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ABSTRACT

A. general theory for determining Hamiltonian model equations from noncanonical

perturbation expansions of Hamiltonian systems is applied to the Boussinesq expan

sion fcr long, small amplitude waves in shallow water, leading to the Korteweg-de-

Vries equation. New Hamiltonian model equations, including a natural "Hamiltonian

ver-cn» of the KdV equation, are proposed. The method also provides a direct

expiation of the complete integrability (soliton property) of the KdV equation.

Depti dependence in both the Hamiltonian models and the second order standard per-
turbation models is discussed as a possible mechanism for vave breaking.

1. EffTRODUCTION

In recent years there has been increasing interest in the application of the

methods of Hamiltonian mechanics to the dynamical equations of nondissipative con-

tinuun mechanics. One of the primary impetuses behind this development has been

the discovery of a number of nonlinear evolution equations, known as "soliton" equa

tions, including the celebrated Korteweg-de Vries (KdV) equation, which can be re-

garded as complete^ integrable, infinite dimensional Hamiltonian systems. These

equations arise with surprising frequency as model equations for a wide variety of

complicated, nonlinear physical phenomena including fluids, plasmas, optics and so

on - see [7]. As has become increasingly apparent - see [13] and the references

therein - the full physical systems themselves also admit Hamiltonian formulations.

What is less well understood, however, is how the Hamiltonian structures for the

physical systems and their model equations are related. As will be shown here, at

least for the KdV model for water wave motion, this relationship is far from ob

vious, and can actual^ be used to explain the complete integrability of the model
equation.

One of the most useful aspects of the Hamiltonian approach is the Noether corre

spondence between one - parameter symmetry groups and conservation laws, m earlier

work with Benjamin on the free boundary problem for surface water waves, [h], [15],

these symmetry group techniques were combined with ZakharoVs Hamiltonian formulation

of the problem, [20], to prove that in two dimensions there are precisely eight non-

trivial conservation laws (seven if one includes surface tension). The present work
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aros.e in an investigation, still in progress, into how these conservation laws behave

under the Boussinesq perturbation expansion leading to the KdV equation* in particu

lar do they correspond to any of the infinity of conservation laws of this latter

model?

In Boussinesq1s method, one first introduces small parameters corresponding to

the underlying assumptions of long, small amplitude waves in shallow water. Trun

cating the resulting perturbation expansion leads to the Boussinesq model system,

describing bi-directional wave motion. The KdV equation comes from restricting to a

"submanifold" of approximately unidirectional waves. It came as a shock to discover

that the Boussinesq system, which forms the essential half-way point in the derivation,

fails to be Hamiltonian; in particular there is no conservation of energy. Subsequent

investigation revealed that if one expands the energy functional which serves as the

Hamiltonian for the water wave problem and truncates to the right order, the resulting

functional does not agree with either of the Hamiltonians available for the KdV equa

tion. These all indicate a fundamental incongruity in the Hamiltonian structures in

the physical system and its model equations. Alternative models, such as the BBM

equation, [3], have the same problems, (it should be remarked that Segur, [17], em

ploys a different derivation involving two time scales, and does derive a linear com

bination of the two KdV Hamiltonians from the water wave energy. It remains to be

seen how the two approaches can be reconciled.)

In order to appreciate what is happening, consider the conceptually simpler case

of a finite dimensional system

x = J(x,e) VH(x,c) = F(x,e) , (1.1)

in which both the Hamiltonian function H(x,e) and the skew-symmetric matrix

J(x,e) determining the underlying Hamiltonian structure may depend on the small par

ameter e . We are specifically not writing (1.1) in the canonical (Darboux) vari

ables (p,q) , because a) this simplification is not available in the infinite di

mensional case needed to treat evolution equations, and b) it tends to obscure the

basic issues. Let

p

x = y + ecp(y) + e ty(y) + ... (1*2)

be a given perturbation expansion. In standard perturbation theory, [9], one simply

substitutes (1.2) into (1.1), expands in powers of e to some requisite order, and

truncates. After some elementary manipulations (see section 3) one finds the first

order perturbation

y - FQ (y) + cF1(y) , (1.3)

in which F_ and F, are readily expressed in terms of F and cp • If we similar

ly expand the Hamiltonian

2

H(x,e) = HQ(y) + e Hx(y) + e H^y)*... ,

we find that unless the perturbation is canonical, which is the only type of pertur-
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bation allowed in classical or celestial mechanics, [18], the first order truncation

H0+eHl is not a constant of the motion. In the present theory, the form of the per

turbation expansion is more or less prescribed, so we cannot restrict our attention

to only canonical perturbations, but we still wish to find perturbation equations of

Hamiltonian form. The theory will thus have applications to the construction of model

equations in a wide range of physical systems. To accomplish this goal, we must also

expand the Hamiltonian operator

J(x,e) t» JQ(y) + e J^y) + e2 J2(y) + ... .

