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Abstract. In this paper, the Bäcklund transformation based-approach is ex-
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1. Introduction

In this paper, we develop the Bäcklund transformation based-method, in the multi-
component setting, to derive Hamiltonian operators which admit compatible tri-Hamiltonian
structures, and consequently lead to the associated bi-Hamiltonian integrable hierarchies and
their dual counterparts endowed with nonlinear dispersion.

The algebraic theory of integrable bi-Hamiltonian systems of evolution equations was
developed in detail over the last three decades. The innovative work due to Magri [37]
establishes, for a bi-Hamiltonian system, the existence of an infinite hierarchy of mutually
commuting conservation laws and bi-Hamiltonian flows. On the one hand, the recursion
operator [38, 39] (see also [41]) can be derived from the bi-Hamiltonian structure of such
integrable systems, and thus used to generate integrable hierarchies and higher-order symme-
tries. On the other hand, the bi-Hamiltonian property is closely related to the existence of a
Lax pair representation. It has been found that a notable number of integrable systems are,
in fact, bi-Hamiltonian. Those include a variety of well-known classical integrable systems
such as the Korteweg–de Vries (KdV) and modified Korteweg–de Vries (mKdV) equations,
[41], as well as integrable systems endowed with nonlinear dispersion such as the Camassa-
Holm (CH) equation, the modified Camassa-Holm (mCH) equation, etc., [5, 15, 42].

Several methods have been employed to obtain integrable bi-Hamiltonian systems en-
dowed with nonlinear dispersion. In particular, a theory of tri-Hamiltonian duality was
developed systematically in the references [18, 19, 42]. This approach starts from the ba-
sic observation that most of integrable soliton equations, which are known to possess a bi-
Hamiltonian structure, actually support a compatible trio of Hamiltonian structures through
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an elementary scaling argument. Rearranging the three Hamiltonian operators provides an
algorithmic method for systematically constructing dual integrable systems. Some typi-
cal dual integrable systems including the CH equation, the mCH equation, and certain
two-component CH equations, etc., can be obtained in this manner. The resulting dual
systems are endowed with nonlinear dispersion, and thus admit non-smooth solitons includ-
ing compactons, cuspons, peakons, and more exotic species [35]. More precisely, applying
tri-Hamiltonian duality to the bi-Hamiltonian representation of the KdV equation and the
mKdV equation, the resulting dual integrable systems are the well-studied CH equation
[5, 18, 19, 42] and the mCH equation [15, 18, 42]. As two prototypical models in the class of
the bi-Hamiltonian integrable equations with quadratic and cubic nonlinearity respectively,
the CH equation and the mCH equation have attracted enormous attention in recent years
because of their remarkable properties: complete integrability [5, 6, 11, 20, 28, 45], physical
relevance of the nonlinear shallow-water waves [5, 6, 13, 16, 27], non-smooth soliton struc-
tures of peakons and multi-peakons [3, 5, 6, 22], delicate geometric formulations [9, 22, 30]
and the presence of breaking waves [10, 22, 34, 36].

In addition to the scalar setting, the approach of tri-Hamiltonian duality can also be
applied to multi-component bi-Hamiltonian systems, with matrix-valued Hamiltonian oper-
ators. For instance, it was proved in [42] that the bi-Hamiltonian structure of the integrable
Ito system [26]

ut = uxxx + 3uux + vvx, vt = (uv)x, (1.1)

supports the required tri-Hamiltonian dual structure. The corresponding dual bi-Hamiltonian
system takes the form

mt + 2uxm+ umx + ρρx = 0, ρt + (u ρ)x = 0, m = u− uxx, (1.2)

which is the so-called two-component CH system [7, 12]. It, together with several generaliza-
tons, has recently been extensively studied from a variety of perspectives [14, 21, 23, 25, 43].

It is well-known that Bäcklund transformations play an important role in soliton theory
and integrable systems, and are a useful tool to obtain new integrable systems from some
known integrable ones, and to construct new solutions from known ones [44]. A Bäcklund
transformation is a system of first-order partial differential equations relating solutions of
two equations under consideration. The approach we adopt here generalizes the Bäcklund
transformation method, and is based on the tri-Hamiltonian dual structure.

We shall focus our attention on the two-component and three-component systems. Our
analysis is based on generalized Miura-type Bäcklund transformations depending on several
arbitrary parameters, which, on the one hand, can be utilized to give rise to the Hamiltonian
operators supporting tri-Hamiltonian structures, and on the other hand, can serve as an
alternative method to verify the compatibility of the desired Hamiltonian pair. In such
situations, the rearrangement of the Hamiltonian triple will produce two pairs of compatible
Hamiltonian operators which lead to the multi-component integrable systems and their
corresponding dual counterparts, respectively. In particular, we exploit this approach to
derive 2×2 Hamiltonian operators with appropriate parameters which, in view of the intrinsic
tri-Hamiltonian structure, produce two classes of integrable hierarchies involving the so-
called dispersive water wave (DWW ) system as well as the corresponding dual integrable
version. The DWW system takes the following form [4, 31]

qt =
(
− qx + 2qr

)
x
, rt =

(
rx + r2 + 2q

)
x
, (1.3)

which is an integrable bi-Hamiltonian system, and is recognized to be in the form of a bi-
directional system of Boussinesq type, modeling the propagation of shallow water waves [40].
In light of the tri-Hamiltonian characterization of the bi-Hamiltonian structure of system
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(1.3), we derive the corresponding dual integrable system in the form{
gt − νgxt =

(
− gx + 2fg − ν fgx

)
x
,

ft + νfxt =
(
fx + 2g + f2 + ν ffx

)
x
,

(1.4)

where ν = ±1. The bi-Hamiltonian structure of system (1.4) naturally follows from the tri-
Hamiltonian structure of system (1.3). In addition, Lax formulations admitted by systems
(1.3) and (1.4) are also obtained.

In [31], it was shown that, via the Miura-type Bäcklund transformation

q = −ux − u2 + uv, r = v, (1.5)

the DWW system (1.3) is mapped to the modified DWW (mDWW ) system{
ut =

(
− ux + 2uv − u2

)
x
,

vt =
(
vx − 2ux − 2u2 + 2uv + v2

)
x
.

(1.6)

Making use of the recursion operator of the DWW system and the Bäcklund transformation
(1.5), we establish a bi-Hamiltonian representation of the mDWW system (1.6) and its dual
counterpart.

Furthermore, the following three-component integrable system

st = (sr)x, qt =
(
−qx + 2qr + 1

2s
2
)
x
, rt =

(
rx + r2 + 2q

)
x
, (1.7)

was proposed in [1] as a model of a quadri-Hamiltonian system. It is noted that (1.7)
reduces to the DWW system (1.3) when s = 0, and hence (1.7) can be regarded as an
integrable three-component generalization. In this paper, we introduce a general Bäcklund
transformation that enables us to derive a 3×3 Hamiltonian operator that induces a compat-
ible tri-Hamiltonian structure; this allows us to construct two families of three-component
integrable hierarchies involving the system (1.7) and its dual. In addition, again using cor-
responding Bäcklund transformations, several modified versions of these three-component
integrable systems and their related dual systems are also derived.

The existence of peaked solitons is one of the non-trivial properties of nonlinearly disper-
sive wave equations of CH type [5], which helps explain why these systems have attracted
so much attention in the last thirty years. Recently, it was found that the mCH equation,
as the dual equation of the mKdV equation, also admits peaked solitons [22]. However, the
two-component CH system (1.2), which is the dual system of the Ito system, does not ad-
mit non-trivial peaked solitons [7, 12, 25]. A natural question remains: what types of dual
integrable systems obtained through the tri-Hamiltonian duality approach admit peaked
solitons. To this end, it is of interest to study and classify the traveling wave solutions of
the dual system of the DDW system and its modified versions, leading to some new types
of nonanalytic solitary wave solutions. We refer the reader to [29] for further analysis of the
existence, non-existence, stability, and other properties of solitary wave solutions to higher
order wave models.

The remainder of this paper is organized as follows. In Section 2, we first formalize
some notations and definitions in the multi-component setting of Hamiltonian operators,
bi-Hamiltonian structures, as well as Bäcklund transformations, and recall some basic re-
sults required throughout this paper. Next, we present two theorems—Theorem 2.2 and
Theorem 2.3—which demonstrate the relationship not only between the matrix Hamilton-
ian operators but also between the matrix recursion operators subject to multi-component
Bäcklund transformations. In Section 3, we combine the Bäcklund transformations with
tri-Hamiltonian duality to study two-component bi-Hamiltonian integrable hierarchies in-
volving the DWW and mDWW systems, as well as their dual systems. We use the same
approach to propose several three-component bi-Hamiltonian integrable systems and the
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corresponding dual versions in Section 4. Finally, in Section 5, the analytic and nonanalytic
traveling wave solutions to the two-component dual DWW system are fully classified.

2. Preliminaries

Throughout this paper, we consider evolution equations involving a single spacial variable
x ∈ R and time t ∈ R. We letA denote the space of differential functions, and understand the
functions in A depending on the indicated dependent variables and their spatial derivatives
only. We further define An to be the space of n-component differential functions.

Consider an n-component system of evolution equations

ut = K(u), u = (u1(t, x) , . . . , un(t, x))T , (2.1)

where K(u) = (K1(u) , . . . , Kn(u))
T ∈ An is an n-component differential function depend-

ing on the components of u and their x-derivatives up to a given order. The system (2.1) is
called Hamiltonian if it can be written in the form

ut = K(u) = J δH(u),

where H(u) is the Hamiltonian functional, δH(u) = (δH/δu1 , . . . , δH/δun)
T

is the vari-
ational derivative of H, and the n × n matrix operator J is a Hamiltonian operator, [41].
For a candidate Hamiltonian operator J , its corresponding Poisson bracket is defined by
L2 inner product for the functions in the Schwartz space{

P, L
}
J = 〈 δP, J δL 〉 =

∫
δP · J δL dx,

which is required to be both skew-symmetric:{
P, Q

}
J = −

{
Q, P

}
J

and satisfy the Jacobi identity :{{
P ,Q

}
J , R

}
J +

{{
Q, R

}
J , P

}
J +

{{
R, P

}
J , Q

}
J = 0, (2.2)

for all functionals P, Q and R, cf. [41].
The system (2.1) is said to be bi-Hamiltonian, if it can be written in the form

ut = K(u) = J1δH1(u) = J2δH0(u), (2.3)

where H0(u) and H1(u) are the Hamiltonian functionals, J1 and J2 are independent n× n
Hamiltonian operators, satisfying the compatibility condition that every linear combination
c1J1 +c2J2 is Hamiltonian, i.e., satisfies the Jacobi identity (2.2). Assume that the operator
J1 of the Hamiltonian pair is nondegenerate, then the operator R = J2J−1

1 is a recursion
operator of the bi-Hamiltonian system (2.3) [37, 41]. The following theorem, due to Magri
[37] (see also [41]), summarizes the basic properties of bi-Hamiltonian systems.

Theorem 2.1. Consider a bi-Hamiltonian system of evolution equations (2.3). Assume
that the Hamiltonian operator J1 is nondegenerate. Let R = J2J−1

1 and

K0(u) =
(
K1

0 (u) , . . . , Kn
0 (u)

)T
= J1δH0.

For each m = 1, 2, . . ., define Km(u) = RKm−1(u). Then there exists a sequence of
functionals H0,H1,H2, . . ., such that
(i) for each m ≥ 1, the evolution system

ut = Km(u) = J1δHm(u) = J2δHm−1(u) (2.4)

is a bi-Hamiltonian system;
(ii) the Hamiltonian functionals Hm are all in involution with respect to either Poisson
bracket:

{Hl,Hm}J1
= 0 = {Hl,Hm}J2

, l,m ≥ 0,
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and hence provide an infinite collection of conservation laws for each of the bi-Hamiltonian
systems (2.4).

The method of tri-Hamiltonian duality [19, 42] can be applied to the bi-Hamiltonian
systems (2.4) whose associated Hamiltonian operator J2 can be written as the sum of two
distinct Hamiltonian operators K2 and K3 that scale independently under x 7→ λx and/or
u 7→ µu. The fact that, under the scaling transformations, J2 = K2 + K3 is mapped
into J̄2 = λαK2 + λβK3 with α 6= β immediately implies that K2 and K3 form a compatible
Hamiltonian pair. We thus conclude that each linear combination of J1 = K1, K2 and K3 is a
Hamiltonian operator. In particular, each possible pair of K1, K2 and K3 is compatible. As a

consequence, by introducing an alternative Hamiltonian pair Ĵ1 = K1±K2 and Ĵ2 = K3, one
can produce a hierarchy of integrable equations, which can be viewed as the dual counterpart
(called the tri-Hamiltonian dual in [42]) of the original hierarchy (2.4) that is generated by
J1 and J2.

To illustrate the method more precisely, let us consider the scalar setting, so n = 1. We
assume that K1 = ∂x and K2 are constant coefficient skew-adjoint differential operators,

and, further, that Ĵ1 factorizes into a product of ∂x with a self-adjoint constant coefficient

differential operator A, i.e., Ĵ1 = ∂xA. One usually introduce the new variable ρ = Au

to replace u, while Ĵ2 is obtained from K3 by replacing u by ρ. Then the dual integrable

system is found by applying the recursion operator R̂ = Ĵ2Ĵ−1
1 = Ĵ2A

−1∂−1
x to the seed

equation ρt = ρx, the resulting dual counterpart will thus take the form ρt = Ĵ2A
−1 ρ.

