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“I did not quite understand how he
[Cartan] does this in general, though
in the examples he gives the proce-
dure is clear.”

“Nevertheless, I must admit I found the
book, like most of Cartan’s papers,
hard reading.”

— Hermann Weyl

“Cartan on groups and differential geometry”,
Bull. Amer. Math. Soc. 44 (1938) 598-601
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Applications of Moving Frames

Difterential geometry

Equivalence

Symmetry

Differential invariants

Rigidity

Invariant differential forms and tensors
Classical invariant theory

Identities and syzygies

Computer vision

Invariant numerical methods

Lie pseudogroups
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The Basic Equivalence Problem

M — smooth m-dimensional manifold.

G — transformation group acting on M

e finite-dimensional Lie groups

e infinite-dimensional Lie pseudo-groups

Equivalence:

Determine when two n-dimensional submanifolds

N and N C M

are congruent:

Symmetry:
Self-equivalence or self-congruence:

N=g N
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Euclidean & Affine Geometry

e Fuclidean group — G = SE(n) or E(n)
isometries of Euclidean space
translations, rotations (& reflections)

R € SO(n) or O(n)
z— R-z+4+a a € R"”
z e R"

Equivalence Problem: Can given submanifolds
N and N be transformed into each other by a
Euclidean transformation, i.e., a combination of
translations, rotations, and, possibly, reflections?

o Fqui-affine group: G = SA(n)
R € SL(n) — area-preserving
o Affine group: G = A(n)
R € GL(n)
e Projective group: G = PSL(n)
acting on RP"~1

— Applications in computer vision
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Classical Invariant Theory

Binary form:

Qz) = f: (Z) a z*

k=0

Equivalence of polynomials (binary forms):

Q)= e+ @ (250) o= (2 F)ece

—> multiplier representation of GL(2)

Transformation group:

g: (z,u) ><

ax + 3 u )
yr+6  (yxr+6)™

We identify a polynomial with its graph

N ={(z,u) = (2,Q(x)) } C C*
Then
Q=9-Q < Ng=g-N,
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Moving Frames

Definition.
A moving frame is a G-equivariant map
p: M — G
—> Cartan, Griffiths
Equivariance:

g-p(z) left moving frame

right moving frame

Note
Presi(2) = nght(z)_l
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Theorem. A moving frame exists in a neighbor-

hood of a point z € M if and only if G acts
freely and regularly near z.

free — the only group element ¢ € G which
fixes one point z € M is the identity:
g-z=zift g=ce.

locally free — the orbits have the same dimension
as G.

regular — all orbits have the same dimension and
intersect sufficiently small coordinate charts
only once ( # irrational flow on the torus)

effective — the only group element g € G which
fixes every point z € M is the identity:
g-z=ztorall ze M ift g =e.

locally eftective — ...
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Normalization

Set

w(g,z) =g "z

Choose r = dim G components to normalize:
w(g ) =¢ .. wlgz)=c
Assuming det( dw;/dg; ) # 0, the solution
g = p(z)

is a (local) left moving frame.
—> Implicit Function Theorem

Invariants

Substituting the moving frame normalizations
into the remaining m — r components of w(g, z) pro-
duces a comple system of (functionally independent)
fundamental invariants:

L(2) = w1 (p(2),2) oo L (2) = w,,(p(2), 2)

Theorem. Every invariant /(z) can be (locally)
uniquely written as a function of the
fundamental invariants:

I(z) = HI,(2),....I,_.(2))

m-—rT
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Geometrical Interpretation

Normalization = choice of cross-section to the group orbits

K — cross-section to the group orbits
O, — orbit through z € M

k € K N O, — unique point in the cross-section and
in the orbit through z

e £k is the canonical form of z

e The (nonconstant) coordinates of k are the
fundamental invariants

g € G — unique group element mapping £k to z

z2=q-k — freeness
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Normalization Equations

The map
g =p(z)
satistying the normalization equations
w(g,z) =g ' z2=keK
defines a (local) left moving frame
p: M — G

Coordinate cross-section
K={z=¢ ... z.=c,}
Normalization equations:

wy(g,2)=¢, ... wl(g,2)=c,
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Prolongation

Most interesting group actions (Euclidean, affine,
projective, etc.) are not free!

