
Extensions of Invariant Signatures for Object Recognition

Daniel J. Hoff1 Peter J. Olver1

Department of Mathematics School of Mathematics
University of California, San Diego University of Minnesota
La Jolla, CA 92093 Minneapolis, MN 55455
d1hoff@math.ucsd.edu olver@math.umn.edu

http://www.math.umn.edu/∼olver

Abstract

A refinement of the method of differential invariant signatures for object recognition
is presented. The value of the method lies in its compromise between local and global
identifying properties, thereby allowing us to distinguish non-congruent curves whose
Euclidean signatures have identical trace.
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1 Introduction.

One of the primary goals of modern image processing is to recognize objects in different
orientations and positions. In simple situations, this translates to an analysis of the object’s
boundary under various geometric transformations. In this paper, we concentrate on planar
images, deferring the more challenging cases of three-dimensional images and videos to sub-
sequent investigations. Objects are represented by their boundary curves C ⊂ R2. Given a
transformation group G acting on R2, our task is to determine whether or not two objects
can be mapped to each other by a transformation g ∈ G, or, in other words, whether the
boundary curves C, C̃ are congruent under G, meaning that C̃ = g · C for some g ∈ G.
If C̃ = C, then the congruence problem reduces to the classification of symmetries of the
boundary curve, meaning group elements that map C to itself. The most important non-
trivial case, and the subject of this paper, takes G = SE(2) to be the special Euclidean
group of rigid planar motions: rotations and translations. Other examples relevant to image
processing include the special affine group of area-preserving affine transformations and the
projective group; the methods we develop here can be systematically extended to these and
many additional contexts.

In [2], inspired by Élie Cartan’s solution to equivalence problems for submanifolds, [3, 11],
and the equivariant method of moving frames, [4], the authors proposed a general theory of
G-invariant signatures for use in object recognition and symmetry detection. The signature
submanifold is parametrized by a distinguished, finite collection of fundamental differential
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invariants associated with the transformation group G. Under appropriate regularity con-
ditions, [11], two submanifolds are locally congruent under G if and only if their signatures
are identical. In the case G = SE(2) acting on plane curves, there are two fundamental
differential invariants: the curvature, κ, and its first derivative with respect to arc length,
κs, which together parametrize the Euclidean signature curve S = {(κ, κs)}. In general,
differential invariant signatures offer several important advantages over other proposed ob-
ject recognition methods. First, they are completely local, in that the differential invariants
parametrizing the signature are all measured at a single point of the object. Thus, occlusions
and comparison of parts of objects are readily incorporated into the framework since the
partial object delineates a well-defined subset of the complete signature. Boundary recogni-
tion methods that depend explicitly on global properties such as arc-length are not nearly
as robust under such a loss of information. Second, differential invariant signatures can be
readily used to recognize symmetries and approximate symmetries of the object, since the
signature’s index, meaning the number of points in the original submanifold that map to
a generic signature point, is precisely the number of discrete symmetries contained within
the specified transformation group. Further, the subsequent equivariant method of moving
frames, [4], provides a simple, algorithmic means for constructing differential invariant sig-
natures for curves, surfaces, and higher dimensional submanifolds under a very broad range
of transformation groups that includes all examples of relevance to image processing. While
the presence of high derivatives in the signature invariants means that noise sensitivity will
be a concern, our implementations and applications reconfirm the robustness of the signa-
ture approach, provided one incorporates a preliminary smoothing of the object boundary
followed by suitable invariant numerical schemes to approximate the curvature invariants.

The main theorem governing the congruence of submanifolds with identical signatures
was, unfortunately, stated in [2] without explicit mention of the regularity conditions re-
quired for its validity. As a result, readers not familiar with the underlying mathematics
have tried applying it to irregular curves and surfaces, for which its validity is no longer
guaranteed. Indeed, Musso and Nicolodi, [9], recently constructed one-parameter families of
smooth simple closed curves that are not rigidly congruent and yet their Euclidean signa-
tures have identical trace. Their examples served to motivate our constructions, in which we
augment the signature comparison method in a way that can be applied to a wider class of
boundary curves. Specifically, we show that, by properly partitioning the boundary curves
into subarcs, a combination of signature comparison and transformation reconstruction is
able to classify the curves up to rigid motion, even in the presence of noise.

