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Plane Geometries/Groups

Euclidean geometry:
SE(2) — rigid motions (rotations and translations)

(
x̄
ȳ

)

=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)

+

(
a
b

)

E(2) — plus reflections?

Equi-affine geometry:
SA(2) — area-preserving affine transformations:
(
x̄
ȳ

)

=

(
α β
γ δ

)(
x
y

)

+

(
a
b

)

α δ − β γ = 1

Projective geometry:
PSL(3) — projective transformations:

x̄ =
αx+ β y + γ

ρx+ σ y + τ
ȳ =

λx+ µ y + ν

ρx+ σ y + τ



The Basic Equivalence Problem

G — transformation group acting on M

Equivalence:
Determine when two subsets

N and N ⊂ M

are congruent:

N = g ·N for g ∈ G

Symmetry:
Find all symmetries,

i.e., self-equivalences or self-congruences :

N = g ·N



Tennis, Anyone?



Duck = Rabbit?



Limitations of Projective Geometry

=⇒ K. Åström



Thatcher Illusion



Local Symmetry and Equivalence

=⇒ Alan Weinstein

♠ A groupoid is a small category

such that every morphism has an inverse.



Local Symmetry and Equivalence

=⇒ Alan Weinstein

♠ A groupoid is a small category
such that every morphism has an inverse.



Local Symmetry and Equivalence

=⇒ Alan Weinstein

♠ Groupoids are the appropriate structure for
local symmetry and equivalence problems . . .



Invariants

The solution to an equivalence problem rests on
understanding its invariants.

≈ Invariants describe the moduli space of objects
under group transformations.

⋆ If G acts transitively, there are no (non-constant)
invariants — in which case we need to “prolong”
the action to a higher dimensional space.



Joint Invariants

A joint invariant is an invariant of the k-fold
Cartesian product action of G on M × · · ·×M :

I(g · z1, . . . , g · zk) = I(z1, . . . , zk)



Joint Euclidean Invariants

Theorem. Every joint Euclidean invariant is a
function of the interpoint distances

d(zi, zj) = ∥ zi − zj ∥

zi

zj



Joint Equi–Affine Invariants

Theorem. Every planar joint equi–affine invariant is
a function of the triangular areas

A(i, j, k) = 1
2 (zi − zj) ∧ (zi − zk)

zi

zj

zk



Joint Projective Invariants

Theorem. Every joint projective invariant is a
function of the planar cross-ratios

[ zi, zj, zk, zl, zm ] =
AB

C D

A B

C

D



Differential Invariants

Given a submanifold (curve, surface, . . . ) N ⊂ M ,
a differential invariant is an invariant of the action of
G on N and its derivatives (jets).

I(g · z(k)) = I(z(k))



Euclidean Plane Curves: G = SE(2)

The simplest differential invariant is the curva-
ture, defined as the reciprocal of the radius of the
osculating circle:

κ =
1

r



Curvature

r = 1/κ



Euclidean Plane Curves: G = SE(2) = SO(2)! R2

Assume the curve is a graph: y = u(x)

Differential invariants:

κ =
uxx

(1 + u2
x)

3/2

dκ

ds
=

(1 + u2
x)uxxx − 3uxu

2
xx

(1 + u2
x)

3

d2κ

ds2
= · · ·

Arc length (invariant one-form):

ds =
√
1 + u2

x dx,
d

ds
=

1
√
1 + u2

x

d

dx

Theorem. All Euclidean differential invariants are
functions of the derivatives of curvature with
respect to arc length: κ, κs, κss, · · ·



Equi-affine Plane Curves: G = SA(2) = SL(2)!R2

Equi-affine curvature:

κ =
5uxxuxxxx − 3u2

xxx

9u8/3
xx

dκ

ds
= · · ·

d2κ

ds2
= · · ·

Equi-affine arc length:

ds = 3

√
uxx dx

d

ds
=

1
3
√
uxx

d

dx

Theorem. All equi-affine differential invariants
are functions of the derivatives of equi-affine
curvature with respect to equi-affine arc length:

κ, κs, κss, · · ·



Projective Plane Curves: G = PSL(2)

