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The Cartan
Equivalence Method

* Elie Cartan, Les sous-groupes des groupes continus
de transformations, Ann. Sci. Ecole Normale

Supérieur, 3e sér., 25 (1908), 57-194.



LES SOUS-GROUPES

DES

GROUPES CONTINUS DE TRANSFORMATIONS;

Par M. E. CARTAN.

Ce Mémoire peut étre considéré comme une suite au Mémorre pré-
cédemment paru en deux Parties dans ces mémes Annales (*), ou est
exposce une théorie de la structure des groupes continus de transfor-
mations s’appliquant aussi bien aux groupes infinis quaux groupes
finis. Dans la théorie classique de S. Lie, la structure d’un groupe fini
est definie par ce qu'il appelle les constantes de structure, et ces con-
stantes s'introduisent lorsqu’on compose entre elles les transforma-
tions infinitésimales du groupes; ¢’estdone la notion de transformation
infinitésimale qui est & la base de cette théorie classique de la strue-
ture; mais en restant & ce point de vue cette théorie devait se horner
aux groupes finis et il a ¢t¢ impossible de 'étendre aux groupes in-
finis. Au contraire, dans la théorie que jai proposée, on prend pour
point de départ les dquations de definition des cquations finies du
groupe et ce sont ces équations de définition qui donnent naissance a
des constantes que jappelle les constantes de structure du groupe; ces

(1) B. CAwTAN, Sur la structure des groupes infinis de transformations ( Annales de
ULcole Normale, 3° série, 1. XXI, 19of, p. 133=156; 3¢ série, t. XXII, 1905, p. 219~
308).

Ann. Ee. Norm., (3), XXV. — Fivies 1go8. 8

Go E. CARTAN.

a 13 Pun deux, par exemple, donne naissanee jusqut o8 groupes
diltorents. Dailleurs énumération complite ne semble pas devoir
présenter un grand intéret, elle ne fournirait aveun groupe simple
transitif nouveau; mais peat-¢tre y aurait-il lieu d'étudier, parmi les
groupes intransitifs, ceux que j'ai appelésimproprement siples ol (i
semblent rendre difficile le probléme siimportant de fa réduction d'un
groupe & une série normale de sous-groupes ().
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CHAPITRE 1.

LE PROBLEME GENERAL DE L'EQUIVALENCE.

I. Considérons deux systemes de 2z expressions anx differentielles
y I

totales linéairement indépendantes iz variables @ Pun aux # variables
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Pautre aux ~ variables X, X,, ..., X,

Ko Ay dX b= Ay d Xyt Ay d Xy

s Q= Ay dX = Ay Xy st Ay X,
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les @ désignant des fonctions données des et les A, des fonetions
données des X. Le problime que nous allons résoudre est celui de
reconnattre si U'on peut trouyer pour les X des fonctions indépendantes

(1) Poir B. CARTAN, Annales de I Ecole Normale, 3¢ série, 1. XXI, 1905, p. ofg-285,

Cf. la Nole, parue postéricurement a la rédaction do eo Mémoire, dans les Compies
rendus de U deadémie des Scienees de Paris, |, CXLIV, 21 mai 1goy, sous le titro : Les
groupes de transformations continus, infinis, simples.



Some (Personal) History

Cartan’s remarkable solution to the general equivalence
problem relied on his theory of exterior differential systems
(EDS), including the Cartan—Kahler Existence Theorem.

Owing to its difficulty, it remained under-appreciated and
rarely used, except by some of his disciples such as

S.S. Chern, R. Debever, M. Kuranishi, and D.C. Spencer.

In the 1980’s, several researchers, notably Robby Gardner,
Robert Bryant, Niky Kamran, and their collaborators and
students, realized that the Cartan equivalence method
could be made algorithmic and had significant potential in
applications, particularly to equivalence problems arising in
ordinary and partial differential equations, the calculus of
variations, differential operators, including those arising in
quantum mechanics, and control theory.