Our approach is, in part, inspired by the methods developed in [12], in which contour
shape is encoded by codons, which are touted as “primitive part descriptors”. In the case
of plane curves under rigid motion, the codons used in [12] are subarcs whose endpoints
are successive minima of curvature. We refine this idea by employing bivertex arcs, whose
endpoints are successive stationary points of curvature, that is, where its derivative with
respect to arc length vanishes. Any reasonable — meaning “v-regular” as per Definition
1 — non-circular Jordan curve can be decomposed into a non-overlapping union of finitely
many bivertex arcs together with, possibly, a finite number of circular arcs and straight line
segments. Our comparison algorithm concentrates exclusively on matching bivertex arcs up
to rigid motion, using their Euclidean signatures, and then determining whether the resulting
rigid motions are sufficiently close to each other to produce a global congruence of the two
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boundary curves. As such, our approach incorporates all the advantages of parts-based
methods of object representation, [8, 12], including the ability to match pieces of objects
as well as reconstruct objects under partial occlusion. In this vein, further refinements,
supported by applications to the automatic assembly of jigsaw puzzles can be found in [7].

It is important to keep in mind that, in practice, objects segmented from digital images
are actually represented as discrete point sets that approximately sample their boundary
curves. Euclidean-invariant numerical algorithms for approximating signature curves from
discrete data have been developed in [2], and then improved by Boutin, [1]. Thus, in practical
implementations, rather than work directly with the signature curves, we base our compar-
ison algorithms on their discretizations. The discretized curves are then decomposed into
(approximate) discrete bivertex arcs. Comparison of pairs of bivertex arc signatures will be
based on a generalized electrostatic attraction between their discretizations, viewed, respec-
tively, as sets of positive and negative point charges. Full details can be found within the
body of the paper.

2 Generalized Euclidean Signatures.

Let us introduce our basic terminology and assumptions. We will consider simple (non-
intersecting) plane curves C ⊂ R2 of class at least C3. Let z(s), 0 ≤ s ≤ L, denote the arc
length parametrization, so that L is the length of C. Our primary focus is on closed Jordan
curves, for which z(s) is periodic of period L. In contrast, a simple curve with distinct
endpoints will be called a (closed) arc. An open arc is obtained by removing the endpoints.

Let κ(s) = z′(s)∧z′′(s) denote the signed curvature at the point z(s) ∈ C, with ∧ denoting
the scalar cross product: v ∧ w = v1w2 − v2w1 for v = (v1, v2), w = (w1, w2) ∈ R2. We use
κs = dκ/ds to denote the derivative of curvature with respect to the arc length parameter.
Both κ and κs (as well as all higher order arc length derivatives) are Euclidean differential
invariants, meaning that they are unchanged under rigid motion, [11]. A point z(s) ∈ C is
called regular if κs(s) 6= 0. An ordinary vertex is a local extremum of curvature, [6]. By a
generalized vertex, we mean a maximal connected, closed arc V ⊂ C on which κs(s) ≡ 0.
Thus, a generalized vertex is either an ordinary vertex, or a critical point of curvature,
or a circular arc, or a straight line segment. For us, the term “vertex” will always mean
“generalized vertex” — in contrast to most works, where it means “ordinary vertex”. We let
Cv = {κs = 0} ⊂ C denote the union of all vertices, while the rest, Cr = {κs 6= 0} = C \Cv,
forms the regular part of the curve.

Definition 1. A C3 curve is called v-regular if it has finitely many generalized vertices.

The requirement of v-regularity excludes pathological smooth curves that have infinitely
many vertices. Such curves are merely mathematical curiosities, and do not play any role
in digital imagery. From now on, the Jordan curve C is assumed to be v-regular, and so
Cv = V1 ∪ · · · ∪ Vm is a finite union of points, circular arcs, and straight line segments.
Unless the curve is a circle, its regular part Cr = A1 ∪ · · · ∪ Am is a finite union of m ≥ 4
disjoint open arcs. (The lower bound on m follows from a straightforward adaptation of
Mukhopadhya’s Four Vertex Theorem, following the proof in [6, section 2.3].) We let Bj = Aj
denote the corresponding closed arcs, which we distinguish with a special name:
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Definition 2. A bivertex arc is a simple arc, of class C3, whose endpoints belong to vertices,
so κs = 0 at both ends, but all of whose interior points are regular, so that κs 6= 0 away from
the endpoints.