Hence the corresponding dual integrable system can be written in local form in terms of

the dependent variable u. Furthermore, applying the recursion operator R̂ succesively to
ρt = ρx produces the dual hierarchy of integrable systems, and each flow in the hierarchy
will be a bi-Hamiltonian system

ρt = K̂m(ρ) = Ĵ1δĤm = Ĵ2δĤm−1,

which is governed by the dual Hamiltonian pair Ĵ1 and Ĵ2.
We now consider the effect of a Bäcklund transformation relating n-component systems

(2.1) involving u and a similar system involving the transformed dependent variables ũ:

ũt = G(ũ), ũ =
(
ũ1(t, x) , . . . , ũn(t, x)

)T
, (2.5)

where G(ũ) = (G1(ũ) , . . . , Gn(ũ))
T ∈ An.

Definition 2.1. An n-component implicit equation of the form

B(u, ũ) = (B1(u, ũ) , . . . , Bn(u, ũ))
T

= 0, (2.6)

where each Bi(u, ũ), i = 1, . . . , n, is a differential function depending on u, ũ and their first-
order x-derivatives, is called a Bäcklund transformation between systems (2.1) and (2.5),
if, whenever u(t, x), ũ(t, x) are any two solutions of (2.1) and (2.5), respectively, such that
(2.6) holds at one time t = t0, then (2.6) holds identically for all (t, x) with t > t0.

Assume that systems (2.1) and (2.5) are both Hamiltonian systems. Given a Bäcklund
transformation (2.6) relating (2.1) and (2.5), the relationship between their respective Hamil-
tonian operators can be established.

Theorem 2.2. Given a Bäcklund transformation (2.6) between the n-component systems
(2.1) and (2.5), let Bu and Bũ denote the n× n matrix differential operators given by their
Fréchet derivatives with respect to u, ũ, respectively, and assume Bu and Bũ are invertible.
Set

T = B−1
ũ Bu, (2.7)
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and let T∗ denote its formal adjoint. If (2.1) is Hamiltonian with Hamiltonian operator J ,
then (2.5) is also Hamiltonian with Hamiltonian operator

J̃ (ũ) = TJ (u) T∗. (2.8)

The effect of a Bäcklund transformation on recursion operators also involves the operator
(2.7).

Theorem 2.3. Consider a Bäcklund transformation (2.6) between the n-component systems
(2.1) and (2.5), and let T be the n× n matrix differential operator given in (2.7). If R(u)
is a recursion operator for (2.1), then

R̃(ũ) = TR(u) T−1

is a recursion operator admitted by (2.5).

The proofs for Theorems 2.2 and 2.3 in the scalar case (n = 1) were given respectively in
[20] and [17]. We now prove Theorems 2.2 and 2.3 in multi-component case. Let us begin
with some notations and preliminary remarks. Taking the t-derivative of each equation in
system (2.6) and using systems (2.1) and (2.5), we arrive at the following identities

n∑
j=1

(
Bi,uj

Kj +Bi,ũj
Gj
)

= 0, i = 1 , . . . , n.

For convenience, we write the above expression using vectorial notation:

Bu K + Bũ G = 0. (2.9)

Since Bũ is invertible, (2.9) together with (2.7) immediately leads to

G = −TK. (2.10)

Next, the nondegeneracy assumption on Bũ ensures that the Bäcklund transformation
(2.6) uniquely determines, for each i = 1, . . . , n,

ui = Ui (ũ1 , . . . , ũn) , (2.11)

which implies that

Bi (U1 (ũ1 , . . . , ũn) , . . . , Un (ũ1 , . . . , ũn) , ũ1 , . . . , ũn) = 0, i = 1, . . . , n, (2.12)

hold identically, for ũ = (ũ1 , . . . , ũn)
T

. Then, we denote the total derivative of the differ-
ential function B = (B1 , . . . , Bn)T ∈ An with respect to ũ by dũB, which is a n×n matrix
differential operator with entries

(dũB)ij = dũj
Bi, i, j = 1, . . . , n,

defined for α = (α1 , . . . , αn)
T

by

(dũB)α =

 n∑
j=1

(
dũj

B1

)
αj , . . . ,

n∑
j=1

(
dũj

Bn
)
αj

T

,

where, in view of (2.11) and (2.12), for each i = 1, . . . , n,

n∑
j=1

(
dũjBi

)
αj =

n∑
j=1

(
Bi,ũj +

n∑
k=1

Bi,uk
Uk,ũj

)
αj ,

with Uk,ũj
being the Fréchet derivative of differential function Uk with respect to ũj for

j, k = 1, . . . , n. Therefore, we arrive at

dũB = Bũ + Bu
∂ (U1 , . . . , Un)

∂ (ũ1 , . . . , ũn)
,
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where the last term denotes the n× n matrix differential operator with entries(
∂ (U1 , . . . , Un)

∂ (ũ1 , . . . , ũn)

)
ij

= Ui,ũj
, i, j = 1 , . . . , n.

Since the relation (2.12) implies dũB ≡ 0, it then follows that

∂ (U1 , . . . , Un)

∂ (ũ1 , . . . , ũn)
= −T−1. (2.13)

Finally, for the n×n matrix differential operator T, denote its partial and total derivatives
with respect to ũ along a direction α by

(
∂ũT

)
[α] and

(
dũT

)
[α], respectively. To be precise,

using entries Tij , i, j = 1, . . . , n, the partial derivative
(
∂ũT

)
[α] along the direction α =

(α1 , . . . , αn)
T

is a n× n matrix differential operator with the corresponding entries(
(∂ũT) [α]

)
ij

=

n∑
k=1

Tij,ũk
[αk] , i, j = 1 , . . . , n,

where Tij,ũk
[·] is the partial derivative of Tij with respect to ũk along some direction. While,

the total derivative
(
dũT

)
[α] is also a n× n matrix differential operator, which has entries(

(dũT) [α]
)
ij

=

n∑
k=1

(dũk
Tij) [αk] , i, j = 1 , . . . , n,

where

(dũk
Tij) [αk] = (Tij,ũk

) [αk] +

n∑
l=1

(Tij,ul
) [Ul,ũk

αk] ,

and Tij,ul
[·] is the partial derivative of Tij with respect to ul along some direction. Conse-

quently, using (2.13), we deduce that

(dũT) [α] = (∂ũT) [α]− (∂uT)
[
T−1α

]
. (2.14)

Proof of Theorem 2.2. It is obvious that the skew-symmetric property of J̃ is preserved

subject to the transformation (2.8). So it remains to verify the Jacobi identity for J̃ , which,
in the framework of n-component systems, is equivalent to〈

P ;
(
dũJ̃

)[
J̃L
]
Q
〉

+
〈

Q ;
(
dũJ̃

)[
J̃P

]
L
〉

+
〈

L ;
(
dũJ̃

)[
J̃Q

]
P
〉

= 0, (2.15)

where P, Q, L ∈ An are the variational derivatives of the indicated Hamiltonian functionals
P, Q and L, respectively. In view of the expressions (2.7) and (2.8), we find(

dũJ̃
)[
J̃P

]
L =

(
dũT

)[
J̃P

]
JT∗L + T

(
dũJ

)[
J̃P

]
T∗L + TJ

(
dũT∗

)[
J̃P

]
L. (2.16)

Using the fact that J is skew-symmetric and the symmetry property of the operator T∗,
say 〈 (

dũT∗
)[
α
]
P ; f

〉
=
〈 (

dũT∗
)[

T f
]
P ; T−1α

〉
=
〈

P ;
(
dũT

)[
T f
]
T−1α

〉
, (2.17)

for f = (f1 , . . . , fn)
T

and α = (α1 , . . . , αn)
T

, we compute the inner product of Q and the
third term in the expression (2.16) as〈

Q ; TJ
(
dũT∗

)[
J̃P

]
L
〉

=
〈

T∗Q ; J
(
dũT∗

)[
J̃P

]
L
〉

= −
〈 (

dũT∗
)[
J̃P

]
L ; JT∗Q

〉
= −

〈
L ;
(
dũT

)[
J̃Q

]
JT∗P

〉
.

Now, denote 〈
L ;
(
dũT

)[
J̃Q

]
JT∗P

〉
= | L, Q, P |J̃ .
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Then we have 〈
Q ; TJ

(
dũT∗

)[
J̃P

]
L
〉

= − | L, Q, P |J̃
and 〈

Q ;
(
dũT

)[
J̃P

]
JT∗L

〉
= | Q, P, L |J̃ .

Set for simplicity P̃ = T∗P, Q̃ = T∗Q and L̃ = T∗L. A direct computation shows that〈
Q ; T

(
dũJ

)[
J̃P

]
T∗L

〉
= −

〈
Q ; T

(
∂uJ

)[
T−1J̃P

]
L̃
〉

= −
〈

Q̃ ;
(
∂uJ

)[
J P̃

]
L̃
〉
.

Hence, we deduce that the second term in the Jacobi identity (2.15) becomes〈
Q ;

(
dũJ̃

)[
J̃P

]
L
〉

=| Q, P, L |J̃ − | L, Q, P |J̃ −
〈

Q̃ ;
(
∂uJ

)[
J P̃

]
L̃
〉
,

which implies that the Jacobi identity associated to J̃ is equivalent to that corresponding
to J . We thus complete the proof of Theorem 2.2. �

Turning to the proof of Theorem 2.3, the following lemma is useful.

Lemma 2.1. Let T be the matrix differential operator given by (2.7). Then subject to the
Bäcklund transformation (2.6), there holds(

dũT
)[
α
]
f =

(
dũT

)[
Tf
]
T−1α, (2.18)

for f = (f1 , . . . , fn)
T

and α = (α1 , . . . , αn)
T

.

Proof. We start with some operator identities required. The first two formulae present
the symmetry property of the corresponding second-order derivatives. More precisely, for

α = (α1 , . . . , αn)
T

and β = (β1 , . . . , βn)
T

,(
∂uBũ

)[
α
]
f =

(
∂ũBu

)[
f
]
α and

(
∂ũBũ

)[
α
]
β =

(
∂ũBũ

)[
β
]
α.

The third formula is associated with the partial derivative of the inverse operator:(
∂ũB−1

ũ

)[
α
]

= −B−1
ũ

(
∂ũBũ

)[
α
]
B−1

ũ . (2.19)

We are now in a position to prove the lemma. By (2.14),(
dũT

)[
α
]
f =

(
∂ũT

)[
α
]
f −

(
∂uT

)[
α
][

T−1α
]
f .

In view of (2.19), we obtain(
∂ũT

)[
α
]
f =

(
∂ũB−1

ũ

)[
α
]
Buf + B−1

ũ

(
∂ũBu

)[
α
]
f

= −B−1
ũ

(
∂ũBũ

)[
α
]
B−1

ũ Buf + B−1
ũ

(
∂ũBu

)[
α
]
f = −B−1

ũ

(
∂ũBũ

)[
α
]
Tf + B−1

ũ

(
∂ũBu

)[
α
]
f

and (
∂uT

)[
T−1α

]
f =

(
∂uB−1

ũ

)[
T−1α

]
Buf + B−1

ũ

(
∂uBu

)[
T−1α

]
f

= −B−1
ũ

(
∂uBũ

)[
T−1α

]
B−1

ũ Buf + B−1
ũ

(
∂uBu

)[
T−1α

]
f

= −B−1
ũ

(
∂uBũ

)[
T−1α

]
Tf + B−1

ũ

(
∂uBu

)[
T−1α

]
f .

On the other hand, using the symmetry formulae of the second-order derivatives, (2.13) and
(2.19), the right hand side of (2.18) becomes(

dũT
)[

Tf
]
T−1α =

(
∂ũT

)[
Tf
]
T−1α−

(
∂uT

)[
f
]
T−1α

=
(
∂ũB−1

ũ

)[
Tf
]
BuT−1α+ B−1

ũ

(
∂ũBu

)[
Tf
]
T−1α

−
(
∂uB−1

ũ

)[
f
]
BuT−1α−B−1

ũ

(
∂uBu

)[
f
]
T−1α

=−B−1
ũ

(
∂ũBũ

)[
α
]
Tf + B−1

ũ

(
∂uBũ

)[
T−1α

]
Tf

+ B−1
ũ

(
∂ũBu

)[
α
]
f −B−1

ũ

(
∂uBu

)[
T−1α

]
f ,

which suffices to prove the lemma. �
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Proof of Theorem 2.3. First, since R(u) is a recursion operator of system (2.1), we de-

duce that the differential function K = (K1(u) , . . . , Kn(u))
T

together with R(u) satisfies
the following operator identity(

∂uR
)[

K
]

=
[
Ku, R

]
= KuR−RKu,

where the n× n matrix differential operator Ku with entries

(Ku)ij = Ki,uj
, i, j = 1, . . . , n,

is the Fréchet derivative of K, and
(
∂uR

)
(u)
[
K
]
, or

(
∂uR

)[
K
]

for brevity, is the partial
derivative of operator R along the direction K.

