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Normal Forms

A normal form, also known as a canonical form,
is defined as a simple representative element chosen
from an equivalence class of objects.

• Simplifies the treatment of such objects

• Solves the equivalence problem: two objects
are equivalent if and only if they have the same
normal form.

Examples:

• Algebra: Jordan canonical form

• Dynamical systems of ODEs.



Normal Forms of Submanifolds

Normal forms of (analytic) submanifolds under a
group action can be identified with normalized power
series. The non-constant Taylor coefficients provide a
complete set of independent differential invariants.

Applications include:

• Differential geometry

• Differential equations

• Calculus of variations

• Control theory

• Classical invariant theory

• Image processing



Normal Forms & Moving Frames

The equivariant moving frame normalizations

based on a cross-section to the pseudo-group orbits in

jet space can be reinterpreted as placing the submani-

fold in normal form, meaning that one uses successive

group transformations to move it to a distinguished

location and then normalize certain coefficients in the

associated Taylor expansion. Once these are fixed, the

remaining unnormalized coefficients are the differential

invariants of

the original submanifold.



Normal Forms for Lie Group Actions

Assume the Lie group G acts freely, regularly,
analytically, and transitively on the independent variables.
Let r = dimG and p = dimS. Then the moving frame fixes
the center of the normal form series and normalizes r − p of
its coefficients to constants by applying a sequence of group
transformations. The remaining unnormalized coefficients, when
expressed in terms of the original submanifold, form a complete
system of functionally independent differential invariants.

Since the normal form results from applying a finite num-
ber of group transformations, it is automatically convergent.



Normal Forms of Plane Curves

Euclidean normal form: G = SE(2) = SO(2)! R2

u0(x) =
1
2 κx

2 + 1
6 κsx

3 + 1
24 (κss + 3κ3 ) x4 + · · ·

=⇒ κ curvature; ds arc length

Equi-affine normal form: G = SA(2) = SL(2)! R2

u0(x) =
1
2 x

2 + 1
4! κx

4 + 1
5! κsx

5 + 1
6! (κss + 5κ2 )x6 + · · ·

=⇒ κ equi-affine curvature; ds equi-affine arc length

=⇒ The formulas for the higher order coefficients are
algorithmically found using the equivariant
moving frame recurrence formulas.



Normal Forms for Lie Pseudo-group Actions

Again one normalizes the Taylor coefficients of

the normal form to constants by recursively applying

a sequence of group transformations. The remaining

unnormalized coefficients, when expressed in terms

of the original submanifold, form a complete system

of functionally independent differential invariants.

However, since an infinite number of pseudo-group

transformations are required, convergence of the

normal form is no longer assured.



The Chern–Moser Normal Form

" " Basic problem: Equivalence of real hypersurfaces in Cn

for the Lie pseudo-group of biholomorphic transformations

• Poincaré (1907) was the first to observe that not all
hypersurfaces are equivalent.

• Élie Cartan (1932) solves the n = 2 dimensional case

• Chern and Moser (1974) solve the n-dimensional case, and prove
the existence of a convergent normal form power series for
suitably nondegenerate real hypersurfaces.

• Kolář (2012) produced examples of singular hypersurfaces whose
normal form power series are divergent.



Real Hypersurfaces in

Complex Two-dimensional Space

Coordinates on C2: z = x+ i y, w = u+ i v

S ⊂ C2 —
real three-dimensional hypersurface, the graph of

v = F (z, z̄, u)

Assume S is everywhere Levi nondegenerate:
∂2F

∂z∂z̄
%= 0



Preliminary normal form:

v = z z̄ + 8Re (C z4 z̄2 ) + · · ·

C — Cartan curvature of the hypersurface

Umbilic point: C = 0

Theorem. If the hypersurface is everywhere umbilic, then it
is locally biholomorphically equivalent to the Heisenberg
sphere, which is equivalent to the usual sphere:

v = | z |2 or | z |2 + |w |2 = 1

Moreover, it admits an 8-dimensional holomorphic symme-
try group locally isomorphic to sl(3,R).



At a non-umbilic point, the Chern–Moser normal form is

v = z z̄ + 2Re ( z4 z̄2 + J z5 z̄2 + iKz4 z̄2u) + Lz4 z̄4 ) + · · ·

Coefficients of the higher order terms zj z̄kul with j + k ≥ 7
and min{j, k} ≥ 2, when expressed in terms of the original hy-
persurface, form a complete system of functionally independent
differential invariants (modulo changes in sign).