Observe that curvature κ varies monotonically along a bivertex arc, which is thus a special
kind of spiral arc, [6].

Lemma 3. Any v-regular simple closed curve that is not a circle can be uniquely decomposed,

C =
m⋃
j=1

Bj ∪
n⋃
k=1

Vk, (2.1)

into a finite union of m ≥ 4 non-overlapping1 bivertex arcs B1, . . . , Bm, and n ≥ 0 generalized
vertices V1, . . . , Vn, each a circular arc or straight line segment.

We will refer to (2.1) as the bivertex decomposition of the curve C. Note that we exclude
point vertices from the bivertex decomposition, since they are accounted for by the endpoints
of the bivertex arcs Bj.

Two plane curves C, C̃ ∈ R2 are said to be rigidly equivalent, or congruent for short, if
there exists a rigid motion g ∈ SE(2) such that C̃ = g ·C. We extend the notion of congruence
to disconnected unions of arcs, keeping in mind that for two unions to be congruent, their
constituent vertices and arcs must be pair-wise congruent under the same rigid motion.

Theorem 4. Two v-regular non-circular Jordan curves C, C̃ ⊂ R2 are congruent if and only
if their bivertex decompositions contain the same number of bivertex arcs and generalized

vertices, and, moreover, there exists a common rigid motion g ∈ SE(2) such that B̃j = g ·Bj,

j = 1, . . . ,m, and Ṽk = g · Vk, k = 1, . . . , n.

In fact, in view of the following result, one only needs to consider the regular, bivertex
arcs for Theorem 4 to be valid.

Theorem 5. Two v-regular plane curves C, C̃ ⊂ R2 are congruent if and only if their regular
parts Cr, C̃r are congruent.

Proof : Since κs is a Euclidean differential invariant, (generalized) vertices are preserved under
rigid motion, and hence congruence of curves immediately implies congruence of their regular
parts. Conversely, suppose C̃r = g · Cr for some g ∈ SE(2). Let V ⊂ Cv be a generalized
vertex of C. If V is a single point, then it belongs to the closure of Cr, and hence, by
continuity, Ṽ = g · V is also a point vertex of C̃. On the other hand, if V is a circular arc
or straight line segment, its endpoints zi, i = 1, 2, are also endpoints of bivertex arcs Bi. We
claim that Ṽ = g · V is a vertex of C̃ whose endpoints z̃i = g · zi are the endpoints of the
bivertex arcs B̃i = g ·Bi.

Since C is assumed to be at least C2, the curvature of V , i.e., the reciprocal of its radius,
is uniquely determined by its value at one endpoint, say z1. Moreover, since C is simple,
the second endpoint z2 is uniquely characterized as the first point belonging to the closure of
Cr that is encountered when tracing the circle/line with the prescribed curvature emanating

from z1. Again, by continuity, this observation suffices to prove that Ṽ = g ·V is a generalized
vertex connecting the corresponding regular arcs of C̃. Q.E.D.

1“Non-overlapping” means they have at most one endpoint in common.
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The following definition was proposed in [2].

Definition 6. Let C be a plane curve of class C3 and of finite length L < ∞. The Eu-
clidean signature of C is the (non-simple) plane curve S(C) = { (κ(s), κs(s)) | 0 ≤ s ≤ L }
parametrized by the curvature and its derivative with respect to arc-length.

The next result is a consequence of very general results on group-invariant signatures of
regular submanifolds, [4, Theorem 14.9], which is a reformulation of Cartan’s general solution
to the local equivalence problem for submanifolds under Lie group actions2, [3, 11].

Theorem 7. Suppose that C and C̃ are simple curves of class at least C3 that contain no
vertices, so C = Cr, C̃ = C̃r. (In particular, neither curve can be closed.) Then the curves

are rigidly equivalent, so C̃ = g · C, for some g ∈ SE(2), if and only if their signatures are

identical : S(C) = S(C̃).