Truncating, we get the first order cosymplectic perturbation equations

y = (J0+e J1)v(H0+eH1) = J07H0+e(J0VH1 + J1vH0) + e2J17H1 . . (l.U)

(Strictly speaking, for a general perturbation the operator J0+eJ., may not satisfy

all tie requisite properties to be Hamiltonian. However, (l.U) always retains the key

property of conserving the Hamiltonian HQ + e H . In our water wave example, the per

turbed operator is Hamiltonian, so we can ignore this technical complication here.

See section 3 and the companion paper, [16], for a detailed discussion of this point.)

The Eaniltonian perturbation equations (l.k) agree with the standard equations (1.3)

up to terms in e , i.e. FQ = JqVHq , F± = J0vH1 + J17H() , but have an additional

e term so as to still be Hamiltonian. Note that these s2 terms are not the same

as the second order terms in the standard expansion* these would include j vl +

J2 V HQ , which would again destroy the Hamiltonian nature of the system.

In the Boussinesq expansion, if we let (1.1) represent the original water wave

problen, then the Boussinesq system will be represented by the non-Hamiltonian equa

tion (1.3) • There is thus a corresponding Hamiltonian model, like (1.1*-) incorporating

quadratic terms in the relevant small parameters. For comparative purposes, we will

also derive the second order terms in the standard expansion. Similarly, the KdV

equation actually corresponds to the non-Hamiltonian perturbation equation (1.3).

There is a corresponding "Hamiltonian version" of the KdV equation which incorporates

higher order terms - see (h.26). In all of these new models, there is a dependence of

the equation on the depth at which one looks at it - this leads to speculations on the

nature of wave-breaking.

What are some of the advantages of this Hamiltonian approach to perturbation

theory? The most important is that the Hamiltonian perturbation (l.k) conserves en

ergy, whereas the standard perturbation (1.3) will not in general. (This holds whether

or not JQ+eJ. is a true Hamiltonian operator.) In two dimensions, if the orbits

of the unperturbed system (1.1) are closed curves surrounding a fixed point, then

the Hamiltonian perturbation will have the same orbit structure, whereas the solutions

to (1.3) can slowly spiral into or away from the fixed point. In higher dimensions,

KAM theory shows that "most" solutions of a small Hamiltonian perturbation of a com

pletely integrable system remain quasi-periodic, whereas the standard perturbation

can again exhibit spiralling behavior. At the other extreme, only Hamiltonian pertur-



bations of an ergodic system stand any chance of being ergodic in the right way as

the solutions of (1.3) will mix up energy levels. Of course, both perturbation ex

pansions are valid to the same order, and hence give equally valid approximations to

the short time behavior of the system.. Based on the above observations, the Hamil

tonian perturbation appears to do a better job modelling long-time and qualitative

behavior of the system. However, no rigorous theorems are available, with the in

finite dimensional version being especially unclear.

It is a pleasure to thank T. Brooke Benjamin and Jerry Bona for helpful comments.

2. HAMIETONIAN MECHANICS

We begin by briefly reviewing the elements of finite dimensional Hamiltonian

mechanics in general coordinate systems. The theory requires a minimal amount of

differential geometry, and we refer the reader to Arnold's excellent book, [1], for

a ccrplete exposition. The subsequent extension to the infinte dimensional version

needed to treat evolution equations is most easily done using the formal calculus of

variations developed in [8], [lU], which we outline in section B .

A. Finite Dimensional Theory

Given an n-dimensional manifold M , the "phase space", a Hamiltonain structure

will be determined by a symplectic two-form fi on M , the determining conditions

being that n be nondegenerate and closed: dfl = 0 . In local coordinates x =

(x^, ..., xn) ,

0 =| dxT a K(x) dx = ~ 2 K.,(x) dx. A dx. ,
i,j ° 1 J

where K(x) is a skew-symmetric matrix: KT = -K . Nondegeneracy means that K(x)

is invertible for each x (which requires M to be even-dimensional), \h±le closure

requires K to satisfy the system of linear partial differential equations

= ° > i, j, k = 1 , ..., n , (2.1)

in which 5\ = d/d*^ » etc. For a given Hamiltonian function H : M-»K , Hamilton's

equations take the form

x = J(x) v H(x)

in which the Hamiltonian operator J(x) is the inverse to the matrix appearing in the

symplectic two-form: .J(x) = K(x)"1 . Similarly the Poisson bracket

{F,G} = VFTJVG = E J. a F a. G (2.2)
i,j 1J x J

uses the inverse matrix to that appearing in f) . This Poisson bracket satisfies the

usual properties of bilinearity, skew-symmetry and the Jacobi identity that are essen

tial to the development of Hamiltonian mechanics.