Any non-free, effective action can be made free by:

e Prolonging to derivatives (jet space)
G . JY M, p) — JMM, p)

— differential invariants

e Prolonging to Cartesian product actions
G Mx--xM-—Mx---xM

— joint invariants

e Prolonging to “multi-space”
axm e M — M)

—> joint differential invariants
—> invariant numerical approximations
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Joint Euclidean Invariants

E(2) acts on M = R? x --- x R?: z, = (x;,u,)
y, =cosf (x, —a)+sinf (u, — b)
v, = —sinf (z, —a) + cosf (u, — b)
i=0,1,2,...
Normalization

Yo =10 vy =0 vy =0
Moving frame p: M — E(2)

o (u—u

a=2x b=u 0 =tan~ ! 1 0
0 0

L1 — Ty

Joint invariants:

. (2, — 29) - (21 — %)

Y !
’ ||Z1_Zo||

b s (2i = 29) A (21 — %)
’ ||21_Z0||

Theorem. Every joint Euclidean invariant is a
function of the interpoint distances:
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Jets and Prolongation

M — m-dimensional manifold

J* = J*(M,p) — n'" extended jet bundle for
p-dimensional submanifolds N C M

—> equivalence classes of submanifolds under
n*® order contact

G — transformation group acting on M
G(") — p*M prolonged action of G on J”

Local coordinates:

x = (z!,...,2P) — independent variables

uw = (ul,...,u?) — dependent variables; ¢ = m —p
(z,u™) = (...2"...u%...) — jet coordinates

o (8%
uG =0 u
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Euclidean Curves

Assume the curve is (locally) a graph:
C={u=f(z)}

Prolong to J3 — implicit differentiation
y =cosf(x —a)+sinf (u —b)

v=—sinf(x —a)+ cosf (u—0b)
—sinf + u,cost

v, = .
Y cosf +u,sind

v — uCL'ZL'

Y9 (cos@ +u,sinf )3
(cos® +u, sinb)u, . — 3u’_sinb
v f—
yyy (cos@ + u,sinf )°

Normalization

y=20 v=20 v, =0

Moving frame
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Differential invariants (curvatures)
u

Vyy TR = T+ w2
dr (L4 g )ty — 3,5,
v — — —
yvy ds (1+wu2)?
d’k 3
Yyyyy ds2_3li -

Invariant one-form — arc length

dy = (cost +u_sint)der — ds = \/1 +u2 dz

Invariant differential operator

d 1 d
dy cost+u,sint dx
d d
(14212 &
ds (1+u,) dx

Theorem. All differential invariants are functions

of the derivatives of curvature with respect to
arc length:

dv  d*k
ds’ ds?’

K,
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Euclidean Curves

€,
€
X
/
Moving frame:
a=2=x b=u 0 = tan ' u

dx
el - . (xs7ys) e2 — elL — (_ys7xs)

—> Frenet frame
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Equivalence & Signature

Definition. The signature curve S C R? of a
curve C C R? is parametrized by the first two
differential invariants x and x,

-{(e k) <

Theorem. Two curves C and C are equivalent

C=g¢g-C
if and only if their signature curves are identical

S=S8

—> object recognition
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Maximally Symmetric Curves

Theorem. The following are equivalent:

e The signature curve & degenerates to a point

e The curve C has constant curvature

o C = {exp(tv)z,} is the orbit of a one-parameter
subgroup

—> In Euclidean geometry, these are the circles and
straight lines.

—> In equi-affine geometry, these are the conic
sections.
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Discrete Symmetries

Let X : C — S denote the signature map, so
() = (k(2), ky(2), 2 €C

Definition. The index of a curve C equals the

number of points in C which map to a generic point
of S:

Lo = min{# S~ Hw) ‘ w € S}

—> Self intersections

Theorem. The cardinality of the symmetry group
of C equals its index ¢,.