By continuity, Theorem 7 easily extends to bivertex arcs. Moreover, if C is a bivertex
arc, then κs remains of one sign, and hence its signature S(C) is a simple arc in the (κ, κs)–
plane, which, by the monotonicity of κ, is described by the graph of a single-valued function
κs = H(κ) that starts and ends on the κ axis. On the other hand, the signature of any
circular arc or straight line segment is a single point on the κ axis, and hence, by itself, is
unable to distinguish between those with different lengths. Indeed, the curves constructed
in [9] are exactly of this type, where circular arcs are inserted into a suitable closed curve
at its vertices, producing non-congruent smooth Jordan curves that nevertheless all have a
common signature trace. The point is that the modified curves no longer satisfy the regularity
conditions required for the Cartan equivalence result to be valid. On the other hand, Theorem
7 remains valid as stated if the curve is allowed to contain non-degenerate vertices, meaning
those at which κss 6= 0, and thereby retain the regularity requirement.

The following consequence of Theorems 4 and 7 forms the basis for our proposed signature-
based method for recognition of rigidly equivalent objects.

Theorem 8. Let C, C̃ ⊂ R2 be v-regular non-circular Jordan curves. Assume that their
bivertex decompositions (2.1) contain the same number, m, of non-overlapping bivertex arcs,

and, moreover, for each j = 1, . . . ,m, the bivertex arcs Bj and B̃j have identical signatures :

S(Bj) = S(B̃j), which, by Theorem 7, implies that there exist rigid motions gj ∈ SE(2) such

that B̃j = gj · Bj, j = 1, . . . ,m. If, in addition, all the gj = g ∈ SE(2) are the same, then

C̃ = g · C are congruent.

Proof : The existence of each gj follows immediately from Theorem 7. If, furthermore, all
gj = g, then

C̃r =
⋃
j

Ãj =
⋃
j

g · Aj = g ·
⋃
j

Aj = g · Cr,

where Ãj, Aj denote the open, regular arcs obtained by deleting the endpoints of the corre-

sponding bivertex arcs B̃j, Bj, respectively. The result now follows from Theorem 5. Q.E.D.

2In [11], the older term “classifying submanifold” is used in place of “signature submanifold”.
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Remark : The upshot of the preceding discussion is that one should not, in general, regard
the trace of the signature curve, S(C) ⊂ R2, as a “complete” curve signature, in that it fails
to distinguish inequivalent (albeit irregular) curves. A more refined theory could be founded
on some sort of appropriately weighted signature curve, where the weight is determined by
the local measure of arc length of the original curve. In particular, the signature of a circular
arc would be a single point on the κ axis weighted by its overall length; this refinement would
allow us to distinguish inequivalent arcs.

Indeed, if we were to discretize the curve C by choosing a reasonably dense set of sample
points, uniformly distributed with respect to arc length, then the corresponding discrete
signature will consist of (approximations to) the curvature and its derivative at the sample
points. Any circular arc or straight line segment contained in C would correspond, not to
a single point on the discretized signature, but to several (nearly) identical signature points
on or near the κ axis, their number being governed by the length of the arc or segment. The
weighted signature for such a curve should, then, reflect this fact, and be in a certain sense, the
appropriate limiting object as the sample points become more and more dense. Noise could
then be readily incorporated into the weighted signature scheme by use of an appropriate
probability distribution centered on the underlying objects. Details of this approach, and its
extension to more complicated group actions as well as higher dimensional submanifolds will
be developed elsewhere.

3 A Practical Algorithm for Curve Classification.

In this section, we apply the results of Section 2 to devise a practical algorithm for curve
comparison and classification. Some preliminary applications will be described in the follow-
ing section. Further extensions, along with a significant new application to the automatic
assembly of jigsaw puzzles, are the topics of [7].

Let C and C̃ be simple, closed, v-regular plane curves, representing the boundaries of
two planar objects. In the case of noisy curve data, we can apply appropriate smoothing
techniques, e.g., the Euclidean or affine-invariant curve shortening flows, [10], or some form
of spline-based smoothing, [13], before initiating the analysis. However, as we observe in the
applications, the method is quite robust, even in the presence of noisy data.