Next, according to Lemma 2.1, and using the formulae (2.10) and (2.13), we have, for

α = (α1 , . . . , αn)
T

,(
∂ũR̃

)
(ũ)
[
G
]
α =

(
dũTRT−1

)[
G
]
α

=
(
dũT

)[
G
]
RT−1α+ T

(
dũR(u, v)

)[
G
]
T−1α+ TR

(
dũT−1

)[
G
]
α

=
(
dũT

)[
TRT−1α

]
T−1G−T

(
∂uR

)[
T−1G

]
T−1α−TRT−1

(
dũT

)[
G
]
T−1α

=−
(
dũT

)[
R̃α
]
K + T

(
∂uR

)[
K
]
T−1α+ R̃

(
dũT

)[
α
]
K.

Since R(u) is a recursion operator of system (2.1), we have

T
(
∂uR

)[
K
]
T−1α = TKuT−1R̃α− R̃TKuT−1α.

On the other hand,

GũR̃α− R̃Gũα =−
(
dũTK

)[
R̃α
]

+ R̃
(
dũTK

)[
α
]

=−
(
dũT

)[
R̃α
]
K−T

(
dũK

)
R̃α+ R̃

(
dũT

)[
α
]
K + R̃T

(
dũK

)
α

=−
(
dũT

)[
R̃α
]
K + TKuT−1R̃α+ R̃

(
dũT

)[
α
]
K− R̃TKuT−1α.

Hence the identity (
∂ũR̃

)[
G
]

= GũR̃ − R̃Gũ = [Gũ, R̃]

holds, completing the proof of the theorem. �

In view of Theorem 2.2, if we introduce a generalized Bäcklund transformation that in-
volves certain arbitrary parameters, and apply it to a given Hamiltonian operator, then
(2.8) implies that the transformed Hamiltonian operator will depend on the associated pa-
rameters. This motivates us to analyze families of n-component Bäcklund transformations
depending on, for example, three constant parameters α, β, γ, to construct a new n × n
matrix Hamiltonian operator J̃ from a given n×n matrix Hamiltonian operator J , hoping
that the resulting operator takes the form

J̃ = α̃K̃1 + β̃K̃2 + γ̃K̃3, (2.20)

where α̃, β̃ and γ̃ depend on α, β and γ. Assuming the three operators K̃1, K̃2 and K̃3 appear-
ing in (2.20) scale independently under scaling transformations of the dependent variables,
they then form a compatible Hamiltonian triple, meaning that each linear combination (2.20)
is a Hamiltonian operator. As a consequence, two pairs of compatible Hamiltonian oper-
ators are readily constructed by taking distinct recombinations of the Hamiltonian triple,
in which, one pair will typically generate a classical soliton system, while, the other dual
counterpart is an integrable bi-Hamiltonian system, which, usually is endowed with nonlin-
ear dispersion, [42]. Moreover, it is worth mentioning that, since such linear combinations
of the recombined pairs are members of the 3-parameter family (2.20), this argument also
serves to automatically verify the compatibility of two Hamiltonian operators.
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In the next two sections, we shall demonstrate the efficacy of this approach through
examples of two-component and three-component systems which arise from the models in
the shallow water wave propagation.

3. The two-component DWW and mDWW systems

Consider the following dispersive water wave (DWW ) system [31]{
qt = (−qx + 2qr)x ,

rt =
(
rx + 2q + r2

)
x
,

(3.1)

which is one of the dispersive generalizations of the classical dispersiveless long wave equa-
tion and belongs to the family of the bi-directional Boussinesq-type systems modeling the
propagation of shallow water waves [4, 40]. The DWW system is related to the modified
dispersive water wave (mDWW ) system{

ut =
(
−ux + 2uv − u2

)
x
,

vt =
(
vx − 2ux − 2u2 + 2uv + v2

)
x
,

(3.2)

via the Miura-type transformation [2, 31]

q = −ux − u2 + uv, r = v. (3.3)

Moreover, the mDWW system admits the following constant coefficient Hamiltonian oper-
ator

J (u, v) =

(
0 ∂x
∂x 2 ∂x

)
. (3.4)

We introduce a family of Miura-type transformations

q = −γ
(
ux + u2 − uv

)
+
α

β̄
u, r =

(
γ

β̄
− β̄

)
u+ β̄v, (3.5)

where β̄ = β/γ and α, β and γ (βγ 6= 0) are arbitrary constants. Applying (3.5) and
using (3.4) as the original Hamiltonian operator, we can obtain a 3-parameter family of
Hamiltonian operators

J̃ (q, r) =

(
γ(q∂x + ∂xq) −β∂2

x + α∂x + γr∂x

β∂2
x + α∂x + γ∂xr 2γ∂x

)
. (3.6)

Obviously, J̃ is a linear combination of the following triple of Hamiltonian operators:

K̃1 =

(
0 ∂x
∂x 0

)
, K̃2 =

(
0 −∂2

x

∂2
x 0

)
, K̃3 =

(
q∂x + ∂xq r∂x

∂xr 2∂x

)
.

We now define the operators

J̃1 = K̃1 + νK̃2, J̃2 = J̃ ,

where ν is a constant. Since γ in J̃ should be nonzero, we set γ = 1 without loss of generality.

The fact that the linear combinations c1J̃1 + c2J̃2 are members of the 3-parameter family
of Hamiltonian operators (3.6) justifies their compatibility, and thus Magri’s Theorem [37]
establishes the formal existence of a hierarchy(

q
r

)
t

= Gn = J̃1δH̃n = J̃2δH̃n−1, n = 1, 2, . . . , δH̃n =

(
δH̃n
δq

,
δH̃n
δr

)T
, (3.7)

of higher-order commuting bi-Hamiltonian systems, with associated higher-order Hamilton-

ian functionals H̃n, n = 0, 1, 2, . . ., which are conservation laws common to all members of
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the hierarchy. The members in the hierarchy (3.7) are obtained by applying successively the

recursion operator R̃ = J̃2J̃−1
1 to the seed system(
q
r

)
t

= G1 =

(
q
r

)
x

= J̃1δH̃1.

For the second flow in this hierarchy(
q
r

)
t

= G2 = R̃G1 = J̃1δH̃2 = J̃2δH̃1, (3.8)

we consider two cases:

Case 1. When ν = 0, (3.8) becomes{
qt = (−βqx + αq + 2qr)x ,

rt =
(
βrx + αr + 2q + r2

)
x

(3.9)

with the associated Hamiltonian functionals

H̃1 =

∫
q r dx, H̃2 =

∫ (
βrxq + r2q + q2 + αqr

)
dx.

The system (3.9) admits the following Lax pair with spectral parameter λ:(
ψ1

ψ2

)
x

= U

(
ψ1

ψ2

)
,

(
ψ1

ψ2

)
t

= V

(
ψ1

ψ2

)
, (3.10)

where

U =
1

2

λ+
1

β

(
r +

α

2

)
− 2

β2
q

2 −
(
λ+

1

β

(
r +

α

2

))
 ,

V =
1

2

−β λ
2 + rx +

1

β

(
r +

α

2

)2 2λ

β
q +

2

β
qx −

2

β2

(
r +

α

2

)
q

2
(
−β λ+ r +

α

2

)
β λ2 − rx −

1

β

(
r +

α

2

)2

 .

(3.11)

Case 2. When ν 6= 0, without loss of generality, we set ν = ±1. Setting

q = g − νgx, r = f + νfx,

allows us to write the resulting bi-Hamiltonian system (3.8) in the local form{
qt = (−βgx + αg + (q + g)f)x ,

rt = (βfx + αf + 2g + rf)x ,
(3.12)

or, in full detail, {
gt − νgxt =

(
− βgx + αg + (2g − νgx)f

)
x
,

ft + νfxt =
(
βfx + αf + 2g + (f + νfx)f

)
x
,

where the Hamiltonian functionals are

H̃1 =

∫
(f − νfx)g dx, H̃2 =

∫ (
− βgx + αg + rg

)
f dx.
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The system (3.12) admits the Lax pair (3.10) with

U =
1

2


α

β
+

1

β
(f + ν fx) − 2

λβ2
(g − ν gx)

2λ −α
β
− 1

β
(f + ν fx)

 ,

V =


1

2β

(
β fx + α f + f2 + ν ffx

) 1

λβ2

(
ν fgx − gf + β gx

)
λ f − 1

2β

(
β fx + α f + f2 + ν ffx

)
 .

The tri-Hamiltonian duality argument implies that the dual integrable bi-Hamiltonian
system is obtained by rearranging the Hamiltonian triple to form the dual Hamiltonian pair

Ĵ1 =

(
0 ∂x − ∂2

x

∂x + ∂2
x 0

)
, Ĵ2 =

(
q̂∂x + ∂xq̂ r̂∂x

∂xr̂ 2∂x

)
. (3.13)

The dual counterpart of the DWW system (3.1) is thus{
q̂t = ((q̂ + g)f)x , q̂ = g − gx,
r̂t = (2g + r̂f)x , r̂ = f + fx,

(3.14)

which, in fact, belongs to the integrable family (3.12) derived in Case 2.

Observe that the second Hamiltonian operator Ĵ2 in (3.13) admits the Casimir functional

ĤC =

∫ √
4q̂ − r̂2 dx,

with variational derivative

δĤC =

(
δĤC
δq̂

,
δĤC
δr̂

)T
=

(
2√

4q̂ − r̂2
, − r̂√

4q̂ − r̂2

)T
.

On the one hand, the functional ĤC is an additional conservation law admitted by (3.14);
on the other hand, it leads to the associated Casimir system(

q̂
r̂

)
t

= Ĝ−1 = Ĵ1δĤC ,

which takes the explicit form

q̂t = (−∂x + ∂2
x)

(
r̂√

4q̂ − r̂2

)
, r̂t = (∂x + ∂2

x)

(
2√

4q̂ − r̂2

)
. (3.15)

Starting from the Casimir system (3.15), one (formally) constructs an infinite hierarchy of
higher-order commuting bi-Hamiltonian systems and corresponding Hamiltonian functionals

{Ĥ−n} in the negative direction:(
q̂
r̂

)
t

= Ĝ−n = Ĵ1δĤ−n = Ĵ2δĤ−(n+1), n = 1, 2, . . . ,

with Ĥ−1 = ĤC and δĤ−n =
(
δĤ−n/δq̂, δĤ−n/δr̂

)T
.

In the case of α = 0, β = γ = 1, the Bäcklund transformation (3.5) reduces to (3.3), which
connects the DWW system (3.1) and the mDWW system (3.2). Now, let us focus our atten-
tion on the mDWW system (3.2). First of all, in view of Theorem 2.3 and transformation
(3.3), we deduce that the recursion operator R(u, v) of mDWW system satisfies(

∂x + 2u− v −u
0 −1

)
R(u, v) = R̃(q, r)

(
∂x + 2u− v −u

0 −1

)
,
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where R̃(q, r) = J̃2J̃−1
1 is the recursion operator for the DWW system. It follows that

R(u, v) =

(
v − 2u− ∂x u+ ∂xu∂

−1
x

2(v − 2u− ∂x) 2u+ ∂x + ∂xv∂
−1
x

)
.

The second Hamiltonian operator admitted by the mDWW system (3.2) is thereby obtained,

J2(u, v) = RJ1 =

(
u∂x + ∂xu −∂2

x + 2∂xu+ v∂x
∂2
x + 2u∂x + ∂xv 2(v∂x + ∂xv)

)
,

where J1 = J (u, v) given by (3.4) is the first Hamiltonian operator of system (3.2). There-
fore, the mDWW system (3.2) possesses the bi-Hamiltonian structure(

u
v

)
t

= J1δH2 = J2δH1,

with Hamiltonian functionals

H1 =

∫
u(v − u) dx, H2 =

∫
u(vx + v2 − uv) dx.

In addition, the Lax formulation (3.10) for the mDWW system (3.2) is based on

U =
1

2

(
λ+ v 2 (ux + u2 − uv)

2 −λ− v

)
,

V =
1

2

(
−λ2 + vx + v2 −2

(
∂x − v + λ

)
(ux + u2 − uv)

2(v − λ) λ2 − vx − v2

)
.

Next, note that the mDWW system (3.2) also admits the tri-Hamiltonian structure, and
its dual version relies on the recombined dual Hamiltonian pair

J 1 =

(
0 ∂x − ∂2

x

∂x + ∂2
x 2∂x

)
, J 2 =

(
ū∂x + ∂xū 2∂xū+ v̄∂x
2ū∂x + ∂xv̄ 2(v̄∂x + ∂xv̄)

)
. (3.16)

Applying the dual bi-Hamiltonian structure (3.16) to the seed system(
ū
v̄

)
t

= K1 =

(
ū
v̄

)
x

,

we obtain the integrable bi-Hamiltonian hierarchy(
ūt
v̄t

)
= Kn = J 1δHn = J 2δHn−1, n ∈ Z, (3.17)

with δHn =
(
δHn/δū, δHn/δv̄

)T
. The initial members of the sequence of Hamiltonian

functionals are

H0 =
1

4

∫
(2ū+ v̄) dx, H1 =

∫ (
(g + gx)v̄ − (g2 + g2

x)
)

dx,

H2 =
1

2

∫ (
2(g2

x − g2)(f − fxx) + (2g + 3gx − gxxx)f2 + (2g + gx − gxx)f2
x

)
dx,

with ū = (1 − ∂2
x)g and v̄ = (1 − ∂2

x)f . In particular, the case n = 2 in (3.17) corresponds
to the dual mDWW system{

ūt =
(
(g + gx)(gx − g − fx + f) + (2gx − fx + f)ū

)
x
,

v̄t =
(
2(g + gx)(gx − g − fx + f) + (2gx − fx + f)v̄

)
x
.