Through attendance at meetings and interactions with them,
I also became convinced of the potential of the equivalence
method, and ended up writing a series of papers with
Niky Kamran on the topic.

My first individual success was applying it to the basic
equivalence problem of classical invariant theory using
an observation that it was isomorphic to an already solved
equivalence problem for first order variational problems.



After learning how to use and justify
Cartan’s methods, I was inspired Equivalence

(or tricked) to write my second book Invariants ¢
(1995). The theme was Lie versus )
Cartan, or, rather, reconciling Lie and SYmmetl’Y
and Cartan. Of course, Cartan was
directly inspired by Lie, but the two
approaches had subsequently gone in
rather different directions.

This was where the idea of a differ-

ential invariant signature, then called
a “classifying manifold” first arose in
my reformulation of Cartan’s solution
to the equivalence problem. Peter J.Olver




As I was putting the finishing touches on the book, my long time
friend and, at that time, colleague Allen Tannenbaum convinced me of the
importance of differential invariants in image processing and computer vi-
sion. We ended up writing a series of papers with Anthony Yezzi, Guillermo
Sapiro, Satya Kichenassamy, and others on applications of Lie groups and
differential invariants to issues in computer vision, particularly denoising and
segmentation. This culminated in

Calabi, E., Olver, P.J., Shakiban, C., Tannenbaum, A., Haker, S., Differential
and numerically invariant signature curves applied to object recognition,
Int. J. Computer Vision 26 (1998), 107-135.

where we proposed the use of differential invariant signatures and their
invariant numerical approximations for solving equivalence problems arising
in image processing. The term signature was already in use in image
processing, although not rigorously backed up by the Cartan machinery,
and I chose to start using it in general.

And the rest is history ...



The Basic fquivafence Problem

Given a transformation group acting on a space, determine when two
subsets can be mapped to each other by a transformation in the group.

Symmetry

A symmetry of a subset is a self-equivalence.



Rigid equivalence

When are two shapes related by a rigid motion?



Scaling (similarity) equivalence

1L



Projective and Equiaffine Equivalence

>



Transformation groups

Projective Transformation




Transformation groups

Projective Transformation




Projective transformations in art and photography

Albrecht Durer — 1500



Tennis, anyone?

* Projective or equi-affine equivalence & symmetry



Duck = Rabbit?




Limitations of Projective Equivalence

— K. Astrém (1995)






Thatcher Illusion




Thatcher Illusion




Thatcher Illusion

Local equiva[énce and symmetry — grou}aoicfs?



Local equivalence of puzzle pieces

Ul



Local equivalence of puzzle pieces

C




Binary form:

Q(z) = Zni (Z) ay,z"

k=0

Equivalence of polynomials (binary forms):

Q)= (a+dr@(S2E) o= (2 ) ecre)

e multiplier representation of GL(2)
e modular forms



Transformation group:

g9: (z,u) — (

ax + u )
yr+6 ' (yr+ o)™

Equivalence of functions <= equivalence of graphs

Lo ={(z,u) = (2,Q(x)) } € C?

—> I. Kogan



Cartan’s Key Idea

* Recast the equivalence problem for submanifolds
under a (pseudo-)group action, in the
geometric language of differential forms.

Then reduce the equivalence problem to the most
fundamental equivalence problem:

* Equivalence of coframes.