We will devise a congruence coefficient, µ(C, C̃) ∈ [0, 1], with the convention that a µ
score of 1 indicates rigid equivalence of the two curves, while µ decreases to 0 as the curves
become “less and less” congruent. The key steps in our comparison method, which is based
on Theorem 8, are described in the following subsections:

3.1. Decompose C and C̃ into a collection of (approximate) bivertex arcs.
3.2. Compare the Euclidean signatures of the individual arcs.
3.3. If the signatures match, reconstruct and then compare the rigid motions relating

each pair of congruent arcs.
Now, in practical applications to objects in digital images, we only know a discrete set

of points C∆ = {z1, . . . , zN}, where each zj lies on or near the actual boundary curve C.
The curve can be reconstructed by some form of interpolation, e.g., periodic splines, possibly
refined by smoothing to reduce the effect of noise. In our applications, we work directly
with the discretized version. We similarly (approximately) discretize the signature curve
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S by a set of signature points S∆ = {σ1, . . . , σN}, where each σj = (κj, κjs) consists of
suitable approximations to the curvature and its arc length derivative at the corresponding
sample point zj = (xj, yj) ∈ C∆. For example, the entries of σj may be found directly from
the discretized curve C∆ by use of the Euclidean-invariant numerical approximations to the
curvature invariants developed in [1, 2].

3.1 Approximating Bivertex Decompositions

We begin by constructing the bivertex decompositions of our two (discretized) curves C

and C̃. In practical situations, we must avoid bivertex arcs that are the result of ambient
noise. This is accomplished by selecting some small δ0 > 0, and splitting each curve into
arcs whenever |κs | − δ0 changes sign. The collection of connected arcs that satisfy either
κs > δ0 or κs < − δ0 away from their endpoints will represent the bivertex arcs in the bivertex
decomposition (2.1) of the curve. We then eliminate insignificant arcs over which curvature
changes by less than some prescribed δ1 > 0. (Keep in mind that κ is monotone on bivertex
arcs, and hence the change is merely the absolute value of the difference in its values at the
endpoints.) To specify the cut-offs δ0, δ1, let us define the scale of comparison of the two
curves to be

D(C, C̃) =
(
Dκ(C, C̃), Dκs(C, C̃)

)
, (3.1)

where

Dκ(C, C̃) = max

{
max
z∈C

(κ|z)−min
z∈C

(κ|z), maxez∈ eC (κ|ez)−minez∈ eC (κ|ez)
}
,

Dκs(C, C̃) = max

{
max
z∈C

(κs|z)−min
z∈C

(κs|z), maxez∈ eC (κs|ez)−minez∈ eC (κs|ez)
}
,

(3.2)

represent the maximal variation of, respectively, κ and κs along the two curves. We then set

δ0 =
Dκs(C, C̃)

λ0

, δ1 =
Dκ(C, C̃)

λ1

, (3.3)

for some fixed constants λ0, λ1 > 0, to be specified later.
This procedure may well decompose C and C̃ into a different number of approximate

bivertex arcs. If this occurs, it often indicates that the curves are not rigidly equivalent.
However, this may also be due to noise, so we follow a procedure to delete less important arcs
from the larger bivertex decomposition in this situation. Suppose the larger decomposition
contains k more arcs than the smaller. Fixing some l ≥ 0, the candidates for deletion will
be from among the k + l arcs on which curvature changes the least. For each of the

(
k+l
k

)
possible choices of k arcs among these, we apply the comparison algorithm described below,
and choose the one that yields the highest µ score. The value of l is used to control the
extent to which we check less likely possibilities, and it is often reasonable to set l = 0, in
which case the deletion is immediate. By following this procedure, we can henceforth restrict
our attention to approximate bivertex decompositions of both curves that contain the same
number of arcs.
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3.2 Comparing Bivertex Arcs

The next task is to devise a method to compare individual bivertex arcs. Let B and B̃
be two (approximate) bivertex arcs, with respective signatures S(B) and S(B̃). We will

construct a signature similarity coefficient, p = p(B, B̃) ∈ [0, 1], to measure the closeness of
the two signatures, where a p score of 1 reflects identical signatures and p decreases to 0 as
the signatures become increasingly disparate.