As a consequence of the moving frame algorithm, the entire
algebra of differential invariants is generated by:

J — complex-valued differential invariant of order 7

K — real-valued differential invariant of order 7

L — real-valued differential invariant of order 8

In fact, generically, for a “K-nondegenerate hypersurface”, the
algebra is generated by just one Chern–Moser invariant K



In the Chern–Moser paper, convergence was established
using a somewhat mysterious construction of “chains” which
are certain distinguished curves contained in the submanifold.
The chains satisfy analytic systems of ordinary differential
equations, and are hence analytic curves, which can be used to
prove analyticity of the pseudo-group transformation taking the
submanifold to its normal form, which therefore is analytic.

Sabzevari, Valiquette, PJO (2023) used equivariant
moving frames, as developed by PJO–Juha Pohjanpelto, to
(a) determine a generating set of differential invariants; and
(b) construct new normal forms at singularly umbilic points.
However, convergence of the normal forms continued to rely on
the original Chern–Moser chain method.



TheMain Theorem

Theorem. Under suitable hypotheses (which are satisfied in a
very broad range of applications), the normal form for an
analytic submanifold under an analytic Lie pseudo-group is
a convergent power series.

Basic idea behind the proof : The normal form is a solution
to an involutive system of partial differential equations,
and the moving frame cross-section provides appropriate
initial conditions. Hence, by the Cartan–Kähler Existence
Theorem, the normal form is an analytic function.

" " We utilize the purely PDE form of Cartan–Kähler.
No exterior differential systems !

=⇒ Werner Seiler, Involution, Springer, 2010



The Cartan–Kähler Theorem

Theorem. The solution to the non-characteristic initial
value problem for an involutive analytic system of partial
differential equations is unique and analytic.

Proof :

Repeatedly use the Cauchy–Kovalevskaya Theorem to solve a
series of initial value problems.

=⇒ Analyticity is essential.
(Lewy-type counterexamples in the C∞ category.)



TheNormal Form
Determining Equations

" The construction of the involutive
system of partial differential equations
whose solution contains the normal
form proceeds in four steps:



Basic Steps

(1) By definition, the Lie pseudo-group satisfies an involutive
system of determining equations.

(2) Restricting the pseudo-group determining equations to a fixed
submanifold produces the reduced determining equations.
If the pseudo-group is reducible, these are also involutive.

(3) A simple change of variables converts the reduced determining
equations into the normal form determining equations
whose involutivity follows immediately.

(4) Compatibility of involutivity with the initial conditions
prescribed by the equivariant moving frame construction
requires the notion of a well-posed cross-section.

=⇒ Kolář’s divergent normal forms are due to
a non-well-posed cross-section.



Jet Bundles

x = (x1, . . . , xp), u = (u1, . . . , uq)
— independent and dependent variables

J = (j1, . . . , jk) — symmetric multi-index with 1 ≤ jν ≤ p

uα
J =

∂kuα

∂xj1 . . . ∂xjk
— partial derivative of order k = | J |

(x, u(n)) = (. . . xi . . . uα . . . uα
J . . .) | J | ≤ n — jet coordinates

dim Jn = p+ q

(
p+ n

n

)



Systems of Partial Differential Equations

nth order system: =⇒ regularity

R(n) = {∆(x, u(n)) = 0} ⊂ Jn

Prolongation = (total) differentiation:

R(n+k) = {DJ∆(x, u(n)) = 0, 0 ≤ |J | ≤ k} ⊂ Jn+k

Projection: πn+k
n : Jn+k −→ Jn

If πn+k
n (R(n+k))"R(n)

it means there are integrability conditions of order k.



Formal Integrability

A system of order n ≥ 1 is formally integrable if, for all j, k ≥ 0,

πn+k+j
n+k (R(n+k+j)) = R(n+k)

In other words, a system of differential equations is formally
integrable if, at all orders of prolongation, no additional
integrability conditions arise.

However, formal integrability does not suffice to establish
existence of solutions! For this we need involutivity.



The Symbol Matrix

∆ = 0 — a system of partial differential equations, including
all equations obtained by differentiation (prolongation).

∆n = 0 — those of order = n

Mn — nth order symbol matrix
= Jacobian matrix of the order n equations

with respect to the derivatives of order = n

rn = rankMn.

How are the ranks computed?

⇒ Depends on the ordering of variables (derivatives).



Involutivity

Involutivity = Gaussian Elimination + term ordering.

More specifically, the rank of symbol matrix equals the number
of pivots following Gaussian elimination.