—> Approximate symmetries
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Rigidity — Euclidean Curves

Theorem. If

C=g-C

are equivalent curves and have third order
contact at a point, then

c=C

Theorem. For each z € C, there exists g, € G
such that C and g, - C have third order contact
at z =g, - z, it and only if

C=g-C
for fixed g € G.

e Rigidity order
= order of signature curve
= order K,

e C maximally symmetric =
rigidity order = order «
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Moving Frames in
Classical Invariant Theory

M =R2?, G=GL(2)

axr + u
(x,u) — :
yr+6  (yr+o)" n 0,1
o=79p+0 A=ab— Py
Prolongation:
_ax+ B
v = yT + 0
v=0 "u
_ ouy, —nyu
?Jy R Ao-n—l
_o?u,, —2(n — 1)you, + n(n — 1)v*u
Vyy = A2g5n—2
Yyyy =
Normalization:
1
Y v v, Vyy n(n — 1)
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Moving frame:

Oé:u(l—n)/n\/ﬁ B: _xu(l—n)/n\/ﬁ

H=n(n—-Duu__ —(n—1)>%u_ — Hessian
Nondegeneracy:
H#0

Note: H=0 if and only if Q(z) = (axz + b)"

Differential invariants:

B J K +3(n-2)
vyyy o n2(n _ 1) vyyyy o n3(n _ 1)
Absolute rational covariants:
T2 U
2 _
i =1

=3(Q, Q¥ =n(n-1)QQ" - (n - 1)’Q"? ~ Q,,Q,, — Q%
T= (Q H)Y =(2n-4)QH - nQH' ~Q,H,-Q,H,
U= (Q.1)" =(3n-6)Q'T - nQT" ~Q.T, - Q,T,
deg@Q =n degH =2n—4 degl' =3n—6 deglU =4n —8
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Signatures of Binary Forms

Definition. The signature curve of a nondegenerate
complex-valued binary form @(x) is the rational
curve parametrized by the two fundamental
absolute rational covariants,

- {tor= (5 4 ) )

Nonsingular: H(z) # 0 and (J'(z), K'(x)) # 0.

Theorem. Two nonsingular binary forms are
equivalent if and only if their signature curves
are identical.
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Maximally Symmetric Binary Forms

Theorem. The following are equivalent:

e (J(z) admits a one-parameter symmetry group

e 77 is a constant multiple of H?

e Q(x) ~ 2" is complex-equivalent to a monomial
e the signature curve degenerates to a single point

e the graph of ) coincides with the orbit of a
one-parameter subgroup
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Symmetries of Binary Forms

Signature map:

Index:
Lo = min {# Y Hw} ‘ w € S}

Theorem. The symmetry group of a nonzero
binary form Q(x) # 0 of degree n is:

e A two-parameter group if and only if H = 0 if
and only if () is equivalent to a constant.

e A one-parameter group if and only if H #Z 0 and
T? is a constant multiple of H3 if and only
if () is complex-equivalent to a monomial

z*, with k # 0, n.

e A finite group in all other cases. The cardinality
of the group equals the index ¢ of the
signature curve.

—> More general analytic functions can admit infinite,
discrete symmetry groups, e.g., periodic functions.
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Let Q(x) be a binary form of degree n which is not complex
equivalent to a monomaial.

H=YQ, Q% T=(Q HY U=(@Q, 1V

Define the bivariate polynomials
A(z,y) = H(z)* T(y)* — H(y)* T(x)? deg A = 6n — 12
B(z,y) = H(z)* U(y) — H(y)* U(x) deg B = 4n — 8
Their & subresultant, taken with respect to y:
Ry (z) = Ry[A, B]

—> Subresultants detect multiple common roots.

Theorem. Assuming simple roots, the index of Q(x) equals
the first integer k for which R, (x) # 0.

Theorem. Let ¢, denote the index of a binary form () of
degree n which is not complex-equivalent to a monomial.

Then
® 1< 6n—12 if U = cH? for some constant c, or

* L <4n — 8 in all other cases.

—> The equation U = 0 can be transformed into
a Schwarz-type hypergeometric equation and into
the Chazy equation from Painlevé analysis
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Regularization

If G acts on M, then the lifted action
(haz) — (g h, g - Z)
on the trivial lett principal bundle
B=GxM

is always regular and free!

The functions

U}(g,Z) — g_l " &

provide a complete system of
invariants for the lifted action.

A moving frame p : M — G defines a
(G-equivariant section

o: M — B o(z) = (p(z),2)




General Philosophy of Lifting

Invariant objects on B — lifted invariants — are
well-behaved and easily understood.

The moving frame section
o: M — B

allows us to “pull-back” lifted invariants to
construct ordinary invariants on M.

