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Abstract

The biochemical processes leading to the synthesis of new proteins are ran-
dom, as they typically involve a small number of diffusing molecules. They
lead to fluctuations in the number of proteins in a single cell as a function
of time and to cell-to-cell variability of protein abundances. These in turn
can lead to phenotypic heterogeneity in a population of genetically identical
cells. Phenotypic heterogeneity may have important consequences for the
development of multicellular organisms and the fitness of bacterial colonies,
raising the question of how it is regulated. Here we review the experimental
evidence that transcriptional regulation affects noise in gene expression, and
discuss how the noise strength is encoded in the architecture of the pro-
moter region. We discuss how models based on specific molecular mecha-
nisms of gene regulation can make experimentally testable predictions for
how changes to the promoter architecture are reflected in gene expression
noise.
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FLUCTUATIONS AND THE CENTRAL DOGMA
OF MOLECULAR BIOLOGY

The central dogma of molecular biology describes information flow from DNA to protein via
messenger RNA (mRNA). DNA stores information about the proteins that the cell needs to pro-
duce to achieve its functions. At the same time, DNA functions as a molecular computer that
integrates a variety of chemical inputs that describe the conditions within the cell and in its envi-
ronment in order to produce a particular chemical output in the form of mRNA. These regulatory
computations are inherently random, as they are achieved by a small number of molecules un-
dergoing Brownian motion. This means that for a fixed set of molecular inputs the output of
the transcriptional and translational machinery, namely the number of proteins produced from
a particular gene, is random. This can be observed in a clonal population of cells exposed to the
same environmental conditions in which the amount of gene expressed varies from cell to cell.
Similarly, in single-cell experiments that measure the amount of gene expression with time, even
in steady state the number of mRNAs and proteins fluctuates from one time instance to the next.
Because the activity of proteins and mRINAs is dictated by their copy number within the cell, these
fluctuations can potentially affect the functioning of genetic circuits, sometimes leading to phe-
notypic variability in a population of genetically identical cells. A number of reviews have focused
on different aspects of this phenomenon (3, 23, 27). Here we review the experimental evidence for
the important role of transcriptional regulation in determining the size of these fluctuations, and
the theoretical ideas that have been put forth to explain the experimental findings. Together, these
studies are beginning to provide a quantitative understanding of how the promoter architecture
affects the amount of gene expression noise. An exciting possibility suggested by these ideas is that
the amount of gene expression noise is under the direct control of regulatory DNA and therefore
subject to evolutionary forces.

Sanchez o Choubey o Kondev



Annu. Rev. Biophys. 2013.42:469-491. Downloaded from www.annualreviews.org
Access provided by University of Minnesota - Twin Cities - Law Library on 02/23/15. For personal use only.

PHYSIOLOGICAL EFFECTS OF GENE EXPRESSION NOISE

An emerging view is that gene expression noise is not simply a necessary evil of the molecular
computations of the central dogma, but is at times utilized by cells to achieve certain functions. In
other words, evidence is mounting for specific physiological roles for gene expression noise, and
a number of recent reviews have addressed this fascinating topic.

In gene expression, stochasticity is the driving force that generates phenotypic heterogeneity in
microbial populations. In fact, population heterogeneity in the expression of even one protein can
have important consequences for a population of cells. For instance, Blake et al. (7) found that cell-
to-cell variability in the expression of a single antibiotic-resistant protein in Saccharomyces cerevisine
can lead to pronounced effects in the response of the whole population to an antibiotic challenge;
at intermediate antibiotic concentrations, the strain with the largest phenotypic heterogeneity
was best able to survive. Interestingly, the level of heterogeneity could be tuned genetically by
modifying the sequence of regulatory DNA, such as the TATA box of the promoter.

In some instances, the effect of noise can be amplified by the presence of multi-stability in
genetic networks. This can lead to multiple phenotypes coexisting in a cell population. Individual
cells can make transitions between those phenotypes driven by fluctuations in the expression of
certain key genes in the network (10). An example is provided by the behavior of individual Bacillus
subtilis cells when they are subject to stress; the cells must decide whether to enter a competent
state or to start forming spores (50, 51). The two phenotypes are mutually exclusive, and the
decision between them is determined by transient values of the concentration of key proteins
in the network, which can stochastically exceed a threshold value and thereby force the cells to
assume the competence phenotype (28).

Not all gene expression noise, however, is beneficial. Some processes, such as the development
of a multicellular organism, rely on precise spatial and temporal transmission of genetic infor-
mation, and in these cases noise in gene expression needs to be kept to a minimum (1). Recent
experiments have found that noise suppression mechanisms exist at the level of gene networks that
control development (39). These studies, as well as many others, demonstrate that noise in gene
expression is an important biological trait, and as such, it is important to understand how noise is
affected by the DNA sequence of the gene and the sequence of its regulatory region.

EFFECT OF PROMOTER ARCHITECTURE ON GENE EXPRESSION
NOISE IN EUKARYOTES

The specific sequence of the regulatory DNA that controls the amount of expression from a
particular gene has a large effect on gene expression noise in eukaryotic cells. This has been
demonstrated in studies using natural and synthetic promoters, which differed from each other
by the presence or absence of proximal nucleosome binding sites, the presence of a TATA box
with variable strength, and the number of transcription factor binding sites, their strength, and
their location on the promoter.

Some of these promoter architectural effects on noise were found by analyzing high-throughput
data on gene expression noise in wild-type yeast and mammalian cells (4, 26, 33). Other studies were
performed with synthetic or mutated promoters, and they were based on comparing noise levels
from identical genes under the control of promoters that differed by only one particular architec-
tural feature, for example, the number of enhancers (22, 32, 38, 52, 57). Experiments with synthetic
promoters allow for a direct and systematic comparison between different architectural features of
the promoter and their contribution to gene expression noise. Below we discuss the main lines of
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evidence in support of the idea that transcriptional regulation is a major source of variability in gene
expression, and that this variability can be controlled by tuning the regulatory DNA sequence.

Nucleosome Occupancy

Positioning of nucleosomes in eukaryotic chromosomes affects practically all genomic functions,
including transcription. Here we review experimental evidence for the role of nucleosome oc-
cupancy in determining gene expression noise. We also describe a simple mechanistic model
based on occlusion of promoter DNA by nucleosomes, which can account for the experimental
observations.