Of course, in the finite-dimensional set-up, Darboux1 theorem implies the existence
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of canonical local coordinates (p,q) = {pv ..., pm, q^ ..., g^) , n = 2m , on M

(the conjugate positions and momenta of classical mechanics) in terms of which, the

symplectic two form has the simple form

m

n = S dp, Adq. .

i=l x x

Equivalent^, K is the standard symplectic matrix

Note that now JQ = K~ = -KQ , so Hamilton's equations take the familiar form

P± = aH/oq^ , q± = -oH/oP^^ , i = 1, ... , m .

This introduction of canonical coordinates, especially with the blurring of the dis

tinction between the Hamiltonian operator and its inverse, gives a welcome simplifi

cation in the computational aspects of the theory. However, an important lesson to

be learned from the infinite dimensional, evolutionary version of Hamiltonian mechan

ics, in which no good version of Darboux' theorem is currently available, is that it

is unvise to rely too strongly on canonical coordinates as the apparent simplifica

tions tend to obscure some of the main issues.

The appearance of the inverse to the Hamiltonian operator K(x) in the symplectic

two-form n causes some unnecessary complications, especially in the evolutionary

version of the theory in which J is a differential operator. These can be circum

vented by turning to the dual Poisson structure on M determined by the cosymplectic

two-vector

(In more classical language, © is an alternating contravariant two-tensor, i.e. a

section of the bundle dual to the bundle of two-forms.) We no longer require that

0 be nondegenerate, as we no longer need to invert J , but we do need a condition

analogous to the closure of the symplectic two-form. An easy computation shows that

in local coordinates, in the case J is invertible, (2.1) is equivalent to the non

linear system of differential equations

J^ttVjk*Jk*ViJ + «W*i3 - ° ' i, d, k » 1 , .... a (2.3)

These conditions, which we impose now in general, can be expressed in coordinate-free

terms using the Schouten-Nijenhuis bracket:

[0, 0] = 0 . (2.k)

We will not attempt to define this bracket here - see [11], [l6] for details - but

remark that for a pair of two-vectors 0 , 0 , [6 , 0] is bilinear and symmetric in

its arguments. Any two-vector 0 satisfying (2.1*) (or, equivalently, (2.3) in local

coordinates) is called cosymplectic. Each such two-vector defines a Poisson bracket:
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[F,G] = <dFAdG, 0) (or (2.2) in local coordinates) with all the usual properties.

B. Evolution Equations

Let x = (x^, ..., x ) € X = B be the independent spatial variables and u =

(u , ..., uq) € U = E be the dependent variables in the equations under consider

ation. Let \T denote all the partial derivatives u* = d_ u* , 3T = h. ... d. ,

9j = B/Sx^- ,l<j <p,of order m < n . Let G denote the algebra of smooth

functions P(x,u^n'), n arbitrary, depending on x,u and derivatives of u . Let
m

G denote the space of m-tuples Q = (Q^, ..., ^) of functions in Q . A system

of evolution equations takes the form

|| = Q(x,u(n)) , (2.5)

where Q 6 Gq . For a given function P 6 G , the total derivative D.P , 1 < i < P ,

is obtained by differentiating P with respect to x. , treating u as a function
2

of x . For example, D (uu ) = u +uu
1 xv x' x xx .

The role of the Hamiltonian function is played by a functional %C = J*H(x,u^)dx .

Suppose the integration takes place over a domain AcX with boundary SA . By

the divergence theorem, provided u and its derivatives vanish on 8A , adding a

total divergence Div P = D. P.. + ... + D P , to the integrand H will not affect
xx p p

the value of the functional V[u] . We thus define an equivalence relation on the

space G of integrands such that H ~ H whenever H - H = Div P for some P € GP .

Let J? denote the space of equivalence classes, which we identify with the space of

functionals. The natural projection G-»5 is denoted, suggestively, by an integral

sign, so Jh dx € JJ denotes the equivalence class of H 6 G . In the space of func

tionals, we are allowed to integrate by parts: ^(D.Qjdx = -J*Q(D.P)dx , P, Q 6 Q ,

and ignore boundary contributions.

