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Abstract. We investigate dispersive quantization and fractalization of the periodic
linear Fermi—Pasta—Ulam system.

Our problem turned out to have been felicitously chosen. The results were entirely
different qualitatively from what even Fermi, with his great knowledge of wave motions,
had expected. ... To our surprise, the string started playing a game of musical chairs,
only between several low notes, and perhaps even more amazingly, after what would have
been several hundred ordinary up and down vibrations, it came back almost exactly to its
original sinusoidal shape.

— Stanislaw Ulam, [34; pp. 226-7]

1. Introduction and Historical Perspective.

The Fermi-Pasta—Ulam (FPU) problem, [15], modeling the dynamics of mass—spring
chains with nonlinear restoring forces, is celebrated as one of the very first electronic
computer experiments, and certainly the first that produced novel behavior. The surprise
was that the FPU dynamics was, at least on moderately long time intervals, not ergodic as
expected, but rather exhibited recurrence in which energy from the low frequency modes
would initially spread into the higher modes but, after a certain time period, mostly return
to its initial configuration, as in the above quote from Ulam’s autobiography. In an attempt
to understand this phenomenon, Zabusky and Kruskal, [40], derived a continuum model
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that, in its unidirectional manifestation, turned out to be the Korteweg—deVries (KdV)
equation, originally derived by Boussinesq, [5], in his pioneering studies of surface water
waves. Zabusky and Kruskal’s numerical integration of the periodic initial-boundary value
problem for the Korteweg—deVries equation, starting with a smooth initial profile, led
to their discovery of the soliton’ and the consequent creation of an entirely new branch
of mathematics — integrable nonlinear partial differential equations, whose remarkable
repercussions continue to this day, [11].

In a completely unrelated but also surprising development, in the early 1990’s, Michael
Berry and collaborators, [1,2, 3], discovered the Talbot effect, which they named after
a 1835 optical experiment of the Victorian scientist, inventor, and photography pioneer
William Henry Fox Talbot, [32]. The effect arises in quantum mechanics through the
behavior of rough solutions to the free space linear Schrodinger equation on a circular
domain, i.e., subject to periodic boundary conditions. The evolution of a piecewise smooth
but discontinuous initial profile, e.g., a step function, produces a fractal profile at irrational
times (relative to the circumference of the circle) but “quantizes” into piecewise smooth but
discontinuous profiles at rational times. Moreover, the fundamental solution, induced by
an initial delta function, exhibits “revivals” at rational times, localizing into a finite linear
combination of delta functions. This has the astonishing consequence that, at rational
times, the solution to any periodic initial value problem is a finite linear combination of
translates of the initial data and hence its value at any point on the circle depends only
upon finitely many of the initial values! The effect underlies the experimentally observed
phenomenon of quantum revival, [3,37,35], in which an electron, say, that is initially
concentrated at a single location of its orbital shell is, at rational times, re-concentrated
at a finite number of orbital locations.

The subsequent rediscovery of this remarkable phenomenon by the author, in the
context of the periodic linearized Korteweg—deVries equation, [20, 21], showed that frac-
talization and, at times, quantization phenomena appear in a wide range of linear dispersive
(integro-)differential equations, including models arising in fluid mechanics, plasma dynam-
ics, elasticity, DNA dynamics, and elsewhere. Such linear systems exhibit a fascinating
range of as yet poorly understood dynamical behaviors, whose qualitative features are tied
to the large wave number asymptotics of the underlying dispersion relation. These studies
were then extended, through careful numerical simulations, [8], to show that fractaliza-
tion and quantization also appear in a variety of nonlinear dispersive equations, including
integrable models, such as the nonlinear Schrédinger, Korteweg—deVries, and modified
Korteweg-deVries equations, as well as their non-integrable generalizations with higher
degree nonlinearities. (It is interesting to speculate as to how the history of the subject
might have changed were Zabusky and Kruskal to have started their investigations with
discontinuous initial data!) Some of these numerical observations were subsequently rig-
orously confirmed in papers of Erdogan and collaborators, [9,12,13, 14]; see also earlier
analytical work of Oskolkov, [24], and Rodnianski, [26].

Given that the Korteweg—deVries equation and its generalizations arise as continuum

t Although, the “solitons” they observed were in fact finite gap solutions composed of cnoidal
waves, true solitons only arising when the equation is posed on the entire real line.



models for FPU chains, the question naturally arises as to whether dispersive fractalization
and quantization effects appear in the discrete FPU system. Resolving this question is the
aim of this paper and its sequel(s). In this first installment, we focus our attention on
the much simpler linear system, which can be analytically integrated. We find that, on
an appropriately long time scale, the solutions to the periodic linear FPU chain subject
to a step function initial displacement do exhibit a suitably interpreted discrete version
of fractalization and (approximate) quantization. On the other hand, we were unable to
detect any trace of revival in the discrete system, which remains not entirely understood.
The second paper in the series will extend our analysis to the fully nonlinear systems.

