be a left moving frame.

Freeness: 1If g € G, so g-z = z, then by left equivariance:
p(z) =plg-2) =g-p(2).
Therefore g = e, and hence G, = {e} for all z € M.

Regularity:  Suppose

2y =0p % —> 2 as n — 00

By continuity,

Hence g, — e in G.

Sufficiency: By construction — “normalization”.
Q.E.D.
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Isotropy

Isotropy subgroup for z € M:

G,=1{9] 9g-z==z2}

free — the only group element g € G which fixes one point
z € M is the identity:
G, ={e} forall z € M.

locally free — the orbits all have the same dimension as G:
G, is a discrete subgroup of G.

regular — all orbits have the same dimension and intersect
sufficiently small coordinate charts only once
( % irrational flow on the torus)

effective — the only group element g € G which fixes every
point z € M is the identity: g - z = z for all z € M iff
g=ce:
Gy= N G, ={e}

zeM
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Geometrical Construction

Normalization = choice of cross-section to the group orbits

K

K — cross-section to the group orbits

O, — orbit through z € M

k € K N O, — unique point in the intersection
e [ is the canonical form of z

e the (nonconstant) coordinates of k£ are the fundamental
invariants

g € G — unique group element mapping k to z
— freeness

p(z) =g left moving frame p(h-z) =h-p(2)

k= p_l(z) "R = pright(z) "R
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Construction of Moving Frames

r=dimG < m=dimM

Coordinate cross-section

K={z=c¢, ... ,2,=c¢,.}

left right

w(g,z) =g~z w(g,2) =g- 2

Choose r = dim G components to normalize:

wy(g,2) = ¢ . w,.(g,2) =c,

The solution
g=p(2)

is a (local) moving frame.

—> Implicit Function Theorem
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The Fundamental Invariants

Substituting the moving frame formulae

g =p(z)

into the unnormalized components of w(g, z) produces the
fundamental invariants:

L(2) = w,4(p(2),2) oo L0 (2) = w,(p(2), 2)

— These are the coordinates of the canonical form k € K.

Theorem. Every invariant I(z) can be (locally) uniquely
written as a function of the
fundamental invariants:
1(2) = H(L,(2), .., T, (2))

Y Tm—r
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Invariantization

Definition. The invariantization of a function F': M —
R with respect to a right moving frame p is the the
invariant function I = +(F') defined by I(z) = F(p(z) - 2).

LIF(2y...,2,,)] = Flegyy.ooc, Ii(2),..., L (2))

Invariantization amounts to restricting F' to the cross-section
I|\K=F|K

and then requiring that I = ¢(F') be constant along the
orbits.

In particular, if I(z) is an invariant, then «(I) = I.

Invariantization defines a canonical projection

t: functions +— invariants
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The Rotation Group
G = S0(2) acting on R?
z=(r,u) — g -2=(xcosf —usinf , xsinf + ucosh)

—> Free on M = R?\ {0}

Left moving frame:

w(g,z) =g ' 2=(y,v)

y = xcosf + usinf v=—xsinf + ucosb

Cross-section
K={u=0, x>0}

Normalization equation

v=—2xsinf +wucosf =0

Left moving frame:

6 = tan_lg —> 0 =p(z,u) € SO(2)

Fundamental invariant
r=i(x) =V + u?

Invariantization
L F(x,u)] = F(r0)
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Prolongation

Most interesting group actions (Euclidean, affine, projective,
etc.) are not free!

An effective action can usually be made free by:

e Prolonging to derivatives (jet space)
G . J(M,p) — J*(M,p)

— differential invariants

e Prolonging to Cartesian product actions
G*": Mx--+xXM-—MXx---xM

— joint invariants

e Prolonging to “multi-space”
LSO ViSO RN Vi(D)

—> joint or semi-differential invariants
— invariant numerical approximations
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Jet Space

e Although in use since the time of Lie and
Darboux, jet space was first formally defined by Ehres-
mann in 1950.

e Jet space is the proper setting for the geometry of partial
differential equations.

M — smooth m-dimensional manifold

I<p<m-1
J'=J"(M,p) — (extended) jet bundle

—> Defined as the space of equivalence classes of p-
dimensional submanifolds under the equivalence re-
lation of n*"" order contact at a single point.

— Can be identified as the space of n*" order Taylor poly-
nomials for submanifolds given as graphs u = f(x)
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Local Coordinates on Jet Space

Jn = J*(M,p) — n*® extended jet bundle for
p-dimensional submanifolds N C M

Local coordinates:
Assume N = {u = f(x)} is a graph (section).
= (zl,..., zP) — independent variables
u=(ul,..., u9) — dependent variables
p+qgq=m=dimM
70 = (zu™)y= (... 2" ... ud...)

ug = 9 ;u” 0<#J<n

— induced jet coordinates

e No bundle structure assumed on M.

e Projective completion of J”E when E — X is a bundle.
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Prolongation of Group Actions
G — transformation group acting on M

—> (G maps submanifolds to submanifolds
and preserves the order of contact

G(™) — prolonged action of G on the jet space J"

The prolonged group formulae
w™ = (y, ™) = g™ . z(")
are obtained by implicit differentiation:
. p . .
dy' =Y Pilg.2V)do
J=1 T
— Q=P
p .
Dy; = ; Q;(Q’z(l)) D,

’U?; e ‘Dyjl .. Dyjk; (,UOA)

Differential invariant [:J" = R
[(g(n) : z(”)) _ ](z(n))

—> curvatures
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Freeness

Theorem. If G acts (locally) effectively on M, then G acts
(locally) freely on a dense open subset V" C J" for n > 0.

Definition. N C M is regular at order n it j N C V".

Corollary. Any regular submanifold admits a (local) moving
frame.

Theorem. A submanifold is totally singular, j, N C J*\ V"
for all n, if and only if its symmetry group

Gy={glg-NCN}

does not act freely on N.
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Moving Frames on Jet Space

(g ~1. (™) left

Choose r =dim G jet coordinates

Ziyey 2y z* or u%
Coordinate cross-section K C J"
Z1=¢ ... Z.=0¢,
Corresponding lifted differential invariants:
(N yiorvf}‘
Normalization Equations
w (g, z,u™)=¢c, ... w(gz,u™)=c,

Solution:

g = p"M (™) = p (g, u™) —> moving frame
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The Fundamental Differential Invariants

[(n)(z(n)) — w(n)(p(n)(z(n))7 z(n))

Hi(z,u™) =y (p"™(z,u™), 2, u)

I (z, ut®) = v (1" (2, u™), 2, uM)

Phantom differential invariants

wy=¢ ... W, =¢c, — normalizations

Theorem. Every n'" order differential invariant can be
locally uniquely written as a function of the non-phantom

fundamental differential invariants in (™).
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Invariant Differentiation

Contact-invariant coframe
. p .

