A Plethora of Integrable Bi-Hamiltonian Equations
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1 Introduction

This paper discusses several algorithmic ways of constructing integrable evolution equations based
on the use of multi-Hamiltonian structures. The recognition that integrable soliton equations, such
as the Korteweg-deVries (KdV) and nonlinear Schrodinger (NLS) equations, can be constructed us-
ing a biHamiltonian method dates back to the late 1970’s. An extension of the method was proposed
by the first author and Fuchssteiner in the early 1980’s and was used to derive integrable general-
izations of the KdV and of the modified KdV. However it was not until these models reappeared in
physical problems, and their novel solutions such as compactons and peakons were discovered, that
the method achieved recognition. In this paper, we describe the basic approach to constructing a
wide variety of integrable bi-Hamiltonian equations. In addition to usual soliton equations, these
new hierarchies include equations with nonlinear dispersion which support novel types of solitonic
solutions.
Let us start with the simple case of a scalar evolution equation

u; = Klul, (1.1)
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where Ku] is a smooth function depending on the scalar spatial variable z, the dependent variable
u, and its x derivatives u,, u,,, etc. Later, we shall generalize K by allowing it to be either non-local,
or depend on additional spatial variables. A second evolution equation

us, = Q[u]

is called a symmetry of equation (1.1) iff the two flows commute. Cross-differentiation produces
the basic symmetry condition

K'Q—- Q'K =0, (1.2)

where the prime denotes Fréchet differentiation, i.e.

K'[u]Q = %K[u + Q)]

e=0

More explicitly,
0K 0K 5 oK 0
rm + Oty + OU sy T
For example, if equation (1.1) does not depend explicitly on z then it is invariant under the group
of z-translations, which gives rise to the symmetry ¢) = u,. See [1] for details.

According to the general symmetry approach to integrability, [1], [2], [3], the existence of an
infinite hierarchy of higher order symmetries is a manifestation of the integrability of the evolution

equation (1.1). The basic method for constructing such hierarchies is through the use of a recursion

K’ o+, where 0

(1.3)

operator which is defined as an operator ®[u] which maps symmetries to symmetries. It was shown
in [4] that if the operator ®[u] satisfies the operator equation

o'[K] = [K', @], (1.4)

where [-, -] denotes the usual commutator, then @ is a recursion operator for (1.1). If @ is a recursion
operator for (1.1), then there is an associated hierarchy of commuting flows (symmetries) taking
the form

uy = O"K. (1.5)

A large class of recursion operators satisfy a remarkable property introduced by Fuchssteiner
[5], namely they are hereditary (or Nijenhuis) operators. The operator ®[u] is called hereditary
iff ®'[Pv]w — ¢P'[v]w defines a symmetric bilinear form of the functions v and w. It can be shown
that it ® is hereditary and if ® is a recursion operator for the seed equation u; = Kg, then ® is also
a recursion operator for any constant coefficient linear combination

Uy = Col(o + Clq)[(o + ...+ qu)n[(o, (16)
of the associated hierarchy of symmetries, or, even more generally,
u; = B(®) Ko, (L.7)

where B(z) is any rational, or even analytic function of z; see [1] for details. (Indeed, one can even
regard the Backlund transformation as an exponential series in the higher order symmetries [6] and
hence in the recursion operator ®.) Thus the question of constructing integrable equations reduces



to the question of constructing hereditary operators and “starting symmetries” Ky, i.e. functions
Ko which satisfy equation (1.4). Usually, the hereditary operator is independent of the spatial
variable z, in which case the starting symmetry is Ky = u;, and the seed equation is the linear
wave equation u; = u,. Indeed, 9(®v) = ®'[u ]Jv + ®Iv, or ®'[u,] = [0, ®], and equation (1.4) is
satisfied with Ky = u,.

An operator f[u] is called Hamiltonian if it is skew symmetric (with respect to a suitable
inner product — usually a variant of the L* inner product), and such that the associated Poisson
bracket {F,H} = [6FO06H dx on the space of functionals satisfies the Jacobi identity. Here 6 H
denotes the variational derivative of the Hamiltonian functional H. An evolution equation is called
Hamiltonian if it can be written in the form

where 6 is a Hamiltonian operator.

Following the fundamental discovery of Magri [7] that Hamiltonian integrable equations are
actually bi-Hamiltonian systems, an algorithmic way of constructing hereditary operators was pro-
posed independently in [8] and [9]. Two operators #; and 6, are said to form a Hamiltonian pair
if every linear combination a#, + 36, for «, 3 constant, is a Hamiltonian operator. This requires
that 6; and 0, are Hamiltonian, and, moreover, that they satisfy a certain bilinear compatibility
condition [7]. Given a Hamiltonian pair 0y, 0, it can be shown [8], [9] that the operator ® = ;07"
is a hereditary operator. Furthermore, if #; and 6, do not depend explicitly on z, then Kq = u, is
a seed symmetry for @.