2. The Fermi—Pasta—Ulam Chain and its Continuum Models.

The Fermi-Pasta—Ulam (FPU) lattice consists of a one-dimensional chain of masses
that are connected by springs with nonlinear restoring forces, [15,25]. We will only
consider the case when both the masses and chains are identical, noting that more general
systems have also been investigated in the literature, [6,16]. The dynamics of the mass-
spring chain follows immediately from Newton’s Laws, and takes the form of a system of
second order ordinary differential equations for the mass displacements u,, (t) for n € Z at

time t: )
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where p is the resonant frequency of the linear spring. The forcing function has the form

F(y)=y+ N(y) =V'(y), with potential Viy) = %y2 + Wi(y), (2.2)

where y indicates the elongation of an individual spring. The nonlinear intermass forcing
term is prescribed by N(y) = W’(y). As in [38,40], we will focus attention on the
quadratic case when

N(y) = ay?, (2.3)

although higher degree polynomials in y, particularly cubic, are also of great interest.
Another important system is the integrable Toda lattice, [33], where

V(y) = ael?. (2.4)

Other important examples include the Calogero-Moser integrable system and its trigono-
metric, hyperbolic, and elliptic generalizations, [7, 19, 31], where

V)= o V)= oo o V)= oig o V) =Ph). (25)

with P the Weierstrass elliptic function, as well as the Lennard—Jones potential, [18],

B
Vi(y) = % — (2.6)

which is used to model interactions between atoms and molecules.



In this note, we will concentrate on the periodic problem, viewing the system as a
circular chain consisting of m masses, which are labelled so that u,(t) = w,;(tf) whenever
k =1 modm. Another important case is an infinite chain, with the displacements at large
distances subject to suitable decay conditions. Since the continuum models have smooth
evolutionary behavior on the line — dispersive quantization being intimately tied to the
periodic boundary conditions — we do not anticipate any unexpected effects in an infinite
FPU chain and so do not pursue it here. The Dirichlet problem in which the first and last
masses are pinned down, so that uy(t) = u,,(t) = 0, with n = 0,...,m, is also of interest,
[38], but its analysis will be deferred.

Following [40, 38, 27, 28], we endeavor to better understand the discrete FPU dy-
namics by passing to a continuum model. To this end, we assume the masses lie on a circle
of fixed radius, say the unit circle of circumference 27. As the number of masses m — oo,
the equilibrium intermass spacing h = 27 /m — 0. To maintain consistency, the time must
be correspondingly rescaled, ¢t — ht, and so we consider the system

2 2
Tt = & [Pl = 1) = Fluty — 1)), (27)

where ¢ = ph will be the wave speed of the limiting scalar wave equation.
We can view the individual displacements as the sample values of an interpolating
function u(¢, z) that is 27 periodic in x, so that
2mn

t) =u(t h =nh=——
u, (t) =u(t,x,), where T, =" -

are the nodes or reference positions of the masses. To produce a continuum model, we
apply Taylor’s theorem to expand

U,y (t) =ul(t,z, £h) =uxhu, + %hQUM + %h?’umx + e,

where the right hand side is evaluated at (t,z,). Substituting into (2.1) and replacing
x, +— x, we arrive at the dispersive partial differential equation

uy = ¢ (K[u] + Mlul), (2.8)
with linear component

while M[u] is obtained by similarly expanding the nonlinear terms. For example, in the
quadratic case’ (2.3),

[ a2 X T TTIxT T "XTxTTIT

M[u] =2ahu,u,, + +ah’(u,u + 2u,, U, ) + O(R°). (2.10)
Thus, assuming the linear wave speed ¢ and nonlinear scale parameter « are both O(1),
we obtain, to second order in h, the bidirectional continuum model

— 2 12
Uy = ¢ (uy, +2ahuyu,, + $5h%u

(2.11)

xmxm) ?

T For unexplained reasons, Zabusky, [38], is missing the term involving ., Uzqqq -



a potential form of the integrable (nonlinear) Boussinesq equation, [11],
v, = (vm +ah(v?),, + 1—12h2vmm), (2.12)

which can be obtained by differentiating (2.11) with respect to = and replacing u, — v.
Note that, to leading order, the continuum model (2.11) coincides with the standard linear
wave equation u,, = c?u,, with wave speed ¢ > 0. The Korteweg—deVries equation is
obtained through a standard “unidirectional factorization” of the preceding bidirectional
system, [36], i.e., assuming the waves are only propagating in one direction, say in the
direction of increasing x, producing

u, + ¢ (uy, + ahuu, + 35h*u =0. (2.13)

mmm)

Remark: For the cubically forced FPU system, the unidirectional model is the in-
tegrable modified Korteweg-deVries equation, [28, 38], in which the nonlinear term is a
multiple of u?u,. Higher degree forcing polynomials produce generalized Korteweg-deVries
equations with higher degree nonlinearities, which are no longer integrable, and, in fact,
can produce blow up of solutions, [4].