" " When performing elimination, the columns of
the symbol matrix are arranged using
an intelligent ordering of the jet variables.



Row Echelon Form:





0 ©∗ ∗ . . . ∗ ∗ . . . ∗ ∗ . . . . . . ∗ ∗ ∗ . . . ∗

0 0 0 . . . 0 ©∗ . . . ∗ ∗ . . . . . . ∗ ∗ ∗ . . . ∗

0 0 0 . . . 0 0 . . . 0 ©∗ . . . . . . ∗ ∗ ∗ . . . ∗

...
... . . . ...

... . . . ...
... . . . ...

... . . . ...

0 0 0 . . . 0 0 . . . 0 0 . . . . . . 0 ©∗ ∗ . . . ∗

0 0 0 . . . 0 0 . . . 0 0 . . . . . . 0 0 0 . . . 0
...

... . . . ...
... . . . ...

... . . . . . . ...
...

... . . . ...
0 0 0 . . . 0 0 . . . 0 0 . . . . . . 0 0 0 . . . 0





The entries indicated by ©∗ are the pivots and must be nonzero.

Rank = # pivots



Reduced Row Echelon Form:





0 ©∗ ∗ . . . ∗ 0 . . . ∗ 0 . . . . . . ∗ 0 ∗ . . . ∗

0 0 0 . . . 0 ©∗ . . . ∗ 0 . . . . . . ∗ 0 ∗ . . . ∗

0 0 0 . . . 0 0 . . . 0 ©∗ . . . . . . ∗ 0 ∗ . . . ∗

...
... . . . ...

... . . . ...
... . . . ...

... . . . ...

0 0 0 . . . 0 0 . . . 0 0 . . . . . . 0 ©∗ ∗ . . . ∗

0 0 0 . . . 0 0 . . . 0 0 . . . . . . 0 0 0 . . . 0
...

... . . . ...
... . . . ...

... . . . . . . ...
...

... . . . ...
0 0 0 . . . 0 0 . . . 0 0 . . . . . . 0 0 0 . . . 0





Key remark: under permutations of the columns (reordering the
variables), the rank does not change but the columns
in which the pivots appear can change.



TermOrdering
The rows of Mn are indexed by the equations.

The columns of Mn are indexed by the jet variables uα
J repre-

senting derivatives of order |J | = n.

J = (j1, . . . , jn) is a symmetric multi-index with 1 ≤ jν ≤ p

Definition. The class of J is the smallest index that appears:

clsJ = min{j1, . . . , jn}

Assuming x = x1 ≺ y = x2 ≺ z = x3. At order n = 2

Class 1: (xx), (xy), (xz) Class 2: (yy), (yz) Class 3: (zz)

The columns in Mn are ordered so that those of
higher class are to the left :

uzz, uyz, uyy, uxz, uxy, uxx



Once the symbol matrix is fully row reduced, the pivot
columns correspond to principal derivatives.

rn = rankMn = #pivots = #principal derivatives

The non-pivot columns correspond to parametric derivatives.

By the Implicit Function Theorem, the system can be
locally solved for the principal derivatives in terms of the
parametric derivatives (and the independent variables).

=⇒ (reduced) Cartan normal form.



First order system in reduced Cartan normal form:

uα
p = ∆α

p (x
1, . . . , xp, . . . , uβ

k , . . .), 1 ≤ α ≤ b
(p)
1 ,

uα
p−1 = ∆α

p−1(x
1, . . . , xp, . . . , uβ

k , . . .), 1 ≤ α ≤ b
(p−1)
1 ,

...

uα
1 = ∆α

1 (x
1, . . . , xp, . . . , uβ

k , . . .), 1 ≤ α ≤ b
(1)
1 ,

uα = ∆α(x1, . . . , xp, uδ), 1 ≤ α ≤ b0,

with indices (see below)

0 ≤ b0 ≤ b
(1)
1 ≤ · · · ≤ b

(p−1)
1 ≤ b

(p)
1 ≤ q,

and where all the derivatives appearing on the right hand side
of each equation are parametric of class smaller than or equal to
the class of the principal derivative occurring on the left hand
side. If b0 = 0 there are no algebraic equations.



Formally well-posed initial conditions:

uβ(0, . . . , 0) = fβ, b0 < β ≤ b
(1)
1 ,

uβ(x1, 0, . . . , 0) = fβ(x1), b
(1)
1 < β ≤ b

(2)
1 ,

...

uβ(x1, . . . , xp−1, 0) = fβ(x1, . . . , xp−1), b
(p−1)
1 < β ≤ b

(p)
1 ,

uβ(x1, . . . , xp) = fβ(x1, . . . , xp), b
(p)
1 < β ≤ q.