Projective curvature:

κ = K(u(7), · · · )
dκ

ds
= · · ·

d2κ

ds2
= · · ·

Projective arc length:

ds = L(u(5), · · · ) dx
d

ds
=

1

L

d

dx

Theorem. All projective differential invariants are
functions of the derivatives of projective curvature
with respect to projective arc length:

κ, κs, κss, · · ·



Joint Differential Invariants

Given a submanifold (curve, surface, . . . )
N ⊂ M , a joint differential invariant or
semi-differential invariant is an invariant of the action
of G on N and its derivatives (jets) at several points
z1, . . . , zk ∈ N :

I(g · z(n)1 , . . . , g · z(n)k ) = I(z(n)1 , . . . , z(n)k )



Euclidean Joint Differential Invariants
— Plane Curves

• One–point

⇒ curvature

κ =

!

z ∧
! !

z

∥
!

z ∥3



• Two–point

⇒ distances ∥ z1 − z0 ∥

⇒ tangent angles φ0 = <) (z1 − z0,
!

z0)

z0

z1

φ0

φ1



Equi–Affine Joint Differential Invariants
— Plane Curves

• One–point

⇒ affine curvature

κ =
(zt ∧ ztttt) + 4(ztt ∧ zttt)

3(zt ∧ ztt)
5/3

−
5(zt ∧ zttt)

2

9(zt ∧ ztt)
8/3

= zs ∧ zss



• Two–point =⇒ tangent triangle area ratio
!

z0 ∧
! !

z0
[ (z1 − z0) ∧

!

z0 ]
3 =

[
!

0
! !

0 ]

[ 0 1
!

0 ]3
=

A

B3

z0

z1

A
B



• Three–point =⇒ triangle area
1
2 (z1 − z0) ∧ (z2 − z0) =

1
2
[ 0 1 2 ]

z0

z1

z2



Projective Joint Differential Invariants
— Planar Curves

• One–point

⇒ projective curvature

κ = K(z(7), · · · )

• Two–point

⇒ tangent triangle area ratio

[ 0 1
!

0 ]3 [
!

1
! !

1 ]

[ 0 1
!

1 ]3 [
!

0
! !

0 ]
=

A0/B
3
0

A1/B
3
1



• Three–point =⇒ triple tangent triangle ratio

[ 0 2
!

0 ] [ 0 1
!

1 ] [ 1 2
!

2 ]

[ 0 1
!

0 ] [ 1 2
!

1 ] [ 0 2
!

2 ]
.

z0 z1

z2

z0 z1

z2



• Five–point =⇒ area cross–ratio

[ 0 1 2 ] [ 0 3 4 ]

[ 0 1 3 ] [ 0 2 4 ]

z0

z1

z2
z3

z4



Moving Frames

The equivariant method of moving frames pro-
vides a systematic and algorithmic calculus for
determining complete systems of differential invariants,
joint invariants, joint differential invariants, invariant
differential operators, invariant differential forms, in-
variant tensors, invariant numerical algorithms, etc.



Symmetry–Preserving Numerical
Approximations

⋆ In practical applications, use invariant numerical
approximations, based on joint invariants, to the
required differential invariants, joint differential
invariants, etc.

♠ Invariantization of numerical integration methods
=⇒ Runge–Kutta, Crank–Nicolson, . . .



Equivalence & Invariants

• Equivalent submanifolds N ≈ N
must have the same invariants: I = I.

Constant invariants provide immediate information:

e.g. κ = 2 ⇐⇒ κ = 2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. κ = x3 versus κ = sinhx



However, a functional dependency or syzygy among
the invariants is intrinsic:

e.g. κs = κ3 − 1 ⇐⇒ κs̄ = κ3 − 1

• Universal syzygies — Gauss–Codazzi

• Distinguishing syzygies.

Theorem. (Cartan)
Two regular submanifolds are (locally) equivalent
if and only if they have identical syzygies among
all their differential invariants.

Proof : Cartan’s technique of the graph:
Construct the graph of the equivalence map as the solu-
tion to a (Frobenius) integrable differential system, which
can be integrated by solving ordinary differential equations.