Let us from here on ignore the nonlinear contributions and concentrate on the linear
FPU system and its continuum models. (Extending our analysis to nonlinear FPU chains
will be the subject of subsequent papers in this series.) The rescaled linear FPU system
(2.7) becomes what is known as the discrete wave equation, [25]:

d*u, 2
ot = ﬁ(unﬂ —2u, +u,_,), (2.14)
which, to the same order in A, has bidirectional continuum model
U’tt = 62 (uxx + 1_12 hQUI‘III)’ (215)

known as the linearized “bad Boussinesq equation”, [27], owing to the fact that it is an
ill-posed partial differential equation. Indeed, its dispersion relation is found by the usual
method, [36], of substituting the exponential ansatz

u(t,z) = el ke=wt) (2.16)
producing the algebraic equation
w® =p, (k) = *k*(1 - = h?k?) (2.17)

relating the temporal frequency w to the wave number (spatial frequency) k. Because
py(k) < 0 for k> 0, the bad Boussinesq model (2.15) is not purely dispersive since the
high wave number modes induce complex conjugate purely imaginary values of w and
hence exponentially growing modes, [10], that induce the ill-posedness of the initial value
problem. Interestingly, the linearized unidirectional Korteweg—deVries model

up + ¢ (uy + 557 uy,,) =0 (2.18)
does not suffer from this instability, since its dispersion relation is
w = ck(1— 35 h%k?), (2.19)



which coincides with the Taylor expansion, at & = 0, of one of the two branches of the bidi-
rectional dispersion relation (2.17). The corresponding linearized bidirectional Korteweg—
deVries equation

Uy = (c@x + 21—4ch2(9§)2u = (um + 1—12 h2umm + L htu

576 xxxxxx)’ (220)

has solutions that are an exact linear combination of right- and left-moving linear KdV
solutions. Positivity of the right hand side of the corresponding dispersion relation

W? = AR (1 = L p22)? = AR (1 — S %K + L kY (2.21)

implies well-posedness of this sixth order model.

Remark: 1t remains somewhat mysterious to the author how an ill-posed bidirectional
wave model can have right- and left-moving unidirectional constituents that are both well-
posed. This is clearly a consequence of the use of low wave number Taylor expansions of
the dispersion relation near k£ = 0 in the approximation procedure, but I would argue that
this seeming paradox warrants further study.

Another means of regularizing the linear, and hence the nonlinear, continuum model
is to retain the order h* terms in the preceding Taylor expansion. This produces the sixth
order linear partial differential equation

2 2 4
with dispersion relation
w? = pg(k) = 02k2(1 — 1—12 h2k? + ﬁ h4k4). (2.23)

Since pg(k) > 0 for all k, the regularized model (2.22) is purely dispersive, and hence
well-posed, in that all Fourier modes maintain their form under translation.

An alternative regularization procedure that avoids increasing the order of the dif-
ferential equation is to replace two of the x derivatives in the fourth order term in the
bad Boussinesq equation (2.15) by t derivatives, using the fact that, to leading order,

u,, = ¢ 2u, + O(h?), thereby producing the continuum model

utt = Czuxx + 1_12 h2ux1’tt7 (224)

known as the linear Boussinesq equation, [36; pp. 9, 462], which arises as the linearization
of Boussinesq’s bidirectional model for shallow water waves, which was also proposed as a
model for DNA dynamics, [29]. In this case, the dispersion relation is

2k?

= ~ PR (1= LR 4 L R
_WNC]G(]' 12hk+144hk+ )>0, (225)

w? = q(k)

and hence the equation is purely dispersive and well-posed.

Let us next derive the analogous “dispersion relation” for the discrete FPU system
(discrete wave equation) (2.14); see also [39]. Substituting the usual exponential ansatz
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(2.16), evaluated at the node z = x,, = nh, into (2.14) produces

2
—w el(k:xn wt) _ h2 ( i(kxpn+kh—wt) 261(kxn—wt) + ei(k:xn—kh—wt)
5 (2.26)
C i(kxy,—w
:—ﬁ(l—coskh) (k 25
We thus deduce the discrete FPU dispersion relation
2c? 4c% . c?m? km
w? = W(l —coskh) = =) sin® L kh = — sin? o (2.27)

that determines the temporal frequencies w in terms of the wave numbers k. Since w(k) is
real for all k = 0, ..., n, the FPU system can be regarded as dispersive, in that the different
Fourier modes propagate unchanged at different wave speeds, implying “well-posedness”
or, more accurately since we are dealing with a system of ordinary differential equations,
stability of the zero equilibrium solution. Moreover, observe that the continuum model
dispersion relations (2.17), (2.23), (2.21), and (2.25) all have the same order h* Taylor
expansion at k = 0 as (2.27), and hence approximate it well at low or even moderately
large wave numbers. However, they exhibit different high wave number asymptotics, which,
as noted in [8], is the key property that governs the dispersive fractalization of rough
solutions.