Experimental evidence. The first investigations of gene expression noise in eukaryotic cells
revealed that gene silencing by nucleosome occlusion of the promoter and its activation by chro-
matin remodeling are key factors affecting noise (40). DNA wrapping around nucleosomes is a
stochastic process governed by diffusion (35), as is the binding of chromatin remodeling factors
to the promoter DNA. It is believed that promoter DNA wrapped around nucleosomes is very
stable and has a typical lifetime that is longer than the timescale of transcription. This hypothesis
explained the results of a systematic study of noise generated by the PHOS promoter in yeast cells,
which is regulated by chromatin remodeling (40). It was found that removal either of particular
components of the chromatin remodeling complex, or of the binding sites for the transcription
factors that recruit the chromatin remodeling complex to the promoter, results in enhanced noise
by reducing the activation rate of the promoter (40). Thus, promoter-DNA condensation into
chromatin may lead to long-lived, silenced, or OFF, promoter states, which are followed by rapid,
short-lived initiation events, leading to transcriptional bursting. Transcriptional bursting leads to
transcriptional noise and cell-to-cell variability in gene expression.

Due to the importance of chromatin silencing and remodeling as a source of transcriptional
noise, those genes that are in open chromatin regions, or whose promoters are depleted of nu-
cleosomes, are expected to display lower levels of cell-to-cell variability than those genes whose
promoters are covered by nucleosomes. Indeed, computational analyses of genomic nucleosome
occupation patterns revealed the presence of two broad classes of promoters: one class contain-
ing nucleosome binding sites close to the transcription start site, and a second class containing a
nucleosome-free region in the vicinity of the transcription start site (54, 55). Interestingly, the first
class of promoters was associated with both large cell-to-cell variability in gene expression at the
single-cell level and large promoter plasticity (i.e., large variability in mean gene expression levels
across environmental conditions). In contrast, the second class of promoters was characterized by
low variability and low plasticity (54, 55). This correlation between plasticity and noise was related
to the architecture of the promoter. Still, a correlation between these two quantities does not mean
they cannot be differentially regulated; additional bioinformatic analyses of promoter sequences
have suggested that evolution might have tuned promoter architecture so that a promoter may
exhibit a large gene expression dynamic range and low noise simultaneously (2, 26).

Biological importance. It has been hypothesized that essential genes, whose over- or underex-
pression may lead to cell death, would tend to exhibit low noise levels. Consistent with this hypoth-
esis, computational analyses have revealed that these genes tend to be clustered in nucleosome-
depleted open-chromatin regions on the chromosome (5), where noise is low (15).

Mechanistic explanation. The lack of nucleosomes in the proximity of the transcription startsite
is expected to reduce the probability of gene inactivation by the condensation of promoter DNA
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Figure 1

Transcriptional dynamics of nucleosome-mediated repression. (#) A nucleosome-free unregulated promoter is characterized by a
constant probability per unit time of mRINA synthesis 3. mRINA is degraded with a constant probability y per unit time per molecule.
(b) A promoter inactivated by a proximal nucleosome. The promoter switches between two states, an open state, in which transcription
occurs with a constant probability per unit time 7, and a closed state, in which transcription does not initiate owing to the
nucleosome-mediated promoter inactivation (here represented by steric occlusion). The promoter switches from the open state to the
closed state with probability per unit time k¢r,osg, and from the closed state to the open state with probability per unit time kopgn .
mRNA is degraded with a constant probability per unit time per molecule (y). (c) The steady-state mRNA distribution (so/id red line:
3 = 20, kcrose = 0.01, kopry = 0.01; all the rates are in units of y) predicted by the nucleosome model differs significantly from the
nucleosome-free, unregulated promoter, which is described by a Poisson distribution with the same mean (black line: 13 = 10).

(d) The predicted CV? of the mRNA distribution as a function of the mean for the unregulated (black line) and the two-state
nucleosome model (solid red line: rg = 50, koppy = 0.01, kcrosk is variable). The promoter noise is the contribution to the noise

(as measured by C1?) by the nucleosome-mediated transcription regulation process.

into chromatin. We demonstrate in Figure 14,6 how the presence or absence of a nucleosome
affects gene expression noise. We consider a gene that is inactivated by nucleosomes, together
with another gene whose promoter is nucleosome free. Using the procedure described in the
sidebar, Method for Computing the Gene Expression Mean and Noise, we can compute the gene
expression noise predicted by both models. As shown in Figure 1¢,d, the promoter whose activity
is switched off by the presence of a nucleosome displays a non-Poisson mRNA distribution, char-
acterized by noise strength greater than that of the promoter that is always active. In contrast, the
nucleosome-depleted gene shows a Poisson mRNA distribution, characterized by noise strength,
defined by the coefficient of variation squared (CV’? = variance/mean?), equal to 1/mean.
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METHOD FOR COMPUTING THE GENE EXPRESSION MEAN AND NOISE

To describe the temporal fluctuations of the number of mRNAs or proteins in a cell, we adopt a mathematical
description in terms of a chemical master equation. This equation describes the time variation of the probability
distribution that keeps track of the number of mRNAs or proteins in the cell and the state of the promoter that
regulates the expression of the corresponding gene. The goal is to use this equation to compute the mean and
the variance of the steady-state distribution of the number of mRNAs or proteins. For this we have developed
a general algorithm (49), which we illustrate here by considering the example of a three-state promoter and the
mRNA distribution it generates.

1. Makealist ofall possible promoter states and of the rates that specify the stochastic transitions
between the states. Then write down the chemical master equation for the time evolution
of the joint probability of having the promoter in one of the possible states and there being
m mRNAs in the cell. The master equations for the three-state promoter are

d

2 pm) = ka1 p@,m) — bz p(L,m) +y e+ Dp(L,m + 1) — ymp(L, m),

d

EP(Za m) = k32 p(3, m) + ki p (L, 22) — koy p2, m) — ka3 p2, 1) + y (m + D)pQ2, m + 1) — ymp (2, m),

d
Ep(l, m) =k p(2,m) — ks p 3, m) + y(m + D)pB,m+ 1) — ymp 3, m) +rp(3,m — 1) —rp(3, m).