The same kind of constructions carry over to differential forms. A differential

one-form is a finite sum of the form

ai = S P _ du , P € G •

For example, if P(x,u^) € G , then its exterior derivative is the one-form
oP ,

dP = E _ i dul = Dn • du , (2.6)
OU— u r

J

where du = (du , ..., du ) , and D denotes the Frechet derivative of P with re

spect to u , which is a 1 xq matrix of differential operators with entries

E(<}P/du ). D , D = D. ... D. . For example, if P = uu , then
. J 0-L Jm xx

2

dp = udu +u du = (uD +u )du ,
XX XiC X XX

2

so D = u D +u . In this formulation, the total derivatives D act as Lie der

ivatives, so

D.(PdQ) = (D.P) dQ+Pd(D.Q) .
d J J



7

In particular, they commute with the exterior derivative.

Define an equivalence relation between one-forms by to ~ a> if and only if a>-a>

= Divn for some p-tuple \i of one-forms. The equivalence classes are called func

tional one-forms, with projection again denoted by an integral sign J*codx . The

exterior derivative d , as it commutes with total derivatives, restricts to a map

from functionals to functional one-forms j if 0=%fpdx€3E, then integrating (2.6)

by parts, we find

60 = /(8$>.du)dx = J*(E(P). du)dx ,

in which 5 = 5/&u is the variational derivative, and E.(P) = E(-D)J(dP/dui) the

corresponding i-th Euler operator. These constructions extend naturally to differ

ential k-forms, and in fact the exterior derivative restricts to give an exact com-

plez en the spaces of functional forms, [lU],

A synplectic form is thus a closed functional two-form

C = ^J" (duT A K du) dx

in which K is a skew-adjoint q xq matrix of (differential) operators. (The ad

join K* of an operator is defined so that J*P.(KQ) dx = J*Q . (K*P) dx for all p ,

Q € G" .) . Whenever it will not cause confusion, we will for simplicity omit J* dx

in the formula for n . If K is independent of u , the closure condition is auto

matically satisfied. Hamilton's equations take the form

ut = J 8V ,

in which J = K~ is the skew-adjoint Hamiltonian operator, U - J*Hdx the Hamilton-

ian functional and 8 , the variational derivative, replacing the gradient. Simil

arly, the Poisson bracket between functionals is

J(8 3)dx , 0,2 63. (2.7)

Usually, the operator J is a bona fide matrix of differential operators, so its

inverse is a more elusive object. To avoid introducing it, we must construct the

dual cosymplectic two-vector. Note first that each functional one-form is uniquely

equivalent to one of the form

cop = J (P . du) dx , P 6 Gq . (2.8)

The space dual to the space of functional one-forms is the space of evolutionary vec

tor fields , i.e. formally infinite sums of the form

u ^ l
i,«J «J

These act on G , and commute with all total derivatives, hence give a well-defined

action on 3 . The exponential of such a vector field is found by integrating the

system of evolution equations (2.5) in some appropriate space of functions.

A two-vector is an alternating bi-linear map from the space of functional one-

forms to the space of functionals. Each two-vector is uniquely determined by a skew-



qxq matrix operator J , so that the two-vector

®=f 9u Ajdu
determines the map

e(a)p, cdq) =J*pjQdx , p, qeaq, (2.9)

cf. (2.8) . (These two-vectors are not necessarily given as wedge products of vector

fields.) The condition that the operator J be Hamiltonian, so the Poisson bracket

(2.7) satisfy the Jacobi identity, is given by the vanishing of an appropriate Schou-

ten-Nijenhuis bracket (2.U), which we do not .attempt to define here - see [8], [16].

The bracket has the same bilinearity and symmetry properties as before, so the basic

condition is nonlinear in J . In particular, skew adjoint operators J not depend

ing on u are always Hamiltonian. However, if J does depend on u one needs to

explicitly check the cosymplectic condition.

Zzanple Consider the KdV equation in simplified form

This is Haniltonian in two distinct ways:

Ut =J0 8V1 = J15*V

The Haniltonian functionals are

with corresponding operators

Here J is clearly Hamiltonian since it does not depend on u . The proof that

J.. is also Hamiltonian can be found in [8], [12].

