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ABSTRACT

In this paper we present an algorithm for 3D medical image
segmentation based on an affine invariant flow. The algo-
rithm is simple to implement and semi-automatic. The tech-
nique is based on active contours evolving in time according
to intrinsic geometric measures of the image. The surface
flow is obtained by minimizing a global energy with respect
to an affine invariant metric. Affine invariant edge detectors
for 3-dimensional objects are also computed which have the
same qualitative behavior as the Euclidean edge detectors.
This algorithm yields better segmentation results, since the
affine symmetry group is much larger than the Euclidean
group. Results on artificial and real MRI images show that
the algorithm performs well, both in terms of accuracy and
robustness to noise.

1. INTRODUCTION

This paper is devoted to the analysis and implementation
of the motion of a surface in a conformal affine space with
application to segmentation of homogeneous regions in 3D
images.

Image segmentation is an important step for almost all
image analysis. The active contour methodology in the level
sets framework [1, 2, 3] has been found to be a powerful tool
for extracting objects of interest. In these methods, start-
ing from an initial estimate, the curve deforms under the
influence of various forces until it fits the object boundaries.
The curve evolution equation is obtained by decreasing an
image based energyEimage as fast as possible, i.e., by do-
ing a gradient descent onEimage. In general,Eimage may
depend on a combination of image based features and ex-
ternal constraints (smoothness, shape etc) [4, 5]. The level
set methods of Osher and Sethian [6] offer a natural and
numerically robust implementation of such curve evolution
equations. Level sets have the advantage of being parame-
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ter independent (i.e. they are implicit representation of the
curve) and can handle topological changes naturally.

Several active contour models for segmentation [2, 3]
in 2D and 3D space have been proposed. Affine invari-
ant gradient snakes have been proposed in [7]. This is part
of a program to incorporate invariant detection, segmenta-
tion, and denoising schemes in object recognition systems
to reduce the algorithmic noise introduced by using non-
invariant methods. In this note, we show how the method-
ology of [7] may be easily extended to the 3D case. Affine
invariant flows are particularly attractive since they still only
involve two spatial derivatives as for the standard geomet-
ric active contour models. They may also have greater nu-
merical stability. Moreover the affine invariant flow is most
natural for scale-space given the fact that the group of in-
variants is much larger, but nevertheless the number of spa-
tial derivatives remains the same as for the Euclidean group.
See [8] for the details.

The proposed method addresses this problem by seg-
menting such 3D images naturally by evolving a surface in
R3. We show that 3D objects can be segmented in an affine
invariant manner by considering a conformally weighted
volume form. The conformal factor must be chosen to be
affine invariant. We note that volume is invariant with re-
spect to the (special) affine group, and is a relative invariant
with respect to the full affine group.

Because of considerations of space, we will only be able
to outline some of our basic ideas. A full invariant system
for image processing will be published in a more detailed
version of this work.

2. BASIC FLOW

In this section we state the fundamental flow for the affine
invariant segmentation method. LetR be an open connected
bounded subset ofRn (in our caseR3) with smooth bound-
aryS = ∂R. LetΨ : R −→ Rn be a family of embeddings,
such thatΨ0 is the identity. Letφ : Rn −→ R be a posi-
tive C1 function. SetR(t) = ψt(R) andS(t) = ψt(∂R).
Consider the family ofφ-weighted volumes

H(t) =
∫

R

φ(ψt(x))dψt(x)

=
∫

R(t)

φ(y)dy
(1)



SetX = ∂ψt

∂t |t=0, then using the area formula [9] and
then by the divergence theorem, the first variation is

dH

dt
|t=0 =

∫

R

div(φX)dx

= −
∫

∂R

(φX) ·Ndy
(2)

whereN is the inward unit normal toS = ∂R. Conse-
quently the correspondingφ-weighted affine invariant vol-
ume minimizing flow is

∂S

∂t
= φκ1/4N , (3)

whereκ is the Gaussian curvature [11]. This flow is only
defined for convex surfaces. As argued in [8], in order to
extend this to concave surfaces, one should consider a flow
of the form

∂S

∂t
= φκ

1/4
+ sign(H)N (4)

whereκ+ = max(κ, 0) and sign(H) is the sign of the
mean curvature of the surface.

3. AFFINE INVARIANT GRADIENT

Let I : R3 −→ R+ be a given 3D grey scale image. To de-
tect edges in an affine invariant form, a possible approach
is to replace the classical gradient magnitude‖ ∇I ‖=
(I2

x + I2
y + I2

z )1/2, which is only Euclidean invariant, with
an affine invariant function fromR3 to R that has, at image
edges, values significantly different from those at flat areas
and such that these values are preserved, at corresponding
image points, under affine transformations. To accomplish
this, we have to verify that we can use basic affine invariant
descriptors that can be computed fromI in order to find an
expression that qualitatively behaves like‖ ∇I ‖. Follow-
ing [7], we formulate two basic independent affine invariant
descriptors in 3D space as

H = det




Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz




= Ixx(IyyIzz − I2
zy)− Ixy(IyxIzz − IyzIzx)

+ Ixz(IyxIzy − IzxIyy)

(5)

J = I2
x(IyyIzz − I2

zy) + I2
y (IxxIzz − I2

xz)

+ I2
z (IxxIyy − I2

xy) + 2IxIy(IxzIyz − IxyIzz)

+ 2IyIz(IxyIxz − IyzIxx) + 2IxIz(IxyIyz − IxzIyy)
(6)

There is no non-trivial first-order affine invariant descriptor,
and all other second-order differential invariants are func-
tions of H andJ . Therefore the simplest possible affine

gradient must be expressible as a functionF (H, J) of these
two invariant descriptors.