When involutive, uniquely solve the corresponding
initial value problem using Cauchy–Kovalevskaya, thereby
establishing Cartan–Kähler.



Indices and Cartan Characters

p = # independent variables; q = # dependent variables

Number of derivatives uα
J of order n = | J | and class k

t(k)n = q

(
p+ n− k − 1

n− 1

)

Indices:

b(k)n = # pivots of class k in Mn

= # principal derivatives of class k and order n

Cartan characters:

c(k)n = t(k)n − b(k)n

= #parametric derivatives of class k and order n



Rank of symbol matrix: rn = rankMn

Definition. The symbol matrix Mn is involutive if

rn+1 = rankMn+1 =
p∑

k=1

kb(k)n .

=⇒ Requires working in δ regular coordinates (maximize r.h.s.)!

Definition. The nth order system of partial differential
equations is involutive if it is (a) formally integrable, and
(b) has involutive symbol matrix Mn.

Rough Idea: all equations of order n + 1 should be attained
by differentiating the b(k)n class k equations in the Cartan
normal form with respect to the k variables of class ≤ k.

" Involutivity at order n implies involutivity at all higher
orders.



Chern–Moser Chains

Suppose that only the first Cartan character is nonzero:

c(1)n %= 0 c(2)n = · · · = c(p)n = 0 (∗)

Then the integration of the initial value problem for the first
order Cartan normal form reduces to a system of analytic
first order ordinary differential equations with initial values

uβ(0, . . . , 0) = fβ, b0 < β ≤ b
(1)
1 ,

uβ(x1, 0, . . . , 0) = fβ(x1), b
(1)
1 < β ≤ b

(2)
1 ,

...

uβ(x1, . . . , xp−1, 0) = fβ(x1, . . . , xp−1), b
(p−1)
1 < β ≤ b

(p)
1 ,

uβ(x1, . . . , xp) = fβ(x1, . . . , xp), b
(p)
1 < β ≤ q.

×



Chern–Moser Chains

Suppose that only the first Cartan character is nonzero:

c(1)n %= 0 c(2)n = · · · = c(p)n = 0 (∗)

Then the integration of the initial value problem for the first
order Cartan normal form reduces to a system of analytic
first order ordinary differential equations.

" " In the Chern–Moser problem, the normal form determining
equations satisfy (∗), and the curves defined by their
solutions are the chains.

This construction indicates how to formulate a concept of
chains, including higher dimensional versions, for rather
general pseudo-group actions.



Pseudo-groups

M — analytic manifold

Definition. A pseudo-group is a collection of local analytic

diffeomorphisms φ : domφ ⊂ M → M such that

• Identity : 1M ∈ G

• Inverses : φ−1 ∈ G

• Restriction: U ⊂ domφ =⇒ φ | U ∈ G

• Continuation: domφ =
⋃

Uκ and φ | Uκ ∈ G =⇒ φ ∈ G

• Composition: imφ ⊂ domψ =⇒ ψ ◦φ ∈ G



Sur la théorie, si importante sans doute, mais

pour nous si obscure, des /groupes de Lie infinis0,

nous ne savons rien que ce qui se trouve dans les

mémoires de Cartan, première exploration à travers

une jungle presque impénétrable; mais celle-ci

menace de se refermer sur les sentiers déjà tracés, si

l’on ne procède bientôt à un indispensable travail de

défrichement.

— André Weil, 1947



Why an “Impenetrable Jungle”?

• Lie invented Lie groups to study symmetry and solution of
differential equations.

♦ In Lie’s time, there were no abstract Lie groups. All groups
were realized by their action on a space.

∈ Therefore, Lie saw no essential distinction between finite-
dimensional and infinite-dimensional group actions.

However, with the advent of abstract Lie groups, the two
subjects have gone in radically different directions.

⇒ The general theory of finite-dimensional Lie groups has been
rigorously formalized and applied throughout mathematics.

♣ But there is still no generally accepted abstract object that
represents an infinite-dimensional Lie pseudo-group!

" essential invariants



Lie Pseudo-groups — Applications

• CR geometry and Chern–Moser Theory

• Normal forms for submanifolds

• Symmetry groups of differential equations

• Calculus of variations

• Gauge theories

• Invariant geometric flows

• Computer vision and mathematical morphology

• Geometric numerical integration

• Control theory

• Cartan equivalence problems

• Lie groups !