— arc length element

Invariant differential operators:

Dy — D=3 Q")) D,

—> arc length derivative
Duality:
dF =Y D,F-uw'

Theorem. The higher order differential invariants are
obtained by invariant differentiation with respect to

D,,...,D,.
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Euclidean Curves G = SE(2)

Assume the curve is (locally) a graph:

C={u=f(z)};

Prolong to J* via implicit differentiation

y =cosf(x —a)+sinf (u— b)

} w=R'(z—-10)
v=—sinf(x —a)+ cosf (u —b)

—sinf + u_ cosf
cosf + u,sinf

Yy

_ uxa:

Yyy = (cos@ +u,sinf)3

(cosf + u,sinf)u,, —3u?_ sinf
(cos® + u,sinf)>

Vyyy =

Normalization r=dimG =3

y:07 UZO; v, =0

Left moving frame p:J1 — SE(2)

a=x, b=u, Hztan_lux
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Differential invariants

v,, — K = Yaz
vy (1 + u2)3/2
v —_— —
yyy ds (1+wu2)3
d’k 3
’Uyyyy > E — 3K =

Invariant one-form — arc length

dy = (cosf +u,sinf)dx +— ds=,/14+u2 dz

Invariant differential operator

a_ 14 4 14
dy cosf+u,sinf dz ds /1 + u2 dx

Theorem. All differential invariants are functions of the
derivatives of curvature with respect to arc length:

dk d’k

ds’ ds?’

K,
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Euclidean Curves

Moving frame p: (z,u,u,) — (R,a) € SE(2)

1 1 —u,\ (=
R_—lil—i—u:% (ux 1 >_(91762) a_<u>

Frenet frame

dx T, —y,
elzaz(y‘S) 6229%:(x8>

Frenet equations = Maurer—Cartan equations:

ax _ de,

e de,
ds ! ds

ds
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The Replacement Theorem

Any differential invariant has the form

I = F(z.ul™) = F(y,w™) = F(I™)

—> T.Y. Thomas
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Equi-affine Curves G = SA(2)

z—> Az+b A € SL(2), bc R?

Prolong to J? via implicit differentiation

dy = (6 —u,pf) dz D, = D

y=0(z—a)—-pu—-b)
v=—7(x —a)+ alu—>)

I e o - Uy,
V5 pu, WG Bu,)
= (6~ Bu,)?
v = —
Yyyyy (a+ Bu,)7
Nondegeneracy u,, =0

—> Straight lines are totally singular
(three-dimensional equi-affine symmetry group)

Normalization r=dimG =5

y:O, UZO, Uy:(), Uyyzl’ v = 0.
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Left Moving frame

p:J3 — SA(2)

1. —5/3
—3Upy’ Ugpy )
~1/3 _1,-5/3
_§uwx Upre
d?z
ds?
€,
€
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Frenet frame
dz d?z
e, = — e, =
L™ ds 27 ds2?

Frenet equations = Maurer—Cartan equations:

dz de; de,

— =e = e
ds L ds 2

Equi-affine arc length

dy +— ds= {u,, dov=Jsn%dt

Invariant differential operator

D +— —= D

Yy ds 3 T 3/x .
Uy, A

Equi-affine curvature

_ rr " xTrITXT rrxr _
Vg — K 373 =z, N\ Zg4
9uS/
rx
dk d?k o2
U5y ds Y6y ok
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Equivalence & Signature

Cartan’s main idea: The equivalence and symmetry
properties of submanifolds will be found by restricting the
differential invariants to the submanifold J(z) = I(j,, N|, ).

Equivalent submanifolds should have the same invariants.

However, unless an invariant J(z) is constant, it carries
little information by itself, since the equivalence map will
typically drastically change the dependence of the invariant
on the parameter .

— (Constant curvature submanifolds

However, a functional dependency or syzygy among the

invariants s intrinsic:

Ji(x) = @(Jy(2), -, T4 ()
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The Signature Map

Equivalence and symmetry properties of submanifolds are
governed by the functional
dependencies — “syzygies” — among the

differential invariants.

Ji(x) = @(Jy(2), -, T4 ()

The syzygies are encoded by the signature map
>: N — S

of the submanifold N, which is parametrized by the funda-

mental differential invariants:

S(z) = (Jy(2),....J, (2))
—(I,|N, ... ,I |N)

The image S = Im X is the signature subset (or submanifold)
of N.
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Geometrically, the signature

SckK

is the image of j, N in the cross-section K C J™, where n > 0

is sufficiently large.

>:N — jN — S8Sck

Theorem. Two submanifolds are equivalent
N =g

if and only if their signatures are identical

S

- N

S
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Signature Curves

Definition. The signature curve S C R? of a curve C C R? is
parametrized by the first two differential invariants x and

Kg

Theorem. Two curves C and C are equivalent

C=g¢g-C
if and only if their signature curves are identical

§=S8

—> object recognition
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Symmetry

Signature map
> : N — S

Theorem. Let S denote the signature of the submanifold

N. Then the dimension of its symmetry group G =
{glg-N C N} equals

dimGy = dimN —dimS

Corollary. For a regular submanifold N C M,

0 < dimGy < dimN

—> Only totally singular submanifolds can have larger symmetry groups!
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Maximally Symmetric Submanifolds

Theorem. The following are equivalent:

e The submanifold N has a p-dimensional

symmetry group

e The signature S degenerates to a point

dimS =0

HCAd

The submanifold has all constant differential invariants

N = H - {%,} is the orbit of a p-dimensional subgroup

—> In Euclidean geometry, these are the circles, straight

lines, spheres & planes.

—> In equi-affine plane geometry, these are the conic sec-

tions.
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Discrete Symmetries

Definition. The index of a submanifold NV equals the
number of points in C which map to a generic point of
its signature S:

LN:min{#Z_l{w}‘ wES}

—> Self-intersections

Theorem. The cardinality of the symmetry group of N
equals its index ¢ .

—> Approximate symmetries
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Classical Invariant Theory

M =R*\ {u=0} GzGL(Q)z{(i g) aa—m;«éo}
- (ar+p u
(@, ). /(7x+5’ (7x+5)”> n7 01

o=vx+9 A =ad— Py

Prolongation:
_ar+f
v= yT + 0
v=0 "u
_ OUu, — nyu
’Uy o A O-n—l
_ o?uy, —2(n—1)you, +n(n —1)y*u
Uyy = A2 gn—2
Vyyy =
Normalization:
1
Y v v, Vyy n(n—1)
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Moving frame:
a=ut"W/"H p=—zut="/"/H

v = %u(l—n)/n 5 = ul/n o % xu(l—n)/n

H =n(n—Duu,, — (n—1)*u2 — Hessian

Nonsingular form: H#0
Note: H=0 if and only if Q(x) = (ax + b)"

—> Totally singular forms

Differential invariants:
J K +3(n—2) dr

v — ~ K ~

yyy n2(n — 1) Yyyyy ndn—1 ~ ds

Absolute rational covariants:

T? U
J2 — ﬁ K = m
H=3Q Q% =nn-1)QQ" - (n-1°Q” ~Q,Q,, - Q2,
T= (Q, H)Y =2n-4)QH —nQH' ~Q.H,-Q,H,
U= (Q, 7)Y =3n-6)QT—nQT" ~Q,T, — Q,T,

deg@Q =n degH =2n—4 degT =3n—-6 degU =4n — 8
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Signatures of Binary Forms

Signature curve of a nonsingular binary form Q(x):

Sy = {(J(a;)2,K(w)) = ( H(z)3’ H(z)?