Here kj; is the rate of transition from state 7 to state j, 7 is the rate of mRINA production
(which only occurs in state 3), and -y is the rate of degradation (per molecule). These rates
are the parameters of the model, some of which can be experimentally tuned by changing
promoter sequence, transcription factor concentration, or other aspects of the promoter
architecture.

2. Write down the above set of master equations in matrix form by defining the following
matrices:

p(l, m) —k1> k1 0 0 0 O 1 0 O
pmy=| p@2.m |; K= ki, —(kar + k) k3 ; R=[0 0 0 |; I=]0 1 0
p@3,m) 0 k3 —ks3; 0 0 r 0 0 1

By setting the left-hand side of the equations in Step 1 to zero, and by using this matrix
notation, we arrive at the equation for the steady-state probability distribution,

[12 _R- myf] Pm)+ REGm — 1) + (m+ Dy I pm + 1) = 0.

3. To compute the first two moments of the steady-state mRINA probability distribution,
multiply both sides of the equation in Step 2 by 7z and 72, respectively, and then sum over
all values of 7 from 0 to co. The result of this calculation can be expressed in terms of the
following partial moment vectors:

oy =y _m'plm);  vigy =y mpm).

m=0 m=0
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Namely, from the final equation in Step 2 we obtain the equations
Kﬁl(g) =0,
I:K - yf] 7’71(1) - Rﬁl(o) = 0,

for the first two partial moments. This is a set of linear equations from which the first and the second moment of

the mRINA distribution can be computed:
)

Y

(o2}

Y

Here the vector 7 contains the ordered list of rates of transcription initiation for each promoter state.

TATA Box Strength

The TATA box is a DNA sequence recognized by TATA-box binding proteins that recruit
the preinitiation complex, which then helps initiate multiple rounds of transcription before it
stochastically disassembles. The strength of the TATA box is thought to determine the lifetime
of the preinitiation complex and thus the number of rounds of transcription that result from each
activation event (7). Here we review experiments that have demonstrated a role for the TATA
box in determining gene expression noise and we describe a simple model that accounts for the
experimental observations.

Experimental evidence. The previously mentioned study by Raser & O’Shea demonstrated that
mutations that weaken the strength of the TATA box of the PHOS gene in yeast cells result in a
reduction in gene expression noise (40). A second study by Blake etal. (7) confirmed that mutations
that decrease the strength of the TATA box of a different yeast promoter (a synthetic variant of
GAL1) dramatically reduce cell-to-cell variability in gene expression.

A subsequent whole-genome noise analysis found that noisy genes were enriched in strong
TATA boxes (33). However, most promoters that contain TATA boxes also contain nucleosomes
in the vicinity of the transcriptional start site, so one possible explanation for the correlation be-
tween the presence of a TATA box and enhanced gene expression noise is the correlation between
nucleosome positioning and TATA sequences, rather than a direct effect of the TATA box. A
more recent study has directly examined this question (22). The authors studied a specific yeast
promoter (HT2X) that contains both a TATA box and a proximal nucleosome-occupied site,
and introduced mutations that abolished the TATA box. The authors observed a large reduc-
tion in gene expression noise as measured by CV?. Similar results were observed when several
TATA-box-containing promoters were subject to mutagenesis: Those mutations that eliminated
the TATA box tended to significantly reduce the noise, particularly in those promoters with
nucleosome-occupied proximal sites, where the TATA box was found to influence the burst size
(22). Interestingly, the effect of the TATA box on the burst size was not observed in promoters
lacking a proximal nucleosome, which suggests that the TATA box may be interacting with the
nucleosome (22).
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Mechanistic explanation. Observed correlations between TATA box strength and gene expres-
sion noise can be captured by a simple model shown in Figure 22. We consider a promoter that
can exist in two different states: without the full preinitiation complex assembled and with the
preinitiation complex assembled. We plot in Figure 2& the predicted noise (measured by CV7?) as
a function of the mean for two different TATA box strengths, assuming that TATA box strength
affects the stability of the preinitiation complex and thus the rate at which it disassembles (7). In
the plot, we assume that the mean expression can be controlled by tuning the assembly rate, again
following the model described in Reference 7. This simple model predicts that strong TATA
boxes may lead to larger noise than weak TATA boxes. However, if the rate of disassembly of the
preinitiation complex is fast compared to the lifetime of the fluorescent reporter (Figure 2¢), or if
the probability of reinitiation is low, the effect of the TATA box strength on noise may be too small
to be observed experimentally when other regulatory elements, such as promoter inactivation by
a nucleosome, are absent (22).

A very simple mechanism, shown in Figure 34, based on the interplay between the TATA box
and nucleosome occupancy offers a possible explanation for the observed correlation between cell-
to-cell variability in gene expression and gene expression plasticity (26, 54, 55). The model is based
on the observation that this correlation is strongest in promoters containing both nucleosomes near
the transcriptional start site and the TATA box (13, 26). In order to recapitulate this observation,
we have generated 1,000 different promoters, by randomly sampling all the rates in the mechanism
outlined in Figure 34, and computed its plasticity (defined as the dynamic range for the mean
number of mRNAs) and the noise (CV? of the mRNA distribution) using the methods described
in References 43 and 44 and summarized in the sidebar (see above). In Figure 35, we show
that the experimentally observed correlation is reproduced by the simple model. Furthermore,
we show that removal of the TATA box (i.e., eliminating the active state from the mechanism),
or removal of the nucleosome (i.e., eliminating the closed state from the mechanism), has the
effect of significantly reducing the correlation, as shown in Figure 3¢,d, mimicking experimental
observations, and offering further support for the idea that plasticity and noise can be decoupled
by specific changes to the promoter architecture. Although the mechanism shown in Figure 34
is a gross oversimplification of the very complex set of biochemical reactions that lead to the
production of a new mRNA molecule, it is the minimal mechanism that captures stochastic gene
silencing by nucleosomes and stochastic assembly and disassembly of the preinitiation complex at
the TATA box.

Number of Transcription Factor Binding Sites

Experiments have shown that the number of binding sites for transcription factors can significantly
affect gene expression noise. Although the mechanism is still not understood, we review the
experiments and speculate about possible mechanisms.