Our motivating idea is to regard the two signature arcs as uniform wires that have opposite
electrical charges, and then compute their mutual attraction, cf. [5, 14]. (Or, equivalently,
their gravitational attraction assuming uniform density.) The choice of uniform (charge)
density may well be modified, but so far this simplifying assumption has sufficed in our
applications. The larger the attraction, the closer the signatures are to each other, and the
more likely that the original arcs are congruent. However, rather than work directly with
the signature arcs, we will employ their discretizations, denoted S∆, S̃∆, obtained either by
sampling the full signatures, or by use of suitable numerical approximations to the values
of the curvature invariants. We thus view the discretized signature as finite collections of
oppositely charged points, and calculate their mutual attraction.

Let Σ = R2 indicate the signature space with coordinates κ, κs. Define the separation
between two points σ, σ̃ ∈ Σ to be

d(σ, σ̃) =


‖σ − σ̃ ‖

D − ‖σ − σ̃ ‖
, ‖σ − σ̃ ‖ < D,

∞, ‖σ − σ̃ ‖ ≥ D,

(3.4)

where ‖ · ‖ is taken as the usual Euclidean norm3 on Σ, and where D = Dκ(C, C̃) is as
defined in (3.2). Observe that d(σ, σ̃) is non-negative, and vanishes only when σ = σ̃, so that
it defines a semimetric. Our analog of the electrical attraction between individual signature
points σ, σ̃ ∈ Σ will be called the strength of correspondence, and inversely proportional to
some power of their separation:

h(σ, σ̃) =


1

d(σ, σ̃)γ + ε
, d(σ, σ̃) <∞,

0, d(σ, σ̃) =∞.
(3.5)

Here γ > 0 is fixed, and ε > 0 is a small constant that serves as a cut-off to avoid infinities,
so that h(σ, σ̃) <∞ even when the signature points coincide.

Now, the strength of correspondence of two discretized signatures will be obtained by
combining all the individual strengths h(σi, σ̃j) over all possible pairs of discrete signature

points σi ∈ S∆ and σ̃j ∈ S̃∆. We will need to appropriately rescale in order that the result
lies in the interval [0, 1]. These will be based on the rescaling function

r(t) =
t

t+ C1

, for 0 ≤ t ≤ ∞, (3.6)

where C1 > 0 is a constant, to be fixed later, that will influence the ultimate distribution of
p scores along the interval [0, 1]. There are three evident ways to compute the p scores:

3As noted above, one could experiment with other (weighted) norms, but the Euclidean norm suffices for
our purposes.
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1. We rescale each h(σi, σ̃j) to [0, 1] and let p(S∆, S̃∆) be their average over all distinct
pairs (i, j).

2. We sum h(σi, σ̃j) over all pairs (i, j) and rescale the result to [0, 1] to determine

p(S∆, S̃∆).

3. For each fixed i, we sum h(σi, σ̃j) over j and scale the result to [0, 1]. We then take

p(S∆, S̃∆) to be the average over i of the rescaled values.

The first two lead to comparison functions that are symmetric in S∆ and S̃∆, while
the third does not. We will see, however, that each of the symmetric methods harbors a not
easily mended flaw, whereas the third, non-symmetric method, appears to avoid such pitfalls.
Moreover, it can easily be made symmetric by a standard trick.

Consider procedure 1: If two bivertex arcs B and B̃ are rigidly equivalent, then their
signatures S(B) = S(B̃) are identical. However, there will exist pairs of discrete signature

points σi ∈ S∆ and σ̃j ∈ S̃∆ such that d(σi, σ̃j) > 0. Therefore p(S∆, S̃∆) < 1, even though
the curves are rigidly equivalent. This in itself is less than ideal, but more worrisome is the
possibility that different pairs of identical curves might score differently. This causes us to
abandon this approach.

Consider procedure 2: Suppose the discretized bivertex arc signatures S∆, S̃∆ contain a
pair of almost identical signature points: σi ≈ σ̃j for some i, j — which is not uncommon.
Then, by this procedure, h(σi, σ̃j) will be very large, depending on the size of ε in (3.5), and

thus p(S∆, S̃∆) ≈ 1, regardless of the other data points.
Procedure 3 avoids these difficulties, and we now concentrate on developing it in more

detail. Given σi ∈ S∆, we set

h(σi, S̃∆) =

eN∑
j=1

h(σi, σ̃j), (3.7)

where Ñ = #S̃. Using (3.6) to rescale the result to [0, 1] produces

p(σi, S̃∆) = r
(
h(σi, S̃∆)