Finally, we need to discuss how these objects transform under a change of var

Given a transformation v = F(x,u^ '

Thus a functional one-form changes as

objects trans

iables. Given a transformation v = F(x,u^ ') , F € G , note that by (2.6) dv =

^du
r

ci*p = J"[P dv]dx = JtPDpduJdx = J*[D*P . du] dx .*p = J[P dv]dx JtPDpduJdx J[D

A similar computation works for functional two-forms, etc. For two-vectors, compar

ing the above with (2.9) > we see that

3uA J3u =\ADFJDF \ (
provides the change of variables formula. In practice since D_ depends explicitly

r

on u rather than v , (2.10) is not overly useful unless one can invert the re

lation v = F(x,u^n') , either explicitly or as a perturbation series.

3. HAMILTONIAN PERTURBATION THEORY

We now show how standard perturbation theory can be appropriately modified to give

Hamiltonian model equations for Hamiltonian systems under noncanonical perturbation
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expansions. Vie will not worry about the convergence of the expansions, or the va:

idity of the resulting approximations except on a formal level. This, of course, /
just the first step in the derivation of model equations for the physical systems

under consideration. One is then left with the far more difficult question of how

close the solutions of the model equation are to the solutions of the original system.

This latter question lies beyond the scope of this paper.

Consider a Hamiltonian system

x ■ j(x,e) vH(x,s) = F(Xje) (3.1)

in which s is a small parameter. For simplicity, we concentrate on the finite

dimensional version, although the evolutionary theory proceeds exactly the same with

u(x,t) replacing x , the Hamiltonian functional replacing H , and the gradient

being replaced by the variational derivative. Suppose we are given a perturbation

+ ... . (3.2)

To derive the standard perturbation equations, we substitute (3.2) into (3-1) and

expanl in powers of e . To first order, we have

(1+e V«p) y = FQ(y) + e F 1(y) , (3.3)

in which, by the chain rule,

FQ(y) « F(y,O) = JQ(y) 7H0(y) , F^y) = F£(y,O) + VF(y,O) 9(y) ,

with self-evident notation. Alternatively, one can invert 1+eVcp in (3-3),

re-expand and truncate, to obtain the "equivalent" system

where F. = F - V ep • F .

Unless the expansion (3-2) happens to be canonical (i.e. preserve the Hamiltonian

structure) neither of these perturbation equations will be Hamiltonian in general.

If we expand the Hamiltonian itself,

H(x,e) = H 2

we find that the first order truncation H + e H, is not in general conserved. In

order to maintain the basic Hamiltonain character of the equation under perturbation,

we must look at how the Hamiltonian operator behaves under perturbation. Substituting

(3.2) into the cosymplectic two-vector 0=5-9 Aj(x,e)A , we find

2 ... (3-5)

or, in local coordinates,

!*x A J(x,e) ax = |& A (JQ(y) +eJ1(y)+ ... ) 3y

using the basic change of variables formulae.

One annoying complication to the general theory is that because the cosymplectic
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condition (2,k) is nonlinear in © , one cannot arbitrarily truncate the expansion

(3«5) and expect to maintain the vanishing of the bracket. Here we will ignore this

somewhat technical complication, and assume that 0 +e©, is cosymplectic. See [16]

for a resolution of the problem in general.

Granted this, the first order cosymplectic perturbation to the Hamiltonian system

(3«1) is given by combining the first order expansion of the Hamiltonian with the

first order expansion of the Hamiltonian operator in the cosymplectic two-vector. This

yields the cosymplectic perturbation equations

y = (Jo+eJ1)v(Ho+eH1) = JQ V HQ + e( Jx V HQ + JQ v H^ + e2^ v Hx . (3-6)

An easy calculation shows that this system agrees with the ordinary perturbation equa-
2

tions (3«*0 to first order, but includes further terms in e in order to retain the

Hamiltonian character of the system, (in the case ©0+e©-. is not a true cosymplec

tic two-vector, the perturbation equations (3.6) still conserve the Hamiltonian

H_ + e H, , but we no longer have any nice Poisson bracket to work with.)

Alternatively, we can expand the symplectic two-form

fl(x,e) » 00(y) + e fl^y) + ... ,

or, in local coordinates

-|dxTA K(x,e)dx = -^dyT A (^+6^+ ... ) dy .