Coframes

A coframe on an m-dimensional manifold M are m one-forms
that forms a basis for the cotangent space T* M at each point:

=3 hi@)ded i=1,...,m det(hi(z))#0

j=1

Equivalence of Coframes: d*0' = 0° = O*(dF") = db"
Structure equations: dot = X<k ;k 67 A g%

Invariants: L i 5 é’l W

Rank = r = # functionally independent invariants
Order = s = order of derivatives where rank is achieved

Invariants of order < s 4+ 1 parametrize the signature of the
coframe



Equivalence of Coframes

Cartan’s Theorem:
Two coframes are equivalent if and only if
e Their ranks are the same

e Their signature manifolds are identical



Cartan’s Graphical Proof Technique

The graph of the equivalence map
v M — M

can be viewed as a transverse m-dimensional integral submanifold
Ly, CMxM

for the involutive differential system generated by the one-forms
and functions

o _
Existence of suitable integrable submanifolds determining
equivalence maps is guaranteed by the Frobenius Theorem,

which is, at its heart, an existence theorem for ordinary differ-
ential equations, and hence valid in the smooth category.



Determining the Invariant (Extended) Coframe

There are now two methods for explicitly determining the
invariant (extended) coframe associated with a given equivalence
problem.

e The Cartan Equivalence Method

e Equivariant Moving Frames

Either will produce the invariant coframe and the funda-
mental differential invariants required to construct a signature
and thereby effectively solve the equivalence problem.

—> F. Valiquette
— . Arnaldsson



The Cartan Equivalence Method

(1) Reformulate the problem as an equivalence problem for
G-valued coframes, for some structure group G

(2) Calculate the structure equations by applying d
(3) Use absorption of torsion to determine the essential torsion

(4) Normalize the group-dependent essential torsion coefficients to reduce
the structure group

(5) Repeat the process until the essential torsion coefficients are all
invariant

(6) Test for involutivity
(7) If not involutive, prolong (a la EDS) and repeat until involutive
The result is an invariant coframe that completely encodes the

equivalence problem, perhaps on some higher dimensional space. The
structure invariants for the coframe are used to parametrize the signature.



Equivariant Moving Frames

—> Fels and Olver, 1999

(1) Prolong (a la jet bundle) the (pseudo-)group action to the jet bundle
of order n where the action becomes (locally) free

(2) Choose a cross-section to the group orbits and solve the normalization
equations to determine an equivariant moving frame map p: J* —- G

(3) Use invariantization to determine the normalized differential invariants
of order < n + 1 and invariant differential forms; invariant differential
operators; ...

(4) Apply the recurrence formulae to determine higher order differential
invariants, and the structure of the differential invariant algebra

% Step (4) can be done completely symbolically, using only linear algebra,
independent of the explicit formulae in step (3)



Tﬁe ﬁe%/ to uno{érsmmﬁ’ng OLHC[ SOﬁ/iﬂg

an ecluiva ence jmfoﬁfem (ies in the invariants

For Cartan, the cﬁjﬁrentiaf invariants are funa(amenm[



Differential Invariants

Given a submanifold (curve, surface, ...)

ScM

a differential invariant is an invariant of the prolonged
action of G on its derivatives (jets):

](g.z(k)) _ [(Z(k))




Curvature = reciprocal of radius of osculating circle






“.. the theory of differential invariants is to the theory of curvature
as projective geometry is to elementary geometry.”

— Poincaré



Euclidean Plane Curves: G = SE(2)

Differentiation with respect to the Euclidean-invariant arc
length element ds is an invariant differential operator,
meaning that it maps differential invariants to differential
invariants.

Thus, starting with curvature x, we can generate an infinite
collection of higher order Euclidean differential invariants:

dr d?k A3

l{ —_— —_— —_—
" ds T ds?2’  ds3’

Theorem. All Euclidean differential invariants are functions of
the derivatives of curvature with respect to arc length:

R, Rgy Rggq,



Euclidean Plane Curves: G = SE(2)

Assume the curve C' C M is a graph: y = u(x)

Differential invariants:

(1+u2)32’  ds (14 u3)? |

K =

Arc length (invariant one-form):

1
ds = /1 +u2 dx, i: d

ds 1+ u2 dx




Equi-affine Plane Curves: G = SA(2) = SL(2) x R?