Symmetry Lie Pseudo-groups

• Linear and linearizable PDEs

• Relativity

• Noether’s Second Theorem

• Gauge theory and field theories:
Maxwell, Yang–Mills, conformal, string, . . .

• Fluid mechanics, metereology:
Navier–Stokes, Euler, boundary layer, quasi-geostropic, . . .

• Solitons (in 2 + 1 dimensions):
Kadomtsev–Petviashvili, Davey–Stewartson, . . .

• Vessiot group splitting; explicit solutions



The Diffeomorphism Pseudo-group

M — m = p+ q dimensional manifold

Local coordinates on M : z = (x, u) = (x1, . . . , xp, u1, . . . , uq)

D = D(M) — pseudo-group of
all local analytic diffeomorphisms.

Cartan’s notation:





z = (z1, . . . , zm) — source coordinates

Z = (Z1, . . . , Zm) — target coordinates

Diffeomorphism:
Z = φ(z)



Jets of Diffeomorphisms

Jn(M,M) — nth order jet bundle for maps φ : M → M .

Local coordinates on Jn(M,M):

(z, Z(n)) = ( . . . za . . . Zb . . . Zb
A . . . ) Zb

A =
∂kZb

∂za1 · · · ∂zak

Diffeomorphism subbundle: D(n) ⊂ Jn(M,M) consists of all

jets with non-singular Jacobian matrix.



Lie Pseudo-groups

Any pseudo-group G ⊂ D defines a subvariety (system of partial

differential equations) G(n) ⊂ D(n) consisting of all its jets.

Definition. G is regular if, for all n 0 0,

G(n) ⊂ D(n) forms an embedded subbundle and

the projection πn+1
n : G(n+1) → G(n) is a fibration.

Definition. A regular, analytic pseudo-group G is called a

Lie pseudo-group of order n ≥ 1 if every local diffeomor-

phism φ ∈ D satisfying jnφ ⊂ G(n) belongs it: φ ∈ G.



In local coordinates, G(n) ⊂ D(n) forms a system of
differential equations

F (n)(z, Z(n)) = 0

called the determining system of the pseudo-group. The Lie
condition requires that every local solution to the determining
system belongs to the pseudo-group.

What about involutivity?

Lemma. In the analytic category, for sufficiently large n 0 0
the determining system G(n) ⊂ D(n) of a regular pseudo-
group is an involutive system of partial differential equations.

Proof : Cartan–Kuranishi + local solvability.



Steps in the Proof of the
Normal FormConvergence Theorem

In slightly more detail, let us go through the four steps of the
proof using a relatively simple illustrative example.

Start with the pseudo-group transformations:

Xi = Xi(x, u), Uα = Uα(x, u)

written in terms of the independent and dependent
variables defining our submanifolds.

" " We use Cartan’s notation, where xj, uβ denote the source
variables while the corresponding upper case letters Xi, Uα

denote the target variables.



Step 1: By definition, the Lie pseudo-group satisfies an
involutive system of determining equations.

To find the determining equations, successively differentiate the
pseudo-group transformations

Xi = Xi(x, u), Uα = Uα(x, u).

with respect to the xj and uβ.

Use implicitization to determine all the equations relating their
derivatives Xi

A, U
α
B of order |A |, |B | ≤ n.

Place the resulting equations in Cartan normal form by solving
for the principal derivatives in terms of the parametric
derivatives. Check involutivity by computing the indices
or the Cartan characters.



A (Relatively) Simple Example

X = f(x) Y = f ′(x) y + g(x) U = u+
f ′′(x) y + g′(x)

f ′(x)

Here f(x) and g(x) are analytic scalar functions with f ′(x) %= 0,
so that f defines a local diffeomorphism.

We consider the action of the pseudo-group on surfaces (graphs)

u = f(x, y) — source submanifold (normal form)

U = F (X,Y ) — target submanifold (given)

In other words, the pseudo-group transformation maps the
normal form to the given submanifold (left moving frame).



A (Relatively) Simple Example

X = f(x) Y = f ′(x) y + g(x) U = u+
f ′′(x) y + g′(x)

f ′(x)

Determining equations of order ≤ 2 (in normal form):
Xy = Xu = 0, Yx = (U − u)Xx, Yy = Xx, Yu = 0, Uu = 1,

Xxx = UyXx, Xxy = Xxu = Xyy = Xyu = Xuu = 0, Yxx = (Ux + (U − u)Uy)Xx,

Yxy = UyXx, Yxu = Yyy = Yyu = Yuu = 0, Uxu = Uyy = Uyu = Uuu = 0.