Combining this with the expansion of the Hamiltonian, we find the symplectic pertur

bation equations

(KQ+eKjJ y = VHq+gV^ . (3.7)

These again agree with the ordinary perturbation equations (3.*0 to first order. (This

may not be completely obviousj however note that to leading order y = J VH > so

wherever we see a term like ey in the system we can replace it by e J VH with

out affecting the formal validity of the expansion.) Since the closure condition

dn = 0 is linear in the coefficients of n , in this case it is permissible to trun

cate the series for Q and still retain the property of being symplectic. Thus (3.7)

is in all cases Hamiltonian. While it is permissible to invert the operator K + e K.,

in (3*7), one cannot re-expand and truncate and expect the resulting system to

be Hamiltonian. The symplectic perturbation (3.7), while somewhat easier to deal with

theoretically, in general leads to more unpleasant systems as the operator K +e 1^,

which can depend on y itself, is applied to the temporal derivative y .

li. WATER WAVES

By the water wave problem we mean the irrotational motion of an incompressible,

inviscid fluid under the influence of gravity. The model equations to be discussed

here are for long, small amplitude two-dimensional waves over a shallow horizontal

bottom. After rescaling, this free boundary problem takes the form, [2], [19]»
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0<y<l

y = 0 ,

- o
y =

Here x is the horizontal and y the vertical coordinate, so the "bottom is at

y = 0 j <p(x,y,t) is the velocity potential and l + OCT](x,t) the free surface eleva

tion. The small parameters a and p represent respectively the ratio of wave amp

litude to undisturbed fluid depth, and the square of the ratio of fluid depth to wave

lengtij they are assumed to be of the same order of smallness. Finally t represents

a diner^ionless surface tension coefficient, with t = 0 corresponding to the case of

no s-urface tension.

A. Zr.a Standard Perturbation Expansion

In Eoussinesq's scheme cf. [19], the first step is to construct a formal series

solution to the elliptic boundary value problem (l|-.l-3). In terms of the velocity

potential at height 0 < 0 < 1 , \if(x,t) s cp(x,0,t) , the solution is easily found

to be

- 758V + i5eV - y6)5 ,^

Substituting {h.6) into (h.k-5), expanding in powers of a , p , truncating to second

order and differentiating the first equation yields the model system

, (U.7)

(4.8)

in which u = ^ - ((^(x^jt) is the horizontal velocity at depth 9 . (in the der

ivation of this Boussinesq system, usually only done to first order, we have ignored

problems concerning precise domains of definition of the functions involved, cf. [10].)

We can play around with the system (k.f-8) by expanding terms according to the

equations themselves and retruncating. For instance, to eliminate the t-derivative

terms u . ,u , ,u in (l«-.7) we can differentiate it with respect to x , solve

for u . , etc., and resubstitute. This leads to



The system (4.8-9), which is valid to the same order as (4.7-8), is an evolutionary

version of the basic Boussinesq system. See Bona and Smith, [5], for a further dis

cussion of the possibilities.

The Boussinesq system is valid for waves moving in both directions. To specialize

to waves moving to the right, we have to leading order T| = u , so we seek a "sub-

manifold" of approximately unidirectional solutions, determined by an expansion of the

form 1| = u + aA+pB+... . The coefficients are functions of u and its x-deriva-

tives, and are determined so that (4.8 -9) will agree to second order. A straight

forward calculation shows that

£2 ±^Ai ^4£ $|v J +

is the required expansion. Then, to second order, (4.8-9) are the same equation,

nanely

This is the second order perturbation expansion for unidirectional waves; if one re

tains only first order terms we are left with the Korteweg-de Vries equation, and the

above constitutes the traditional derivation of KdV as a model for water waves. Note

especially that the KdV model is independent of which depth 9 the horizontal vel

ocity u is measured. Thus to first order, solitary waves at all depths move in

tanden at the same speed. (Note for large surface tension t > =• , these appear

as waves of depression, [2].) In the second order model (4.11), depth variations only

appear multiplying the obscure term uu . It would be extremely interesting to

study the effects of varying 9 on the solutions of (4.11). Presumably, if the re

lationship between wave amplitude and wave velocity for the solitary wave solutions

were to depend on 6 , this would indicate a tendency to develop some form of internal

shearing between solitary waves at different depths, which could lead to a better un

derstanding of the mechanisms behind wave breaking. Unfortunately, the solitary wave

solutions of (4.11) cannot be found by direct quadrature, so we must rely on numerical

investigations - these will be reported on in a future paper.

An alternative, perhaps more common procedure is to take the surface elevation

"H as the principal variable. Inverting (4.10) and substituting into (4.8-9), we

find the unidirectional model

Note that to first order, both the Tl and u equations coincide:
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■ Again, as with the Boussinesq system, we can resubstitute to find alternative

models valid to the same order. For instance, since to leading order \ = -Tl ,

in the KdV equation (4.13) we can replace 7]^^ by -Tl^ to find the BBM equation,

as an equally valid first order approximation. As discussed in [3], it offers several

advantages over the KdV model, including a more realistic dispersion relation.