Finiteness of Generators and Syzygies

♠ There are, in general, an infinite number of
differential invariants and hence an infinite
number of syzygies must be compared to
establish equivalence.

♥ But the higher order differential invariants are
always generated by invariant differentiation
from a finite collection of basic differential
invariants, and the higher order syzygies are
all consequences of a finite number of low
order syzygies!



Example — Plane Curves
If non-constant, both κ and κs depend on a single

parameter, and so, locally, are subject to a syzygy:

κs = H(κ) (∗)

But then

κss =
d

ds
H(κ) = H ′(κ)κs = H ′(κ)H(κ)

and similarly for κsss, etc.

Consequently, all the higher order syzygies are generated
by the fundamental first order syzygy (∗).

Thus, for Euclidean (or equi-affine or projective or . . . )
plane curves we need only know a single syzygy between κ and
κs in order to establish equivalence!



Signature Curves
Definition. Given an (ordinary) planar action of a Lie group
G, the signature curve Σ ⊂ R2 of a plane curve C ⊂ R2 is
parametrized by the two lowest order differential invariants

χ : C −→ Σ =

{ (

κ ,
dκ

ds

) }

⊂ R
2

=⇒ Calabi, PJO, Shakiban, Tannenbaum, Haker

Theorem. Two regular curves C and C are (locally) equivalent:

C = g · C

if and only if their signature curves are identical:

Σ = Σ

=⇒ regular: (κs,κss) ̸= 0.



Symmetry and Signature

⋆ For regular p-dimensional submanifolds,
the (local) dimension of the signature equals
the co-dimension of the (local) symmetry group(oid):

dimΣ = p− dimGS

• Maximally symmetric: dimΣ = 0
⇐⇒ all the differential invariants are constant
⇐⇒ S ⊂ H · z0 is a piece of

an orbit of a p-dimensional subgroup H ⊂ G

• Discrete symmetries: dimΣ = p = dimS
the number of discrete (local) symmetries equals the index
of the signature



The Index

χ

−→

N Σ

index = 3 = # symmetries



The polar curve r = 3 + 1
10 cos 3θ
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The Curve x = cos t+ 1
5 cos

2 t, y = sin t+ 1
10 sin

2 t
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The Curve x = cos t+ 1
5 cos

2 t, y = 1
2 x+ sin t+ 1

10 sin
2 t
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Canine Left Ventricle Signature

Original Canine Heart
MRI Image

Boundary of Left Ventricle



Smoothed Ventricle Signature
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Object Recognition

=⇒ Steve Haker
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Signatures

s

κ

Classical Signature

−→

Original curve κ

κs

Differential invariant signature



Occlusions

s

κ

Classical Signature

−→

Original curve κ

κs

Differential invariant signature



3DDifferential Invariant Signatures

Euclidean space curves: C ⊂ R3

Σ = { (κ , κs , τ ) } ⊂ R
3

• κ — curvature, τ — torsion

Euclidean surfaces: S ⊂ R3 (generic)

Σ =
{ (

H , K , H,1 , H,2 , K,1 , K,2

) }
⊂ R

6

or Σ̂ =
{ (

H , H,1 , H,2 , H,11

) }
⊂ R

4

• H — mean curvature, K — Gauss curvature

Equi–affine surfaces: S ⊂ R3 (generic)

Σ =
{ (

P , P,1 , P,2, P,11

) }
⊂ R

4

• P — Pick invariant



Advantages of the Signature Curve

• Purely local — no ambiguities

• Symmetries and approximate symmetries

• Extends to surfaces and higher dimensional sub-
manifolds

• Occlusions and reconstruction

• Partial matching and puzzles

Main disadvantage: Noise sensitivity due to
dependence on high order derivatives.



Localization of Signatures

Generalized vertex: κs ≡ 0

=⇒ critical point; circular arc; straight line
segment

Bivertex arc: κs ̸= 0 everywhere
except κs = 0 at the two endpoints



Bivertex Decomposition of a Curve:

C =
m⋃

j=1
Bj ∪

n⋃

k=1
Vk

B1, . . . , Bm — bivertex arcs

V1, . . . , Vn — generalized vertices: n ≥ 4

⋆ Compare individual bivertex arcs, and then deter-
mine whether the rigid equivalences are (approxi-
mately) the same.