Again, the second Hamiltonian operator J 2 admits a Casimir functional

HC =

∫
ū

2ū− v̄
dx,
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leading to the following Casimir system

ūt = (∂x − ∂2
x)

(
ū

(2ū− v̄)2

)
, v̄t = ∂x

(
1

2ū− v̄

)
− ∂2

x

(
v̄

(2ū− v̄)2

)
, (3.18)

for the dual mDWW system, which is the first member of the dual hierarchy (3.17) in the
negative direction. Interestingly, when ū = 0, (3.18) reduces to

v̄t = −(∂x + ∂2
x)

(
1

v̄

)
. (3.19)

Using the reciprocal transformation

y =

∫ x

v̄(ξ, t) dξ, τ = t, Q(y, τ) =
1

v̄(x, t)
,

equation (3.19) is mapped into Burgers’ equation

Qτ = Qyy + 2QQy. (3.20)

On the other hand, for the mDWW system (3.2), if we take

u = 0, v(x, t) = Q(y, τ),

the resulting equation is also Burgers’ equation (3.20). Motivated by this argument, it
is anticipated that there exists such an analogous reciprocal correspondence between the
mDWW system (3.2) and the associated Casimir system (3.18) for the dual mDWW system,
and thereby leading to a generalization for their entire hierarchies.

4. Three-component integrable generalizations

In this section, we shift our attention to three-component systems. Motivated by a system
studied in [1] — see (4.7a) therein — we consider the following pair of three-component
systems:

wt =
(
−λux + w + bcλu+ 3

2λw
2 + wv + 1

2abλu
2 + bλuv

)
x
,

ut =
(
− 1
bux + cu+ 1

2bw
2 + λwu+ 1

2au
2 + 2uv

)
x
,

vt =
(
λ
bwx + a

bux + 1
bvx + cλw − ac u+ c v − a

2bw
2 + λwv − 1

2a
2u2 − auv + v2

)
x
,

(4.1)
and 

st =
(
s+ λq − ds2 + sr

)
x
,

qt =
(
− 1
b qx + cq + 2qr − 2dsq + 1

2s
2
)
x
,

rt =
(
−db sx + 1

b rx + (d+ λ− cd) s+
(
λ2 + dλ− a

b

)
q + c r + r2 − dsr

)
x
,

(4.2)

where a 6= 0, b 6= 0, c, d, λ are constants. Systems (4.1) and (4.2) are related by the following
Miura-type transformation

s = w, q = −ux +
1

2
w2 +

ab

2
u2 + b uv + bc u, r = (d+ λ)w + v.

Note that system (4.1) can be written in a Hamiltonian formwu
v


t

= J (w, u, v)

δH/δwδH/δu
δH/δv

 ,

with the Hamiltonian operator

J (w, u, v) =

∂x 0 0
0 0 1

b∂x
0 1

b∂x −ab ∂x

 (4.3)
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and the associated Hamiltonian functional

H(w, u, v) =
1

2

∫ (
λw3 + w2v + abλwu2 + 2bλwuv + w2 + 2bcλwu− 2λwux

)
dx

+
1

2

∫ (
u2v + 2b uv2 + 2bc uv − 2uxv

)
dx.

Consider the following Miura-type Bäcklund transformations

B1(w, u, v, s, q, r) = s− c1w = 0,

B2(w, u, v, s, q, r) = q −
(
c2w

2 + c3ux + c4u
2 + c5uv + c6u

)
= 0,

B3(w, u, v, s, q, r) = r − (c7w + c8u+ c9v) = 0,

(4.4)

where c1, . . . , c9 are constant parameters. Plugging the original Hamiltonian operator (4.3)
into formula (2.8) under the transformations (4.4) yields the Hamiltonian operator

J̃ (s, q, r) =

 α∂x γ ∂xs κ ∂x
γ s ∂x γ(q ∂x + ∂xq) ε ∂x − β∂2

x + γ r∂x
κ ∂x ε ∂x + β∂2

x + γ ∂xr ξ∂x

 , (4.5)

where

α = c21, β = −1

b
c3c9, γ = 2c2 =

2

ab
c4 =

1

b
c5, ε =

1

b
c6c9, ξ = c27 +

2

b
c8c9 −

a

b
c29, κ = c1c7.

Using a scaling argument, we extract a compatible Hamiltonian triple (2.20) from the
operator (4.5). Consider the compatible Hamiltonian pair

J̃1 = K̃1 + νK̃2, J̃2 = J̃ , (4.6)

where

K̃1 =

α1 0 κ1

0 0 1
κ1 1 ξ1

 ∂x, K̃2 =

0 0 0
0 0 −1
0 1 0

 ∂2
x (4.7)

depending upon the parameters α1 6= 0, κ1, ξ1. Applying successively the resulting recursion

operator R̃ = J̃2J̃−1
1 to the seed systemsq

r


t

= G1(s, q, r) =

sq
r


x

produces a hierarchy of three-component higher-order commuting bi-Hamiltonian systems,
namely sq

r


t

= Gn(s, q, r) = J̃1δH̃n = J̃2δH̃n−1, n = 1, 2, . . . ,

where the variational derivative of the Hamiltonian functionals is given by

δH̃n =

(
δH̃n
δs

,
δH̃n
δq

,
δH̃n
δr

)T
.

Focussing our attention on the second flow of this hierarchysq
r


t

= G2(s, q, r) = R̃G1(s, q, r) = R̃

sq
r


x

, (4.8)

we set the parameters γ = α1 = 1 for simplicity, and distinguish two cases.
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Case 1. When ν = 0,

J̃−1
1 =

 1 −κ1 0
−κ1 ξ2 1

0 1 0

 ∂−1
x , where ξ2 = κ2

1 − ξ1.

The flow (4.8) takes the bi-Hamiltonian formsq
r


t

= J̃2 δH̃1 = J̃1 δH̃2 = J̃

 s− κ1q
−κ1s+ ξ2q + r

q

 ,

where

H̃1 =
1

2

∫ (
s2 + ξ2 q

2 + 2(r − κ1s) q
)

dx,

H̃2 =
1

2

∫ (
ξ2
2q

3 − κ1s
3 +

(
(ξ2 + 2κ2

1)s− 3κ1ξ2 q
)
sq + (s− 4κ1q) sr + (3ξ2q + 2r) qr

+ α(s− κ1q)
2 + (2εξ2 − 2κκ1 + ξ) q2 + 2(κ− εκ1)sq + 2ε qr + 2β qx(κ1s− r)

)
dx.

Explicitly,
st =

(
αs+ (κ− ακ1) q + (ξ2q − κ1s+ r)s

)
x
,

qt =
(
−β qx + ε q + 2

(
3ξ2
4 q − κ1s+ r

)
q + 1

2s
2
)
x
,

rt =
(
−βκ1sx + βξ2qx + β rx + (κ− εκ1)s+ (ε ξ2 + ξ − κκ1) q + ε r + (ξ2q − κ1s+ r) r

)
x
.

(4.9)

Case 2. When ν 6= 0, without loss of generality, we set ν = ±1, and so

J̃−1
1 =

 1 −κ1(1− ν∂x)−1 0
−κ1(1 + ν∂x)−1 ξ2(1− ∂2

x)−1 (1 + ν∂x)−1

0 (1− ν∂x)−1 0

 ∂−1
x , ξ2 = κ2

1 − ξ1.

Thus system (4.8) becomessq
r


t

= J̃

 s− κ1(1− ν∂x)−1q
(1 + ν∂x)−1(r − κ1s) + ξ2(1− ∂2

x)−1q
(1− ν∂x)−1q

 . (4.10)

Two subcases are considered:
Case 2.1. Setting κ1 = ξ2 = 0, so that ξ1 = 0 in (4.7), we introduce new variables

g = (1− ν∂x)−1q, f = (1 + ν∂x)−1r.

Then (4.10) becomes
st = (αs+ κg + sf)x ,

gt − νgxt =
(
−βgx + εg + (g + q)f + 1

2s
2
)
x
,

ft + νfxt = (βfx + κs+ ξg + εf + r f)x ,

and the associated Hamiltonian functionals are

H̃1 =
1

2

∫ (
s2 + 2(g + νgx)f

)
dx,

H̃2 =
1

2

∫ (
s2f + 2rfg + αs2 + (ξg + 2κsg + 2ε f + 2βfx)g

)
dx.

Case 2.2. When κ2
1 + ξ2

2 6= 0, we define the variables h, f and g by

s = (1− ∂2
x)h, q = (1− ∂2

x)g, r = (1− ∂2
x)f,
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respectively. We then arrive at the following bi-Hamiltonian system

ht − hxxt =
(
α s+ (κ− ακ1)(νgx + g) +

(
f − νfx + ξ2g − κ1(h− νhx)

)
s
)
x
,

gt − gxxt =
(
− βνgxx + (εν − β)gx + εg + ξ2

2

(
3g2 − g2

x − 2ggxx
)

+ (f − νfx − κ1(h− νhx)) (2g + νgx − gxx) + 1
2 s

2
)
x
,

ft − fxxt =
((
βκ1ν + κ

)
hxx − βνfxx − κ1(β − εν)hx + (βξ2 + ξν − κκ1ν)gx + (β − εν)fx

+
(
κ− εκ1

)
h+ (εξ2 + ξ − κκ1)g + εf +

(
f − νfx − κ1(h− νhx) + ξ2g

)
r
)
x

(4.11)

and the associated Hamiltonian functionals are

H̃1 =
1

2

∫ (
s2 + ξ2(g2 + g2

x) + 2(q + νqx)(f − κ1h)
)

dx,

H̃2 =
1

2

∫ (
s2
(
f − νfx − κ1(h− νhx) + ξ2g

)
+
(
κ1(h− νhx)− f + νfx

)2
(q + g + νgx)

+ ξ2 (−κ1(h− νhx) + f − νfx)
(
3g2 − g2

x − 2ggxx
)

+ ξ2
2(g3 + gg2

x) + αs2

+ 2(κ− ακ1) (g + νgx) s+ 2
(
− κ1(h− νhx) + f − νfx

)(
εg + (εν − β)gx − βνgxx

)
+
(
κ1(ακ1 − κ) + εξ2

)
g2 +

(
κ1(ακ1 − κ) + βνξ2

)
g2
x

)
dx.

Next, we focus our attention on the three-component DWW system
st = (sr)x,

qt =
(
−qx + 2qr + 1

2s
2
)
x
,

rt =
(
rx + 2q + r2

)
x
,

(4.12)

which is a special case of system (4.9) corresponding to the choice of α = κ = κ1 = ε =
ξ2 = 0, β = 1 and ξ = 2 in (4.9). This system was proposed in [1] as an example of a three-
component quadri-Hamiltonian system, and it appears as a three-component generalization
of the DWW system (3.1).

According to the preceding analysis, the dual integrable counterpart of system (4.12) is
the system arising from Case 2.1, i.e., the bi-Hamiltonian system admitting the Hamiltonian

operators J̃1 and J̃2 defined in (4.6) and (4.7) with α1 = γ = 1, ν = ±1 and κ1 = ξ1 = 0.
More precisely, the following dual Hamiltonian pair

Ĵ1 =

∂x 0 0
0 0 ∂x − ν∂2

x

0 ∂x + ν∂2
x 0

 , Ĵ2 =

 0 ∂xŝ 0
ŝ∂x q̂∂x + ∂xq̂ r̂∂x
0 ∂xr̂ 2∂x

 , (4.13)

with ν = ±1, gives rise to the three-component bi-Hamiltonian system
ŝt = (ŝf)x,

q̂t =
(
(q̂ + g) f + 1

2 ŝ
2
)
x
, q̂ = g − νgx,

r̂t = (2g + r̂f)x, r̂ = f + νfx,

(4.14)

which turns out to be the dual version of (4.12). In particular, when ŝ = 0, (4.14) reduces

to the dual counterpart (3.14) of the DWW system (3.1). The Hamiltonian operators Ĵ1

and Ĵ2 given in (4.13), when projected to the (q̂, r̂) subspace, yield the Hamiltonian pair
(3.13) admitted by the two-component dual system (3.14).

Finally, it is easy to see that setting b = 1 and a = −2 in (4.2) produces the system
st =

(
s+ λq − ds2 + sr

)
x
,

qt =
(
−qx + c q + 2qr − 2dsq + 1

2s
2
)
x
,

rt =
(
−dsx + rx + (d+ λ− cd)s+ (λ2 + dλ+ 2)q + c r + r2 − dsr

)
x
,

(4.15)
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which belongs to the integrable family (4.9) corresponding to

α = β = 1, ε = c, κ = d+ λ, ξ = (d+ λ)2 + 2, κ1 = d, ξ2 = 0 (i.e., ξ1 = d2).

