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1 Abstract

The dynamical behavior of a chemically-reacting systemeeiamined by the stoichiometry of the reactions, the
structure of the graph underlying the network, and the feagthenomenology embodied in the rate laws. Herein we
develop a new approach to the analysis of networks, usinghgttzeoretic techniques, that separates the individual
influences to the extent possible, and facilitates the aisabf their interaction. We show how the reaction invagant
are related to the stoichiometry and the network structme give sufficient conditions under which the reaction
simplex is not compact. The notion of dynamical equivalenfceetworks is defined and three types of equivalence
transformations are introduced. In particular, it is shdhait a network of positive deficiency, a term defined later, is
dynamically equivalent to one with zero deficiency. In oupigach, the steady states of any network fall into three
classes, and conditions are given under which each of thesses is empty.

2 Introduction

The objective in a qualitative analysis of a dynamical systiescribed by an evolution equation of the foim=
F(u,p), whereu is the state angd is a parameter vector, is to predict the qualitative evolutef« for different initial
conditions, and to determine how the evolution depends@epd#nameters. The basic problem is the same, irrespective
of whether the equation arises from a problem in chemicati@adynamics, ecological interactions between species,
membrane transport or a variety of similar problems. Howdbe constraints inherentin a particular problem, such as
the non-negativity of, or of some of the parameters, may place additional conssraimthe structure of the equations,



and such constraints may make the general analysis of wits dff problems feasible. This is particularly true for
problems of the sort mentioned, for in these the patternezction’ between the various species imposes a great deal
of structure on the governing equations. Our objective liete develop a general graph-theoretic approach to the
analysis of the equations that describe open reactingregstn approach that makes systematic use of the structure
dictated by the reactions. The general ideas can be appliadariety of other problems, as examples in sequels to
this paper will show.

Two fundamental properties of closed reacting systemsrargat to the analysis of their equilibrium and dynamic
behavior. Firstly, the fact that the mass of the mixture isstant implies that the reaction simplex, a term defined
later, is compact, and therefore all closed systems hawsadme equilibrium point. Secondly, the hypothesis that th
dissipation is non-negative and vanishes only when theatetof all reactions vanish implies that all trajectoriestth
begin in the interior of the simplex approach an equilibripoint ast — oc. In an open system, which by definition
can exchange material with its environment, reaction iiavds such as the total mass need not be time-independent
and there is n@ priori guarantee that a steady state exists. Even if one does astjssipation is generally not
minimized at the steady state, as the following argumentsho

Suppose that a system is spatially uniform and that its dyceare described by the solution of

d

d_;f} = J(e,c°) + TR(c),

whereJ(c, ¢°) is the exchange flux between the system and a time-invaréhtibis the usual stoichiometric matrix

(Aris 1965) andR;(c¢) is the intrinsic rate of the ith reaction. The free energy peit volume of the system is

G =< u,c >, wherey is the chemical potential vectdand its rate of change along trajectories of the system &ngiv
by

dG

— <p,J>—<7u, R>
dt . s

<pl,J> A< —pu,J >+ <0 u, R>} =< p°,J > +®

The first term represents the free energy flux into the systaabas the internal dissipation due both to reaction and
transport. At a steady state the flux balances the dissipdiitt there is n@ priori reason why eithez or ® should
have a local minimum at a steady state. As Denbigh (1952)dwoistted out, it would be fortuitous if the solution of

the system
0P
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coincided with the solution of

0= J(c,c°) +TR(c).

It happens that they do coincide when the rate expressiengaar functions of the affinities, the phenomenological
coefficients are constant, and the Onsager relations asfisat(DeGroot and Mazur 1962). In this case it is easy
to show thati®/dt < 0. However, this so-called 'evolution criterion’ generafsils even in a closed system, as an
example in Othmer (1981) shows. There are Lyapunov funstioncertain classes of open system (see the Discussion
section), but in general there is no universal evolutiotedon for open system comparable tif7 /dt < 0’ for closed
systems, as Mel and Ewald (1974) have shown. Thus the asalfyspen systems necessarily proceeds on more of a
case-by-case basis, but it is desirable to identify gervdgiabes of mechanisms for which the dynamical behavior can
readily be determined. The exchange fliifc, c°) can formally be viewed as the result of a reactipt! = M that
‘converts’ a species at one concentration to the same spat@different concentration, and from this viewpoint, the
different modes of transport, such as convection in a CSTRailitated transport across a membrane, differ primarily

IHere and hereafter, > denotes the Euclidean inner productBp.



in the 'mechanism’ of the exchange reaction. We shall addptiiewpoint here and use the word mechanism in the
extended sense.

In the following section we introduce the graph-theoreticriulation of the governing equations and some ele-
mentary concepts and facts from graph theory. Section 3deitth the existence of invariants and the compactness
of the reaction simplex. In the fourth section we define theomoof dynamical equivalence of networks and show
that every network is dynamically equivalent to one withazdeficiency. The fifth section deals with the existence
problem for steady-state solutions. A discussion of relaterk is given in the concluding section.

3 How Stoichiometry and Network Structure are Reflected in tle Dynami-
cal Equations.

3.1 The Graph Associated with a Reaction Network

Suppose that the reacting mixture contairchemical species;, which may be atoms, ions or molecules, and/et
be the stoichiometric coefficient of th& species in thg'" reaction. The/;; are non-negative integers that represent
the normalized molar proportions of the species in a reactiach reaction is written in the form

reac. prod .
Z VijMi:Z Vij./\/li _]:1,...7’, (1)
7

%

where the sums are over reactants and products, respgdtivile ;" reaction. Our convention differs slightly from
the usual one in which reactions are written (Aris 1965).