Experimental evidence. In a recent study on yeast cells, To & Maheshri (57) demonstrated
that multiple transcription factor binding sites (operators) increased gene expression noise. Here
the authors varied the operator copy number for the tet-transcriptional activator (tT'A) within a
synthetic yeast promoter. They compared the noise strength for promoters with both one (1X)
and seven (7X) copies of the tT'A binding sites, and observed a pronounced increase in cell-to-cell
variability of gene expression for the 7X promoter relative to the 1X promoter. These results are
consistent with a previous study by Raj et al. (38), who also found that operator multiplicity leads
to larger promoter noise in mammalian cells.

Similarly, Suter et al. (52) have reported strong effects of operator number (CCAAT boxes
binding the transcriptional activator NF-Y) on mRNA and protein fluctuations driven by
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Transcriptional dynamics of TATA-box-mediated activation. (#) The TATA box activates the promoter by helping assemble the
preinitiation complex. The rates of formation and dissociation of the preinitiation complex are given by kon and kogr, respectively, and
the rates of mRNA production for the basal and active states are 7 and 7y, respectively. The mRNA degradation rate is y. (b)
Prediction for CV? as a function of the mean. Noise is enhanced with increasing strength of the TATA box; we have assumed that
TATA box strength affects the stability of the preinitiation complex, which is quantified by the rate kopp. The parameters used to
generate the plots for the solid black line are /g = 1, 71 = 100, and kopr = 0.01, while kop is varied and sets the mean (all rates are
in units of y); for the solid red line the parameters are 73 = 1, 7y = 100, korr = 100, and kop is variable. For the solid blue line, i.e.,
for a promoter without a TATA box, CV'? = 1/(mRNA). () When the lifetime of the reporter is larger than the dissociation time of
the preinitiation complex, the effect of the TATA box is small (parameters: 713 = 1,7y = 50, kopp = 200, and 4oy is variable).
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Transcriptional dynamics of nucleosome-inactivated, TATA-box-containing promoters. (#) A three-state model based on the interplay
between the TATA box and the nucleosome can be used to explain the observed correlation between cell-to-cell variability and
plasticity in gene expression. The three promoter states are a nucleosome-occluded promoter state (closed), an open promoter state
with a basal transcription rate (basal), and an active state with the preinitiation complex formed at the TATA box (active).

(b—d) Theoretical noise versus plasticity plots. Analytical expressions for the mean and the noise of gene expression, which were
obtained using the method described in the sidebar, Method for Computing the Gene Expression Mean and Noise, were applied to the
three-state model. The rates in the model were randomly sampled, producing 1,000 different parameter sets, which served as inputs for
the analytical equations for the mean and noise. Parameters were sampled within the following ranges: kon = 0.01-10,000, korr =
0.01-10,000, koppn = 0.01-10,000, kcrose = 0.01-10,000, 7 = 0.01-10,000, 7y = 0.01-1,000,000; all rates are given in units of y.
(b) When both the TATA box and the nucleosome are present, we see a high correlation between noise and plasticity. Removing either
(¢) the TATA box (by repeating the above parameter sampling procedure, but setting kony = 0) or (d) the nucleosome (by repeating the
above parameter sampling procedure, but setting kcrose = 0) significantly reduces the correlation between noise and plasticity.

mammalian promoters. This study used a luciferase assay to directly measure transcriptional
dynamics in live cells. Their luciferase was short-lived and was expressed from an unstable nRNA
whose transcription was directed by a library of natural and synthetic mammalian promoters
with different architectures. In particular, the authors compared transcriptional stochasticity for
promoters containing either one or two CCAAT boxes and found that doubling the number of
CCAAT boxes resulted in a marked increase in the activation rate and the rate of transcription in
the active state; however, the rate of inactivation was roughly unaffected by operator number (52).
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Mechanistic explanation. So far, no general mechanistic model has been proposed to explain
these experimental results. Qualitatively, an increase in noise is expected as we increase the number
of transcription factor binding sites, solely due to the activator stochastically binding and falling
off the promoter (43). Other sources of cell-to-cell variability, such as diffusion of transcription
factors to their targets, have been put forth to explain activator-mediated noise in fly embryos (56)
and in yeast cells (25). Because the number of binding sites does play a role in diffusion noise (56)
and the time of capture of transcription factors by their binding sites (21), we suggest that the
contribution of diffusion noise should perhaps be considered in connection with the experiments
described above. It is also possible that cell-to-cell differences in activator concentrations may
explain the observed effect of operator copy number on noise (34).

EFFECT OF PROMOTER ARCHITECTURE ON GENE EXPRESSION
NOISE IN BACTERIA

Ironically, although our understanding of transcriptional regulation at the molecular level is much
richer and more detailed for bacteria than for eukaryotes, the role that transcription factors play in
transcriptional dynamics in live bacteria is still poorly understood. Decades of careful biochemical
experiments have provided us with mechanisms by which different transcription factors exert
control over gene expression (8, 42). We understand which steps on the biochemical pathway
to mRNA synthesis are affected by a large number of transcriptional activators and repressors in
vitro. Furthermore, many of these mechanisms have been tested in vivo by measuring the average
gene expression level as a function of transcription factor concentration, and by comparing those
measurements with mathematical models of the transcription process on the basis of specific
mechanisms (6, 12, 17, 18, 24, 31). Typically, these mathematical models are constructed by listing
all the possible states that the promoter can adopt. These promoter states are distinguished by the
occupancies of the different operators in the promoter region by the corresponding transcription
factors, as well as the occupancy of the promoter by RNA polymerase (RNAP) (6, 47). Then,
the probability of different promoter states is computed using equilibrium thermodynamics, and
the average rate of transcription (which is identified with the mean amount of gene expression)
is obtained by computing the average of the transcription rates associated with those promoter
states from which RNAP can initiate transcription (6, 47) (see Figure 4). These mathematical
models allow us to compute, for a given mechanism of gene regulation, the shape of the input-
output function for the promoter, e.g., the amount of gene expression as a function of transcription
factor concentration. Direct comparison between these predictions and bulk in vivo data offers
a way to test specific mechanisms of gene regulation. These in vivo tests of transcription-factor-
mediated regulation have been very successful; the agreement between the predictions made
by the models and the in vivo patterns of gene expression is excellent, and the precise effect that
architectural features such as operator sequence and operator location have on the mean expression
level is well understood. Therefore, although the effects of other regulatory processes, such as the
condensation of DNA by nucleoid proteins (9), the modulation of DNA supercoiling (36), and
the regulation of RNAP elongation along the gene by elongation factors (30, 41), have been long
known and appreciated, the view that transcriptional regulation is to a large extent dominated by
transcription factors and the small molecules (inducers) that modulate their activity emerged as a
successful paradigm in the field (37).