If a hereditary operator ® is derived from a pair of compatible Hamiltonian operators #, and 6,,
then there exists an algorithmic way of constructing additional starting symmetries. Let C[u] be a
function which is annihilated by the Hamiltonian operator 6, i.e. §;C = 0. In most cases, C' is the
variational derivative of a a Casimir (or distinguished) functional B for the Hamiltonian operator
6., i.e. C = 6B [1], [10]. By abuse of terminology, we shall call all such functions C[u] Casimirs.
Then

Ko = 0,C; where 6,C =0, (1.9)

is a starting symmetry of the hereditary operator ® = 6,07, Indeed, we can write Ky = ® - 0 as
the image of the trivial symmetry u; = 0 under the recursion operator ® since (formally) C' = 6;'0.
Clearly K = 0 satisfies the recursion operator criterion (1.4), which implies that Ky does also.
Combining the above discussion with the general form (1.7) of the hierarchy generated by a
recursion operator, suggests the following algorithmic construction of integrable evolution equations:
Let 0y, 0, be a Hamiltonian pair which do not depend on x. Let ® = 0,07, Then the following
equations are integrable,

uy = Qu,, (1.10)
N (111)
ur = Duy, (1.12)
us = 0,C,  6,C =0, (1.13)

i j k !
E a,. P uy = Z b, P u, + Z d.®"u, + Z e 970,C, (1.14)
xk=1 k=1 r=1 xr=1



where a,, b.,d., e, are constants.

The integrability of equation (1.11) is a consequence of the fact that if ® is hereditary then ®~*
is also hereditary. In (1.12), y is an additional arbitrary independent variable that does not occur
in the operator @, and thus u, is a starting symmetry for ®. The integrability of equations (1.13)
has been commented upon in [11]. The integrability of equations (1.14) follows from the fact that
on can take arbitrary constant coefficient linear combinations of all the equations in the hierarchies
associated with (1.10-13).

In many cases, one of the operators in the Hamiltonian pair is itself a linear combination of
two Hamiltonian operators, so that the linear combinations af; + 360 are actually members of a
three parameter family &, + /392 + 703, where 91, 92, 05 form a Hamiltonian triple. In such cases,
there are several distinct choices of the Hamiltonian pair 6,, 5, that can be used to generate a
hereditary operator ® = ,07". Usually this happens because there is a scaling transformation
which decouples one of the operators into two components having different scaling properties, and
hence decomposing into a sum of two Hamiltonian operators. In such cases, a single Hamiltonian
triple can lead to a plethora of associated integrable equations. This fact was first exploited in
[12], where certain generalizations of both KdV and modified KdV were presented. Analogous
generalizations of the nonlinear Schrodinger equation and of the sine-Gordon equations are given
n [13].

It is interesting that although equations (1.10-14) are derived from the same basic mathematical
structure, namely a Hamiltonian pair or triple, they admit very different types of solutions. These
include, solitons, peakons (peaked solitons) [14], compactons (solitons with compact support) [15],
2-hump solitons [13], infinitely many solitons [16], and twisted solitons [17]. It is also remarkable
that many of these equations appear in physical applications. For example the generalized KdV
and the generalized modified KdV appear in the modeling of unidirectional idealized water waves

[13], [14], [18].

2 Integrable Generalizations of the KAV Equation

The prototypical example, leading to the Korteweg-deVries equation and its generalizations, starts
with the operator

0 = ad + B3’ + v(ud + du). (2.1)
It can be shown that # is a Hamiltonian operator for all values of the constant parameters «, 3,~
and hence its component parts 9, 9° and ud + du = 2ud + u, form a compatible hamiltonian triple.
In what follows we use this operator to illustrate the constructions (1.10-13).

(i) Let 6, =6, 60, =0+ vd°. Then equation (1.10) becomes
u; = (ad + BO* + y(ud + 0u))(0 + V@S)_lum. (2.2)

It v = 0, this equation becomes the celebrated KdV equation
Uy = Qg + Bges + 3yuu,. (2.3)

If v # 0, equation (2.2) can be written in a local form by letting (0 + v9°) 'u, = ¢, or u = ¢+ V Gy
Then equation (2.2) becomes
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or

Gt + Voot = Gz + BGrzz + 3799z + Vy(qqmmf + 2qzqzz)- (2'4)
Equation (2.2) is equation (26.€) of [12], while equation (2.4) is equation (5.3) of [20]. Equation
(2.4) with ¥ > 0 was derived from physical considerations in [14] where also its Lax pair as well

as its peakon solutions were given. For v < 0 (2.4) admits compacton solutions [15]. The inverse
spectral method for equation (2.4) is discussed in [16]; other interesting aspects of this equation are

discussed in [13], [20], [21].

Lettinga =3=0, v =¢7!

, € =0, in equation (2.4), and integrating once, one finds

1
Gzt = V(qGae + §q;‘§). (2.5)

Equation (2.5) was first shown to be integrable by Calogero [22]; its relation to the generalized KdV
was pointed out in [11].