Equi-affine curvature:

2
3 UppUpgaax — 3 Up dk

Equi-affine arc length:

d 1 d
ds = d =
’ toz OF ds  Ju,, dx

Theorem. All equi-affine differential invariants are functions
of the derivatives of equi-affine curvature with respect to

equi-affine arc length: k, & K

s 887



Projective Plane Curves: G = PSL(2)

Projective curvature:

dk d*k
— K(uD ... . S
" (™ ) ds ds?
Projective arc length:
d 1 d

Theorem. All projective differential invariants are functions
of the derivatives of projective curvature with respect to
projective arc length:

K, K K

s) S87



Euclidean Space Curves C C R?

e K — curvature: order = 2
e T — torsion: order = 3
® K T, Ky ... — derivatives w.r.t. arc length ds

Theorem. Every Euclidean differential invariant of a
space curve C' C R? can be written

I = H(R, TRy Ty Kggy - )

Thus, x and 7 generate the differential invariants of
space curves under the Euclidean group.



Euclidean Surfaces S C RS

e H=1(k,+kKy) — mean curvature: order = 2
o K = Kk, — Gauss curvature: order = 2
e DH,D,H,D,K,D,K,D{H, ... — derivatives

with respect to the equivariant Frenet frame on S

Theorem. Every Euclidean differential invariant of a
non-umbilic surface S C R? can be written

[ =®(H,K,D,H, D,H,D,K,D,K,D>H, ...)

Thus, H, K generate the differential invariant algebra
of (generic) Euclidean surfaces.



Euclidean Surfaces

Theorem.

The algebra of Euclidean differential invariants for suitably
non-degenerate surfaces is generated by only the mean curvature
through invariant differentiation.

In particular:

K = &(H,D,H,D,H, ...)



The Basis Theorem

Theorem. The differential invariant algebra 7Z(() is locally
generated by a finite number of differential invariants

I, ... .1,
and p = dim S invariant differential operators
Dy, ... ,D,

meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

D,I,=D,D, D, I

In~ K°

% Lie groups: Lie, Ousiannikov, [els P.JO

% Lie pseudo-groups: Tresse, Kumpera,
Pohjanpelto-PJO, Kruglikov-Lychagin



’Moving Frames

The mathematical theoryis all based on the

(Fels+PJO, 1999)
which provides a systematic and algorithmic calculus for
constructing complete systems of differential invariants,
joint invariants, joint differential invariants,
invariant differential operators, invariant differential
forms, invariant variational problems, invariant
conservation laws, invariant numerical algorithms,
invariant signatures, etc., etc.



Equivalence & Invariants

e Equivalent submanifolds N ~ N
must have the same invariants: [ = 1.

Constant invariants provide immediate information:

e.g. k=2 < K=2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. K= x> Versus Kk = sinhx



However, a functional dependency or among
the invariants s intrinsic:

e.g. H8:K3—1 — R.=r—1

Wl

e Universal syzygies — Gauss—Codazzi

e Distinguishing syzygies.

Theorem. (Cartan)
Two regular submanifolds are (locally) equivalent
if and only if they have identical syzygies among
all their differential invariants.



Finiteness of Generators and Syzygies

& There are, in general, an infinite number of
differential invariants and hence an infinite
number of syzygies must be compared to
establish equivalence.

(¢ But the higher order differential invariants are
always generated by invariant differentiation
from a finite collection of basic differential
invariants, and the higher order syzygies are
all consequences of a finite number of low
order syzygies!



Example — Plane Curves

If non-constant, both x and k, depend on a single
parameter, and so, locally, are subject to a syzygy:

kg = H(k) (%)

But then

Koy = o H(K) = H'() 5, = H'(x) H(s)

and similarly for x etc.

CEER
Consequently, all the higher order syzygies are generated
by the fundamental first order syzygy (x).

Thus, for Euclidean (or equi-affine or projective or ...)
plane curves we need only know a single syzygy between x and

K, in order to establish equivalence!