3. The Riemann Problem.

As in [8, 20], we are particularly interested in the Riemann problem, of fundamental
importance in the study of hyperbolic wave equations and shock waves, [30]. Here, the
initial displacement is a (periodically extended) step function:

1, O0<z<m,
uw(0,z) =4 0, —7T<z<0, (3.1)
%7 Tr=—m, 07 T,

whose values at integer multiples of 7w are specified in accordance with the convergence
properties of its Fourier series

u(0,x) =

[\DI»—l

2 = 25+ 1)z
_Zsm Jrhe (3.2)
™ = 2741

We will also, for simplicity, impose zero initial velocity, concentrating on the pure displace-
ment problem:

u, (0,z) =0, (3.3)

leaving the analysis of the effects of a nonzero initial velocity to a subsequent study.
Given a well-posed linear bidirectional continuum model equation, such as (2.20), (2.22),
or (2.24), with associated dispersion relation w(k), the Fourier series for the solution to the

7



corresponding periodic initial value problem (3.1, 3) takes the form of a linear combination
of standing wave solutions:

u(t,z) =

(3.4)

[\3|>—l

2 f: cosw(2j+ 1)t sin(2j+1)x
7rj_ 27+1

By an elementary trigonometric identity, we can split the standing wave summands in
(3.4) into right- and left-moving unidirectionally propagating waves:

wlt,2) = up(t,x) —;— ug (t, x), (3.5)

where the factor of % is introduced for comparative purposes, whereby all three solutions
have the same initial displacement:

uw(0,z) = upr(0,2) = u, (0, ).
The right-moving constituent is

2 & sin[(2j+ 1)z —w(2j+1)¢t]
T 2 25 +1

up(t,x) = : (3.6)
and its left-moving counterpart is obtained by replacing t by —t.

The corresponding step function initial data for the discrete FPU problem is obtained
by sampling (3.1) at the nodes z = z,, = nh = 2w n/m, whence

1, 0<n<m,

u,(0)=<¢ 0, —m<n<0, (3.7)

3

In other words, we displace each mass lying on the “right semicircle” by 1 unit, while

those on the left remain at their equilibrium position, except the two masses lying at the

interface that are displaced by only half a unit. As in (3.3), the masses are assumed to be
at rest initially:

n=-—m, 0, m.

u,,(0) = 0. (3.8)
We use the Discrete Fourier Transform to write the solution as a Fourier sum
ut,r)~ Y et (3.9)
k=1-m

over the fundamental periodic modes, [22; Section 5.6], where ~ means that the left and
right hand sides agree at the nodes, i.e., when = x,,. The Discrete Fourier Transform
applied to the sampled step function produces the interpolating discrete Fourier sum

1
u(0,2) ~ S+ Z cot ZI DT sin(2j + 1) . (3.10)

T The bracket on [m/2] denotes the integer part.



In view of the dispersion relation (2.27), the resulting solution to the linearized FPU chain
is

/2] | |
11 2j+1 t (2541
u(tx) ~ 5 jz_o Cot% cos ( C:L sin . ‘7; ) ) sin(2j + D, (3.11)

meaning that the displacement of the ntt mass is given by sampling the right hand side at
the nodes:

un(t> = U(t, xn)? T, = nh=——. (312)
m
Again, the solution (3.11) is a linear combination of standing waves, and can be decomposed
into left and right moving constituents, as in (3.5). The right-moving constituent has the
explicit form

[m/2] . -
1 1 2 1 2 1
uR(t,g;)N§+—m JEZO coti( jtn)ﬁ Sin<(2j+1)x— C:?:tsin( ]:’; >7r) (3.13)

As above, its left-moving counterpart is obtained by replacing ¢t by —t.

Remark: Note that if we omit the constant term, the bidirectional solutions con-
structed in (3.4,11) also satisfy Dirichlet boundary conditions, with a half-size signum
function as initial condition: u(t,x) = % sgnx, —7m < x < w. Thus, all our subsequent
remarks on their behavior also apply to this Dirichlet initial-boundary value problem.
On the other hand, their unidirectional constituents do not individually satisfy Dirichlet
boundary conditions.

As shown in [20, 24], the canonical linearized Korteweg—deVries equation

with step function initial data and periodic boundary conditions on —7 < & < 7 exhibits
dispersive fractalization and quantization in the following sense. At irrational times, mean-
ing 7/m ¢ Q, the solution profile u(7,¢) is a continuous but non-differentiable fractal. On
the other hand, at rational times, 7/7m € Q, the solution is discontinuous, but piecewise
constant! Indeed, if 7 = 27w p/q where p, ¢ € Z have no common factors, then the solution
is constant on the intervals 27j/q < £ < 2w (j + 1)/q for j € Z. Thus, the larger the
denominator ¢, the shorter the intervals of constancy. (It is possible that the solution
achieves the same constant value on one or more adjacent intervals, and so an interval
of constancy may be larger. See [23] for a number-theoretic investigation into when this
occurs.) A rigorous proof of the fractal nature of the solution at irrational times, including
the estimate that its fractal dimension d is bounded by % <d< %, can be found in [12].