Dan Hoff & PJO, Extensions of invariant signatures for object recogni-
tion,

J. Math. Imaging Vision 45 (2013), 176–185.



Bivertex Arcs

The signature Σ of a bivertex arc is a single arc that
starts and ends on the κ–axis.

κ

κs



Gravitational/Electrostatic Attraction

⋆ Treat the two (signature) curves as masses or as oppositely
charged wires. The higher their mutual attraction, the
closer they are together.

⋆ In practice, we are dealing with discrete data (pixels) and
so treat the curves and signatures as point masses/charges.

κ

κs

κ

κs



Piece Locking

⋆ ⋆ Minimize force and torque based on gravitational
attraction of the two matching edges.



The Baffler Jigsaw Puzzle



The Baffler Solved



The Rain Forest Giant Floor Puzzle



The Rain Forest Puzzle Solved

=⇒ Dan Hoff & PJO, Automatic solution of jigsaw puzzles,
J. Math. Imaging Vision, to appear.



3D Jigsaw Puzzles

=⇒ Anna Grim, Tim O’Connor, Ryan Schlecta

Cheri Shakiban, Rob Thompson, PJO



Reassembling Humpty Dumpty

=⇒ Broken ostrich egg shell — Marshall Bern



Archaeology



=⇒ Virtual Archaeology



Surgery



Benign vs. Malignant Tumors

=⇒ Anna Grim, Cheri Shakiban



Benign vs. Malignant Tumors



Benign vs. Malignant Tumors



Noise Resistant Signatures

Use lower order invariants to construct a signature:

• joint invariants

• joint differential invariants

• integral invariants

• topological invariants

• . . .



Joint Euclidean Signature

For the Euclidean group G = SE(2) acting on curves C ⊂ R2 (or
R3) we need at least four points

z0, z1, z2, z3 ∈ C

to form a joint signature.

Joint invariants:

a = ∥ z0 − z1 ∥ b = ∥ z0 − z2 ∥ c = ∥ z0 − z3 ∥

d = ∥ z1 − z2 ∥ e = ∥ z1 − z3 ∥ f = ∥ z2 − z3 ∥

=⇒ six functions of four variables



Four-Point Euclidean Joint Signature

z0
z1

z2z3

a

b

c d

e

f



Joint Euclidean Signature: Σ : C×4 −→ Σ ⊂ R6

dimΣ = 4 =⇒ ∃ two syzygies

Φ1(a, b, c, d, e, f) = 0 Φ2(a, b, c, d, e, f) = 0

Universal Cayley–Menger syzygy:

det

∣∣∣∣∣∣∣

2a2 a2 + b2 − d2 a2 + c2 − e2

a2 + b2 − d2 2b2 b2 + c2 − f2

a2 + c2 − e2 b2 + c2 − f2 2c2

∣∣∣∣∣∣∣
= 0

⇐⇒ C ⊂ R2



Joint Equi–Affine Signature

Requires 7 triangular areas:

[ 0 1 2 ] , [ 0 1 3 ] , [ 0 1 4 ] , [ 0 1 5 ] , [ 0 2 3 ] , [ 0 2 4 ] , [ 0 2 5 ]

z0

z1

z2

z3

z4

z5



Joint Invariant Signatures

• The joint invariant signature subsumes other signatures, but
resides in a higher dimensional space and contains a lot of
redundant information.

• Identification of landmarks can significantly reduce the
redundancies

• Includes the differential invariant signature and joint differ-
ential invariant signatures as its “coalescent boundaries”.

• Invariant numerical approximations to differential invariants
and semi-differential invariants are constructed (using
moving frames) near these coalescent boundaries.

• Integral invariants are alternative “projections” thereof



TheDistance Histogram

Definition. The distance histogram of a finite set of points
P = {z1, . . . , zn} ⊂ V is the function

ηP (r) = #
{
(i, j)

∣∣∣ 1 ≤ i < j ≤ n, d(zi, zj) = r
}
.