The Signature Map

The generating syzygies are encoded by the

signature map
Y: N — 2

of the submanifold N, which is parametrized by
the fundamental differential invariants:

x(@) = (I(), -+ I ()

The image
>o=1Im y

is the signature subset (or submanifold) of N.



Equivalence & Signature

Theorem. Two regular submanifolds are

equivalent:
N=g-N
if and only if their signatures are identical:

Y =X



Signature Curves

Definition. Given an (ordinary) planar action of a Lie group
G, the signature curve >. C R? of a plane curve C C R? is
parametrized by the two lowest order differential invariants

x : C — —{(m,dﬁ>}CR2
ds

= Calabi, PJO, Shakiban, Tannenbaum, Haker

Theorem. Two regular curves C and C are (locally) equivalent:

C=g-C

if and only if their signature curves are identical:

—> regular: (k,,K,,) # 0.



Nut 1
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400 500

Signature Curve Nut 1
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Closeness: 0.137673




Hook 1 Nut 1
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@iagnosing breast tumors

Anna Grim, Cheri Shakiban

Benign — cyst Malignant — cancerous



A BENIGN TUMOR

Contour Signature Curve

# /A\\.A\‘\

‘\\ ‘ ,




A MALIGNANT TUMOR

Contour Signature Curve

Vo= ‘-((mﬂ\\

= ;..'.;'!-' ,




3D Differential Invariant Signatures

Euclidean space curves: C C R?3

={(r, ks, T)} C R’

e s — curvature, 7 — torsion

Euclidean surfaces: S C R3 (generic)

v={(H,K,H, ,H,, K, ,K,)} C R

oo »={(H,H,,H, Hy )} C R*

e H — mean curvature, K — Gauss curvature






Hessian:

H=n(n—1)uu,, —(n—1)%u #0

rxr

Note: H=0 if and only if Q(x) = (ax +b)"
—> Totally singular forms

Differential invariants:

J K+3n—-2) dk
v, — X KU > =

Yyyy n2(n — 1) yyyy nd(n—1) ds




Absolute rational covariants:

> U
J2 ﬁ K — ﬁ
H=13Q,Q) =nn-1)QQ" - (n-1)°Q” ~ Q,,Q,, — @2,
T= (Q H)W =(2n—-4)QH —nQH' ~Q.H, - Q,H,
U= (Q 1Y =@Bn—-6)QT—nQT ~Q,T,—Q,T,

deg@Q =n degH =2n—4 degT =3n—6 deglU =4n—8



Signatures of Binary Forms

of a nonsingular binary form Q(x):

0= {(J(x)2,K (z)) = ( ZI((?; ’ JEI]((:ZU))2 >}

Nonsingular: H(x) #0 and (J'(z), K'(x)) # 0.

Theorem. Two nonsingular binary forms are equiva-
lent if and only if their signature curves are identical.
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Automatic puzzle reassembly

S |
) | > C

Step 0. Digitally photograph and smooth the puzzle pieces.

Step 1. Numerically compute invariant signatures of (parts of) pieces.

Step 2. Compare signatures to find potential fits.
Step 3. Put them together, if they fit, as closely as possible.

Repeat steps 1-3 until puzzle is assembled....



Localization of Signatures

Bivertex arc: k, # 0 everywhere
except k, = 0 at the two endpoints

The signature >. of a bivertex arc is a single arc that
starts and ends on the k—axis.

Rg




Bivertex Decomposition

v-regular curve — finitely many generalized vertices

=1

By,...,B — bivertex arcs

Vi,V — generalized vertices: n >4

Main Idea: Compare individual bivertex arcs, and then decide
whether the rigid equivalences are (approximately) the same.