The results of [12] imply that a linear evolutionary integro-differential equation with
dispersion relation that is (in an appropriate sense) asymptotic to a power of k at large
wave numbers, w(k) ~ k% as k — oo, for 1 # «a > 0, exhibits fractalization at almost
all times, provided the initial data is of bounded variation, but not too smooth, meaning

it does not lie in any Sobolev space H? for g > %, i.e., its Fourier coefficients ¢, decay



sufficiently slowly so that the series Y (14+n?%)?|c,, |? diverges. Moreover, if the asymptotic
exponent « is integral, 2 < a € Z, numerical experiments, [8], indicate that the solution
profiles quantize at other times, in the sense that they take a different form from the
“generic” fractal profiles: piecewise smooth with either jumps or cusps, possibly with some
much smaller fractal modulation superimposed. However, being so far based on numerical
calculations, it is not yet known if the observed small scale fractals on the quantized profiles
are genuine or just a manifestation of numerical error.

Warning: The fractal dimension of the graph of a function has the potential to be
misleading. For example, the graph of the sinusoidal function f(z) = sin(1/z) has fractal
dimension 2 even though it is perfectly smooth, even analytic, except at the singularity
at x = 0. For this reason, the results in [12], while striking, are, at a deeper level,
unsatisfying. It would be preferable to know, or at least have estimates on, the Hausdorff
dimension of (sections of) such solution profiles; however this seems to be beyond current
analytic capabilities.

Turning our attention to the linearized Korteweg—deVries model (2.18), the leading
first order term cu, represents linear transport moving at speed —c, and only affects the
solution by an overall translation. We can map (2.18) to the preceding canonical form
(3.14) by a Galilean shift to a moving coordinate frame, coupled with a rescaling of the
time variable:

£ =x—ct, T = & ch’t. (3.15)

Due to the temporal scaling, the dispersive quantization pattern occurring in the solution
to the canonical KAV equation (3.14) at a rational time 7 = 2w p/q will now appear
(suitably translated) at a much later time, namely ¢ = 487 p/(ch?q). Since the normalized
model (3.14) exhibits quantization at every rational time, the same is true (modulo the
scaling factor used to distinguish rational from irrational) of the FPU model version (2.18).
However, in the latter model, at a rational time ¢ = O(1), the denominator g will be very
large, of order O(h~2), hence the intervals of constancy are extremely small, O(h?), and
thus undetectable at the physical level, with spatial scale Az = O(h). At such scales, both
physical and graphical, it will be practically impossible to distinguish such profiles from
fractals.

Now let us compare the solution to the periodic Riemann initial value problem for the
discrete linear Fermi-Pasta—Ulam system (2.14) with those of the three model equations:
the bidirectional Korteweg—deVries model (2.20), the sixth order model (2.22), and the
regularized Boussinesq model (2.24). For our numerical comparisons, we sum the same
m modes in the discrete and continuous Fourier series and plot the resulting profile; in
other words, we are performing exact (well, modulo floating point round off) computations
on the truncated (discrete) Fourier series and not a numerical approximation. The initial
data is a (periodically extended) step function. In the continuum models, one can work
with either the continuous Fourier series representation of the initial data (3.2), or the
corresponding discrete Fourier sum (3.10). However, in the given situations, we observe
no appreciable differences between the solution profiles, and hence will use the discrete
version in all figures representing solutions to the Riemann initial value problem. We fix
the wave speed ¢ = 1, and, for most of our numerical investigations, work with m = 1024
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masses, so that h = 27 /m = .006136. Solutions for other numbers of masses have been
calculated, and the overall conclusions are similar, although the fewer their number, the
less pronounced some effects tend to be; see also below.

The first observation is that, on the time scale and resolution we are using, there
is almost no noticeable difference between the sixth order and regularized Boussinesq
models, and so we choose only to display the results for the latter. We will plot both the
bidirectional solution u(t, ), as given in (3.4), (3.11) and its unidirectional right-moving
constituent (3.6), (3.13). We consider the effects at times that are selected from three
regimes: what we will call short times, where t = O(1), medium times, where t = O(h™1),
and long times, where t = O(h™2).

First, on short time scales, the solutions to all four models exhibit little appreciable
difference. For example, consider the profiles at t = %7? graphed in Figure 1 — the top
row being the full bidirectional solution and the bottom row its right-moving unidirectional
constituent. The only noticeable difference is that, on closer inspection, the oscillatory (or
perhaps fractal) perturbation that is superimposed upon the intervals of constancy is more
concentrated near the discontinuities in the regularized Boussinesq and sixth order models,
while in the FPU and KdV cases, the oscillations are slightly more spread out, particularly
in their unidirectional constituents.

1sf 1sf 1sf

R g

KdV Boussinesq FPU

Figure 1.  Bi- and uni-directional solution profiles at t = %7&

Since all profiles remain rather similar at short times, in Figure 2 we just graph the
FPU solution profiles. What we observe is that, on the short time scale, the solution is
an oscillatory perturbation of the traveling wave solution to the corresponding limiting bi-

and uni-directional wave equations’
Uy = U

s u, +u, =0. (3.16)

In particular, at ¢t = %ﬂ', the right- and left-moving waves have cancelled each other out,

T Recall that we have set ¢ = 1.
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leaving only a constant solution profile for the traveling wave solution, with a superimposed
fractal residue in the FPU system, as well as its continuum models, all three of which take
on a comparable form.