(ii) Let 0 =0, 6, = 0+ v0°, u = ¢z + Vqgue, then equation (1.11) becomes

The particular case when v = 0 is given in [12].
(iii) Let 0 =0, 6, =0+ vd°, u = ¢, + Vquus, then equation (1.12) becomes

Qot F VQozat = oy + Buzay + V(Geey + 22qzy) + Y (Grzzeqy + 2eeaay)- (2.7)

The particular case of ¥ = 0 has been discussed earlier, and it has been shown that in this case
equation (2.7) supports breaking solitons.

(iv) Let 8, =0, 6, = ud + du. Then, since equation #;C = 0 implies C = u~'/2, equation (1.13)
becomes

wy = (d + BO%)u2, (2.8)

This equation, which admits the hereditary operator ® = #(ud + du)~', where 6 is defined by
equation (2.1), was derived in [11]. If @ = 0, equation (2.8) reduces to the Harry-Dym equation.

3 Integrable Generalizations of the mKdV Equation

A second collection of integrable Hamiltonian systems starts with the non-local Hamiltonian oper-
ator

0 = ad + B + yOud ' ud, (3.1)

which is a Hamiltonian operator for all values of the constant parameters «, 3,~. This operator leads
to a similar set of integrable equations associated with the modified Korteweg-deVries equation.



(i) Let =6, 60, =0+ vd>. Then equation (1.10) becomes
u; = (ad + B+ ’y@ua_lu@)(a + V@B)_luw. (3.2)

It » = 0, this equation reduces to the mKdV equation

3
Uy = QUy + BUzer + 3 ’yuzum. (3.3)

If v # 0, equation (3.2) can be written in a local form by letting v = ¢ + v¢,,. Then equation (3.2)
becomes

1
(q + quz)t = aq; + /3sz: + 578[((] + qu:)(qZ + ngzg)]' (34)

(ii) Let 6y =6, 6, = 0+ v0°, then equation (1.11) becomes the nonlocal equation
(o + BO* + ’yaua_lu)(l + V@Z)_lut = Uy. (3.5)

Setting u = ¢ 4+ rq;, removes the second non-locality, but there appear to be no direct way to
remove the first 971,

(iii) Similarly, setting 6, = 6, 6, = 0 4+ vd>, then equation (1.12) leads to a non-local 2 + 1
dimensional equation

u = (a+ BO* + ’yaua_lu)(l + V@Q)_luy. (3.6)
Again, as in (3.5) the non-locality appears essential.
(iv) Let 6, = 0+ \0°, 0, = 0%+ 0?0udud. If o # 0, then the Casimir functional for 6 is found
to be [0~ cos(cd™ u) dz with variational derivative C' = d7'sin(cd 'u). Then equation (1.13)

becomes

u = (0 + )\33) sin(aa_lu). (3.7)
Setting u = ¢z + Agzzz, We see that (3.7) can be rewritten in the local form
Got = sin o(q + Aqzz) (3.8)

an equation whose integrability was first noted in [13]. In particular, for A = 0, (3.8) reduces to the
well-known sine—Gordon equation.

On the other hand, if we consider the “singular limit” ¢ — oo, then the Casimir for 6, = dud~'ud
has variational derivative C' = =2, leading to the equation

uy = (0 + \0°) u™. (3.9)

According to the formal symmetry approach of Shabat the two Casimir equations (2.8), (3.9), are
the only two integrable cases of the general class of equations u; = 9(1 + A\d?)u*. As with (2.8),
equation (3.9) admits solitons, whereas replacing v by r = 1/u in (3.9), we obtain

re = r* (0 + 0°)r?, (3.10)

which admits both traveling and stationary compactons [23].
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4 The Nonlinear Schrodinger Equation

As our final example, we consider the integrable Hamiltonian systems that are associated with
the nonlinear Schrodinger equation. In this case, the function u is complex-valued, as are the
associated evolution equations. We use bars to denote complex conjugates, and ¢ = v/—1. Consider
the non-local Hamiltonian operator

OF = aiF' + BOF + ’yu@_l(ﬂF — uF), (4.1)

which is Hamiltonian for all values of the constant parameters «, 3,~.
Let 63 =0, 0; = ¢ + v0. Then equation (1.7) becomes

u; = (a1 + B0)(i + v0) tuy + yudHa(i + vd) M uy — u(—1 4+ vd) ', (4.2)
Setting u = (7 + vd)q, equation (4.2) becomes the local equation
19s + Vet = @iz + Bger — iv(iq + vg2)]q]?, (4.3)

first noted in [13] (see also [11]). If @« = v = 0, B = 4 = 1, this equation reduces to the nonlinear
Schrodinger equation
U = i(Upy + |ul?u). (4.3)
On the other hand, if o = 8 =0, and v = ge™%, it follows that
—ivg = |v[*v,. (4.4)

This equation has a first integral |v,|*. Here, in contrast to the KdV and mKdV cases, the dispersion
remains linear due to the fact that the Hamiltonian operator #, is a pure integral operator. The
construction of an associated hierarchy is more problematic in this case due to nonlocalities.
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