Nonsingular: H(x) # 0 and (J'(z), K'(x)) # 0.

Signature map

SN, — S,  S(x) = (J(@)% K(x)

Theorem. Two nonsingular binary forms are equivalent if

and only if their signature curves are identical.
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Maximally Symmetric Binary Forms

Theorem. If u = Q(z) is a polynomial, then the following

are equivalent:

e (Q(z) admits a one-parameter symmetry group

e 77 is a constant multiple of H?

e Q(z)~ z¥ is complex-equivalent to a monomial

e the signature curve degenerates to a single point

e all the (absolute) differential invariants of @) are constant

e the graph of () coincides with the orbit of a
one-parameter subgroup

—> diagonalizable
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Symmetries of Binary Forms

Theorem. The symmetry group of a nonzero binary form
Q(x) #Z 0 of degree n is:

e A two-parameter group if and only if H = 0 if and only if

() is equivalent to a constant.

—> totally singular

o A one-parameter group if and only if H # 0 and T2 is
a constant multiple of H? if and only if @ is complex-

equivalent to a monomial z*, with k # 0,n.

—> maximally symmetric

e In all other cases, a finite group whose cardinality equals

the index
Lo :min{#E_l{w} ‘ w GS}
of the signature curve, and is bounded by

6n — 12 U = cH?
LQ <
4n — 8 otherwise
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Joint Invariants

Let G act on M.

A k-point joint invariant is an invariant of the k-fold
Cartesian product action on

Mx- -+ x M

I(g-2yy.-.y9-2,) = I(zy,...,2)

A k-point joint differential tnvariant is an invariant of
the prolonged action G(™ on a k-fold Cartesian product of jet
space

J¥x e x J"

—> Joint differential invariants are known as “semi-differential invariants”
in the computer vision literature, and are proposed as “noise
resistant” alternatives for object recognition.
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Joint Euclidean Invariants

SE(2) acts on M = R? x --- x R2:

z; = (

T, U,

ir ;) w; = (y;,v;) =9 "z i=0,1,2,...

2

y; = cosf (z, —a) +sinf (u; — b)

2

v, = —sinf (z; — a) + cos B (u; — b)

Normalization (cross-section)

Left moving frame p: M — SE(2)
a =z b=u, 0 = tan~! (M)
Ty — Xy
Joint invariants:
. (2; — 29) * (21 — 2p) (2; = 29) N (21 — 2p)

Yy, !

4

[ _ZOH
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Theorem. Every joint Euclidean invariant is a function of
the interpoint distances || z; — 2, || and, in the orientation

preserving case, a single signed area A(z,, 21, 25)
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Joint Invariant Signatures

If the invariants depend on k points on a p-dimensional
submanifold, then you need at least

C>kp
distinct invariants I,...,I, in order to construct a syzygy:

®(I,,...,I)=0

The total number of syzygies is

{—kp

Typically, the number of joint invariants is

¢ =km —r = (#points)(dim M) — dim G

Therefore, to find a joint invariant signature, that involes
no differentiation, we need at least

k> +1

m—p

points on our submanifold.
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Joint Euclidean Signature

For the Euclidean group G = SE(2) acting on curves C C R? (or R?)
we need at least four points

2y, %1, 29,23 €C
Joint invariants:
a=z' =2, b=22=2"], c=|z"-2"],
d=22=2", e=|22-2", [f=I2"-2].

— six functions of four variables

Joint Signature: Y:C** — SCRS
dim$§ =4 — two syzygies

®, (a,b,c,d,e, f) =0 ®,(a,b,c,d,e, f) =0

Universal Cayley—Menger syzygy:

2a? a?+b%>—d?> a?+c?—¢€?
det | a? + b — d? 2b2 b2 +c?—f2 =0
a?+c?—e?2 b2+ - f? 2c?

— (CCR?
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Four-Point Euclidean Joint Signature
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Euclidean Joint Differential Invariants

— Planar Curves

e One—point

= curvature

 ZNZ
CTER
e Two—point
= distances | 21 — 2V
= tangent angles O = X(2, — 20, 2y)
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Equi—Affine Joint Differential Invariants
— Planar Curves

e One—point

= affine curvature

(2¢ A Zgge) + 424 A 244)

5(2 N Zyyy)”

R =
3(2¢ A Ztt)5/3

= Z N\ Zgg

9(z; A Ztt)8/3

e Twopoint

= tangent triangle area ratio

Zo N7 . [00]
[(zy —29) N2> [010]2
e Three—point
= triangle area
%(Zl_zo)/\(%_zo):%[() 12]
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Projective Joint Differential Invariants
— Planar Curves

e One—point
= projective curvature
K=...
e Two point
= tangent triangle area ratio
(010]3[11]
[(011]3[00]

e Three—point

= tangent triangle ratio

(020][011][122
(010][121][022

-
—_

-
—_
.

e Four—point

= area cross-ratio
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Transformation Groups and Jets

(z!,...,2P) — independent variables
(ul,...,u?) — dependent variables

2" = (z,u™) € J* — n*h order jet space
uG — derivative coordinates on J"

G — transformation group

G(™  — prolonged action on J"

veg — Lie algebra

v(® e g — Prolonged inf. gens.

The Prolongation Formula

P 0 n . 0
(n) _ i i a Iy 2
R AT

p .
05 =D;Q% + 3 {uj,
i=1

Characteristic

0

uoz
oxt

p .
Qa(:c,u(l)) _ gooz o Z gz
1=1
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Rotation group — SO(2)

(x,u) —> (zcosf —usinf, xsinf + ucosh)
Transformed function v = f(y):
y =xcosf — f(x)sinb,
v=u=xsinf + f(x)cosb,

Second prolongation

(z,u,u,,u,,) —> (xcosf —usinf,zsinf + u cosb,

rr

sin@ + u,, cos 0 u
cos@ —u,sinf’ (cosf — u,sinf)3

Infinitesimal generator

“or " ou
Second prolongation
0 0
2) - _,, = v 2
v Uap T gy T LT a) G Susty 5 —
Q=z+uu,

0" = D,Q + Eug, = Dy + uuy) — uug, =1+ ug

O = D:%Q +&u,,,, = Dg(x +uu,,) —uu,,, = 3u,u

T Tr
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Differential invariant:

1™ - (2, ™)) = Iz, ul™)
Infinitesimal criterion:

viM(I) =0 for all v ¢ gl

—> Solve the first order linear partial differential equation by
the method of characteristics.