1sf 1sf 1sf

‘.._ﬁ r...:-—J_L‘- 1 IOW
5 = 5 i 5 5 5 B = i 5 5 0 5 5
-05F -05F -05F

—

Figure 2.  Bi- and uni-directional FPU solution profiles at short times.

At medium times, of order O(h~!), the fractal nature of the oscillations superimposed
upon the traveling wave solution profile has become more pronounced. Again, both the
FPU system and its continuum models exhibit similar behavior; Figure 3 graphs the former
at some representative medium times.

MM A e WM
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15k 15k
osk ‘ osk

I 2 - ]
~05F ~05F

t=1/h t=3/h t=m/h

Figure 3. Bi- and uni-directional FPU solution profiles at medium times.

Once we transition to the long time scale, of order O(h~2), significant differences arise
in the observed behaviors. First consider the solution profiles at the irrational (meaning
that h?t/m € Q) times t = 1/h? ~ 26561 and ¢t = 400000, plotted in Figures 4 and 5;
all three profiles are of a similar fractal form, albeit with differences in their small scale
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features. The unidirectional constituents are more “pure” fractals, while the bidirectional
solutions exhibit some semi-coherent regions, perhaps indicating some remnant of the
intervals of constancy of a nearby rational profile.

15h sk

15+
10 10 10

~05F ~05F ~05F

KdV Boussinesq FPU
Figure 4.  Bi- and uni-directional solution profiles at ¢t = 1/h? ~ 26,561.

1o 1of
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—0sf- —0sf- —0sf-

KdVv Boussinesq FPU
Figure 5. Bi- and uni-directional solution profiles at t = 400,000.

However, at long rational times, the solution profiles diverge dramatically, as illus-
trated in Figures 6 and 7 for two representative such times. The linearized KdV solution
has quantized into a piecewise constant profile, whereas the FPU system and the Boussi-
nesq models retain a common fractal form. On the other hand, the latter profiles exhibit
an observable adherence to the underlying the piecewise constant KdV solution, albeit
with a significant superimposed fractal modulation.

13



KdV

I 2 3
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Boussinesq

Figure 6. Bi- and uni-directional solution profiles at t = 247 /(5h?) ~ 400,527.
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Figure 7.  Bi- and uni-directional solution profiles at t = 24 /h?.

Recall that the initial data is the discrete Fourier representation (3.10) of the step
function. Interestingly, if we use the continuous version (3.2) instead, which only differs
in its higher frequency modes, the graphs do not appreciably change, and so are not
displayed. The only noticeable difference is that piecewise constant KdV profile exhibits

a more pronounced Gibbs phenomenon at the discontinuities.

Now, one might argue that the reason for the difference between the quantized KdV
profiles and the fractal FPU ones, lies in how the dispersion relation affects the high
frequency modes. So one might try eliminating the higher frequency terms by truncating
the Fourier sum in order to bring the solutions closer in spirit. It is surprising that one
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must eliminate the vast majority of the high frequency modes before they begin to align
at the rational quantized times, whereas at the irrational fractalized times the profiles are
quite similar no matter how one truncates.
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Figure 8. Truncated unidirectional solution profiles at t = 247 /(5h?) ~ 400,527.
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Figure 9. Truncated unidirectional solution profiles at ¢ = 400,000.

KdV o ﬂw

Keeping in mind that we are working with m = 1024 total modes, the first plots in
Figure 8 are at the same quantized time illustrated in Figure 6, and show the results of
summing the first 5%, namely 51, and 1%, namely 10, of the terms in the full series. The
top row shows the resulting truncated profiles for the unidirectional FPU solution (3.13),
while the bottom row shows the corresponding truncated KdV profile (3.6). Somewhat
surprisingly, even retaining 5% of the modes leads to significant differences, and only
at the very coarse 1% scale do they look at all close. On the other hand, in Figure 9,
which illustrates the same results at the irrational time that were shown in Figure 6, both
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truncated profiles exhibit very similar features, while, as expected, the overall local fractal
nature of the profile is curtailed as the number of terms decreases.

Of course, the FPU mass-spring chain is not a continuum, and so the values of the
trigonometric solution (3.11) — or its unidirectional counterpart (3.13) — only have phys-
ical meaning at the mass nodes. For the above cases of m = 1024 masses, the differences
are imperceptible. To better illustrate the differences, in Figure 10 we plot solution profiles
for m = 64 masses, at selected times, comparing the discrete mass displacement profiles,
the corresponding continuum FPU bidirectional solution (3.11), and the continuum bidi-
rectional solution (3.4) with KdV dispersion (2.19). Observe that the effects are quite
similar to what was presented above, but less pronounced owing to the relatively small
number of masses.
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Figure 10. Bidirectional solution profiles for the discrete and continuum FPU system
and the KdV model with m = 64.