Parametric derivatives: X, Y, U, Xx, Ux, Uy, Uxx, Uxy.

ranks = # equations: r1 = 6, r2 = 16

Using the ordering x ≺ y ≺ u, the second order indices are

b
(1)
2 = 7 b

(2)
2 = 6 b

(3)
2 = 3 b

(1)
2 + b

(2)
2 + b

(3)
2 = r2



Determining equations of order 3:

Xxxx = (Uxy + U2
y )Xx,

Xxxy = Xxxu = Xxyy = Xxyu = Xxuu = Xyyy = Xyyu = Xyuu = Xuuu = 0,

Yxxx = (Uxx + (U − u)(Uxy + U2
y ) + 2UxUy)Xx, Yxxy = (Uxy + U2

y )Xx,

Yxxu = Yxyy = Yxyu = Yxuu = Yyyy = Yyyu = Yyuu = Yuuu = 0,

Uxxu = Uxyy = Uxyu = Uxuu = Uyyy = Uyyu = Uyuu = Uuuu = 0.

Involutivity:

b
(1)
2 + 2b(2)2 + 3b(3)2 = 7 + 2× 6 + 3× 3 = 28 = r3 = # equations



Step 2: Restricting the pseudo-group determining equations
to a fixed submanifold produces the reduced determining
equations.

If the pseudo-group is reducible, these are also involutive.

To find the reduced determining equations start with the
reduced pseudo-group transformations

Xi(x) = Xi(x, u(x)), Uα(x) = Uα(x, u(x)).

Use the chain rule to successively differentiate with respect to
the xj and simplify using the determining equations. Eliminate
all parametric pseudo-group derivatives (implicitization) to
determine all the equations relating their derivatives X i

J , U
α
K.



Reducible Lie Pseudo-groups

Definition. A Lie pseudo-group is reducible on a submanifold
s if, at sufficiently large order n 0 0, the fiber dimension
of its reduced determining equations equals the fiber di-
mension of its determining equations. Such a submanifold is
called reducible.

=⇒ The determining equations are for functions X(x, u), U(x, u)
of p + q variables, whereas the reduced determining equa-
tions are for functions X(x) = X(x, f(x)),
U (x) = U(x, f(x)) of only p variables.



" All Lie pseudo-groups that act eventually freely, which are
precisely the ones amenable to the equivariant moving
frame construction, are reducible.

=⇒ A Lie pseudo-group is reducible if it is “not too large”. In
particular, it cannot depend on functions of more than p
variables. More precisely:

Theorem. Let G be a reducible Lie pseudo-group on a given
submanifold. Then, for sufficiently large n, the Cartan
characters of its determining equations satisfy

c(i)n = c̄(i)n , i = 1, . . . , p, c(p+α)
n = 0, α = 1, . . . , q,

where c̄(i)n are the Cartan characters of the reduced deter-
mining equations.
Moreover, the reduced determining equations are formally
integral and hence involutive at a sufficiently high order.



Freeness
For Lie group actions, freeness means trivial isotropy:

Gz = { g ∈ G | g · z = z } = {e}.

For infinite-dimensional pseudo-groups, this definition cannot work, and one
must restrict to the transformation jets of order n, using the nth order
isotropy subgroup:

G(n)
z(n) =

{
ḡ(n) ∈ G(n)

z

∣∣∣ g(n) · z(n) = z(n)
}

Definition. At a jet z(n) ∈ Jn, the pseudo-group G acts

• freely if G(n)
z(n) = {1(n)

z }

• locally freely if
• G(n)

z(n) is a discrete subgroup of G(n)
z

• the orbits have dimension rn = dimG(n)
z

=⇒ Kumpera’s growth bounds on Spencer cohomology.



For our example, set

X = X(x, y, u(x, y)) Y = Y (x, y, u(x, y)) U = U(x, y, u(x, y))

Differentiate and use the determining equations:

Xx = Xx +Xuux = Xx, Xy = Xy +Xuuy = 0,

Y x = Yx + Yuux = Yx = (U − u)Xx, Y y = Yy + Yuuy = Xx,

Ux = Ux + Uuux = Ux + ux, Uy = Uy + Uuuy = Uy + uy,

Xxx = UyXx, Xxy = 0, Xyy = 0,

Y xx = (Ux + (U − u)Uy)Xx, Y xy = UyXx, Y yy = 0,

Uxx = Uxx + uxx, Uxy = Uxy + uxy, Uyy = uyy.