The mechanistic models described above, however, have only been tested in the context of
mean expression levels, which are independent of the transcriptional dynamics. In light of this, the
simplest models of transcriptional dynamics can be constructed by extending the thermodynamic
models to include stochastic transitions between the different promoter states. A constitutive
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Thermodynamic and kinetic models of transcription-factor-mediated regulation of gene expression in bacteria. (#) A simple
thermodynamic model of an unregulated promoter considers two states: one with RNA polymerase (RNAP) bound at the promoter
and one with the promoter free of RNAP. The thermodynamic weights (un-normalized probabilities) for each of the states are shown.
Kp represents the dissociation constant for RNAP binding to the promoter, and the intracellular concentration of RNAP is denoted by
[P]. The kinetic model based on this simple thermodynamic model is built by connecting the states with arrows denoting stochastic
kinetic transitions between them, which are parameterized by rate constants. The rates of RNAP binding and unbinding are given by
kpounp and kynpounp. The rate at which an RNAP molecule clears the promoter and initiates transcription is kzsc. Prediction for
CV7? as a function of the mean is shown for this simple model, assuming that kzsc > kunpounp- In this limit we recover a Poisson
distribution, and CV? = 1/(mRNA). (b)) Thermodynamic model of a promoter regulated by a transcriptional repressor, whose
intracellular concentration is denoted by [R] and dissociation constant is given by Kr. The kinetic model is constructed in the same way
as in panel #, by assigning stochastic transitions between the different states, which now include the rates of repressor association (korr)
and dissociation (kon). The prediction for C 172 as a function of the mean is computed assuming kon = 0.01, kgounp = 50,
kUNBOL"ND = 0.001, kESC = 200, and kOFF is variable; all rates are in units of Y-

promoter has by assumption only two promoter states, one with RNAP bound and one with the
promoter free of RNAP. Transcriptional dynamics then describe RNAP forming an open complex
with the promoter DNA, and its subsequent escape from the promoter. This model is represented
in schematic form in Figure 44.

The expected gene expression noise from the kinetic model of a constitutive promoter can
be computed using the tools described in the sidebar (see above) (43, 44). In the limit where the
residence time of RNAP on the promoter is much shorter than the average transcription rate, a
reasonable assumption in light of recent experimental observations (21), the mRNA distribution
predicted by this mechanism is approximately Poisson, with CI’? = 1/(mRNA). This approach
can be extended to promoters that are regulated by transcription factors. For instance, in Figure 4
we show a simple mechanism for transcriptional repression by steric exclusion of RNAP binding,
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which is known to be operational in the /zc promoter in Escherichia coli (45, 46). The calculated
CV? as a function of the mean expression level (which we identify with the mean number of
mRNA molecules) for this mechanism is plotted in Figure 4b. In this model, stochastic binding
and unbinding of the repressor to the operator within the promoter region causes the promoter
to randomly switch between inactive and active states, which results in an increase in mRNA
number fluctuations. The noise-to-mean relationship for an arbitrary promoter, with any pattern
of transcription factor binding sites, can be calculated using the methods described in the sidebar

(see above), and it takes the form:
1
CV? = e + CV e
(mRNA) + promoter
This simple model, where transcription factors cause the promoter to switch between different
states as they bind and fall off the promoter, makes the prediction that different promoters should
have different noise-to-mean profiles (19, 43), given by CV2 promoter» Which describes the noise above

the Poisson baseline given by 1/(mRNA).

A Case for Promoter-Architecture-Independent Noise

The relationship between the noise and the mean of gene expression was analyzed in a recent
E. coli study for a set of seven different promoters, all driving the expression of the same gene
(49). These constructs were inserted into E. coli strains and grown under different conditions.
In total, about 120 different conditions were studied (the data are reproduced in Figure 5a).
The biochemical mechanisms of repression and activation for all these promoters are known to
differ widely. However, the authors found that the noise-to-mean relationship is described by a
universal function CV? = (1I/(mRNA)) x (1 + 1.5(mRNA)**). A similar study (53), also using
single-molecule FISH to detect and count individual mRNA molecules, analyzed 137 genes and
also determined the noise-to-mean relationship. These two studies are in reasonable agreement
with each other (Figure 54).

The universal trend that is followed by different promoters with different architectures and
regulated by different transcription factors can be interpreted as evidence that the particular mech-
anistic details of transcription-factor-mediated gene regulation are not relevant for the noise-to-
mean relationship. This is certainly possible, and it might well be that regulation by transcription
factors does not affect mRNA fluctuations in E. co/i. If this is the case, then what is causing the
observed universal trend?

In earlier experiments, Golding et al. (20) measured transcriptional dynamics in live E. coli
cells directly. In these experiments, mRINA molecules were detected by their association with
fluorescently labeled proteins (MS2-GFP) that bound to the nascent transcript. The authors
found that even at fully induced conditions, the promoter they studied (the Pyc/ara promoter)
switched stochastically between an active and an inactive state. The biological agent responsible
for this bursting behavior remains unknown, but it is tempting to assume that whatever is causing
the Pjyc/ara promoter to stochastically switch on and off may be also responsible for the observed
universal mean-to-noise patterns. Because the Pj,c/ar, promoter was fully induced (20), it seems
like stochastic association and dissociation of its activators (araC) and repressors (Lacl) would
be an unlikely cause for the observed bursting. Many different possible origins for this bursting
behavior have been proposed (29), but the question remains unresolved.