)
=

h(σi, S̃∆)

h(σi, S̃∆) + C1

. (3.8)

At this point, we could compute p(σi, S̃∆) for each discrete signature point, and then average
the results to produce an overall p score. However, we can do better. The Theorem of
Turning Tangents, [6], says that for a simple closed curve C with positive orientation,∮

C

κ(s) ds = 2π. (3.9)

Thus, in a certain sense, points where |κ(s) | is large determine a boundary curve more than
do points with small curvature. Indeed, if we imagine modifying a curve by the addition
of arcs, equation (3.9) stipulates that the insertion of an arc A requires the insertion of a

second arc Ã with
∫ eA κ(s) ds = −

∫
A
κ(s) ds in order that the resulting curve remain closed.
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Arcs with zero total curvature, on the other hand, can be added with relative impunity. This
motivates us to improve the comparison by weighting our final average by a power α > 0
of the absolute value of the curvature at the discrete signature points σi = (κi, κis) ∈ S∆,
leading to

p̂ (S∆, S̃∆) =

N∑
i=1

p(σi, S̃∆) |κi |α

N∑
i=1

|κi |α
. (3.10)

To impose symmetry on the final comparison function, we merely apply the method with the
roles of the curves interchanged, and set

p(S∆, S̃∆) = min
{
p̂ (S∆, S̃∆), p̂ (S̃∆, S∆)

}
. (3.11)

The use of the minimum is justified by the following argument. If C and C̃ are nearly
rigidly equivalent, then 1 − ε ≤ p̂ (S∆, S̃∆), p̂ (S̃∆, S∆) ≤ 1 for some small ε > 0, and so

0 ≤ | p̂ (S∆, S̃∆)− p̂ (S̃∆, S∆) | ≤ ε. Thus, for nearly rigidly equivalent curves,

p(S∆, S̃∆) = min
{
p̂ (S∆, S̃∆), p̂ (S̃∆, S∆)

}
≈ p̂ (S∆, S̃∆) ≈ p̂ (S̃∆, S∆).

On the other hand, if C and C̃ clearly differ, | p̂ (S∆, S̃∆)− p̂ (S̃∆, S∆) | may be large, and
(3.11) ensures that a pair of curves that mistakenly scored highly are reduced to a more
appropriate p score.

3.3 Reconstructing Rigid Motions

Now, consider two general v-regular curves C and C̃. As discussed above, we can assume that
their approximate bivertex decompositions contain an equal number of bivertex arcs Bk, B̃k,
for k = 1, . . . , n. We assume that the arcs are labelled sequentially and periodically as the
curves are traversed with a counterclockwise orientation, so that Bk+n = Bk and B̃k+n = B̃k

for all k. As a result, we need only compare Bk with B̃k+m for each m = 0, . . . , n − 1. For
each possible bijection, we take an average of the p scores of the corresponding bivertex arcs:

pm(C, C̃) =
1

n

n−1∑
k=0

p(Bk, B̃k+m) =
1

n

n−1∑
k=0

p(S∆
k , S̃

∆
k+m), (3.12)

where S∆
k , S̃

∆
k are the corresponding discretized signature arcs. If all of the resulting pm

scores are low, we return µ = 0 and claim that C and C̃ are not rigidly equivalent. On
the other hand, for each m such that pm(C, C̃) > p0 for some fixed threshhold p0 > 0, we
reconstruct the transformations gj ∈ SE(2) guaranteed by Theorem 8. If, for a particular m,

all the resulting rigid motions are close to each other, we contend that C and C̃ are (nearly)
rigidly equivalent.

To determine similarity between two rigid motions, we characterize each rigid motion
gj ∈ SE(2) by the three parameters θj, aj, bj, so that

gj · z =

(
cos θj − sin θj
sin θj cos θj

)
z +

(
aj
bj

)
, for z ∈ R2, (3.13)
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where the angle θj is measured modulo 2 π. The group parameters are reconstructed by
solving equations involving the weighted centers of mass and tangents of the arcs:

(
cos θj − sin θj
sin θj cos θj

)∑
j

|κjs |βzj∑
j

|κjs |β
+

(
aj
bj

)
=

∑
j

| κ̃j+ms |βzj+m∑
j

| κ̃j+ms |β
,

θj = arg

∑
j

| κ̃j+ms |β z̃j+ms∑
j

| κ̃j+ms |β
− arg

∑
j

|κjs |βzjs∑
j

|κjs |β
.