Therefore, following from the Hamiltonian operators J̃1 and J̃2 of system (4.9) defined in
(4.5), (4.6), and (4.7) with ν = 0, (4.15) admits the Hamiltonian pair

J̃ ′1 =

1 0 d
0 0 1
d 1 d2

 ∂x, J̃ ′2 =

 ∂x ∂xs (d+ λ)∂x
s∂x q∂x + ∂xq −∂2

x + c ∂x + r∂x
(d+ λ)∂x ∂2

x + c ∂x + ∂xr
(
(d+ λ)2 + 2

)
∂x

 .

In addition, (4.15) admits the following 2× 2 Lax pair with spectral parameter µ:(
ψ1

ψ2

)
x

=

(
µ 1
L −µ

) (
ψ1

ψ2

)
,

(
ψ1

ψ2

)
t

=

(
A B
C −A

) (
ψ1

ψ2

)
,

where

L = −d
4

(
λ+ d+

2

λ

)
s2 +

1

4
(r + 1)2 − 1

2
(λ2 + dλ+ 2)q +

1

2
(cd− λ) r − 1

4
rx

+
1

4

(
λ

d
+ 2− c

)(
λ

d
− c
)
− µ2,

A = −2Bµ+Bx, B = −ds+ r +
λ

d
+ 1,

C = 2Bµ2 − 2Bxµ+
d

λ
(λ+ d+ 1)Bs2 − 1

2
Br2 + (λ2 + dλ+ 2)Bq

+

(
λ

d
+ 1− c

)
Br +Brx +

1

2

(
Bxx −B −

(
λ

d
+ 2− c

)(
λ

d
− c
)
B

)
.

On the other hand, (4.15) is related to
wt =

(
−λux + w + cλu+ wv − λu2 + λuv + 3

2λw
2
)
x
,

ut =
(
−ux + c u− u2 + λwu+ 2uv + 1

2w
2
)
x
,

vt =
(
λwx − 2ux + vx + cλw + 2c u+ c v + v2 + λwv + 2uv − 2u2 + w2

)
x

(4.16)

via the Miura-type transformation

s = w, q = −ux − u2 +
1

2
w2 + uv + cu, r = (d+ λ)w + v.

According to Theorem 2.3, the recursion operator R(w, u, v) of (4.16) satisfies

TR(w, u, v) = R̃(s, q, r) T,

where

T =

 1 0 0
w Φ u

d+ λ 0 1

 , Φ = −∂x − 2u+ v + c, (4.17)

and

R̃(s, q, r) = J̃ ′2J̃ ′−1
1

=

 1− d∂xs∂−1
x λ ∂xs∂

−1
x

s− dq − d∂xq∂−1
x −∂x − ds+ r + c q + ∂xq∂

−1
x

−d∂x − d∂xr∂−1
x + λ+ d− cd λ2 + λd+ 2 ∂x + ∂xr∂

−1
x + c


is the recursion operator of system (4.15). Consequently, the recursion operator of (4.16) is

R(w, u, v) =

 1 + λw + λ∂xw∂
−1
x λΦ λu+ ∂xw∂

−1
x

w + λ∂xu∂
−1
x Φ u+ ∂xu∂

−1
x

λc+ 2w + λ∂x + λ∂xv∂
−1
x 2Φ c+ 2u+ ∂x + ∂xv∂

−1
x

 ,
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where the operator Φ is defined in (4.17).
Furthermore, in the case b = 1 and a = −2, the first Hamiltonian operator J1(w, u, v)

of system (4.16) is J (w, u, v) given by (4.3), which, along with R(w, u, v), gives rise to the
second Hamiltonian operator

J2(w, u, v) = R(w, u, v)J1(w, u, v)

=

 ∂x + λ (w∂x + ∂xw) λu∂x + ∂xw −λ∂2
x + λ(c+ v)∂x + 2∂xw

w∂x + λ∂xu ∂xu+ u∂x −∂2
x + (c+ v)∂x + 2∂xu

λ∂2
x + (cλ+ 2w)∂x + λ∂xv ∂2

x + (c+ 2u)∂x + ∂xv 4c ∂x + 2(v∂x + ∂xv)

 .

With the Hamiltonian pair J1 and J2 in hand, the dual integrable bi-Hamiltonian hierarchy
for system (4.16) can also be readily constructed. For instance, if we set c = λ = 0, the
system (4.16) reduces to

wt = (w + wv)x ,

ut =
(
−ux − u2 + 2uv + 1

2w
2
)
x
,

vt =
(
−2ux + vx + v2 + 2uv − 2u2 + w2

)
x
,

(4.18)

which can be viewed as a three-component generalization of the mDWW system (3.2). The
dual version of system (4.18) is obtained by recombining the Hamiltonian pair

J ′1 =

∂x 0 0
0 0 ∂x
0 ∂x 2∂x

, J ′2 =

 ∂x ∂xw 2∂xw
w∂x ∂xu+ u∂x −∂2

x + v∂x + 2∂xu
2w∂x ∂2

x + ∂xv + 2u∂x 2(v∂x + ∂xv)

 ,

admitted by (4.18) to define the dual Hamiltonian pair

J 1 =

1/2 0 0
0 0 1− ∂x
0 1 + ∂x 2

 ∂x, J 2 =

 0 ∂xw̄ 2∂xw̄
w̄∂x ∂xū+ ū∂x v̄∂x + 2∂xū
2w̄∂x 2ū∂x + ∂xv̄ 2 (v̄∂x + ∂xv̄)

 .

The dual of the original integrable system (4.18) will thus take the form
w̄t = ((2gx − fx + f)w̄)x ,

ūt =
(
(g + gx)(gx − g − fx + f) + (2gx − fx + f)ū+ w̄2

)
x
,

v̄t =
(
2(g + gx)(gx − g − fx + f) + (2gx − fx + f)v̄ + 2w̄2

)
x
,

where f = (1− ∂2
x)−1v̄ and g = (1− ∂2

x)−1ū, and

H1 =

∫ (
w̄2 − (g2 + g2

x) + (g + gx)v̄
)

dx,

H2 =
1

2

∫ (
2w̄2(2gx + f − fx) + 2(g2

x − g2)(f − fxx)

+
(

2g + 3gx − gxxx
)
f2 +

(
2g + gx − gxx

)
f2
x

)
dx

are the required Hamiltonian functionals.

5. Solitary wave solutions of the dual DWW system (3.12)

In this section, we analyze the solitary wave solutions of the following dual DWW system{
gt − νgxt =

(
− βgx + 2gf − νgxf

)
x
,

ft + νfxt =
(
βfx + 2g + f2 + νfxf

)
x
, ν = ±1,

(5.1)

which is equivalent to system (3.12) under the Galilean transformation x 7→ x − αt. We
consider the solitary wave solutions which take the form

(g(t, x), f(t, x)) = (ψ(x− c t), φ(x− c t)) , c ∈ R,
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for some ψ, φ : R → R such that ψ → a (a ≥ 0), φ → 0 as |x| → ∞. In view of the
asymptotic behavior of ψ, we set g = a+h with h→ 0 as |x| → ∞ and rewrite system (5.1)
as {

ht − νhxt =
(
− βhx + 2af + 2hf − νhxf

)
x
,

ft + νfxt =
(
βfx + 2h+ f2 + νfxf

)
x
, ν = ±1.

(5.2)

Definition 5.1. Let 0 < T ≤ ∞. A function (h, f) ∈ C ([0, T ), X) is called a solution of
(5.2) on [0, T ) if it satisfies (5.2) in the distribution sense on [0, T ).

Definition 5.2. A solitary wave of (5.2) is a nontrivial traveling wave solution of (5.2)
of the form Φc(t, x) = (η(x− c t), φ(x− c t)) with the constant wave speed c ∈ R, where
(η, φ) ∈ H1

loc(R)×H1
loc(R) and η, φ vanish at infinity.

Definition 5.3. We say that a continuous function φ : R → R has a peak at x̄ if φ is
smooth locally on either side of x̄ and

0 6= lim
x↑x̄

φx(x) = − lim
x↓x̄

φx(x) 6= ±∞.

Wave profiles with peaks are called peaked waves or peakons.

Definition 5.4. We say that a continuous function φ : R → R has a cusp at x̄ if φ is
smooth locally on either side of x̄ and

lim
x↑x̄

φx(x) = − lim
x↓x̄

φx(x) = ±∞.

Wave profiles with cusps are called cusped waves or cuspons.

Definition 5.5. We say that a traveling wave solution φ : R → R is a kink solution if φ
satisfies the boundary conditions

kl = lim
x→−∞

φ(x) and kr = lim
x→+∞

φ(x),

where −∞ < kl < kr < +∞ or kl > kr. The function φ sometimes also satisfies the
additional asymptotic condition

lim
|x|→∞

φ(j)
x (x) = 0, j = 1, 2, . . . .

Substituting the traveling wave ansatz (h(t, x), f(t, x)) = (η(x− c t), φ(x− c t)), where
the wave speed c is constant, into (5.2), one obtains the following system of ordinary differ-
ential equations for (η, φ){

−c ηx + c νηxx =
(
− βηx + 2aφ+ (2η − νηx)φ

)
x
,

−c φx − c νφxx =
(
βφx + 2η + (φ+ νφx)φ

)
x
.

(5.3)

Integrating both equations produces{
(νφ+ cν + β)ηx − cη − 2(a+ η)φ = 0,

η = − 1
2 (νφ+ cν + β)φx − 1

2φ
2 − 1

2cφ.
(5.4)

Then we substitute the second equation in system (5.4) into the first to derive a single second
order equation for φ(x):

(φ− c̃)2φxx + (φ− c̃)φ2
x − 2φ3 − 3cφ2 − (c2 − 4a)φ = 0, in D′(R), (5.5)

where c̃ = −(c+ νβ). Further calculation gives[
(φ− c̃)3

]
xx

= 3(φ− c̃)φ2
x + 3

[
2φ3 + 3cφ2 + (c2 − 4a)φ

]
, in D′(R). (5.6)

The following lemma deals with the regularity of the solitary waves. The idea is inspired
by the study of the traveling waves of the CH equation [32]; see also [8] and [24].
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Lemma 5.1. Let (η, φ) ∈ H1
loc(R)×H1

loc(R) be a solitary wave of (5.2). Then

(φ− c̃)k ∈ Cj
(
R \ φ−1 (c̃)

)
, for k ≥ 2j . (5.7)

Therefore, φ ∈ C∞
(
R \ φ−1 (c̃)

)
.

Proof. We set v = φ− c̃, and denote

G(v) = 2v3 + 3(2c̃+ c)v2 + (6c̃2 + c2 + 6cc̃− 4a)v + [(2c̃+ c)(c̃+ c)− 4a]c̃.

Since φ ∈ H1
loc(R) solves equation (5.6) in the distributional sense, v satisfies

(v3)xx = 3vv2
x + 3G(v), in D′(R).

We then deduce that (v3)xx ∈ L1
loc(R), which indicates that (v3)x is absolutely continuous

and v, v2 as well as v3 belong to C1
(
R \ v−1(0)

)
. Moreover, for k ≥ 4,

(vk)xx =
(
kvk−1vx

)
x

= 1
3 k
[
vk−3(v3)x

]
x

= k(k − 3)vk−2v2
x + 1

3 k v
k−3(v3)xx

= k(k − 2)vk−2v2
x + 3kvk−3G(v)

= 1
4k(k − 2)vk−4

[
(v2)x

]2
+ 3 k vk−3G(v) ∈ C

(
R \ v−1(0)

)
.

(5.8)

It follows that vk ∈ C2
(
R \ v−1(0)

)
for k ≥ 4.

In the case of k ≥ 8, based on the previous result, we have v4 and vk−4 belong to
C2
(
R \ v−1(0)

)
, while vk−3G(v) ∈ C1

(
R \ v−1(0)

)
. On the other hand, since

vk−2v2
x =

1

4(k − 4)

(
v4
)
x

(
vk−4

)
x
∈ C1

(
R \ v−1(0)

)
,

formula (5.8) allows us to deduce that

(vk)xx =
k(k − 2)

k − 4

(
v4
)
x

(
vk−4

)
x

+ 3kvk−3G(v) ∈ C1
(
R \ v−1(0)

)
,

which immediately leads to

vk ∈ C3
(
R \ v−1(0)

)
, k ≥ 8.

Extending these arguments to higher values of k concludes that vk ∈ Cj
(
R \ v−1(0)

)
for

k ≥ 2j , and then (5.7) follows. This completes the proof. �

Denote x̄ = min{x : φ(x) = c̃}, while if φ 6= c̃ for all x we set x̄ = +∞, so x̄ ≤ +∞.
From Lemma 5.1, a solitary wave φ is smooth on (−∞, x̄) and hence (5.5) holds pointwise
on (−∞, x̄). Therefore, we may multiply (5.5) by φx and integrate on (−∞, x] for x < x̄
to obtain

φ2
x =

φ2(φ−A1)(φ−A2)

(φ− c̃)2
:= F (φ), (5.9)

where A1 = −c− 2
√
a and A2 = −c+ 2

√
a.

Next, we will explore the qualitative behavior of solutions to (5.9) near points where F (φ)
has zero or a pole. Applying the similar arguments as introduced in [29, 32], we arrive at
the following conclusions.