D. Hoff & PJO, Extensions of invariant signatures for object recognition,
J. Math. Imaging Vision 45 (2013), 176-185.



Signature Metrics

Used to compare signatures:

e Hausdorft

e Monge-Kantorovich transport

e Electrostatic/gravitational attraction
e Latent semantic analysis

e Histograms

e (Geodesic distance

e Diffusion metric

o Gromov—Hausdorff & Gromov—Wasserstein



Gravitational /Electrostatic Attraction

* Treat the two (signature) curves as masses or as oppositely
charged wires. The higher their mutual attraction, the
closer they are together.




Gravitational /Electrostatic Attraction

* Treat the two (signature) curves as masses or as oppositely
charged wires. The higher their mutual attraction, the
closer they are together.

* In practice, we are dealing with discrete data (pixels) and
so treat the curves and signatures as point masses/charges.

kg Rg




Piece Locking

* % Minimize force and torque based on gravitational
attraction of the two matching edges.



Automatic Solution of Jigsaw Puzzles




—— Anna Grim, Ryan Slechta, Tim O’Connor, Rob Thompson, Cheri Shakiban, PIO



A broken ostrich egg







An egg piece
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All the king’s horses and men



The elephant bird of Madagascar

Aepyornis maximus

M struthio camelus

(Image from wikipedia.org)

@ more than 3 meters tall

@ extinct by the 1700’s

@ one egg could make about 160 omelets


http://wikipedia.org/

The elephant bird of Madagascar

(Image from Tennant’s Auctioneers)

@ pictured egg is 70% complete

@ complete egg recently sold for $100,000



Puzzles in archaeology

Y
Y

;







Puzzles in surgery




A little more history

In November, 2016, I gave a couple of invited talks at
Georgia Tech and then had lunch with Tony Yezzi (see above),
where I told him about my work on jigsaw puzzles and egg
shells. And he said well, my sister Katrina is a graduate student
in Anthropology at the University of Minnesota and she is very
interested in putting together broken bones.

And so, almost 4 years later ...



AMAAZE

Anthropological and Mathematical Analysis of

Archaeological and Zooarchaeological Evidence

https://amaaze.umn.edu




UNIVERSITY OF MINNESOTA
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Anthropological and Mathematical Analysis of Archaeological and Zooarchaeological Evidence
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The Anthropological and Mathematical Analysis of Archaeological and Zooarchaeological
Evidence (AMAAZE) is an international consortium of anthropologists, mathematicians, and
computer scientists who are working together to advance analytical methods and to use
advanced mathematical methods to address important questions within archaeology and
zooarchaeology.

Whether studying fossils, lithics, pottery, or other remnants of the past, archaeological
analysis is grounded in identifying patterns and frequencies, which is inherently
mathematical. Early research was founded on the observation and qualitative description
of these patterns. Over the last several decades, the discipline has increasingly sought
quantitative data analytical methods. Powerful tools such as 3d modeling, geometric
morphometrics, and machine learning allows us to quickly capture and process massive
amounts of information that cannot practically be gathered from physical measurements.

Together, anthropologists, mathematicians, and computer scientists leverage their
expertise to truly optimize these tools, the implications of which are expected to impact the
current understanding of early human prehistory, culture, and origins.

Current projects include the Geometric Analysis for Classification and Reassembly of
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Breaﬁing ‘Bones

Carnivore

Crocuta crocuta =
hyena

Hammerstone and
anvil

Hominin

Hammerstone only

Geological

o

"Rock fall

96



Worﬁing ﬂ-[yjaotﬁesis

The geometry of the bone fragments,
their (taxon and element),
and how they are reassembled
can tell us the actor of breakage



Broken Bone ‘Fmgments




Segmenmtion

(a) Bone fragment (b) Face segmentation (c) Edge tracing

100



Bone Fragment Segmentation using
Semi-suyewisecf gmyﬁ- ased Poisson Learning

David Floeder



David Floeder



David Floeder



David Floeder



Reassemﬁ[y (Refit)

N\
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Gradient descent on SE(3) using an objective function
based on segmented break edges and surface normals

Riley O'Neill