—> Moving frames avoids integration!
Note: If I,,..., I, are differential invariants, so is ®(Iy,...,I}).

— Classify differential invariants up to functional indepen-
dence.

— Local results on open subsets of jet space.
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Theorem. Any transformation group admits a finite

system of fundamental differential invariants
Jiyooydy
and p invariant differential operators

D,,....D,

such that every differential invariant is a function of the
differentiated invariants:
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Classification Problem.

How many fundamental differential invariants Jy,...,J, are

required?

—> For curves (p = 1), we have { = q.

Syzygy Problem.

Determine the algebraic relations
O(... DgJ, ... ) =0

among the differentiated invariants.

Commutation Formulae.

The order of invariant differentiation matters

[D,,D,;] = 777

—> Only an issue when p > 1.
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The Fundamental Differential Invariants

I (M) = ) (5(m)=1 . 4(n)

Hi(z,u™) =y (p"™(z,u™), 2, u)
I (z,u™) = v (p™ (2, ul™), 2, uM)

Recurrence Formulae:

D,H' = §: + M

Dilg =TIk ; + Mg,

7 « :
M, My —  correction terms

Commutation Formulae:

p
k
[Di7Dj] — ;Aij Dy,

e The correction terms can be computed directly from the
infinitesimal generators!
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Generating Invariants

Theorem. A generating system of differential invariants
consists of

e all non-phantom differential invariants H* and I® coming
from the un-normalized zero*" order lifted invariants y?,
v®, and

e all non-phantom differential invariants of the form I T
where I§ is a phantom differential invariant.

order < orderp+1

In other words, every other differential invariant can, locally,
be written as a function of the generating invariants and
their invariant derivatives, Dy H", DI T

—> Not necessarily a minimal set!
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Syzygies

A syzygy is a functional relation among
differentiated invariants:

|l
o

H(... DI, ...)

Derivatives of syzygies are syzygies
—> find a minimal basis

Remark: There are no syzygies among the normalized differ-
ential invariants I(™ except for the “phantom syzygies”

II/:CV

corresponding to the normalizations.
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Classification of Syzygies

Theorem. All syzygies among the differentiated invariants
are differential consequences of the following three fundamen-
tal types:

D,H' = § + M!

— H* non-phantom

— I generating

— I§ jr = w,, = ¢, phantom

(81 (64 _ (81 (81
Dilf g —Dylf;=Mry ;—Mr g

— I, I, generating, KN.J = o

—> Not necessarily a minimal system!
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Right Regularization

If G acts on M, then the lifted action
(hy2) = (h-gg-2)
on the trivial right principal bundle
B =GxM

is always regular and free!

The functions w: B — M given by

w(g,z) =g- 2

provide a complete system of global invariants for the lifted

action.
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Example. G = SO(2) M = R?

B =S0(2) x R? solid torus

(x,u, p) —>

(xcosf —usinf, rsinf + ucosb, ¢ + 6 mod2 )
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Jet Regularization

B"=J"xG

Jn Jn
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General Philosophy of Lifting

All invariant objects on B" = J" x G

are well-behaved and easily understood.

— lifted invariants

We use the G-equivariant moving frame section
o™ Jn — B o (™M) = (p(z™), (M)
to pull back lifted invariants to construct ordinary invariants

on J".

For example,
oFw™ = ™ o g = ()

gives the fundamental differential invariants.

Similarly for lifted invariant differential forms, differential
operators, tensors, etc.

— The key complication is that the pull-back process does
not commute with differentiation!
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The Variational Bicomplex
Infinite jet space
M=J" ¢« J' « J* « ...
Inverse limit

J° = lim J"
n—oo

Local coordinates

20 = (z,u®) = (...2t o wg )

Coframe — basis for the cotangent space T*J°:

Horizontal one-forms

det, ... dzP
Contact (vertical) one-forms
p .
§=duf — Y ufda
i=1

Intrinsic definition of contact form

0|j N=0 — 0=> A09
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Vertical and Horizontal Differentials

Bigrading of the differential forms on J*°

Q* — @ QT,S
Differential
dy : Q™ —  Q7F°
dy : Q™ — QP
p .
dy F =Y (D,F)dz' — total derivatives
i=1
dy F = Z 8—uJ 05 — variation

— Vinogradov, Tsujishita, 1. Anderson
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The Simplest Example. M =R? z,ucR

Horizontal form

dz
Contact (vertical) forms
0 =du—u,dz
0, =du, —u, dx
0, =du,, —u,,. dz

rxrxT

Differential

sza—Fdas—l—a—qu—l—a—qu + oF
ox ou ou, °

ou,.,

OF OF oOF

Tr
ou,..

Total derivative

oF OF OF
D F=2" I
v ou ' " du,, tor ¥ ou,.,

ummm—i_”'

o + ...
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Lifted Variational Tricomplex
B* =J*xG

e Lifted horizontal forms

d i=1,...,p

e Lifted invariant contact forms

p
a __ « « 1
G=dyv5— > v5d;y
i=1

e Right-invariant Maurer—Cartan forms

p=dg-g-

U= b ooo” r=dimG

Differential forms on B

Differential

Q* _ @ Qr,s,t

7,8,t

dH Qr,s,t ; Qr—i—l,s,t

d Qr,s,t Qr,s+1,t
v —

d Qr,s,t Qr,s,t—l—l
G }
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Invariantization

Functions —— Invariants

Forms ——  Invariant Forms

Functions:

UF) = o*ow™ (F) = FoIl™

Differential Forms:

U(Q) = o™ (7, (w* Q)).

m; — Jet projection

T*B>® = T*(J® xG) ~ T*IJ®eT*G
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Invariant Variational Complex

Fundamental differential invariants

H'(z,u™) = (") Ig(z,u) = o(uf)

Invariant horizontal one-forms
w' = L(dazi) — W'+ ni

w® — contact-invariant forms

n* — contact “corrections”

Invariant contact forms

Differential forms Of = O°

r,8

Differential d= dy + dy + dyy
d’H: Qr,s N Qr+1,s
dy: Q70 Qret

dW ) Qr,s ; Qr—l,s—|—2
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The Key Formula

di(2) = 1(dQ) + kz: VA v, (Q)]

— pull back of the dual basis Maurer—Cartan forms via
the moving frame section

o J® 5 B

*x %  All recurrence formulae, syzygies,
commutation formulae, etc. are found by applying
the key formula for various forms and functions 2
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Euclidean Curves

Lifted invariants
y=w"(z) =2zcos¢ —using + a
v=w"(u) =zcosd+using + b

_ sin¢ +u, cos ¢
N cos ¢ — u, sin¢

* Ugy
v, =w (u,,.)=
vy (tg0) (cos ¢ — u, sin )3
ot ) = (cos¢ —u,sing)u,, . — 3u_sine
yuy v (cos¢p —u,sing)®

dy = (cos¢p —u,sin¢)dx — (sin¢g) 0 + da — vde

d;y=m;(dy) = (cos ¢ —u,sin¢g)dr — (sing) 6

D = L D 0 =du—u,dx

Y cos¢p —u,sing °

Normalization

Right moving frame p:Jt — SE(2)