1. When F (φ) has a simple zero at m = A1 or m = A2, so that F (m) = 0 and
F ′(m) 6= 0, the solution φ of (5.9) satisfies

φ2
x = (φ−m)F ′(m) +O

(
(φ−m)2

)
, as φ→ m,

which gives rise to

φ(x) = m+ 1
4 (x− x0)2F ′(m) +O

(
(x− x0)4

)
, as x→ x0, (5.10)

where φ(x0) = m.
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2. When F (φ) has a double zero at φ = m, so that F (m) = F ′(m) = 0, F ′′(m) > 0, we
have

φ2
x = F ′′(m)(φ−m)2 +O

(
(φ−m)3

)
, as φ→ m,

and thus

φ(x)−m ∼ γ1 exp(−x
√
F ′′(m)), as x→∞ (5.11)

for some constant γ1. Thus φ→ m exponentially as x→∞.
Analogous computations allow us to draw the following conclusions for cases of the third

and fourth order zeros:
3. When F (φ) has k−th order zero, k = 3, 4, at φ = m, so that F (i)(m) = 0, for

i = 0, . . . , k − 1, while F (k)(m) 6= 0, and

φ2
x = F (k)(m)(φ−m)k +O

(
(φ−m)k+1

)
, as φ→ m.

Hence we have

φ(x)−m ∼ x
2

2−k , as x→∞.
Therefore, when k = 3 or k = 4, φ → m algebraically, at the rate O

(
1/x2

)
and O (1/x),

respectively, as x→∞.
4. Peaked solitary waves occur when φ changes direction: φx 7→ −φx according to (5.9).
5. Suppose φ approaches a simple pole φ(x̄) = c̃, such that 1/F (φ) has a simple zero.

Without loss of generality, we assume that φ(x) < c̃, and then

φ(x̄)− c̃ = γ2|x− x̄|2/3 +O
(

(x− x̄)4/3
)
, as x→ x̄, (5.12)

and

φx =

{
2
3γ2|x− x̄|−1/3 +O

(
(x− x̄)1/3

)
, x ↓ x̄,

− 2
3γ2|x− x̄|−1/3 +O

(
(x− x̄)1/3

)
, x ↑ x̄,

(5.13)

for some constant γ2 < 0.
Furthermore, if φ approaches a pole of order 2 at φ(x̄) = c̃, such that 1/F (φ) has a double

zero, then

φ(x̄)− c̃ = γ3|x− x̄|1/2 +O(x− x̄), as x→ x̄. (5.14)

We thus have

φx =

{
1
2γ3|x− x̄|−1/2 +O (1) , x ↓ x̄,
− 1

2γ3|x− x̄|−1/2 +O (1) , x ↑ x̄,
(5.15)

for some constant γ3 < 0. Altogether, it follows from (5.13) and (5.15) that

lim
x↑x̄

φx = − lim
x↓x̄

φx = ±∞,

which means that whenever F has a pole, the continuous solution φ will have a cusp at
x̄. We conclude that nonanalytic behavior will only arise at the singular points, which are
precisely the points of genuine nonlinearity of the original systems.

Now, let us consider the classification of traveling waves of (5.2). As in [29], our approach
is based on the configuration of the zeros and poles of F (φ) in formula (5.9). This allows to
determine several precise parameter regimes in which (5.2) admits solitary wave solutions. In
contrast to the dual counterpart of the KdV equation, whose qualitative properties change
considerably as the coefficient ν in potential changes sign [33], the sign of ν involved in
system (5.2) just affect the parameter regimes that govern the corresponding wave patterns.
Thus, from here on, we only consider the case when ν = 1. The qualitative behavior of the
component φ(x) of the solitary wave solution to (5.2) in the case of a > 0 is summarized in
the following theorem.
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Theorem 5.1. When a > 0, the necessary condition for the existence of the solitary wave
solutions is c ≥ 2

√
a or c ≤ −2

√
a. Moreover, we have

Case 1. c < −2
√
a, i.e., 0 < A1 < A2.

1.1. If β < 2
√
a, i.e., c̃ > A1, then there is a smooth solitary wave φ > 0, with

maxx∈R φ(x) = A1;
1.2. If 2

√
a ≤ β < −c, i.e., 0 < c̃ ≤ A1, then there is a cusped solitary wave φ > 0,

with maxx∈R φ(x) = c̃;
1.3. If β > −c, i.e., c̃ < 0, then there is a smooth solitary wave φ > 0, with

maxx∈R φ(x) = A1 and an anticusped solitary wave (the solution profile has a cusp pointing
downward) φ < 0, with minx∈R φ(x) = c̃.

Case 2. When c = −2
√
a, i.e., A1 = 0 < A2, a solitary wave exists if and only if

β > 2
√
a, i.e., c̃ < 0, and is anticusped with minx∈R φ(x) = c̃.

Case 3. When c = 2
√
a, i.e., A1 < 0 = A2, a solitary wave exists if and only if

β < −2
√
a, i.e., c̃ > 0, and is cusped with maxx∈R φ(x) = c̃.

Case 4. c > 2
√
a, i.e., A1 < A2 < 0.

4.1. If β > −2
√
a, i.e., c̃ < A2, then there is a smooth solitary wave φ < 0, with

minx∈R φ(x) = A2;
4.2. If −c < β ≤ −2

√
a, i.e., A2 ≤ c̃ < 0, then there is an anticusped solitary wave

φ < 0, with minx∈R φ(x) = c̃;
4.3. If β < −c, i.e., c̃ > 0, then there is a smooth solitary wave φ < 0, with

minx∈R φ(x) = A2 and a cusped solitary wave φ > 0, with maxx∈R φ(x) = c̃.
Moreover, each of the above solitary waves is unique and even up to translations. When

A1 = 0 or A2 = 0, the corresponding anticusped or cusped waves decay algebraically at the
rate of O

(
1/x2

)
, while when A1 > 0 or A2 < 0, all solitary waves decay exponentially to

zero at infinity. When c̃ = A1 > 0 or c̃ = A2 < 0, the corresponding cusped or anticusped
solitary waves have the singular behavior in (5.12) and (5.13), while the other cases satisfy
(5.14) and (5.15).

Proof. First of all, formula (5.9), together with the fact that φ(x) decays at infinity leads to
the necessary condition for the existence of solitary wave: A1 ≥ 0 or A2 ≤ 0.

(1). If A1 = 0, then (5.9) becomes

φ2
x =

φ3(φ−A2)

(φ− c̃)2
:= F1(φ), (5.16)

which indicates that φ(x) < 0 near −∞. Since φ(x)→ 0, as x→ −∞, there exists some x0

sufficiently negative satisfying φ(x0) = −ε < 0, with ε > 0 sufficiently small, and φx(x0) < 0.
According to the standard ODE theory, one can generate a unique local solution φ(x) on

[x0 − δ, x0 + δ] for some δ > 0. Furthermore, since A1 < A2, we deduce that

F ′1(φ) =
φ2
(
2φ2 − (A2 + 4c̃)φ+ 3A2c̃

)
(φ− c̃)3

=
φ2(φ− µ1)(φ− µ2)

(φ− c̃)3
,

µ1 =
A2 + 4c̃−

√
A2

2 − 16A2c̃+ 16c̃2

4
, µ2 =

A2 + 4c̃+
√
A2

2 − 16A2c̃+ 16c̃2

4
.

If c̃ > 0, then 0 < µ1 < µ2, so F ′1(φ) < 0 for φ < 0. While, if c̃ < 0, we have µ1 < 0 < µ2,
and then F ′1(φ) < 0 for µ1 < φ < 0. In view of this, we can choose x0, so that, in the case of
c̃ < 0, µ1 < φ < 0 on [x0 − δ, x0 + δ]. Summarizing, one has F ′1(φ) < 0, on [x0 − δ, x0 + δ],
which together with the fact that φxx = F ′1(φ)/2 implies φx(x) decreases on [x0− δ, x0 + δ].
Hence φx(x) < 0 on [x0, x0 + δ], which further implies that φ(x) decreases on [x0, x0 + δ].

If c̃ < 0, since
√
F1(φ) is locally Lipschitz in φ for c̃ < φ ≤ 0, one can easily continue the

local solution to (−∞, x0 − δ] with φ(x)→ 0 as x→ −∞. As for x > x0 + δ, we can solve
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the initial-value problem

ψx = −
√
F1(ψ), ψ(x0 + δ) = φ(x0 + δ),

all the way until ψ = c̃, which is a double pole of F1(ψ). Therefore, according to (5.16), one
can readily construct an anticusped solution with a cusp singularity at φ = c̃. Moreover,
since φ = 0 is a third-order zero of F1(φ), we deduce that φ(x) has the algebraic decay as
|x| → ∞ at the rate of O

(
1/x2

)
.

If c̃ > 0, the fact that
√
F1(φ) is locally Lipschitz in φ allows us to extend the local

solution to all of R and obtain that φ(x) → −∞ as x → +∞, which fails to be in H1(R).
Thus there is no solitary wave in this case.

If c̃ = 0, then the equation (5.16) is reduced to φ2φ2
x = φ3(φ − A2). Since A2 > 0, by

the same argument as above, one may realize that there is no nontrivial bounded solution
exists in this case.

In the case of A2 = 0, an analogous analysis as used in the above cases leads to the
conclusions that there is no solitary wave when c̃ ≤ 0. When c̃ > 0, there exists a cusped
solution caused by the singularities at c̃ which decays algebrically at the rate O

(
1/x2

)
.

(2). Now let us consider the cases A1 > 0 or A2 < 0, where we concentrate on the former
because the latter can be analyzed similarly. From (5.9) we see that φ cannot oscillate around
zero near infinity. Let us distinguish the following two subcases:

Case I. φ(x) > 0 near −∞. Then there is some x0 sufficiently negative so that φ(x0) =
ε > 0, with ε sufficiently small and φx(x0) > 0.

(i). When c̃ > A1 > 0 or c̃ < 0, F (φ) is locally Lipschitz in φ for 0 ≤ φ ≤ A1. Hence,
there is a local solution to

φx =
√
F (φ), φ(x0) = ε, ε > 0,

on [x0 − δ, x0 + δ] for some δ > 0. As a consequence of (5.10) and (5.11), there is a smooth
solitary wave with maximum height φ = A1, having exponential decay to zero at infinity

φ(x) = O
(

exp
(
−
√
F ′′(0)|x|

))
, as |x| → ∞,

where √
F ′′(0) =

√
2(c2 − 4a)

|c̃|
.

(ii). When 0 < c̃ ≤ A1, the smooth solution can be constructed until φ = c̃. However, at
φ = c̃, the slope φx →∞, which gives rise to a cusp. Moreover, since φ = 0 is still a double
zero of F (φ), the solution has exponential decay at ±∞.

(iii). When c̃ = 0, (5.9) becomes

φ2φ2
x = φ2(φ−A1)(φ−A2).

Using the fact that 0 < A1 < A2, and F (φ) > 0 when φ < A1 or φ > A2, one may show the
singular point φ = 0 is in fact degenerate, and thus there is no nontrivial solution satisfying
the decay condition.

Case II. φ(x) < 0 near −∞. In this case, we are solving

φx = −
√
F (φ), φ(x0) = −ε

for some x0 sufficiently negative and ε > 0 sufficiently small. Then the same analysis as
used in the proof of Case (1) leads to the conclusion that when c̃ > 0, there is no solitary
wave. When c̃ < 0, φ = c̃ is a pole of F (φ). Arguing as before, we obtain an anticusped
solitary wave with minx∈R φ = c̃, which decays exponentially.

Finally, by the standard ODE theory and the fact that the equation (5.6) is invariant
under the transformations x 7→ ±x + d for any constant d, we conclude that the solitary
waves obtained above are unique and even up to translations. Moreover, among all the
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cusped or anticusped solitary waves, those who arise from the subcase 0 < c̃ = A1 or
c̃ = A2 < 0 are caused by the simple pole at φ(x̄) = c̃. So, in contrast to the other cases,
where the singular behavior follows (5.14) and (5.15), when 0 < c̃ = A1 or c̃ = A2 < 0, the
solution φ(x) will approach to c̃ in accordance with (5.12) and (5.13). �

In addition, we can derive an implicit formula for the cusped solitary waves. Let us
consider only the case A1 > 0. By Theorem 5.1, we know that the cusped solitary wave
exists only when 2

√
a ≤ β < −c. Choose x̄ at the cusp, so that φ(x̄) = c̃. Since φ is positive,

even with respect to x̄, and decreasing on [ x̄,+∞), for x > x̄, we have

dφ

dx
=
φ
√

(A1 − φ)(A2 − φ)

φ− c̃
,

which gives rise to

−(x− x̄) =

∫ φ

c̃

c̃− y
y(A1 − y)

√
A1 − y
A2 − y

dy.

Set

t =

√
A1 − y
A2 − y

, t0 =

√
A1 − c̃
A2 − c̃

, ∆ =

√
A1 − φ
A2 − φ

.