Eliminate the parametric variables X,Y,U,Xx, Ux, Uy, Uxx, Uxy:



The Reduced Determining Equations

Xy = 0, Y x = (U − u)Xx, Y y = Xx, Xxx = (Uy − uy)Xx,

Xxy = Xyy = 0, Y xx = (Ux − ux + (U − u)(Uy − uy) )Xx,

Y xy = (Uy − uy)Xx, Y yy = 0, Uyy = uyy,

X = f(x) Y = f ′(x) y + g(x) U = u+
f ′′(x) y + g′(x)

f ′(x)



Step 3: A simple change of variables converts
the reduced determining equations into the normal form
determining equations whose involutivity follows.

Replace Uα(x) by Uα(X) defined by

U (x) = U(X(x))

or, more explicitly,

U(x, u(x)) = U(X(x, u(x)))

Use the chain rule to rewrite the derivatives of Uα with respect
to the xj in terms of the derivatives of Uα with respect to
the Xj and the derivatives of Xi with respect to the xj.



Substitute the resulting formulas into the reduced determining
equations — the result is the normal form determining
equations which take the form

∆(x, u(n),X(n), U (n)) = 0

Given a prescribed function U = U(X) defining a submanifold,
with known derivatives U (n), we can view these equations
as a system of differential equations for the unknown
functions X(x), u(x) — the latter prescribing the normal
form of the given submanifold.



In our example,

U(x, y, u(x, y)) = U(X(x, y, u(x, y)), Y (x, y, u(x, y)) )

Differentiate:

Ux = UXXx + UY Y x, Uy = UXXy +
UY Y y,

Uxx = UXXX2
x + 2 UXYXxY x + UY Y Y

2
x + UXXxx + UY Y xx,

Uxy = UXXXxXy +
UXY (XxY y +XyY x) +

UY Y Y xY y +
UXXxy +

UY Y xy,

Uyy = UXXX2
y + 2 UXY XyY y +

UY Y Y
2
y +

UXXyy +
UY Y yy.

Substitute into the reduced determining equations, to produce:



The Normal Form Determining Equations

Xy = 0, Xxx = UYX
2
x − uyXx, Xxy = Xyy = 0,

Y x = ( U − u)Xx, Y xx = ( UX + 2( U − u) UY )X
2
x − (ux + ( U − u)uy)Xx,

Y y = Xx, Y xy = UY X
2
x − uyXx, Y yy = 0, uyy = UY YX

2
x,

where U(X,Y ) is the prescribed submanifold, while the solution

X(x, y), Y (x, y), u(x, y)

includes the normal form u(x, y).



Step 4: Compatibility of involutivity with the initial conditions
prescribed by the equivariant moving frame construction
requires the notion of a well-posed cross-section.

A coordinate cross-section is well-posed if the derivatives being
normalized of sufficiently high order coincide with the
parametric derivatives in the normal form determining
equations.

" " This can be checked algebraically without needing to
explicitly construct the normal form determining equations
using the existence of an algebraic Rees decomposition of
the corresponding monomial ideal.



To construct a (reduced) moving frame

I. Compute the prolonged reduced pseudo-group action

uα
K 4−→ Uα

K = Fα
K(x, u(n), ḡ(n))

on submanifold jets by implicit differentiation.

II. Choose a cross-section to the pseudo-group orbits:

xi = ci, i = 1, . . . , p

uακ

Jκ
= cκ, κ = p+ 1, . . . , rn = fiber dim G(n)



III. Solve the normalization equations

Xi = Hi(x, u, ḡ(0)) = ci

Uακ

Jκ
= Fακ

Jκ
(x, u(n), ḡ(n)) = cκ

for the nth order reduced pseudo-group parameters

ḡ(n) = ρ(n)(x, u(n))

IV. Substitute the moving frame formulas into the
un-normalized jet coordinates uα

K = Fα
K(x, u(n), ḡ(n)).

IαK(x, u(n)) = Fα
K(x, u(n), ρ(n)(x, u(n)))

The resulting functions form a complete system of nth order
differential invariants



Our Favorite Example

X = f(x) Y = f ′(x) y + g(x) U = u+
f ′′(x) y + g′(x)

f ′(x)

Compute prolonged action from surfaces u = u(x, y) to
surfaces U = U(X,Y ) in terms of the reduced pseudo-group
parameters using the reduced determining equations to simplify.

Apply the implicit differentiation operators:

Dx = XxDX + Y xDY = Xx [ DX + (u− U)DY ] DX =
Dx + (u− U)Dy

Xx

Dy = Xy DX + Y y DY = XxDY DY =
1

Xx

Dy

to U .