_ T+ uu U, — U
¢=— tan lu a=— z b= —"—-%

? V14 u? _\/l—l—ufC
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Fundamental normalized differential invariants

() =H =
v(u) =1,=0 phantom diff. invs.
Wu,) =1, =
Wugy) =1y =
WUgyy) = I3y = Ky
WUyyyy) = Iy = Ky + 3K

Invariant horizontal one-form

W(dr) = o™ (d,y) == = w + n

= J1+u2de + —2—10

Invariant contact forms

6
L) =10= ——
V142
1+u2)6, —
(0.) = 9, (1+wu;)0, —u,u,0
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Prolonged infinitesimal generators

Vlzaa: V2:au

vy=—ud, +20,+ (1+u2)d, +3u,u,,d, +--

T " Ug

dyl=D.]I -w
Horizontal recurrence formula
dy t(F) = 1(dy F) + u(vi(F) 7" + e(vy(F)) ¥* + u(v5(F)) 7
Use phantom invariants
0=dy H=1(dgz)+ > (v, (2)7" = +7',
0= dy Iy = t(dyu) + 3 u(v,(u) 7" =7,

0= dyy I, = ldgu,) + Y 0(v, (u)) v = now 477,

to solve for
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Recurrence formulae

st = d’H k= d’H (12) = L(dHu:cm) + L(V3(uw:c)) Y

Ree@ = dyy (I3) = t(dgu,,.,) + t(Va(uy,,)Y

= L(u:cw:cw dx) - L(

dzr) — ¢(3u

3

2 U

3

ep)) KT = 1w

duu,, +3ul ) kw =1, — 35w

T XrTTrTIx

k=1,
HSZIS
Kk, =1, — 33

Rgsss = 15 T 19[2213

I, =k

I, = kK,

I, = K, + 3K°

I, =K, + 19/12/18
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Vertical recurrence formula
dy t(F) = 1(dy F) + t(vi(F)) &' + o(vo(F)) e + 1(v3(F)) e®
Use phantom invariants
0=d,H=¢"
0=dy,I,=19+¢e
0=dy,I, =9, +¢&

to solve for

DY =0, DY, =V, — K2V

dyw=—-rkUANw
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Example
(zl,2%,u) e M = R3 G = GL(2)
(', 22, u) — (az' + Ba? vz + 622, M)

A=ad— Py
—> C(lassical invariant theory

Prolongation (lifted differential invariants):

' = ATE - B2?) g = AN (—ya! + as?)

v=A"lu
QU + YUy Buy + du,
nE= =T

O‘21111 + 2ayu,4 + 72U22

V11 = b\

_aBugy + (ad + By)ugy + yousy,
Uig = b\

B?uyy + 280Uy + 62uy,

Vg = b\
Normalization
yl =1 y? =0 v, =1 vy =0
Nondegeneracy
! % + 22 % #0
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First order moving frame

a B\ (2! —u,
v &) \z? wuy
Normalized differential invariants

J =1 J?=0

u

zluy + z2u,
I, =1 I, =0

(-’131)2“11 + 257‘319'72“12 + (332)2“22

I.. =
11 zluy + z2u,
1 1 2 2
. = —T Uglyy + (z Uy — “2)“12 T U Ugy
12 — 1 2
T U+ TU,
2 2
I — (u2) Uy — 2Uq Uglyg + (Ul) Ugg
22 —

zluy + x2u,
Phantom differential invariants
I I
Generating differential invariants
I Iy, Iy Iy
Invariant differential operators

D, =z'D, + z*D, — scaling process
D, = —uyD; +uy D, — Jacobian process
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Recurrence formulae
DJ'=6-1=0 D,J' =6, -0=0
D,J?=8-0=0 D,J?=85-1=0

Dl =1, —I(1+1,)=—-I(+1;) Dyl=I,—1l,=-II,

Dy =1, —1,;,=0 Dyly =15 =11, =0
Dily=15—-1;,=0 Dyly = Iyy = I3 =0
Dyl = Iy + (=11, Dylyy = I1yp + (2= Iy
Dilyy =11y — Iy 1o Dylyy = I1gp + (1 = I11) 1y

Dylyy = Iipp + (I — 1) 15 — 21122 Dylyy = Iypg — 11515
—> Use I to generate [;; and I,
Syzygies
D1, =Dyl = 21,
DyIyy, — Dylyy = 2(111 - 1)122 - 21122
(D1)2122 - (D2)2I11 -
= 2050D 11y + (5115 — 2)D1 115 + (311 — 5)D1 15y —
— (21, = 5)(Ly; — DIy +4(14; — 1)1122

Commutation formulae

[DlaD2] =—1,,D, + ([11 - 1)D2
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Invariant Variational Problems

I[u]:/L(:c,u("))dx:/P(... DI ... ) w

I,....1, — fundamental differential invariants
Dy I — differentiated invariants
w=w A+ AwP — contact-invariant volume form

Invariant Euler-Lagrange equations

E(L)=F(... DpI* ...)=0

Problem.
Construct F' directly from P.

—> P. Griffiths, I. Anderson
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Example. Planar Euclidean group G = SE(2)

Invariant variational problem

/P(H:, KgyKggy -+ )ds

Euler-Lagrange equations

E(L)=F(k,kgyKyg ---) =0

The Elastica (Euler):

2
_ 1 .2 _ ummdx
Z|u] —/E’i ds_/(1+u2)5/2

Euler-Lagrange equation

E(L):Fass+%/<c3:0

—> elliptic functions
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/P(ﬁ;, KgyKggy -+ )ds

Invariantized Euler operator

s 0 d
= —D)" — D=—
¢ ,LZ::O( ) 0K, ds

Invariantized Hamiltonian operator

H(P)= Y r , (-DY O —P

1>9 )

Invariant Euler-Lagrange formula

E(L) = (D? + k%) E(P) +  H(P).

Elastica
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Euler-Lagrange Equations

Integration by Parts:

QP Fl=QP! Jd,or !