For example,
*
ow=woo =1

defines the fundamental invariant functions

I(z) = w(p(2),2) = p(2) " - 2

Similarly for lifted invariant differential forms,
differential operators, tensors, etc.

— The key complication is that the pull-back pro-
cess does not commute with differentiation!
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Invariantization

Given a moving frame
p: M — G
If

F:M—R F(z)
is any function then
L=Fow:B—R L(g,z)=F(g~ ! 2)
defines a lifted invariant. Further
I =Fowoog: M — R I(z) = F(p(z)~1-2)
defines an ordinary invariant function
—> the nvariantization of F.

If F'is already an invariant, then [ = F'.

The invariantization process
T,: F(z) — I(z) = F(p(2) " 2)

defines a projection from the space of functions to
the space of invariants.
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Computing Lifted

Differential Invariants

Lifted ordinary invariants:

w(g,z) =g 'z

Lifted independent and dependent variables:
z=(x,u)  w=(y,v)

Explicitly:

y' =w'(g,z) ... y" =wP(g,)

1 _

vt =wPt(g,2) ... vi=w"(g,z)

Differentiate the v’s with respect to the y’s:
Ve = Ep 0"
Lifted invariant differential operators:
D(yt, ...,y L Foy?TL L yP)
D(y!,...,yP)
£ =Dy(g,z,u™)"7T.D

EF=D,F =
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Jet Normalization

Choose r = dim G jet coordinates

7 o
BlyevvyZp ZCOI'UJ

Coordinate cross-section:

Z1=¢ ... Z.=c,

Lifted differential invariants

7 o
Wyy..., W, Yy OI'?JJ

Normalization Equations

w,(g,z,u™)=¢, ... w/(g,z,u™)=c,

Solution:

g = p™ ()Y = p™ (g, ul™) —> moving frame
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The Fundamental Differential Invariants

I (M) = HW(5(m)=1 . ()

Tz, u™) = ¢ (p'™) (2, u(™), 2, u)
Iz, u™) = vg (p™ (2, ™), 2, ul))

Phantom differential invariants

w,=¢ ... w.=c, — normalizations

Theorem. Every n'® order differential invariant
can be locally written as a unique function
of the non-phantom fundamental differential
invariants in I(").

Invariant differential operators:
D = Dy(p"™ (z,u™), z,u™)""- D

Theorem. The higher order differential invariants
are obtained by invariant differentiation with

respect to Dy,...,D,.
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Important:
EVK = Vg €5 &1 =0

but
DIg #1y, [D,D,J]#0

—> Pull-back does not commute with differentiation!

Recurrence Formulae:

D, J =6+ M
DI% =13 + Mg,

) o :
M;, My — correction terms

Commutation Formulae:

p
k
[D'L’7Dj] — ; Az’j D,

e The correction terms can be computed directly
from the infinitesimal generators!
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Generating Invariants

Theorem. A generating system of differential
invariants consists of

e all non-phantom differential invariants J* and
I* coming from the un-normalized zero™ order
lifted invariants y*, v“, and

e all non-phantom differential invariants of the form
7; where I7 is a phantom differential invariant.

In other words, every other differential invariant can,
locally, be written as a function of the gener-

ating invariants and their invariant derivatives,
) o
Dy J*, Dgly,.

—> Not necessarily a minimal set!
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Syzygies

A syzygy is a functional relation among
differentiated invariants:

H(...D,I,..)

v

0

Derivatives of syzygies are syzygies
—> find a minimal basis

Remark: There are no syzygies among the normal-
ized differential invariants I(™ except for the
“phantom syzygies”

II/:CI/

corresponding to the normalizations.
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Syzygies

Theorem. All syzygies among the differentiated in-
variants are differential consequences of the following
three fundamental types:

D,J =& + M

— J* non-phantom

Dyl =c¢, + Mg

— I3 generating

— Ij x = w, = ¢, phantom

(64 (84 S (84 (64
Dilpy —Dylpy=Mpg ;—Mp )k

— I, I, generating, KNJ = o

—> Not necessarily a minimal system!
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Invariantization

— arbitrary diff. function

L = F(w™)
— lifted differential invariant

J = F(IM(z("))

— differential invariant

Invariantization
F(z(”)) N F([(n)(z(n)))