Possible Mechanism for Universal Noise

Gene expression noise measurements in bacteria have to be considered with some caution because
single-molecule experiments in live or fixed cells are still in their infancy. However, the results
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from the different techniques used so far, both single-molecule FISH and MS2 detection, are
consistent with each other and strongly suggest that something other than transcription factors,
or at least not transcription factors that are specific to individual promoters, can turn genes off and
affect the absolute levels of gene expression. It has been suggested (49) that the observed trend
could be explained by a phenomenological model where all genes in E. co/i are switching between
an ON and an OFF state, with similar activation rates (koy) and similar transcription rates in
the ON state (r), and gene regulation is primarily achieved by varying the inactivation rate kopp.
Thus, all transcription factor regulation would achieve, regardless of the specific mechanisms
used, would be shortening or prolonging the time that the gene spends in the ON state (49).

a Noise strength
10I T L | T T | T T | T L |
L4 B
e DatafromSoetal. 2011 ° . d
o Data from Taniguchi et al. 2010 oo |
8 ® Phenomenological model °
3 6 ~
]
=
v
)
[}
c
T
w o4l
L]
2 B L[] L]
[J
OI " PR REar | " PR RS RRar | " PR RS arar | " PR SRR |
0.001 0.01 0.1 1 10
Mean mRNA
b Phenomenological model
S B o
— —>
ko ksounp i
B — B —
— Il T — [T
kDFF kUNBOUND

482 Sanchez o Choubey o Kondev



Annu. Rev. Biophys. 2013.42:469-491. Downloaded from www.annualreviews.org
Access provided by University of Minnesota - Twin Cities - Law Library on 02/23/15. For personal use only.

How can we reconcile this idea with the overwhelming evidence from in vitro biochemistry
and population-averaged in vivo gene expression measurements, that different transcription fac-
tors employ different mechanisms to regulate transcription? Although within the two-state, ON-
OFF model, kopp regulation offers a quantitative explanation for the universal trend line (49),
alternative phenomenological models can also explain the data. For instance, in Figure 56 we
consider a model where all genes in E. co/i switch slowly between one silenced state (S) and one
basal state (B) by a transcription-factor-independent process, e.g., due to DNA condensation by
nucleoid proteins or changes in DNA supercoiling. Only when the genes are in the basal state
can transcription factors stochastically bind and fall off. This possibility is included in the model
by considering a third state (O) in which the transcription factors are bound. When the gene is
not silenced, we assume that transcription factors act by recruiting or excluding RNAP. As soon
as the promoter switches back to the silenced state no transcription-factor-mediated regulation
can occur. Using this phenomenological model, we have computed the means and Fano factors
(Fano factor = variance/mean) for a collection of promoters, generated by randomly sampling
the rates of switching between the O and B states, as well as the rates of transcription and mRNA
degradation, as described in Figure 5. The data generated in this way show a correlation between
noise and mean very similar to the one observed by Golding and colleagues (49), and these data
can also be fitted by the kopr modulation model (Figure 5#). This is not a refutation of the kopp
modulation model; however, it offers an alternative explanation of the data, one that captures
the essential feature of the direct observation of ON-OFF switching (20), and can accommodate
known biochemical mechanisms of transcriptional regulation.

The observed universal trend between the noise and the mean might also be caused, at least in
part, by a collection of many independent sources of noise, including yet unidentified biological
sources as well as experimental artifacts or experimental error in the determination of mRNA
copy numbers using FISH. In spite of this possibility, the observation of the universal trend is very
intriguing and it deserves further experimental and theoretical exploration. Finally, the experi-
mental observation of a universal noise-mean relationship in E. co/i has not yet been replicated in

Figure 5

Universal noise-mean relationship for Escherichia coli promoters. (2) Noise (here quantified by the Fano
factor = variance/mean) of the mRNA distribution plotted as a function of the mean mRNA for a set of
seven promoters exposed to different growth conditions and genomic backgrounds. Data from So et al. (49)
is shown as brown dots. A separate set of data from Taniguchi et al. (§3) is also plotted (orange dots). It
corresponds to an experiment that determined mRINA distributions for more than 100 different genes in

E. coli. Both sets of data were acquired using single-molecule FISH. The blue line corresponds to the fit to a
two-state ON/OFF phenomenological model, where the rate of promoter activation (kon) and the rate of
transcription in the ON state (7) are assumed to be constant, and only kopr changes from promoter to
promoter. This model is referred to as the kopp modulation model and it was proposed by So et al. (49). The
red dots correspond to 100 different values of mRINA mean and noise, obtained by randomly sampling all the
rates in a phenomenological model shown in panel . This model assumes that the promoter is inactivated by
a transcription-factor-independent mechanism leading to an inactive or silenced state (S). When the
promoter is not inactive, transcription factors bind to and fall off the promoter, leading to transitions between
the operator-occupied state (O) and the operator-free basal state (B), respectively. Bound transcription
factors either activate or inactivate transcription by recruiting or inhibiting RNA polymerase (RNAP)
binding. Rates of transitions between the S and B states are kgn and kopr, and between B and O they are
kpounp and kunpounp. The rate of transcription from states B and O are | and 72, respectively. The model
parameters are chosen at random, so both activation and repression are possible; activation occurs when 7 >
71, and repression occurs when 7 < 7. The different rates were randomly sampled from the intervals | =
(0.01-1), 75 = (0.0001-10), kpounp = (0.1-10), and kynpounp = (0.1-10), while kon = 1/37 and kopp =

1/6 were taken to be the experimentally measured rates (20); all the rates are in units of y = 1 min~".
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other bacteria. It is possible that transcriptional dynamics may differ from organism to organism,
and other bacteria may show different noise-to-mean profiles.

Evidence that Promoter Architecture Affects Noise

Contrary to the conclusions reached by the experiments described in the previous section, there
is also evidence that promoter architecture may play a role in generating cell-to-cell variability in
gene expression, although this is less convincing in bacteria than in eukaryotic cells. We review
genome-wide and single-gene experiments that point to this possibility.

Genome-wide experiments. Beyond the universal trends discussed above, other experiments
have found that different promoters can confer different levels of noise in gene expression for
the same mean. The clearest result comes from a genome-wide analysis of noise in E. co/i using
a genomic library in which the GFP gene is fused to all promoters in the genome (48). E. coli
was transformed with multicopy plasmids containing the GFP gene under the control of specific
promoters, and then single-cell gene expression was measured by flow cytometry. In spite of
the low resolution of gene expression measurements resulting from flow cytometry (i.e., it does
not allow for single-molecule counting), the fact that GFP has a long lifetime, therefore buffering
stochastic transitions between promoter states, and the fact that multicopy plasmids were employed
(all of which reduce noise), differences in gene expression noise were observed from promoter to
promoter relative to the baseline noise, which scaled as CV? ~ 1/(GFP). The authors found that, as
expected, promoters associated with housekeeping genes conferred low levels of noise. In contrast,
promoters subject to regulation, such as those controlling the expression of genes responsible for
adaptation to stress or for carbon metabolism, showed large levels of noise. Because, in this
experiment, the only difference from plasmid to plasmid was the promoter sequence itself (both
the plasmids and the fluorescent reporter were identical in all cases), the authors concluded that
promoter-mediated noise could vary significantly from gene to gene. The difference in noise from
promoter to promoter might be even larger at the mRNA level, or for proteins with a shortlifetime,
or if the authors had considered the genomic promoter in the absence of extrachromosomal copies
on a plasmid. On the other hand, it could be that the variability observed by the authors comes
from phenotypic multi-stability rather than from stochastic promoter dynamics.