— Source forms
Variational derivative or Euler operator:

5:7TOdV:Qp,O — fl

Variational Problems ——  Source Forms

§:A=Ldx — E_ (L) 6“ A dx

q
a=1

Hamiltonian

H(L) =Y Y u¢,(-D,)

a=1 i>j

N
e}
T
<
QJ
N
2
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The Simplest Example. M =R? z,ueR

Lagrangian form
A= L(z,u™)dz

Vertical derivative

d\ = dy A
0L oL oL
=| —0+-—0 0 dz € Qb1
(au +8ux m+8ux$ vz ¥ )/\ ve

Integration by parts

dy (A0) = (D, A)dx N0 —Ab, Ndx
=—[(D,A)0+ A0 ]| Ndx

Variational derivative

oL oL 5 OL
0A = (% ~ s ou, D ou,,

=E(L)OA dx e F!
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Plane Curves

Invariant Lagrangian
/ P(k,kg,...)w

x — fundamental differential invariant (curvature)
w = w + n — fully invariant horizontal form
w = ds — contact-invariant arc length

Invariant integration by parts

d, (Pw) =E(P) dyk Aw—H(P) dyw

Vertical differentiation formulae
dy k = A(9) A — Eulerian operator
dyw=B(W)\Nw B — Hamiltonian operator

—> The explicit formulae follow from our fundamental recurrence
formula, based on the infinitesimal generators of the action.

Invariant Euler-Lagrange equation

A*E(P) — B*H(P) =0
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General Framework

Fundamental differential invariants

1 Y
I',....1
Invariant horizontal coframe
wl ... wP

Dual invariant differential operators
Dy,...,D,
Invariant volume form
w=w' A AwP
Differentiated invariants

% =D"J*=D, ---D; J°

—> order is important!
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Eulerian operator
q
417 = 3 ASW) A= (A3
B=1

—> m X ¢ matrix of invariant differential operators

Hamiltonian operator complex
. q . . . .
dyw! =) 85,5(196) A’ Bl =(B]z)
B=1

— p? row vectors of invariant differential operators

wy=(-1)""w A AT T AT A AP

Twist tnvariants

Twisted adjoint
D! =—(D; + 2,

1
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Invariant variational problem

/ P(I™)

Invariant Eulerian

OP
E(P)=Y D} —
% K o1
Invariant Hamiltonian tensor
; i q oOP
a=1 K J,’L,K

Invariant Euler-Lagrange equations

Ate(p) — zpj (B])TH:(P) = 0.

i,J=1
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Euclidean Surfaces

SCcM=R? coordinates z = (z,y,u)

Group: G = E(3)

z+— Rz +a, R € O(3)

Normalization — coordinate cross-section

Left moving frame
a=z R=(t;tyn)

o t,,t, € TS — Frenet frame

e n — unit normal
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Fundamental differential invariants

K2 = L(ty,)

fo= u(ug,)

— principal curvatures

Frenet coframe
w = u(dz') =w! + 1! w? = 1(dz?) = w? +n°
Invariant differential operators

D, D,
— Frenet differentiation

Fundamental Syzygy:
Use the recurrence formula to compare

1 _ 2
h k29 = D5t (uyy)
LU w1
(t0y) s e
R = Prllly,
1 2 2 \2 1\2
“1“1+’f2“,2_2(“,1) —2(k3)
Kl — K3 + P — 'W?(k' — k%) =0

—> (Codazzi equations
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Twisted adjoints

D

I

|
S
_|_
N
N

I

Gauss curvature —  Codazzi equations:

K =r'r? = DlT(Z1) + DzT(Zz)
- = (Dl + Zl)Zl - (D2 + Z2)Z2

K is an invariant divergence
— Gauss—Bonnet Theorem!
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Invariant contact form
¥ =(0) = v(du — u, dz — u, dy)

Invariant vertical derivatives

dV K’l - [’(9.7::6) (D%+Z2 D2+ (H1)2)’l9

dy, k% = 1(0 (D3 + Z, D, + (k%)) ¥

yy)

Eulerian operator

A= D} + Z, Dy + (k')?
D% + 7, D, + (H2)2

1
———(D,D, — Z,D, )Y A =*

dy,w' = k"INt —
V ol g2

1

— KR

dy w® = ———(D,D, — Z, Dy )I AN w' + k>I A =

K

Hamiltonian operator complex

1_ .1
By =&, Bl —
B2 = k2, 2 kl—k
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Euclidean-invariant variational problem

/ P(k™)w! A w? :/ P(k™) dA

Euler-Lagrange equations

E(L) = At&P) - BT H(P) =0,

Special case: P(k', k?)

oP

E(L) = [(D)® - D] - Z, + (5')*] 5 +

Okl

0P
+[(D21)2—D1T'Z1+(’f2)2]%

+ (k' + K P

Minimal surfaces: P=1

k' +Kk2=2H =0

Minimizing mean curvature: P =H = (k' + k?)

1
2

Willmore surfaces: P =1(k")? 4 1(K?2)?

[(/{1)2+(ﬁ2)2—|—/<c1—|—/<c2] =2H*+ H- K =0.

A(k' + &%) + (6" + %) (k' — k*)* =2AH + 4(H* - K)H =0

Laplace-Beltrami operator

A= (D, +2,)D, 4+ (Dy+ Z,)D, =-D

f
1

.D, - D

3Dy
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Multi—Space

Although in use since the time of Lie and Darboux,
jet space was first formally defined by Ehres-

mann in 1950.

Jet space is the proper setting for the geometry

of partial differential equations.

In this talk, I will propose a setting, named mult:-
space, for the geometry of
numerical approximations to

derivatives and differential equations.

—> Multi-space is the context for geometric integra-

tion.
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Invariant Numerical Approximations

Key remark: FEvery (finite difference) numerical
approximation to the derivatives of a function

require evaluating the function at several points

2, = (w5, u;) = (z;, f(=;)).
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In other words, we seek to approximate the n'®

order jet of a submanifold N C M by a function
F(zy,...,2,) defined on the (n 4+ 1)-fold Cartesian
product space M >+t = A x ... x M, or, more

correctly, on the “off-diagonal” part
MY — [ z; for all i # j }

—> distinct (n + 1)-tuples of points.
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Thus, multi-space should contain both the jet
space and the off-diagonal Cartesian product space

as submanifolds:

M<>(n—l—1) )

} . oM™

J"(M,p)

/

Functions F: M(™ — R are given by
F(zgy.--y2,) on Mo+

and extend smoothly to J” as the points coalesce. In
this manner, F | M°("+1
provides a finite difference approximation to the

differential function F' | J™.
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Construction of M (™

Definition. An (n + 1)-pointed manifold

M= (zy,...,2,; M)

M  — smooth manifold
2y -3 2, € M — not necessarily distinct
Given M, let

#i= #{i] 5==)

denote the number of points which coincide with the

ith one.
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Multi-contact for Curves

Definition. Two (n + 1)-pointed curves

—~— ~

C=(zy,..-,2,;0C), C=(%3,...,%2,;0),
have n*™ order multi-contact if and only if

2, = Z;, and j#i—lc zi j#i—10 2
for each + = 0,...,n.

Definition. The nt* order multi-space M (™ is the
set of equivalence classes of (n 4+ 1)-pointed
curves in M under the equivalence relation of

nt? order multi-contact.
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The Fundamental Theorem

Theorem. If M is a smooth m-dimensional
manifold, then its nf? order multi-space M (™) is a
smooth manifold of dimension (n + 1)m, which con-
tains the off-diagonal part M°("*+1) of the Cartesian
product space as an open, dense submanifold, and

the n'" order jet space J” as a smooth submanifold.