Since the perturbations discussed so far are for the most part not canonical, the

Boussinesq systems (4.7 - 8) or (^.8 - 9) are not Hamiltonian, except in the special

case 0 = 1 noted by Broer,. [6] - see the next section. The KdV equation (4.13) is

Haiailtonian of course, but neither of the second order approximations (4.11) or (4.12)

are Haailtonian in any obvious manner except for (4.11) at the curious depth

In tils case, it takes the form

^+D (5H/6u) = 0 ,

where the Hamiltonian is

This depth will reappear later.

B. Haciltonian Perturbations - Bidirectional Models

We now implement the results of section 3 to discuss the Hamiltonian perturbation

theory for the water wave problem. In Zakharov's formulation, the surface elevation

7l(x,t) and the surface values of the velocity potential <p (x,t) = cD(x,l+at|(x,t),t)

are the canonical variables, and (U.I-5) are equivalent to the Hamiltonian system

in which the Hamiltonian functional is the total energy

S i^\\x)^ ^f - l]}dx . (fc.17)
s

In (4.17), the S subscript on the integral means all terms are evaluated on the free

surface, i.e. at y = l + OT\(x,t) , and then integrated from -» to « . The values

of © within the fluid, and thus the values of the derivatives of <p on S , are

determined from the surface values cpb bY solving the auxilliary boundary value

problem (4.1-3) - see [k] for elaboration.

In discussing the Hamiltonian perturbations for the water-wave problem, for sim

plicity we restrict to first order expansions. First, substituting the basic ex

pansion (4.6) into the Hamiltonian (4.17), we get the first order expansion



For the symplectic version of the Boussinesq system the two form appropriate to (4.16),

C5 = 6T\ A dipo

is expanded in powers of a,p, leading to first order truncation

f/1) =idTlA(cl^ + ^(^-l)d^xx) = d1lA(D];1+|p(^-l)Dx)du . (4.19)

(We are omitting the integral signs in the two-forms for simplicity.) This yields

the "symplectic Boussinesq" system

(Actually, (4.20) is the x-derivative of the basic symplectic equations (3.7) associ

ated with (4.18-19).) Note that (4 . 20) agrees with the standard Boussinesq

systen (4.7-8) to first order after manipulations similar to those discussed in [5],

As for the cosymplectic form, the two-vector

has first order expansion

cf. (2.10). This is cosymplectic since the underlying differential operator is con

stant coefficient, and leads to the "cosymplectic Boussinesq" system.

o = \x())xp(|):^|

O^ +^+auu^t^l-eVTlT^ .

Note that although the first order terms in (4.22) and (4.8-9) agree, the quadratic

terms in a, p are very different. One special case of note is when 0 = 1, •which

is (to first order) equivalent to doing the expansion in terms of the canonical vari

ables f] , cpg } the (co-)symplectic form does not change and (4.20) and (4.22) reduce

to the Boussinesq equations

0 = Tl +u +aCnu) +pu ,
t x x 3 xxx (U 23)

whose Hamiltonian form was first noticed by Broer, [6]. The more general Hamiltonian

models (4.20,22) are new.

C. Hamiltonian Perturbations - Unidirectional Models

The procedure for determining unidirectional models remains the same - we seek an

expansion of T| in terms of u such that the two equations in the Boussinesq system

agree, in this case to first order. Moreover, since the Hamiltonian Boussinesq systems

already agree with the standard Boussinesq systems to first order, the required expan-
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sion is the same as (k.10), or, rather, its first order truncation

(One slight annoyance here is that there does not appear to be any way of directly-

finding (U.2lt-) from the Hamiltonian functional itself short of explicitly -writing out

the system.)