The idea that noise associated with gene regulation can be significant in bacteria has found
experimental support in organisms other than E. co/i. A study by the Ackermann lab (16) used
a clever strategy to identify genes in Salmonella whose expression fluctuates widely over short
timescales and thus have high levels of noise. The authors created a genomic plasmid library of
promoters fused to GFP. Then they used fluorescence-activated cell sorting to select noisy genes.
The cell sorter was first used to select cells with high expression levels (within the highest 5%).
Then the selected cells were grown overnight, and at mid-exponential phase the cell sorter was used
to select for low expression levels (within the lowest 5%). This approach was iterated seven times,
and the resulting cells were sequenced. The cells selected were those that had been transformed
with flagellar promoters, and the expression of these promoters was bimodal (16). The authors
controlled for the possibility that the observed bimodality was due to genetic differences between
different individual cells, and concluded that it had its origin in stochasticity in gene expression
(16). As before, it is possible that the larger noise in the bimodal promoters had more to do with
a bistable phenotypic switch (of which the GFP-expressing promoter becomes a mere reporter)
than with the promoter architecture itself.
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Single-gene experiments. The one example we are aware of, in which the mechanistic origin of
noise in gene expression in E. co/i has been explored, is the work by Choi etal. (11), who investigated
the effect of changing the architecture of the /zc promoter on its gene expression stochasticity. The
authors compared the induction profiles for the wild-type /zc promoter and a mutated promoter
carrying a deletion of both auxiliary operators that bind the Lac repressor. The occupation of these
operators does not lead to repression; instead they stabilize (via DNA looping) the Lac repressor
when it is bound to the main operator, which is responsible for repression of transcription. Gene
expression from the /zc promoter is bimodal at low and intermediate induction levels. However,
the authors found that the deletion of these weak auxiliary operators led to unimodal induction
(11). Choi et al. (11) hypothesized that DNA looping might reduce noise by leading to rapid
association and dissociation from the promoter, which had been suggested previously on the
basis of simulation results (58). We have computationally analyzed the mechanism proposed by
Choti et al. using the tools described in the sidebar (see above), and found that, given our current
understanding of the kinetics of DNA looping from experiments in vitro, looping should not
lower noise. Instead, we expect looping to increase noise (43). We find that DNA looping leads to
rapid rebinding of the repressor to the main operator once it dissociates from the main operator.
This effectively decreases the rate of dissociation, slowing down the switching between active and
inactive states, and therefore increases mRINA fluctuations (43).

Finally, a recent article investigated the behavior of three different promoters (Pyypp, Peger, and
Ppea) involved in the physiological switch between glycolysis and gluconeogenesis in B. subtilis
(14). The authors used a novel two-photon fluorescence fluctuation spectroscopy technique to
quantify GFP expression in individual cells with very high resolution and constructed histograms
of the cell-to-cell variability. They found large differences in the mode of induction and repression
as they shifted the media from malate to glucose. Under repressed conditions (in glucose media),
Ppcka and Pg,pp had a lower frequency of activation and a lower GFP production in the active state.
P ger also had alower frequency of activation under repressed conditions (which, for this promoter,
corresponded to growth in malate media), but the burst size actually increased. This created a small
subpopulation of repressed cells that had nearly as much expression as induced cells, due to rare
but very strong bursts of expression. This study suggests that there may be promoter-specific
differences in transcriptional dynamics in B. subtilis, and that these differences may lead to large
gene expression heterogeneity, with some repressed cells displaying expression levels characteristic
of induced cells. Remarkably, the authors found that the characteristic pattern of transcriptional
bursting observed for P,r at repressed conditions was consistent with the specific mechanism
of repression of this promoter, which is based on roadblocking the RNAP during elongation.
The authors proposed and analyzed a simple model in which bursting was caused by spontaneous
dissociation of the repressor (which has a very large affinity for its operator), which then lets
through a train of RNAP molecules that were stalled by the presence of the roadblock provided
by the repressor (14). Although further studies are needed to confirm this mechanism, this study
suggests that, for these promoters, the molecular mechanism of transcription-factor-mediated
repression is sufficient to explain bursting behavior and heterogeneity in gene expression.

The examples described above attest that the promoter architecture, and in particular tran-
scription factor dynamics at the promoter, may at least in some instances have a direct effect on
gene expression noise. More importantly, we believe these examples make a strong case for the
need to perform in bacteria the same kind of experiments that have been done in yeast and mam-
malian cells, where promoter architectures are systematically perturbed and the effects of these
perturbations on the mean and noise in gene expression are characterized.
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IS GENE EXPRESSION NOISE UNIVERSAL?

In the previous section we described seemingly conflicting views of gene expression noise that
arose from single-cell measurements of gene expression outputs from bacteria. In particular, the
existence of a noise-to-mean trend line, which is followed by a large number of genes, seems to
be in conflict with the idea that gene-specific mechanisms of transcriptional regulation (for which
there is an abundance of in vitro biochemical evidence) can lead to a characteristic noise signature,
quantified by the dependence of the noise on the mean. Thus, the existence of such a universal
relationship between noise and mean might appear to disprove the idea that gene expression noise is
atrait that can be regulated at the promoter level or dictated by the DNA sequence of the regulatory
region. In this section we further elaborate on the experimental evidence for universal noise by
reviewing recent experiments in yeast cells in which a universal relationship between the mean
and the noise in gene expression was discovered to be similar to the relationship found in bacteria.
These experiments also found that certain promoters produce noise that significantly deviates from
the universal behavior, providing further support for the idea that promoter-architecture-specific
elements can play an important role in determining noise.