—> projection
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Recurrence Formulae

D,J =6+ M
DI% =13 + Mg,

V=v®
— coeflicient matrix of
infinitesimal generators
W =VoIm
— invariantized version
P

— Gauss—Jordan row reduction of W
w.r.t. normalization variables

S =Dz
— total Jacobian matrix
R=SoI"
— invariantized version
— _R.P

— correction term matrix
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Commutation Formulae

p
k
[Dz’?Dj] — ; A’L’j D,

— total Jacobian matrix
Yk — Xk OI(l)
— 1nvariantization
Bk

— Gauss—Jordan reduction of Y*

AF :R-B’“—(R'Bk)T
— commutation coefficients
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Example

Space: M = R3 coordinates x', 2%, u

Group: G = GL(2)
(', 2%, u) — (az' + Bx*, ya' + 62%, \u)
A= b — By
— Classical invariant theory
Prolongation (lifted differential invariants):

y' = A6rt - )y = A (et + o)

v = U
oy + Yuy Buqy + ou,
"1 ) 2 A
@’y + 207Uy, + Y Uy
V11 = \
_afdugy + (@b + By)ugy + YUy,
V12 = \
BPuqy + 2B0uqy + 8%y,
Voo = \
Normalization

y'=1 y»’=0 v,=1 v,=0

Nondegeneracy
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First order moving frame

a B\ [(z' —u,
v 6 ) \z*
Normalized differential invariants

Jt =1 J?2 =0
I— U

rluy + z2u,

I,=1 I,=0
($1)2u11 + 29‘315’52“12 + ($2)2u22
rlu, + z%u,

2

—711 —

1 1 2
—T UgUqq T (37 Uy — & u2)u12 T L7 U Ugg

1 2
xul—I—x Uo

112 —

(%)2“11 — 2UjUgUyo + (u1)2u22

y—
22 rlu, + z%u,

Phantom differential invariants
1 1,
Generating differential invariants
1 I3, 1y, 15,

Invariant differential operators
D, =x'D, + z?D, — scaling process
D, = —uyD; +u D, — Jacobian process
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Prolonged infinitesimal generator coeflicients

0 w 0 Usg Uqq 0 Ugoy
V= 2 0 0 0 —Uq 0 —Uy;  —2Uqg
10zt 0 —uy, 0 —2upy, —uy, O
0 z2 u Uq 0 Uqq 0 —Ugog
Invariantization
1 0 I 0 0 —1I4 0 I,,
W — 0O 0 0 0 -1 0 -1, —21,
01 0 0 0 =2, —I 0
0O 0 I 1 O I 0 —15,

Gauss—Jordan reduction

101 00 —I;, O
0 0 —2I,, —I,, 0
10 I 0 -1,
o1 o0 I, 2I,

0 1 0
P_OOI
0 0 O

“Differentiated” phantom invariants J!, J? I, I,

1 0 I, I
T — 11 12)
(0 L Iy Iy

Correction matrix

M=-T-P

:_(1 0 IA+1I,) I; I, (I;;—1)I; )
0 1 1112 I12 Izz (111_2)112
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Recurrence formulae

DJ =6-1=0 D,J' =6, —-0=0
D,J?=6-0=0 D,J* =6 —-1=0
D=1 —-11+1,;)=-1(1+1,) Dyl =1,—11,,=—-11I,
DI, =1y —1;; =0 Dyly = Iy =1, =0

Dyly =15 =11, =0 Dyly = Iyy — Iy, = 0
Dylyy = Iyqq + (1= Ijy) 1y, Dolyy = Iy1p + (2 = Ijy) 1y,
Dilyy = 1y — 1341y Dolyy = L9y + (1 — Ijy) 1y
Dilyy = L9y + (L1 — D)y, — 2—7122 Dylyy = Iypy — 1151y

—> Use [ to generate I;; and I,

Syzygies
Dylyy = Dylyy = =21,
Dilyy = Dylyy, = 2(111 — 1)122 — 21122
(D1)2—722 - (D2)2111 =
= 215, Dy1y; + (515 — 2)Dy Iy, + (3117 — 5)Dy Iy, —
— (2137 = 5)(L1; — D5 + 4(13; — 1)1122

Commutation formulae

[Dppz] — _1127)1 + (—711 - 1)D2
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