Substituting (k.2k) into the Hamiltonian (U.l8), to first order

is the ■unidirectional Hamiltonian functional. (In (^.25) the term uu was inte-

grated by parts using (^.3)»)

Consider first the cosymplectic perturbation. The Frechet derivative, (2.6), of

(k.2-) is the operator

The iirverse can be written in a series in a , p , with first order truncation

Comparing with (2.10), we see that (^.21) becomes

gC1) = J. A [D -Ja(uD +D u) + ( J_ 02_1 } ^j 9
du x k v x x 6 2'xdu

This is cosymplectic for the same reason the J for the KdV equation is. Combining

this with (U.25), we obtain the following "Hamiltonian form" of the KdV equation

or, explicitly,

The first order terms in (^.26) agree with the KdV model, but there are additional,

depth dependent second order terms required to maintain the Hamiltonian form of the

equation. Note that these differ from the second order terms in the standard per

turbation (lull). The derivation of the Hamiltonian model in which T\ is the primary

variable is similar. We have two-vector

and Hamiltonian functional

These give the Hamiltonian model

The first order expansion (U.27) of the water wave energy functional does not agree



with either of the KdV HamiltoniansJ (In the derivation of (U.26) or (t.28), an ex

tra factor of £ multiplies all terms except the t-derivative. This can be rigorously

justified by duality since we are restricting to a submanifold of the full (u,T|) -

space.)

Alternatively, we can consider the symplectic form of the perturbation equations.

An easy computation gives two-form

j5(1) = du A [D^+JafuD^+D

Combining this with the Hamiltonian (lt-,25), we obtain a Hamiltonian version of the

BBM equation

(1+ Dx1u)+(02-|+|T)PDx]ut + u + |au2+(e2-|)uxxx = 0 .

This can be converted into a bona fide differential equation by differentiating, and

reca'':ng that u = ijr :

xz 2 yxYxt k ¥xx¥t v b 2 IW vxxxt Yxx 4 vx¥xx v 3 ;p vxxxx

This szaaiple well illustrates the earlier remark that while the symplectic perturba

tion is easier to handle theoretically, the resulting equations are much more un

pleasant.

There is a long list of unanswered questions concerning these new model equations.

What do their solitary wave solutions look like, and how do they interact? Undoubted

ly, they are not solitons. How do the general solutions compare with those of the

KdV or BBM equations? Does the appearance of a depth dependence in the higher order

terms have any significance? And, finally, do they provide better models for the long

time or qualitative behavior of water waves? All these await future research.

5. COMPLETE IHTEGRABILITY

We now turn to the question of why the KdV equation, despite its appearance as

the non-Hamiltonian perturbation equation, happens to be a Hamiltonian system. Return

to the general set-up, as summarized in (1.3,1*-), recalling that F, = JQ 7 H^j+J.VH. .

One possibility for (1.3) to be Hamiltonian is if the two constituents of F, are

multiples of each other:

J07Hl = c Jl 7 H0 ' (5'1)
In this special case, we can invoke a theorem of Magri on the complete integrability

of bi-Hamiltonian systems, [8], [12].

Theorem 5.1 Suppose the system x = K,(x) can be written in Hamiltonian form in two

distinct ways: Ki = Jo v Hi = Ji v Hq * SuPPose further that JQ + ^ J-L is Hamilton

ian for all constant \i . Then the recursion relation KQ = JQ 7 Hn = J± 7 Hn_>1

defines an infinite sequence of commuting flows x = Kn(x) , with mutually conserved

Hamiltonians H , in involution with respect to either the JQ- or J^- Poisson

bracket. (It should also be assumed that J can always be inverted in the recursion
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relation, but this usually holds.)

In this special case, both the standard perturbation equation (1.3) and its cosym-

plectic counterpart (I.1*) are linear combinations of the flows KQ , K, , K^ , and

hence, provided enough of the commuting Hamiltonians H are independent, are both

completely integrable Hamiltonian systems.

For the water wave problem, in the Korteweg - de Vries model the first order terms

are in the correct ratio only at the "magic" depth 6* given by (4.17). At this

depth, the Hamiltonian equation (U.26) is a linear combination of a fifth, third and

first order KdV equation in the usual hierarchy. Just why this should happen to

be the exact same depth at which the standard second order perturbation equation

(U.H), (which cannot be completely integrable as no u u term appears) is Hamilton-

ian is a complete mystery. For more general depths 9 , the condition (5.1) must be

"fudgel" in order to conclude complete integrability.

ITsvertheless, the basic result leads to an interesting speculation. In a large

nunber of physical examples, the zeroth order perturbation equations are linear, while

the first order equations turn out to be completely integrable soliton equations such

as R3.7, sine - Gordon, non-linear SchrSdinger, etc. In the cases when these do arise,

is it because condition (5»1) or some generalization thereof is in force? If true,

this would provide a good explanation for the appearance of soliton equations as models

in such a large number of physical systems, as well as providing a convenient check

for soliton-behavior in less familiar examples. A good check for this conjecture

would be in Zakharov's derivation, [20], of the nonlinear SchrBdinger equation as

the nodulational equation for periodic water waves.
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