(3.14)

These quantities are then used to calculate the final µ score:

µ = 1− C2

[
maxj,k R(θj, θk)

π
+

maxj,k |aj − ak|
Dx

+
maxj,k |bj − bk|

Dy

]
, (3.15)

where C2 is a suitable constant, R(· , ·) is the smallest difference between angles when com-
puted modulo 2π, while

Dx = max

{
max
z∈C

x−min
z∈C

x, max
z∈ eC x−min

z∈ eC x
}
,

Dy = max

{
max
z∈C

y −min
z∈C

y, max
z∈ eC y −min

z∈ eC y
}
.

(3.16)

are characteristic distances based on the overall horizontal and vertical extents of the two
curves.

4 An Application

The comparison method described in the preceding section was designed to test the rigid
equivalence of plane curves, including those whose Euclidean signatures share a common
trace. In this section, we describe the results of applying the algorithm to classify a database
of mathematically constructed curves. More extensive applications and additional develop-
ments for practical digital images can be found in [7].

The curve database consisted of six classes, each corresponding to a particular member of a
family of curves constructed in [9]. Specifically, the six generating curves Cr were constructed
in Mathematica, based on the code provided in [9, Example 1], and using (in the notation
of that paper) the parameter values r ∈ {0, .5, 1, 1.5, 2, 2.5}. The six representative curves
are plotted in Figure 1, while Figure 2 plots their Euclidean signatures’ common trace.

Our comparison method easily distinguishes these six basic curves, meaning that each
scores much higher when compared to itself than to the others. But it might still be claimed
that two different discretizations of the same curve would also end up comparing poorly
to each other. Therefore, to fully test the method, from each of the six initial curves,
an additional 100 curves were generated by the addition of simulated noise. The method
of noise simulation was designed to add in small random perturbations while maintaining
overall smoothness. To this end, we first discretize the curve to produce C∆ = {z1, . . . , zN}.
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We then randomly select j = 1, . . . , t = 20 sample points zij ∈ C∆, unit vectors uj, and
magnitudes rj ∈ [ 0, .005L ], where L is the overall length of the curve. The sample points
were then translated based on t independent Gaussian distributions, centered at each zij :

zk 7−→ zk +
t∑

j=1

rj e
−2m(k,ij)2 uj, (4.17)

where

m(k, i) =
1

.05N
min{|k − i|, N − |k − i|}. (4.18)

Figure 3 displays a reference curve along with seven image curves obtained through applica-
tion of this noise simulation. Although the curves appear nearly identical, the effect of the
noise is evident in their disparate Euclidean signatures.

Each of the 600 noisy curves was compared to the six generating curves using the com-
parison method described in Section 3, with parameter values λ0 = 20, λ1 = 10, l = 2, γ = 5,
ε = 10−4, C1 = 1000, α = 2, p0 = .7, β = 10, and C2 = 1

3
. A noisy curve was then deemed

congruent to the generating curve that received the highest µ score, and considered to be
correctly classified if it was sorted into the class containing its generator.

This scheme was run five times for five randomly generated databases of 600 curves,
with each curve discretely represented by N = 500 sample points. The classifications were
performed on Intel R© CoreTM 2 Duo E8500 3.17GHz processors and completed in an average
of 2,211 seconds, or approximately 37 minutes. The method classified the databases (3,000
curves in total) with an average success rate of 93.8%.

The software used to compute these examples and jigsaw puzzle assembly will soon be
available on the second author’s web page.
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Figure 1: Plots of the six database generating curves, {Cr}. Curves were generated per the
instructions provided in Example 1 from [9] for r ∈ {0, .5, 1, 1.5, 2, 2.5}.
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Figure 2: The common trace of the Euclidean signatures of the curves {Cr} as developed in
Example 1 from [9]. Six curves with signatures of this trace are plotted in figure 1.

13



Curve 1
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Figure 3: A demonstration of the method of noise simulation used to construct the database
of curves. Curves 2-8 were developed by adding noise to curve 1. Notice that although the
curves appear nearly identical, the noise is evident in their disparate Euclidean signatures.
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