Universal Scaling Between Noise and Mean in Yeast Cells

The first evidence for a universal scaling law between noise in gene expression and the mean
expression level came from a genome-wide study in yeast cells (33), as well as a study published
simultaneously (4) that analyzed noise in 43 different yeast genes that were exposed to different
environmental conditions. In these studies the authors used a genomic GFP fusion library to
measure cell-to-cell distributions of GFP fluorescence. The authors plotted the CV? of the GFP
distributions as a function of their means and found a scaling relation CV? ~ 1/(GFP) at inter-
mediate gene expression values (at high expression values, the noise became decoupled from the
mean). However, they also found many genes that significantly deviate from this trend. Those
tend to be stress-response genes and often have the type of architecture that leads to large levels
of noise, including TATA boxes and occupied proximal nucleosomes.

This point has been further examined by analyzing the noise-to-mean relationship for 22 genes
in yeast cells, as well as constructing a mutant library for each of those genes (22). The results of this
last study were revealing; namely, each mutagenized promoter occupied a characteristic region of
the noise-mean plot. Those genes thatlacked a TATA box and were nucleosome depleted followed
the same trend line. However, promoters containing a TATA box and an occupied proximal
nucleosome exhibited much larger noise and were found to lie above the trend line. In other
words, specific differences in promoter architecture were identified with significant differences
in the noise-mean curve. The effect of promoter architecture on the noise-mean relationship is
further supported by the observation that those mutants of the high-noise promoters that, by
accident, lost their TATA box fell down to the trend line, followed by the low-noise promoters
and their mutants (see Figure 6).

Another test of the idea that deviations from universal gene expression noise may be caused by
promoter architecture was performed by analyzing mRNA distributions in single yeast cells using
FISH, both for a SAGA-regulated, TATA-box-containing gene that deviates from the universal
trend line (PDRS5) and for a constitutive gene that falls within the trend line (MND1) (59). As
expected, the PDRS gene displayed distributions of nascent and cytoplasmic mRNA that were
consistent with bursting. The constitutive gene, on the other hand, was described by a Poisson
distribution of cytoplasmic mRNA and a distribution of nascent mRINA that was also consistent
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Figure 6

Summary of experimental evidence that promoter architecture affects noise in gene expression. (#) Noise-to-mean relationships for two
promoters that differ in the copy number of tetO binding sites for the tT'A activator. The noise is consistently higher for the promoter
with seven (7X) operators than for the promoter with just one (1X). (Data courtesy of Reference 57.) () Noise-to-mean relationship for
a library of mutants of the HX'T?2 promoter (red) as well as mutants of ADH3 (/ight gray). The HXT2 promoter has an occupied
proximal nucleosome and a TATA box. The ADH3 mutated promoters, in contrast, have an occupied proximal nucleosome but lack a
TATA box. The TATA-box-containing mutant promoters have a larger gene expression noise than the two promoters lacking the
TATA box, with the exception of five mutants (s#za/l arrows) whose noise-mean relationship followed the same trend as the TATA-less
promoters. When those HX'T2 mutants were sequenced, they were found to have TATA-box-abolishing mutations, which confirmed
that the presence of a TATA box increases the noise for nucleosome-occluded promoters. (Data courtesy of Reference 22.)

(¢) Noise-to-mean relationship for two nucleosome-depleted promoters (VMA7 and ARO2, green and yellow, respectively) and two
nucleosome-containing promoters (ADH3 and ERG11, black and gray, respectively). All promoters lack a TATA box. Data shown in
panel ¢ represent a subset of all the data collected by Hornung et al. (22) and are representative of the trends between nucleosome
occupancy and noise observed by these authors. (The black lines in all the data plots are not fits but serve as guides for the eye.)

with random independent activation (59). The trend line is consistent with the idea that a majority
of genes have low promoter noise, so that CV? ., is small and CV? ~ 1/(mRNA). In contrast
the genes that rise above this trend line are regulated with large promoter noise, so that CV? ~
1/(mRNA) + CV?yppirer-
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SUMMARY AND OUTLOOK

We have examined the role of gene regulation, and the architecture of transcriptional promoters
in particular, in generating noise in gene expression. We believe that there is clear evidence that
the process of gene regulation can strongly affect cell-to-cell variability in gene expression in
eukaryotic cells. The evidence for this is summarized in Figure 6, which shows that architectural
features such as the number of transcription factor binding sites, the presence of a TATA box, or
the propensity of a promoter to be occluded by nucleosomes all have clear effects on mRINA and
protein fluctuations in a population of genetically identical cells.

The precise mechanisms involved in the regulation of gene expression in eukaryotes are very
complex, often involving dozens of different regulators, coregulators, nucleosomes, and long-
range regulation by DNA looping. Owing to this intrinsic complexity, the task of connecting
microscopic models of gene regulation with the observed noise patterns has remained out of
reach, and many experimental observations, such as the increase in burst size as the operator
number is increased (52, 57), or the correlation between the probability that a gene is active and
the rate of activation (52), remain disconnected from the molecular mechanisms believed to be
responsible for gene activation and inactivation. The development of a quantitative connection
between mechanistic molecular-scale models of gene regulation and single-cell measurements
of gene expression represents a frontier in our understanding of gene regulation in eukaryotic
cells, and one where the combination of modeling and careful, quantitative experiments can be
particularly fruitful.

The effect of gene regulation on mRNA and protein fluctuations in bacteria is much less well
understood. On the one hand, there is evidence of universal trends at the protein and mRNA
levels that correlate noise with the mean in gene expression. On the other hand, certain promoters
exhibit larger noise than would be expected based on the mean, and, at least in the case of protein
noise, those promoters tend to fall within certain functional categories. This last fact leads us
to suspect that there may be a role for gene regulation in generating noise in bacteria. The
observation of transcriptional bursting even in fully induced promoters suggests the existence of
an unidentified mechanism by which promoters turn off. Identifying this mechanism, its properties,
and its relationship with regulation by transcription factors are all important open questions in the
biophysics of gene regulation. Their resolution has the potential to shed new light on important
issues such as the nature of the regulatory code, namely how regulatory DNA sequence translates
into a specific input-output function for gene expression. A better understanding of the regulatory
code may in turn provide clues about the evolution of regulatory DNA. With the wealth of
quantitative techniques for examining gene regulation at the single-cell and single-molecule levels
at our disposal, we believe that these questions will be answered in the near future.
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