M<>(n—|—1) )

ook L MM

J"(M,p)

ch 100




Example. Let M =R™

(i) MW is the space of two-pointed lines
M® ~ {(zy,2;L) | 29,2, €L — line}.

—> Blow-up construction in algebraic geometry

(ii) M is the space of three-pointed circles, i.e.,
M® ~ { (2, 2,25, C) | 29,2,,29 € C — circle}.

Straight lines are included as circles of infinite radius, but
points are not included (even though they could be viewed
as circles of zero radius).

— Grassmann bundles.

(idi) M) 7777

I Topology — local and global. I
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Finite Differences

Local coordinates on J™ are provided by the coefficients of
Taylor polynomials

— derivatives

Local coordinates on M (™) are provided by the coefficients of
interpolating polynomials.

— finite differences

Given (zy,...,%2,) € M+ define the classical divided
differences by the standard recursive rule

(202129 -+ Zp 92 ] — [Z0%1%2 - 2%k 1 ]

L — L1

(2071 - 212 ] =

[Zj]:uj

—> Well-defined provided no two points lie on the same

vertical line.

—> Symmetric functions of z,.
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Definition. Given an (n 4+ 1)-pointed graph C =
(295 ---,2,;C), its divided differences are defined by

. [202122 e Zk—zz]c - [202122 ceRp_9Rk 1 ]C
(2021 Zp 1% )0 = zli{glk T -2, 4

—> When taking the limit, the point z = (x, f(z)) must lie
on the graph C, and take limiting values z — =, and

flz) = f(zy).

Theorem. Two (n + 1)-pointed graphs C, C have nth
order multi-contact if and only if they have the same divided

differences:

(2021 -+ 21 o = | 2021 - - 21 ) 50 k=0,...,n.
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Local coordinates on M (")

They consist of the independent variables along with all
the divided differences

u® = uy = [2% ¢ ult) = (2071 ]c

Tgyerrs Ty

u® =222y |0 ... u™ =nl[z2...2,]0
prescribed by (n + 1)-pointed graphs

C=(zp,.--,2,0C)

n?

The n! factor is included so that u(™ agrees with the

usual derivative coordinate when restricted to J™.
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Numerical Approximations

A(z,u™) — differential function

A:J" =R

System of differential equations:

A (z,u™) = = A (z,u™) =0.

Definition. An (n + 1)-point numerical
approximation of order k to a differential function
A:J" — Ris a k™ order extension F': M(™ — R of

A to multi-space, based on the inclusion J* ¢ M (™),

F(xg,. .. ,xn,u(o), e ,u("))

—  F(z,...,z,u 9, u™) = Az, u™)
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Invariant Numerical Approximations

G — Lie group acting on M

Basic Idea:

Every invariant finite difference approximation to a
differential invariant must expressible in terms of the joint

invariants of the transformation group.

Differential Invariant
[(g(n) : z(n)) — [(Z(n))
Joint Invariant
J(Gg-2gy--9 2,) = (295, 28)

Semi-differential invariant =

Joint differential invariant

— Approximate differential invariants by joint invariants
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Euclidean Invariants

Joint Euclidean invariant:
d(z,w) = ||z —w]|

Euclidean curvature:

uZBZB

(1+u2)3/2

R =

Euclidean arc length:
ds = /1 +u2dx

Higher order differential invariants:
_dk B d*k
s E Rgs = @

Euclidean—invariant differential equation:

K

F(k Ky Kygy--.) =0
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Three point approximation

Heron’s formula

R(A,B,C) =4 =14 Vs(s —a)(s —b)(s — ¢)

abe e
a+b+c o
T2 semi-perimeter
Expansion:
1 dk 2
% — _b— ah _b2_ b ) &k
K=K +‘3( a) 79 12( a Q%CL) d32_+
L 3 2 2 3 d°k
+@(b — ab +ab_a)E+
! dk
_b_ b2 b 9 2 Ak
+ 150 — @) (30" + Sab + 3a%) K7 —— +
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Higher order invariants

_dx
S ds

K

Invariant finite difference approximation:

. .
R\l oy 4515 5 L5 41) = d(Pz'aPz'—l)

Unbiased centered difference:

~ %(Pzwpi 1’Pz' 2)_%(Pi—27pz’—17pi)
K’s(Pi—2’Pi—1aPz'aPH—l’Pz'—i—Q): + d(—i_P~+1,P- 1)

Better approximation (M. Boutin):

'%(Pz’—l’ Pz” Pz'+1) - ’Nf(Pz'—2’ Pi—l’ Pz')

d, ,+2d,_,+2d;+d;,

%S(Pi—%Pi—l,PiaPi_H) =3

d; = d(F;, Pjy)
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Affine Joint Invariants

x > Ax +b det A =1

Area is the fundamental joint affine invariant

ligk] = (P; — P;) A (P — Py

x, vy, 1
=det |z, y; 1
Ty Y 1

= Area of parallelogram

= 2 X Area of triangle A(P;, P;, P;)

Syzygies:
(i7l] + [jkL] = [igk] + [kl ]

lijk] [ilm] — [ij1] [ikm] + [ijm] [ikl] = 0
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Affine Differential Invariants

Affine curvature

2
3“:1::1:“:1::1::1::1: T 5uzmzx

9(u,_)8/3

K —=
rxr

Affine arc length

ds:de

Higher order affine invariants:

dk d?k
_ o o=

Ii e —
S ds 55 ds?
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Conic Sections

Az? +2Bxy + Cy*> + 2Dz +2Ey+ F =0

Affine curvature:

S
- T2/3

K

A B
_ _ R2 _
S = AC — B® = det, B C
A B D
T=det|B C FE
D FE F
Ellipse:
k= (7/A)%/3
T
A = WW = Area
Affine arc length of ellipse:
@ T3 |-CT cD - BE\[°
/P S = m arcsin S2 T g .

= 25T 23A(P,Q)
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A(P,Q) :

Triangular approximation:

A(O,P,Q) :

Total affine arc length:

3

T
L=2JA =—-27

V'S
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Conic through five points P, ..., Py:
[013][024][x12][x34] = [012][034][x13][x24]

x = (x,y)
Affine curvature and arc length:
S
h= T2/3

N
ds = Area A(O, P, P;) = %[O,Pl,P?)] =53

ar= I - [ijk]
45 = [013]2[024]%([124] — [123])* +
+ [012]%[034)%([134] + [123])* —
— 2[012][034][013][024] ([123][234] + [124][134])

4N = —[123][134] {[023]?[014]([124] — [123]) +
+ [012]%[034]*([134] + [123]) +
+ [012][023][014][034]([134] — [123])}

Theorem. F,, P;,P,, P;, P, — points on the convex curve C.

ch 114




x — affine curvature of C at P,

K= %(PO>P17P27P37P4)
— affine curvature of conic

P;
L, = ds
Py
— affine arc length of conic
Expansion:

_ 1(4 )dﬁ; 1 d?k
imnit (o) L > )Py
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Multi-Invariants
G — Lie group which acts smoothly on M

—> (G preserves the multi-contact equivalence relation

G ptY malti-prolongation to M (™)
— On J* ¢ M™ it coincides with the usual
jet space prolongation

— On M°(*+) ¢ M it coincides with the
(n 4+ 1)-fold Cartesian product action.