TheDistance Set

The support of the histogram function,

supp ηP = ∆P ⊂ R
+

is the distance set of P .

Erdös’ distinct distances conjecture (1946):

If P ⊂ Rm, then #∆P ≥ cm,ε (#P )2/m−ε



Characterization of Point Sets

Note: If P̃ = g · P is obtained from P ⊂ Rm by a rigid motion
g ∈ E(n), then they have the same distance histogram:
ηP = ηP̃ .

Question: Can one uniquely characterize, up to rigid motion, a
set of points P{z1, . . . , zn} ⊂ Rm

by its distance histogram?

=⇒ Tinkertoy problem.



Yes:

η = 1, 1, 1, 1,
√
2,

√
2.



No:

Kite Trapezoid

η =
√
2,

√
2, 2,

√
10,

√
10, 4.



No:

P = {0, 1, 4, 10, 12, 17}

Q = {0, 1, 8, 11, 13, 17}
⊂ R

η = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17

=⇒ G. Bloom, J. Comb. Theory, Ser. A 22 (1977) 378–379



Characterizing Point Sets
by their Distance Histograms

Theorem. Suppose n ≤ 3 or n ≥ m+ 2.
Then there is a Zariski dense open subset in the space of n
point configurations in Rm that are uniquely characterized,
up to rigid motion, by their distance histograms.

=⇒ M. Boutin & G. Kemper, Adv. Appl. Math. 32 (2004) 709–735



Limiting Curve Histogram



Limiting Curve Histogram



Sample Point Histograms
Cumulative distance histogram: n = #P :

ΛP (r) =
1

n
+

2

n2

∑

s≤r

ηP (s) =
1

n2
#
{
(i, j)

∣∣∣ d(zi, zj) ≤ r
}
,

Note:
ηP (r) =

1
2 n

2[ΛP (r)− ΛP (r − δ) ] δ ≪ 1.

Local cumulative distance histogram:

λP (r, z) =
1

n
#
{
j
∣∣∣ d(z, zj) ≤ r

}
=

1

n
#(P ∩ Br(z))

ΛP (r) =
1

n

∑

z ∈P

λP (r, z) =
1

n2

∑

z ∈P

#(P ∩ Br(z)).

Ball of radius r centered at z:

Br(z) = { v ∈ V | d(v, z) ≤ r }



Limiting Curve Histogram Functions

Length of a curve

l(C) =
∫

C
ds < ∞

Local curve distance histogram function

hC(r, z) =
l(C ∩ Br(z))

l(C)

=⇒ The fraction of the curve contained in the ball of radius r
centered at z.

Global curve distance histogram function:

HC(r) =
1

l(C)

∫

C
hC(r, z(s)) ds.



Convergence of Histograms

Theorem. Let C be a regular plane curve. Then, for both
uniformly spaced and randomly chosen sample points
P ⊂ C, the cumulative local and global histograms converge
to their continuous counterparts:

λP (r, z) −→ hC(r, z), ΛP (r) −→ HC(r),

as the number of sample points goes to infinity.

Dan Brinkman & PJO, Invariant histograms,
Amer. Math. Monthly 118 (2011) 2–24.



Square Curve Histogramwith Bounds



Kite and Trapezoid Curve Histograms



Histogram–Based Shape Recognition
500 sample points

Shape (a) (b) (c) (d) (e) (f)

(a) triangle 2.3 20.4 66.9 81.0 28.5 76.8

(b) square 28.2 .5 81.2 73.6 34.8 72.1

(c) circle 66.9 79.6 .5 137.0 89.2 138.0

(d) 2× 3 rectangle 85.8 75.9 141.0 2.2 53.4 9.9

(e) 1× 3 rectangle 31.8 36.7 83.7 55.7 4.0 46.5

(f) star 81.0 74.3 139.0 9.3 60.5 .9



Distinguishing Melanomas from Moles

Melanoma Mole

=⇒ A. Rodriguez, J. Stangl, C. Shakiban



Cumulative Global Histograms

200 400 600 800 1000

0.2

0.4

0.6

0.8

1.0

Red: melanoma Green: mole



Logistic Function Fitting

Melanoma Mole



Logistic Function Fitting — Residuals

0.5

1.0

1.5

2.0

2.5

3.0

Melanoma = 17.1336 ± 1.02253

Mole = 19.5819 ± 1.42892

⎫
⎪⎬

⎪⎭
58.7% Confidence



Curve HistogramConjecture

Two sufficiently regular plane curves C and C̃ have

identical global distance histogram functions, so

HC(r) = HC̃(r) for all r ≥ 0, if and only if they are

rigidly equivalent: C ≃ C̃.