Finally, let us investigate whether the Talbot revival phenomenon mentioned in the
introduction appears in the FPU system. Somewhat surprisingly, given the noticeable
effects of dispersive quantization at long rational times, numerical experiments have failed
to reveal any trace of revival.
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To model the delta function initial displacement, we displace the center mass by a
unit®. (This is equivalent to equipartitioning the initial energy into all the Fourier modes.)
Figure 11 plots the resulting solutions, in the case of m = 128 masses, whose initial data is
the (Fourier series for) the delta function, at the indicated long rational times. These, as
always, are obtained by explicitly summing over the first m modes. Keep in mind that the
Fourier series of the delta function and resulting fundamental solution to the continuum
model is highly oscillatory, and only converges weakly to the distributional revival profile,
consisting of a finite linear combination of delta functions, at rational times. The first
column plots the solutions to the bidirectional KdV model; the discrete oscillatory peaks
indicate the appearance of a revival. The second column plots the corresponding FPU
solution; here, there is no appreciable sign of concentration of the solution profiles and
hence no apparent revival. Similar behaviors have been observed at other (long) times,
with varying number of masses. The KdV profiles are fractal at irrational times and
concentrated in accordance with a revival at rational times, whereas the FPU profiles are
more or less uniformly oscillatory at all times.
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02
~02f
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==

§
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KdV FPU

Figure 11. Revival and lack thereof.

4. Discussion.

In conclusion, we have shown that the solution to the periodic linear Fermi-Pasta—
Ulam chain, with a step function as initial displacement and zero initial velocity, exhibits
a fractal-like solution profile at large times, namely ¢t = O(h=2) = O(m?), where m is the
number of masses, and h their spacing around the unit circle. Of course, being purely
discrete, the solution cannot be genuinely fractal, even when extended into a continuous
trigonometric interpolating function, because it only involves a sum over a finite number
of Fourier modes. Moreover, it does not become fractal in the final h — 0 limit since the

T Since we are dealing with a linear system, the magnitude of the displacement of the single
mass does not, modulo rescaling, affect the response.
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limiting equation is merely the very basic linear second order wave equation (3.16), whose
solution is a combination of traveling waves, and hence piecewise constant at all times.
Indeed, as h — 0, all of the observed behavior on medium and long time scales moves off
to infinity, and the solution converges (weakly) to the corresponding solution to the simple
limiting wave equation, with all times now being classified as “short”. On the other hand,
all of the regularized bidirectional continuum models have genuinely fractal solutions at a
dense set of times, as established in [12], which closely follow the FPU solution at the given
resolution. In contrast, the bi- and uni-directional Korteweg—deVries models mimic the
FPU and Boussinesq solutions at irrational times, but exhibit a very different dispersive
quantization profile at rational times. On the other hand, the latter solutions retain an
observable trace of the overall quantized character within their fractal profiles. Finally,
the lack of any noticeable form of revival in the FPU system is, in light of the previous
results, surprising and not well understood.

The next stage of this project will be to investigate which of these properties, if any,
carry over to the nonlinear FPU systems and other nonlinear lattices of interest. Keeping
in mind the numerical observations of dispersive quantization in the Korteweg—deVries
equation and its generalizations, [8], I expect that this will indeed be the case. Numerical
schemes that retain accuracy over long times, perhaps arising from geometric integration,
e.g., a Stormer—Verlet scheme, [17], will be essential to this endeavor.

Acknowledgments: 1 thank Rajendra Beekie, Gong Chen, Burak Erdogan, Natalie
Sheils, Ari Stern, and Ferdinand Verhulst for helpful discussions and correspondence on
FPU and fractalization.

18



[16]

[17]

18]

References

Berry, M.V., Quantum fractals in boxes, J. Phys. A 29 (1996), 6617-6629.

Berry, M.V., and Klein, S., Integer, fractional and fractal Talbot effects, J. Mod.
Optics 43 (1996), 2139-2164.

Berry, M.V., Marzoli, 1., and Schleich, W., Quantum carpets, carpets of light,
Physics World 14(6) (2001), 39-44.

Bona, J.L., and Saut, J.—C., Dispersive blowup of solutions of generalized
Korteweg—de Vries equations, J. Diff. Fq. 103 (1993), 3-57 .

Boussinesq, J., Essai sur la théorie des eaux courantes, Mém. Acad. Sci. Inst. Nat.
France 23 (1) (1877), 1-680.

Bruggeman, R., and Verhulst, F., Near-integrability and recurrence in FPU chains
with alternating masses, J. Nonlinear Sci. 29 (2019), 183-206.

Calogero, F., Solution of the one-dimensional n-body problems with quadratic
and/or inversely quadratic pair potentials, J. Math. Phys. 12 (1971), 419-436.

Chen, G., and Olver, P.J., Dispersion of discontinuous periodic waves, Proc. Roy.
Soc. London A 469 (2013), 20120407.