Then the above equation becomes

−(x− x̄) = 2

∫ ∆

t0

(
c̃

A2t2 −A1
− 1

t2 − 1

)
dt =

(
c̃√
A1A2

ln

∣∣∣∣√A2t−
√
A1√

A2t+
√
A1

∣∣∣∣− ln

∣∣∣∣ t− 1

t+ 1

∣∣∣∣)
∣∣∣∣∣
∆

t0

,

which implies the following implicit formula for the cusped solitary wave:

−|x− x̄| =
(

c̃√
A1A2

ln

∣∣∣∣√A2t−
√
A1√

A2t+
√
A1

∣∣∣∣− ln

∣∣∣∣ t− 1

t+ 1

∣∣∣∣)
∣∣∣∣∣
∆

t0

.

Theorem 5.2. When a = 0, one has A1 = A2 = −c.
Case 1. c < 0, i.e., A1 = A2 > 0.

1.1. If β < 0, i.e., c̃ > A1, then there is a smooth traveling wave solution φ > 0 such
that limx→−∞ φ(x) = 0, limx→+∞ φ(x) = A1;

1.2. If β = 0, i.e., c̃ = A1 = −c, then the solitary wave φ > 0 is peaked with
maxx∈R φ(x) = c̃;

1.3. If 0 < β < −c, i.e., 0 < c̃ < A1, then the solitary wave φ > 0 is cusped with
maxx∈R φ(x) = c̃;

1.4. If β > −c, i.e., c̃ < 0, then there is a smooth traveling wave solution φ > 0
satisfying limx→−∞ φ(x) = 0, limx→+∞ φ(x) = A1, along with an anticusped wave φ < 0
with minx∈R φ(x) = c̃.
Case 2. c > 0, i.e., A1 = A2 < 0.

2.1. If β > 0, i.e., c̃ < A1, then there is a smooth traveling wave solution φ < 0
satisfying limx→−∞ φ(x) = 0, limx→+∞ φ(x) = A1;

2.2. If β = 0, i.e., c̃ = A1, then the solitary wave φ < 0 is an antipeaked with
minx∈R φ(x) = c̃;

2.3. If −c < β < 0, i.e., A1 < c̃ < 0, then the solitary wave φ < 0 is anticusped with
minx∈R φ(x) = c̃;

2.4. If β < −c, i.e., c̃ > 0, then there is a smooth traveling wave solution φ < 0
satisfying limx→−∞ φ(x) = 0, limx→+∞ φ(x) = A1 and a cusped solitary wave φ > 0 with
maxx∈R φ(x) = c̃.

Moreover, each kind of solitary waves in Cases 1.2, 1.3 and 2.2, 2.3 is unique and even
up to translations. Cases 1.1, 1.4, 2.1 and 2.4 admit kink solutions which are unique up to
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translations. All the solitary waves decay exponentially to zero at infinity, and all the cusped
and anticusped solitary waves approach to c̃ according to (5.14) and (5.15).

Proof. When a = 0, A1 = A2 = −c 6= 0, and equation (5.9) becomes

φ2
x =

φ2(φ−A1)2

(φ− c̃)2
:= G(φ). (5.17)

As before, we shall only consider the case c < 0, since the analysis used in this case can be
directly applied to the case c > 0. It follows from (5.17) that φ cannot oscillate around zero
near infinity. We thus consider the following two cases.

Case I. φ(x) > 0 near −∞. Because φ→ 0 as x→ −∞, there exists some x0 sufficiently
negative so that φ(x0) = ε > 0, with ε sufficiently small and φx(x0) > 0.

(i). When c̃ > A1 > 0 or A1 > 0, c̃ < 0, G(φ) is locally Lipschitz. Hence, there is a local
solution to

φx =
√
G(φ), φ(x0) = ε, ε > 0,

on [x0−δ, x0 +δ] for some δ > 0. Therefore, the smooth solution is increasing, which can be
constructed until φ approaches A1 as x→ +∞. Furthermore, since both φ = 0 and φ = A1

are double zeros, the smooth solution exhibits exponentially decay to zero as x→ −∞ and
to A1 as x→ +∞.

One can solve (5.17) to obtain the implicit formula for the solution:

φc̃/A1(A1 − φ)1−c̃/A1 =

{
ex, c̃ > A1 > 0,

e−x, c̃ < 0 < A1.

(ii). When 0 < c̃ < A1, similarly as above and using (5.17), one can derive the implicit
formula

φc̃/A1(A1 − φ)1−c̃/A1 = c̃c̃/A1(A1 − c̃)1−c̃/A1e−|x−x̄|,

which implies that φ forms a cusped solitary wave caused by the singularity at c̃.
(iii). When c̃ = A1 > 0, then the smooth solution can be constructed until φ = c̃ = A1.

However, at φ = c̃ = A1, it can make a sudden turn and thus give rise to a peak. The peaked
solitary wave satisfies φ2

x = φ2, which can be explicitly solved: φ(x) = c̃ exp(−|x− x̄|).
(iv). When 0 = c̃ < A1, it is easy to see that there is no solitary wave satisfying the decay

condition.
Case II. φ(x) < 0 near −∞. In this case, we are solving

φx = −
√
G(φ), φ(x0) = −ε

for some x0 sufficiently large negative and ε > 0 sufficiently small.
When c̃ < 0, then φ = c̃ is a double pole of G(φ). Arguing as before, we obtain an

anticusped solitary wave with minx∈R φ = c̃, which decays exponentially to zero and is
implicitly defined by

φ−c̃/A1(A1 − φ)c̃/A1−1 = c̃−c̃/A1(A1 − c̃)c̃/A1−1e−|x−x̄|.

On the other hand, when c̃ ≥ 0, an argument similar to that was used in Theorem 5.1 shows
that there is no solitary wave solution.

Finally, the conclusion that, up to translations, all solitary waves are unique and even
and all kink solutions are unique, are direct consequences of the invariance of (5.17). �

We now shift our attention to the other component η(x) of the traveling wave solution to
(5.2), using the preceding classification for φ(x). The second equation in (5.4) implies

ηx = − 1
2 (φ− c̃)φxx − 1

2φ
2
x − 1

2 (2φ+ c)φx,



BÄCKLUND TRANSFORMATIONS FOR TRI-HAMILTONIAN DUAL STRUCTURES 27

hence, using (5.5),

ηx = −1

2

(
(2φ+ c)φx +

2φ3 + 3cφ2 + (c2 − 4a)φ

φ− c̃

)
,

where, according to (5.9),

φx = ±
φ
√

(φ−A1)(φ−A2)

φ− c̃
. (5.18)

Based on these identities, one may show that, corresponding to the “minus” and “plus”
signs in (5.18),

η(x) = η−(x) = −1

2
φ
(
φ+ c−

√
(φ−A1)(φ−A2)

)
,

ηx(x) = η−x (x) =
φ

2(φ− c̃)
(I(φ)− J(φ)),

while

η(x) = η+(x) = −1

2
φ
(
φ+ c+

√
(φ−A1)(φ−A2)

)
,

ηx(x) = η+
x (x) = − φ

2(φ− c̃)
(I(φ) + J(φ)),

where

I(φ) = (2φ+ c)
√

(φ−A1)(φ−A2), J(φ) = 2φ2 + 3cφ+ c2 − 4a.

Note that |I(φ)| = |J(φ)| when φ =
(
4a− c2

)
/ (2c). In what follows, we let

B =
4a− c2

2c
, C1 =

−3c−
√
c2 + 32a

4
, C2 =

−3c+
√
c2 + 32a

4
.

Then
J(φ) = (φ− C1)(φ− C2).

One may show that if 0 < A1 < A2, then 0 < C1 < B < A1 < C2, whereas, if A1 < A2 < 0,
then C1 < A2 < B < C2 < 0. Finally, we denote

x(A1) = min{x : φ(x) = A1}, x1(B) = min{x : φ(x) = B}, x2(B) = 2x(A1)− x1(B).

The symmetry of φ implies that φ(x2(B)) = φ(x1(B)) = B.

Theorem 5.3. When a > 0, the solution η(x) of (5.3) satisfies the asymptotic boundary
condition

lim
x→±∞

(η(x), ηx(x)) = (0, 0) .

Case 1. c < −2
√
a, (0 < A1 < A2).

1.1. If β < 2
√
a, (c̃ > A1), then there exists a smooth solution η(x) > 0, which

is increasing on (−∞, x1(B) ] and decreasing on [x1(B), +∞ ), attaining its maximum
maxx∈R η(x) = η1(B) =

(
c2 − 4a

)
/4 at x1(B).

1.2. If 2
√
a < β < −c, (0 < c̃ < A1), then there is a solution η(x) > 0, which is

smooth except at the jump discontinuity x̄. Moreover,
(a) If −(c2 + 4a)/(2c) < β < −c, i.e., 0 < c̃ < B < A1, then η(x) is increasing on

(−∞, x̄ ] and decreasing on [ x̄, +∞ ), with

lim
x↑x̄

(η(x), ηx(x)) =
(
η−(c̃), +∞

)
, lim

x↓x̄
(η(x), ηx(x)) =

(
η+(c̃), −∞

)
. (5.19)

(b) If β = −(c2 + 4a)/(2c), i.e., 0 < c̃ = B < A1, then η(x) is increasing on
(−∞, x̄ ] and decreasing on [ x̄, +∞ ), satisfying

lim
x↑x̄

(η(x), ηx(x)) =
(
η1(B), 1

2c
2
)
, lim

x↓x̄
(η(x), ηx(x)) = (η2(B), −∞) , (5.20)
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where η2(B) = a− 4a2/c2.
(c) If 2

√
a < β < −(c2 + 4a)/(2c), i.e., 0 < B < c̃ < A1, then η(x) is increasing on

(−∞, x1(B) ] and decreasing on [x1(B), +∞ ), with

lim
x→x1(B)

(η(x), ηx(x)) = (η1(B), 0) and

lim
x↑x̄

(η(x), ηx(x)) =
(
η−(c̃), −∞

)
, lim

x↓x̄
(η(x), ηx(x)) =

(
η+(c̃), −∞

)
.

(5.21)

1.3. If β = 2
√
a, (0 < c̃ = A1), then η(x) > 0 is smooth for all x ∈ R except at the

point x̄, increasing on (−∞, x1(B) ] and decreasing on [x1(B), +∞ ), and satisfying

lim
x→x1(B)

(η(x), ηx(x)) = (η1(B), 0) , lim
x→x̄

(η(x), ηx(x)) = (η(A1), −∞) ,

where η(A1) =
√
aA1 = −(c+ 2

√
a)
√
a.

1.4. If β > −c, (c̃ < 0), then, corresponding to the smooth solitary wave φ(x) in this
subcase, there exists a smooth solution η(x) > 0, which is increasing on (−∞, x2(B) ] and
decreasing on [x2(B), +∞ ), attaining its maximum maxx∈R η(x) = η1(B) at x2(B). On the
other hand, corresponding to the anticusped solitary wave, there is a solution η(x) < 0 which
has a jump discontinuity at x̄; more precisely, it is decreasing on (−∞, x̄ ] and increasing
on [ x̄, +∞ ), with

lim
x↑x̄

(η(x), ηx(x)) =
(
η+(c̃), −∞

)
, lim

x↓x̄
(η(x), ηx(x)) =

(
η−(c̃), +∞

)
.

Case 2. c = −2
√
a and β > 2

√
a, (A1 = 0 < A2 and c̃ < 0).

There exists a solution η(x) < 0, which has a jump discontinuity at x̄. Moreover, η(x) is
decreasing on (−∞, x̄ ], increasing on [ x̄, +∞ ), and with

lim
x↑x̄

(η(x), ηx(x)) =
(
η+(c̃), −∞

)
, lim

x↓x̄
(η(x), ηx(x)) =

(
η−(c̃), +∞

)
.

Case 3. c = 2
√
a and β < −2

√
a, (A1 < A2 = 0 and c̃ > 0).

There exists a solution η(x) < 0, which takes the same profile as the solution η(x) in Case
2 and satisfies

lim
x↑x̄

(η(x), ηx(x)) =
(
η−(c̃), −∞

)
, lim

x↓x̄
(η(x), ηx(x)) =

(
η+(c̃), +∞

)
.

Case 4. c > 2
√
a, (A1 < A2 < 0).

4.1. If β > −2
√
a, (c̃ < A2), then there exists a smooth solution η(x) > 0, which

is increasing on (−∞, x1(B) ] and decreasing on [x1(B), +∞ ), attaining its maximum
maxx∈R η(x) = η1(B) at x1(B).

4.2. If −c < β < −2
√
a, (A2 < c̃ < 0), then there is a solution η(x) > 0, which is

smooth except at the jump discontinuity x̄. Moreover, we have the following:
(a) If −c < β < −(c2 + 4a)/(2c), i.e., A2 < B < c̃ < 0, then η(x) is increasing on

(−∞, x̄ ] and decreasing on [ x̄, +∞ ), with

lim
x↑x̄

(η(x), ηx(x)) =
(
η+(c̃), +∞

)
, lim

x↓x̄
(η(x), ηx(x)) =

(
η−(c̃), −∞

)
.

(b) If β = −(c2 + 4a)/(2c), i.e., A2 < B = c̃ < 0, then η(x) is increasing on
(−∞, x̄ ] and decreasing on [ x̄, +∞ ), with

lim
x↑x̄

(η(x), ηx(x)) =
(
η1(B), 1

2c
2
)
, lim

x↓x̄
(η(x), ηx(x)) = (η2(B), −∞) .