K:M®™ 3R —  multi-invariant

K(g(") : z(n)) — K(z(”))

—> K |J* — differential invariant
— K| M°(»+t1)  joint invariant
— K |JFfto...0Jk  — joint diff. invariant

The theory of multi-invariants 4s the theory of invariant

numerical approximations!
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Moving frames provide a
systematic algorithm for

constructing multi-invariants!

A moving frame on multi-space
p: M  — @

is called a multi-frame.
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Example. G=R? xR
(z,u) +— (A 'z +a, \u+b)

Multi-prolonged action: compute the divided differences of the
basic lifted invariants

Y = )\_1$k + a, v, = Auy, + b.
We find
(1) _ _ Uy — Yy
o\ = lww, | =
[ wow, ] i — Yo

% U1~ Y% _ \2 [ 2021 ] = \2 u(l),

oM = \nt1,,(n)

Moving frame cross-section
Yo =10 vy =0 v =1

Solve for the group parameters

1
— —Vu® h— — o A =
“ o VD ey

—> multi-frame p: M — G.
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Multi-invariants:

U —Uu
y,:  Hp=(z;, —zy)Vul) = (z, — xp) xl — 3;0
1 0
) _ U — Uy B T, — g
U/k . Kk — u(l) — (ka U,O) UI — uo
O TR (O nw _ n![zg2y ... 2, ]
. (u(l))(n+1)/2 [Zozl](n+1)/2
KO=K,=0 KWO=1
Coalescent limit
(n)
u
K(n) — [(”) —
(u(l))(n+1)/2

— K™ ig a first order invariant numerical approximation

to the differential invariant I(™),

—> Higher order invariant numerical approximations are
obtained by invariantization of higher order divided difference

approximations.
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Invariantization

To construct an invariant numerical scheme for any

similarity-invariant ordinary differential equation
F(x,u, TSRTIC .u(”)) =0,

we merely invariantize the defining differential function, lead-
ing to the general similarity—invariant numerical approxima-
tion

F(0,0,1,K® .. KM™)=0o.

—> Nonsingular!
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Example. Euclidean group SE(2)
Yy =1xcost —usinf +a v==xsinf +wucosf +b
Multi-prolonged action on M (1:
Yo = Tycosf —uysinbd + a Vg = Tosinf + ugcosd + b

(1) _ sinf + u cos 6

Yy, =x,cos0 —u;sinf +a v cosf —uLsin 6

Cross-section
yO:vozv(l)zo

Right moving frame

g+ u(l) Uy
1+ (uD)?

a=— xycost +uysinf = —

tanf = — u)

1+ (u®)2

b= — x051n9—u00059:

ch 121




Euclidean multi-invariants
(yk,vk) — Ik: = (Hk;a Kk:)
(zp, — xg) +u) (uy, —uy) B 14 2921 ] [ 202 ]
= (xk 370) 5
1+ (u)2 1+ 22 ]

Hk:

K, = (g = up) —w') (3, — ) = (2, — z,) (2021 ] — [20%1]

1+ (u®)2 1+ [zp2 ]2

Difference quotients

[IOIk] -

Ky — Ko _ Ky _ (7 — 21)[ 2021 % |
Hy—H, Hyp 1+4[z2z,][27%]
W =[1,1,]=0

Lply ] = (Lol ]

@) _ ol
I® =2[I,I,I,] =2 -y

2[zgz125 ]y 1 + [ 292, 2
(142921 [[2122])(1 4+ [2021 ] [2022])

u® /1 + (D)2

[1 + (uM)? + 2uMu@)(z, — xo)] [1 + (uM)? + 2uMu@(z, — xl)]

Invariant numerical approximation to the Euclidean curvature:
2)

(
. (2) . . u
zl,lz}z@)zo I —h= (1 + (u(l))2)3/2

Euclidean—invariant approximation for x, = t(u,,

[IOIIIS] _ [IOIIIQ]

I1®) =6 [I,1,I,I,] =6 o, H,
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Higher Dimensional Submanifolds

T M |, — nth order tangent space

Proposition.

Two p-dimensional submanifolds NV, N have n*® order

contact at a common point z € N N N if and only if

TN, =T"N|,

: +n
—> Requires <p

> coalescing points to approxi-
n

mate nt? order derivatives
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Surfaces

p=72

n
0 1
1 3
2 6
3 10
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Definition. A subspace V' C T™M]|, is called
admissible if for every vector
veVnT®M|, 1<k<n,
there exists a submanifold N C M such that
veT®N| cV.

Definition. Two submanifolds IV, N have r* order
subcontact at a common point if and only if for
some n, there exists an admissible common 7-

dimensional subspace

ScT™WN| NnT™WN|, cT™M|,
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Example.

Surfaces: S,S’ M

order Conditions
0 2€SNS — common point
1 tangent curves: TC|, =TC|,
(tangent surfaces: TS|, = TS|,
2 X
| osculating curves: TP C|, =T,
(TS|, =TS|, and TOC|,=TAC|,
3 X
| TG, =T,
( T(2)S|z 2)§|z
TS|, = T3|,, TOC, = T,
T =T
5) .
TS|, = T8|,, TWC|, = TWEY,
| TOC|, =TO)C|,
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Multi-space and Multi-variate Interpolation

Definition. Let M be a smooth manifold.
The n'* order multi-space M (™) is the set of all n-point

interpolant data

Z=(2p-1%, 1:Vgo---, V.. 1),
consisting of
(a) an ordered set of n points z,,...,2, ; € M.

#i=#1i] 5=2)

(b) an ordered collection of admissible subspaces V, ¢ T(™ M ..

such that
J

Vi:Vj if 2z, ==z,
{dim‘/;:#i—l

In particular, if #4 = 1, and so z, only appears once in Z, then
V. = {0} is trivial.

Multivariate Hermite Interpolation

Definition. An interpolant to Z is a submanifold N C M
such that z;, € N and V; C TN, .
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Conjecture. The multispace M (™) is a manifold of dimen-

sion (n + 1)m. It contains
e M°®" as an open, dense submanifold

e all J¥(M,p) that have dimension < (n + 1)m as submani-
folds

e various off-diagonal copies of multi-jet spaces J**(M,p)o---o
J(M,p) for iy + -+ + i, = n — k as submanifolds.

— smooth or analytic

Difficulties

& Multi-variate interpolation theory.
& Multi-variate divided differences.
& Coordinates at coalescent points.

& Topological structure — local and global
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