Chousionis, V., Erdogan, M.B., and Tzirakis, N., Fractal solutions of linear and
nonlinear dispersive partial differential equations, Proc. London Math. Soc. 110
(2015), 543-564.

Daripa, P., and Hua, W., A numerical study of an ill-posed Boussinesq equation
arising in water waves and nonlinear lattices: Filtering and regularization
techniques, Appl. Math. Comput. 101 (1999), 159-207.

Drazin, P.G., and Johnson, R.S., Solitons: An Introduction, Cambridge University
Press, Cambridge, 1989.

Erdogan, M.B., and Shakan, G., Fractal solutions of dispersive partial differential
equations on the torus, Selecta Math. 25 (2019), 11.

Erdogan, M.B., and Tgzirakis, N., Talbot effect for the cubic nonlinear Schrédinger
equation on the torus, Math. Res. Lett. 20 (2013), 1081-1090.

Erdogan, M.B., and Tzirakis, N., Dispersive Partial Differential Equations:
Wellposedness and Applications, London Math. Soc. Student Texts, vol. 86,
Cambridge University Press, Cambridge, 2016.

Fermi, E., Pasta, J., and Ulam, S., Studies of nonlinear problems. 1., Los Alamos
Report LA1940, 1955, in: Nonlinear Wave Motion, A.C. Newell, ed., Lectures
in Applied Math., vol. 15, American Math. Soc., Providence, R.I., 1974, pp.
143-156.

Galgani, L., Giorgilli, A., Martinoli, A., and Vanzini, S., On the problem of energy
partition for large systems of the Fermi—Pasta—Ulam type: analytical and
numerical estimates, Physica D 59 (1992), 334-348.

Hairer, E., Lubich, C., and Wanner, G., Geometric Numerical Integration,
Springer—Verlag, New York, 2002.

Lennard—Jones, J.E., On the determination of molecular fields, Phys. Rev. A 5
(1972), 1372-1376.

19



36]
37]

38]

39]

[40]

Moser, J., Three integrable Hamiltonian systems connected with isospectral
deformations, Adv. Math. 16 (1975), 197-220.

Olver, P.J., Dispersive quantization, Amer. Math. Monthly 117 (2010), 599-610.

Olver, P.J., Introduction to Partial Differential Equations, Undergraduate Texts in
Mathematics, Springer, New York, 2014.

Olver, P.J., and Shakiban, C., Applied Linear Algebra, Second Edition,
Undergraduate Texts in Mathematics, Springer, New York, 2018.

Olver, P.J., and Tsatis, E., Points of constancy of the periodic linearized
Korteweg—deVries equation, Proc. Roy. Soc. London A 474 (2018), 20180160.

Oskolkov, K.I., A class of I.M. Vinogradov’s series and its applications in harmonic
analysis, in: Progress in Approximation Theory, Springer Ser. Comput. Math.,
19, Springer, New York, 1992, pp. 353-402.

Pankov, A., Travelling Waves and Periodic Oscillations in Fermi—Pasta—Ulam
Lattices, Imperial College Press, London, 2005.

Rodnianski, I., Fractal solutions of the Schrédinger equation, Contemp. Math. 255
(2000), 181-187.

Rosenau, P., Dynamics of nonlinear mass-spring chains near the continuum limit,
Phys. Lett. A 118 (1986), 222-227.

Rosenau, P., Dynamics of dense lattices, Phys. Rev. B 36 (1987), 5868-5876.

Scott, A.C., Soliton oscillations in DNA, Phys. Rev. A 31 (1985), 3518-3519.

Smoller, J., Shock Waves and Reaction—Diffusion Equations, 2nd ed.,
Springer—Verlag, New York, 1994.

Sutherland, B., Exact results for a quantum many-body problem in one-dimension.
I1, Phys. Rev. A 5 (1972), 1372-1376.

Talbot, H.F., Facts related to optical science. No. IV, Philos. Mag. 9 (1836),
401-407.

Toda, M., Theory of Nonlinear Lattices, Springer—Verlag, New York, 1981.

Ulam, S.M., Adventures of a Mathematician, Scribner, New York, 1976.

| Vrakking, M.J.J., Villeneuve, D.M., and Stolow, A., Observation of fractional

revivals of a molecular wavepacket, Phys. Rev. A 54 (1996), R37-40.

Whitham, G.B., Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974.

Yeazell, J.A., and Stroud, C.R., Jr., Observation of fractional revivals in the
evolution of a Rydberg atomic wave packet, Phys. Rev. A 43 (1991),
5153-5156.

Zabusky, N.J., Computational synergetics and mathematical innovation, J. Comp.
Phys. 43 (1981), 195-249.

Zabusky, N.J., and Deem, G.S., Dynamics of nonlinear lattices I. Localized optical
excitations, acoustic radiation, and strong nonlinear behavior, J. Comp. Phys. 2
(1967), 126-153.

Zabusky, N.J., and Kruskal, M.D., Interaction of “solitons” in a collisionless plasma
and the recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240-243.

20