(c) If −(c2 + 4a)/(2c) < β < −2
√
a, i.e., A2 < c̃ < B < 0, then η(x) is increasing

on (−∞, x1(B) ] and decreasing on [x1(B), +∞ ), satisfying

lim
x→x1(B)

(η(x), ηx(x)) = (η1(B), 0)
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and
lim
x↑x̄

(η(x), ηx(x)) =
(
η+(c̃), −∞

)
, lim

x↓x̄
(η(x), ηx(x)) =

(
η−(c̃), −∞

)
.

4.3. If β = −2
√
a, (A2 = c̃ < 0), then η(x) is smooth for all x ∈ R with x 6= x(A2).

Moreover, η(x) is increasing on (−∞, x1(B) ] and decreasing on [x1(B), +∞ ), satisfying

lim
x→x1(B)

(η(x), ηx(x)) = (η1(B), 0) , lim
x→x(A2)

(η(x), ηx(x)) = (η(A2), −∞) ,

where η(A2) = −
√
aA2 = (c− 2

√
a)
√
a.

4.4. If β < −c, (c̃ > 0), then, firstly, there exists a smooth solution η(x) > 0 cor-
responding to the smooth solitary wave φ(x), and it is increasing on (−∞, x2(B) ] and
decreasing on [x2(B), +∞ ), attaining its maximum maxx∈R η(x) = η1(B) at x2(B); Sec-
ondly, corresponding to the cusped solitary wave, there is a solution η(x) < 0, which has
a jump discontinuity at x̄, more precisely, it is decreasing on (−∞, x̄ ] and increasing on
[ x̄, +∞ ), with

lim
x↑x̄

(η(x), ηx(x)) =
(
η−(c̃), −∞

)
, lim

x↓x̄
(η(x), ηx(x)) =

(
η+(c̃), +∞

)
.

Proof. Case I. 0 < A1 < A2.
When 0 < A1 < c̃, according to the monotonicity of φ and using the fact that in the

present case 0 < φ ≤ A1 < c̃, we conclude that

( η(x), ηx(x) ) =

{ (
η−(x), η−x (x)

)
, −∞ < x ≤ x(A1)(

η+(x), η+
x (x)

)
, x(A1) < x < +∞,

which immediately implies that both η(x) and ηx(x) decay to zero at infinity. Furthermore,
note that I(B) = J(B) < 0 in this situation, which, when combined with the relation
0 < B < A1, implies that

lim
x→x1(B)

ηx(x) = η−x (B) = 0, lim
x→x1(B)

η(x) = η−(B) =
c2 − 4a

4
.

As −∞ < x ≤ x1(B), 0 < φ ≤ B, we have |I(φ)| > |J(φ)|. Furthermore, using the inequality

I(φ) <
4a

c

√
(φ−A1)(φ−A2) < 0,

one may show that, no matter whether J(φ) < 0 or J(φ) > 0, the function η−x (x) will be
positive everywhere, and so η(x) is strictly increasing on this interval. As x1(B) < x <
x(A1), 0 < C1 < B < φ < A1, we thus conclude that |I(φ)| < |J(φ)| and J(φ) < 0.
Therefore, η−x (x) < 0, meaning that η(x) is decreasing on [x1(B), x(A1) ]. Next, by a
similar analysis as above, one may show that η+

x (x) < 0 for x ∈ (A1, +∞), and then η(x)
will continue to decrease on [x(A1), +∞ ). Finally, we deduce that both η−(x) and η+(x) are

positive in their respective interval, resulting from the fact that |φ+c| >
√

(φ−A1)(φ−A2)
and φ+ c ≤ c+A1 = −2

√
a < 0.

When 0 < c̃ < A1, as we have seen in the above discussion,

( η(x), ηx(x) ) =

{ (
η−(x), η−x (x)

)
, −∞ < x ≤ x̄,(

η+(x), η+
x (x)

)
, x̄ < x < +∞.

(5.22)

Therefore, both η(x) and ηx(x) decay at infinity. To analyze its monotonicity, we need to
distinguish three subcases:

(1). If 0 < c̃ < B < A1, one may use an argument similar to that was used in the case
when 0 < A1 < c̃ to verify that η(x) > 0 for all x ∈ R and η−x (x) > 0 on (∞, x̄ ], η+

x (x) < 0
on [ x̄, +∞ ), and then (5.19) follows. Furthermore, it is easy to see that η−(c̃) > η+(c̃),
meaning that the singular point c̃ will give rise to the jump discontinuity x̄ for η(x).
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(2). If 0 < c̃ = B < A1, then η(x) > 0 for all x ∈ R and has the same monotonicity
as in the previous subcase. The limiting behavior at the point x̄ in formulae (5.20) follows
directly from (5.22).

(3). If 0 < B < c̃ < A1, note that I(B) = J(B) and using the fact that |I(φ)| >
|J(φ)|when 0 < φ < B, and |I(φ)| < |J(φ)| when φ > B, one can directly show that

ηx(x) =


η−x (x) > 0, −∞ < x < x1(B),

η−x (B) = 0, x = x1(B),

η−x (x) < 0, x1(B) < x < x̄,

η+
x (x) < 0, x̄ < x < +∞,

(5.23)

and then the asympotic behavior given in (5.21) follows.
When 0 < B < c̃ = A1, one may show that (5.23) is still valid, meaning that η(x)

will have the same monotonicity as in Case 1.2 (c). However, in contrast to the previous
subcase, although the first-order derivative ηx goes to negative infinity as x approaches to
x̄ from both left- and right-hand sides, since limx↑x̄ η

−(x) = limx↓x̄ η
+(x) =

√
aA1, η(x) is

continuous at x̄.
When c̃ < 0, there are two kinds of solitary waves. For the smooth solitary wave φ, which

lies in ( 0, A1 ], utilizing its monotonicity and the fact that it decays exponentially to zero
at infinity again, we can conclude that the corresponding solution η(x) and its first-order
derivative ηx(x) is smooth for all x ∈ R and satisfies

η(x) =

{
η+(x) > 0, −∞ < x ≤ x(A1),

η−(x) > 0, x(A1) < x < +∞,
ηx(x) =



η+
x (x) > 0, −∞ < x ≤ x(A1),

η−x (x) > 0, x(A1) < x < x2(B),

η−x (B) = 0, x = x2(B),

η−x (x) < 0, x2(B) < x < +∞.
On the other hand, for the anticusped solitary wave φ(x) which lies in ( c̃, 0 ), one may show
that η(x) and ηx(x) are determined by

η(x) =

{
η+(x) < 0, −∞ < x ≤ x̄,

η−(x) < 0, x̄ < x < +∞,
ηx(x) =

{
η+
x (x) < 0, −∞ < x ≤ x̄,

η−x (x) > 0, x̄ < x < +∞.
Applying the same analysis as used in Case 1.1 and Case 1.2 (b) to the present two subcases
respectively, yields all the corresponding conclusions.

Case II. When A1 = 0 < A2, as we have pointed out in Theorem 4.1, solitary wave
solution φ(x) exists if and only if c̃ < 0 and φ(x) turns out to be an anticusped with the
singular point c̃. Hence, we may safely draw the conclusion that η(x) in this case shall
present the similar configuration as the anticusped solitary wave in Case 1.4. And then all
the conclusions obtained from Case 1.4 remain valid in the present case.

Finally, the remaining two subcases may be analyzed in a similar way as has been done in
Cases 2 and 1, respectively. In this manner, we have completed the proof of the theorem. �

Remark 5.1. When 0 < c̃ < A1, there exists a jump discontinuity occurring at the singular
point x̄, such that

lim
x↓x̄

η(x) = lim
x↓x̄

η+(x) = η+(c̃) = −1

2
(c+ β)

(
β −

√
β2 − 4a

)
,

lim
x↑x̄

η(x) = lim
x↑x̄

η−(x) = η−(c̃) = −1

2
(c+ β)

(
β +

√
β2 − 4a

)
.

It is easy to show that η+(c̃) is increasing with respect to c̃ as 0 < c̃ ≤ A1, while η−(c̃) is
increasing with respect to c̃ as 0 < c̃ < B, and decreasing as B < c̃ < A1; its maximum is
η1(B), attained when c̃ = B.



BÄCKLUND TRANSFORMATIONS FOR TRI-HAMILTONIAN DUAL STRUCTURES 31

Another fact worth mentioning is that η−(c̃) ≥ η+(c̃), and the difference Γ(c̃) = η−(c̃)−
η+(c̃) increases as c̃ goes from 0 to C1, and decreases as c̃ goes from C1 to A1, until Γ(c̃)
vanishes and η−(c̃) = η+(c̃) = η(A1) occurs when c̃ = A1. In this situation, as we have
mentioned in Theorem 5.3, η(x) is smooth for all x ∈ R.

Figure 1 illustrates the different types of discontinuous non-analytic solitary wave solu-
tions η(·) constructed in the Case 1.2 of Theorem 5.3 and a special cusped solitary wave
solution described in Case 1.3.

In what follows we investigate the properties of η(x) when a = 0, so A1 = A2 = −c, B =
−c/2. Formula (5.18) becomes

φx = ± φ(φ−A1)

φ− c̃
. (5.24)

Consequently, η(x) and ηx(x) can be written in terms of φ by

η(x) = − 1
2φ(φ−A1)(1± 1), ηx(x) = −φ(2φ+ c)(φ−A1)(1± 1)

2(φ− c̃)
,

respectively. Obviously, η(x) and ηx(x) will vanish when φ satisfies (5.24) in the “minus”
sign case. The corresponding results are given as follows.

Theorem 5.4. When a = 0, we have
Case 1. 0 < A1 = A2.

1.1. If c̃ > A1, then there is a smooth solution η(x) > 0, which is increasing on
(−∞, x1(B) ] and decreasing on [x1(B), +∞ ). It attains its maximum maxx∈R η(x) = c2/4
at x1(B) and satisfies

lim
x→±∞

(η(x), ηx(x)) = (0, 0) .

1.2. If c̃ = A1, then there is a continous solution

η(x) =

{
φ(A1 − φ), −∞ < x ≤ x̄
0, x̄ < x < +∞.

η(x) is increasing on (−∞, x1(B) ] and decreasing on [x1(B), x̄ ], attaining its maximum
maxx∈R η(x) = c2/4 at x1(B). Moreover,

lim
x→−∞

(η(x), ηx(x)) = (0, 0) , lim
x↑x̄

(η(x), ηx(x)) =
(
0, −c2

)
.

1.3. If 0 < c̃ < A1, then there is a solution

η(x) =

{
φ(A1 − φ), −∞ < x < x̄

0, x̄ < x < +∞,
which is increasing on (−∞, x̄ ], and satisfies

lim
x↑x̄

(η(x), ηx(x)) = (−β(c+ β), +∞) , lim
x→−∞

(η(x), ηx(x)) = (0, 0) .

1.4. If c̃ < 0, then there is a trivial solution η(x) = 0 corresponding to the kink
solution φ(x) in the present subcase, while, corresponding to the anticusped solitary wave
φ(x), the solution η(x) is governed by

η(x) =

{
0, −∞ < x ≤ x̄
−φ(φ−A1), x̄ < x < +∞,

and satisfies

lim
x↓x̄

(η(x), ηx(x)) = (−β(c+ β), +∞) , lim
x→+∞

(η(x), ηx(x)) = (0, 0) .

Case 2. A1 = A2 < 0.
For c̃ < A1, c̃ = A1, A1 < c̃ < 0 and c̃ > 0, their corresponding solutions η(x) have the

same properties as the solutions in Cases 1.1, 1.2, 1.3 and 1.4, respectively.
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x x

Case 1.2(a)

x x

Case 1.2(b)

x1(B) x x

Case 1.2(c)

x1(B) x x

Case 1.3

Figure 1. Discontinuous solitary waves and a special “cusped” solitary wave
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Finally, to understand the effect of the nonlinear dispersive terms, it is worth comparing
the properties of the traveling wave solutions of two systems (3.9) and (3.12). As far as
system (3.9) is concerned, we consider α = 0 and β = 1. We assume that system (3.9) has
the solitary wave solution

(q(t, x), r(t, x)) = (ψ(x− c t), φ(x− c t)) , c ∈ R,

such that φ→ 0, ψ → a (a ≥ 0) as |x| → ∞. Replacing ψ by ψ+a, we arrive at the following
system of ordinary differential equations{

cψ′ + 2aφ′ + 2(φψ)′ − ψ′′ = 0,

cφ′ + 2ψ′ + 2φφ′ + φ′′ = 0.

We thus deduce that φ(x) is governed by the equation

φ2
x = φ2(φ−A1)(φ−A2),

with A1 = −c− 2
√
a, A2 = −c+ 2

√
a, from which one may classify the traveling waves as

follows. If a > 0, then there exists a smooth solitary wave solution

φ =


A1A2

A2 cosh2
(
− 1

2

√
A1A2|x̄− x|

)
−A1 sinh2

(
− 1

2

√
A1A2|x̄− x|

) , 0 < A1 < A2,

−A1A2

A2 sinh2
(
− 1

2

√
A1A2|x̄− x|

)
−A1 cosh2

(
− 1

2

√
A1A2|x̄− x|

) , A1 < A2 < 0.

If a = 0, then A1 = A2 = −c, and system (3.9) has a kink solution

φ =
−ce|c|x

1 + e|c|x
.
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