The differential invariantJ is related to the Euclidean
curvature of the level sets of the image. Indeed, if a sur-
faceS is defined as the level set of a 3D imageI, then the
Gaussian curvature ofS is given byκ = (J/‖ ∇I ‖4). Lin-
deberg [10] usedJ to compute corners and edges (for 2D
images) in an affine invariant form, that is,

F = J = κ‖ ∇I ‖4

This singles out the image structures with a combination
of high gradient(edges) and high curvature of the level sets
(corners). Note that, in general, edges and corners do not
have to lie on a unique level set. Here, by combining bothH
andJ , we present a more general affine gradient approach.
Because bothH andJ are second order derivatives of the
image, the order of the affine gradient is not increased while
both invariants are being used.

We define the basic affine invariant gradient of a func-
tion I by the equation

∇affI =
∣∣∣∣
H

J

∣∣∣∣

Technically, because∇affI is a scalar, it measures just the
magnitude of the affine gradient, so our definition may be
slightly misleading. However, an affine invariant gradient
direction does not exist, as directions (angles) are not affine
invariant, and so we are justified in omitting direction for
simplicity.

The justification for our definition is based on a sim-
plified analysis of the behavior of∇affI near edges in the
image defined byI. Near the edge of an object, the gray-
level values of the image can be (ideally) represented by
I(x, y, z) = f [z − h(x, y)], wherez = h(x, y) is the edge
of the surface andf(t) is a slightly smoothed step function
with a jump neart = 0. Straightforward computations show
that, in this case

H = f
′′
f
′2

(hxxhyy − h2
xy)

J = f
′4

(hxxhyy − h2
xy)

(7)

Therefore,

H

J
=

f
′′

f ′2
=

(−1
f ′

)′

(8)

Clearly, H/J is large (positive or negative) on either
side of the objectz = f(x, y), creating an approximation of
a zero crossing at the edge (Figure 1). (Note that the Euclid-
ean gradient is the opposite, high at the ideal edge and zero
elsewhere. Of course, this does not make any fundamental



Fig. 1. Functionf(t) and its derivatives at the edges.

difference, as the important part is to differentiate between
edges and flat regions. In the affine case, edges are given
by doublets.) This is becausef(t) = step(t), f

′
(t) = δ(t),

andf
′′
(t) = δ

′
(t), where we ignore points withf

′
= 0.

Therefore∇affI behaves like the classical Euclidean gra-
dient magnitude.

To avoid possible difficulties when the affine invariants
H orJ are zero, we replace∇aff with a slight modification.
In Euclidean invariant edge-detection algorithms based on
active contours as well as in anisotropic diffusion, the stop-
ping term is usually taken in the form(1 + ‖ ∇I ‖2)−1, the
extra1 being taken to avoid singularities where the gradient
vanishes. Thus in analogy, the corresponding affine invari-
ant stopping term should have the form

1
1 + (∇I)2

=
J2

H2 + J2

However, this can still present difficulties when bothH and
J vanish, so a second modification is proposed.

The normalized affine invariant gradient is given by

∇affI =
(

H2

J2 + 1

)1/2

(9)

Now the affine invariant stopping term is given by

φ(x, y, z) =
1

1 + (∇affI)2
=

J2 + 1
H2 + J2 + 1

(10)

Equation (10) avoids all the difficulties of the previous
formulation whereH andJ both vanish. For further details
see [11].

4. EXPERIMENTS

2D planar contours used for segmenting a volumetric im-
age (3D) requires segmenting each of the slices in 2D. This
method is quite unnatural and time consuming. The pro-
posed surface evolution segmentation algorithm can seg-
ment images directly in 3D. Some segmentation results ob-
tained using the proposed method are shown in Figures 2-4.

Note that, the segmentation is the result of a single surface
evolution. Since it is difficult to define an initial starting sur-
face which encapsulates the desired object, we define sev-
eral small spheres within the object of interest and use an
inflationary term to expand these spheres out and then use
the surface evolution to get at the boundary of the desired
object. Since curvature is a diffusive term, simple central
differences can be used to evaluate the mean and gaussian
curvature terms. For further details on numerical implemen-
tation of level set methods, see [12].
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Fig. 2. Starting Contour for Axial and Coronal slices
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Fig. 3. Contour Evolution for various Axial slices
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Fig. 4. Contour Evolution for various Coronal slices
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Fig. 5. Contour Evolution for various Sagittal slices