Prolonged action to order three — free at order ≥ 2

UX =
Ux + (u− U)Uy

Xx

UY =
Uy

Xx

UXX =

Uxx − (uy − Uy)Ux + (ux − Ux)Uy

+ (u− U)(2Uxy + 2(u− U)uyy + (uy − Uy)Ux)

X2
x

UXY =
Uxy + (uy − Uy)Uy + (u− U)uyy

X2
x

UY Y =
uyy

X2
x

UXXX = ∗ ∗ ∗ UXXY = ∗ ∗ ∗

UXY Y =
uxyy + 2(uy − Uy)uyy + (u− U)uyyy

X3
x

UY Y Y =
uyyy

X3
x



Cross-section (assuming uyy > 0):

x = 0, y = 0, uyy = 1, uxk = ck, uxky = dk, k ≥ 0

Normal form:

u = c(x) + y d(x) +
y2

2
w(x, y), where w(0, 0) = 1

" If the cross-section defines analytic functions c(x), d(x)
i.e., it is well-posed, then the normal form is analytic.

For simplicity, set all ck = dk = 0, i.e., c(x) = d(x) ≡ 0.



Normalization equations:

0 = UX =
Ux + (u− U)Uy

Xx

0 = UY =
Uy

Xx

0 = UXX =

Uxx − (uy − Uy)Ux + (ux − Ux)Uy

+ (u− U)(2Uxy + 2(u− U)uyy + (uy − Uy)Ux)

X2
x

0 = UXY =
Uxy + (uy − Uy)Uy + (u− U)uyy

X2
x

1 = UY Y =
uyy

X2
x

0 = UXXX = ∗ ∗ ∗ 0 = UXXY = ∗ ∗ ∗

UXY Y =
uxyy + 2(uy − Uy)uyy + (u− U)uyyy

X3
x

UY Y Y =
uyyy

X3
x



Reduced moving frame:

X = 0, Y = 0, U = 0, Xx =

uyy,

Ux = 0, Uy = 0, Uxx = 0, Uxy = −uuyy.

Substitute in preceding formulae to obtain the differential invariants.
At order 3:

UXY Y 4−→ I =
uuyyy + (1 + 2uy)uyy

u
3/2
yy

, UY Y Y 4−→ J =
uyyy

u
3/2
yy

.

Also the invariant differentiations

DX 4−→ D1 =
Dx + uDy

uyy

DY 4−→ D2 =
Dy
uyy

" " The higher order differential invariants can be obtained by
invariantly differentiating I and J .



Reduced moving frame:

X = 0, Y = 0, U = 0, Xx =

uyy,

Ux = 0, Uy = 0, Uxx = 0, Uxy = −uuyy.

Substitute in preceding formulae to obtain the differential invariants.
At order 3:

UXY Y 4−→ I =
uuyyy + (1 + 2uy)uyy

u
3/2
yy

, UY Y Y 4−→ J =
uyyy

u
3/2
yy

.

Also the invariant differentiations

DX 4−→ D1 =
Dx + uDy

uyy

DY 4−→ D2 =
Dy
uyy

" " Actually, by further inspection of the moving frame
recurrence formulae, you only need to invariantly
differentiate J to generate all differential invariants.



In order to match the moving frame computations with the
normal form determining equations, we need to switch the role
of the source and target submanifolds, so that U(X,Y ) is the
given submanifold while u(x, y) is its normal form.

Thus, the differential invariants (and invariant differentia-
tions) should be rewritten in terms of X,Y, U :

I =
UXY Y + 2 UY

UY Y + U UY Y Y

U3/2
Y Y

, J =
UY Y Y

U3/2
Y Y

.

One could, of course, do this in advance, but it seems to
make everything more confusing!



Step 4: Compatibility of involutivity with the initial conditions
prescribed by the equivariant moving frame construc-
tion requires the notion of a well-posed cross-section.

" " Technical complication in the final step — the moving
frame normalization equations do not respect the term
ordering used to demonstrate the involutivity of the
normal form equations.



In our example, this complication shows up in the normal
form determining equation

uyy = UY YX
2
x

In the involutivity framework, it must be solved for the principal
derivative uyy in terms of the parametric derivative Xx, whereas
in the moving “framework”, it is solved for the pseudo-group
parameter Xx.

Fortunately, the two methods are compatible once the order
is sufficiently large, meaning beyond the orders of involutivity
and freeness. Technical details can be found in the paper.
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