Possible Proof Strategies

• Show that any polygon obtained from (densely) discretizing a
curve does not lie in the Boutin–Kemper exceptional set.

• Polygons with obtuse angles: taking r small, one can recover
(i) the set of angles and (ii) the shortest side length from
HC(r). Further increasing r leads to further geometric
information about the polygon . . .

• Expand HC(r) in a Taylor series at r = 0 and show that the
corresponding integral invariants characterize the curve.



Taylor Expansions

Local distance histogram function:

LhC(r, z) = 2r + 1
12 κ

2 r3 +
(

1
40 κκss +

1
45 κ

2
s +

3
320 κ

4
)
r5 + · · · .

Global distance histogram function:

HC(r) =
2r

L
+

r3

12L2

∮

C
κ2 ds+

r5

40L2

∮

C

(
3
8 κ

4 − 1
9 κ

2
s

)
ds+ · · · .



Space Curves
Saddle curve:

z(t) = (cos t, sin t, cos 2 t), 0 ≤ t ≤ 2π.

Convergence of global curve distance histogram function:



Surfaces
Local and global surface distance histogram functions:

hS(r, z) =
area (S ∩ Br(z))

area (S)
, HS(r) =

1

area (S)

∫ ∫

S
hS(r, z) dS.

Convergence for sphere:



Area Histograms
Rewrite global curve distance histogram function:

HC(r) =
1

L

∮

C
hC(r, z(s)) ds =

1

L2

∮

C

∮

C
χr(d(z(s), z(s

′)) ds ds′

where χr(t) =

{
1, t ≤ r,

0, t > r,
Global curve area histogram function:

AC(r) =
1

L3

∮

C

∮

C

∮

C
χr(area (z(ŝ), z(ŝ

′), z(ŝ′′)) dŝ d ŝ′ dŝ′′,

d ŝ — equi-affine arc length element L =
∫

C
dŝ

Discrete cumulative area histogram

AP (r) =
1

n(n− 1)(n− 2)

∑

z ̸=z′ ̸=z′′∈P

χr(area (z, z
′, z′′)),

Boutin & Kemper : The area histogram uniquely determines
generic point sets P ⊂ R2 up to equi-affine motion.



Area Histogram for Circle

⋆ ⋆ Joint invariant histograms — convergence???



Triangle Distance Histograms

Z = (. . . zi . . .) ⊂ M —
sample points on a subset M ⊂ Rn (curve, surface, etc.)

Ti,j,k — triangle with vertices zi, zj, zk.

Side lengths:

σ(Ti,j,k) = ( d(zi, zj), d(zi, zk), d(zj, zk) )

Discrete triangle histogram:

S = σ(T ) ⊂ K

Triangle inequality cone:

K = { (x, y, z) | x, y, z ≥ 0, x+ y ≥ z, x+ z ≥ y, y + z ≥ x } ⊂ R
3.



Triangle HistogramDistributions

Circle Triangle Square

Convergence to measures . . .

=⇒ Madeleine Kotzagiannidis



Practical Object Recognition

• Scale-invariant feature transform (SIFT) (Lowe)

• Shape contexts (Belongie–Malik–Puzicha)

• Integral invariants (Krim, Kogan, Yezzi, Pottman, . . . )

• Shape distributions (Osada–Funkhouser–Chazelle–Dobkin)
Surfaces: distances, angles, areas, volumes, etc.

• Gromov–Hausdorff and Gromov-Wasserstein distances (Mémoli)
=⇒ lower bounds & stability