Z Vij./\/li =0

and the stoichiometric coefficients of reactants are negati

If the reaction at (1) represents an event that actually iscatithe molecular level it is said to be an elementary
reaction and otherwise it is called a compound reaction. Ahmaeism for a compound reaction comprises one or
more elementary reactions. Once the mechanism for eacle oé#tttions under consideration is fixed, the significant
entities so far as the network topology is concerned arehwospecies themselves, but rather the linear combinations
of species that appear as reactants or products in the gaglementary steps. Following Horn and Jackson (1972),
these linear combinations of species will be calbednplexesclearly a species may also be a complex. We usually
assume that all reactions in the set under consideratioeleneentary unless some explicit reductions, such as those
to be described shortly, have been made. We further asswuahththtemperature and pressure of the mixture are held
constant and that the volume changes accompanying reactaregligible. Thus the state of the system is specified
by the concentration vecter= (ci, ..., c,)? and this must lie irR_;f, the non-negative 'orthant’ of an n-dimensional
real vector space.

To allow consideration of irreversible reactions, the fardsand reverse reaction of a reversible pair will be con-
sidered separately; thus a reaction of the form

Mi+ My = Msj

will be represented by the pair
c(1) = C(2) c2) — C@) (2)

whereC(1) = M; + My andC(2) = Ms.



Let M = {M;, ..., M,} be a set of species, lé¢t be the set of formal linear combinations with integral
coefficients of the species, and et= {C(1), ... C(p)} be a set of complexes. FAeaction networkconsists of
the triple { M, M, C}, together with a stoichiometric functiah : M — C and a binary relatio® C ¢ x ¢. The
function?, which identifies a linear combination of species as a coriglento, and the relatioR has the following
properties:

(i) (C(i), C(y)) € Rifand only if there exists one and only one reaction of therfér(i) — C(j)
(i)  Foreveryithereisa # isuchtha(C(i), C(j)) € R.
(i) (C@), C@)) € R.

Thus every complex is related to at least one other complextfaa trivial reactionC (i) — C(i) that produces no
change is not admitted. TherefdRes never reflexive and in general it is neither symmetric mansitive.

The relation orC gives rise to a directed graghin the following way? Identify each complex with a vertei,
in G and introduce an edge, in G carries a nonnegative weight(c) given by the intrinsic rate of the corresponding
reaction, and it is assumed throughout that the rate doegamigh identically inR;;. G provides a concise represen-
tation of the reaction network that clarifies the distinotlmetween the relatioR, which is manifested in the way the
vertices are joined by directed edges, and the reactiongshenology, which is reflected in the weights assigned to
the edges.

The topology ofG is in turn represented in its vertex-edge incidence mdridefined as follows.

+1 if E; isincident atV; and is directed toward it
&j =< —1 if EjisincidentatV; and is directed away from it
0 otherwise

If there arer reactions or, then& hasp rows andr columns and every column has exactly eaeand one—1. For
instance, the simple network of two reactions at (2) gives to the following graph and incidence matrix.

© i ORI

The rateP,(C') of an elementary reactiafi(i) — C(5) is generally not a function af'(¢), but of the concentration
or activity of the individual species in the complex. Theeraf a compound reaction can involve all species, and the
result is that the temporal evolution of the composition eéacting mixture is usually not describable in terms of the
complexes alone. Nonetheless, one can formally define ta@fahange of the complexes as

c(1)

p : = EP(c), 3)
C(P)
and this is converted into the rate of change of species &l Once the complexes and reactions are fixed, the
stoichiometry of the complexes is specified unambiguoasig, we let- denote the: x p matrix whosej*" column
gives the stoichiometric amounts of the species injthiecomplex. Then
c(1)
dc d
= =V =vEP(c), (4)

o(p)

2The terminology used is standard for the most part; see dgn©1971), Harary (1969), or Giblin (1977). Several of thesl standardized
definitions are given later.



and by virtue of the way is defined, the columns of the produdf are the stoichiometric vectors of reactions written
according to the standard convention (the columns.dflowever, the columns af E are always linearly dependent
when reversible reactions are present, because the foemarteverse rates of a reversible pair are considered distin
In fact, if all reactions are reversible then the rank/@f is no larger the-/2.

The rate functions?(c) are not completely arbitrary because the solutigf, cy) through an initial point
should have the following properties.

0] If ¢ € R_;f, ®(t, ¢p) should exist and be unique foin some maximal intervdD, T, T' < oo.
(i) If co € R, thend(t,co) € Ry fort € [0, 7).

Thus (4) should define a locéln t) positive semi-flow for whichR;} is positively invariant. Local existence and
uniqueness of solutions will hold if the rate vec#®(c) is locally Lipschitzian inc throughoutR;}. Nonnegativity of
each component efis guaranteed if the vector fiele€ P(c) never points out of2;” when the base point lies iR
(Nagumo 1942), and so the necessary and sufficient conddidil) is that

(ygp(cl,...é,...cn)) >0 i=1,...n (5)
3
forallc; >0, ¢ # 3.

In many systems some of the transport reactions are so ttagiithte transported species are always in equilibrium
with the bath. Other species, such as water in many biolbgitems, may be present in such great excess that
their concentration changes little even if transport isleetgd. As it stands, (4) includes all reacting species, but
those whose concentration is constant on the time scaldeest can be ignored. When such a species enters into
a reaction its concentration or mole fraction can be abgbnhk the rate constant for that reaction and that species
can be deleted from each of the complexes in which it appedys.a result of these deletions, it will appear that
reactions which involve constant species do not necegsaiiserve mass. Furthermore, some complexes may not
comprise any time-dependent species; these will be caleml@ null complexesEach null complex gives rise to a
column of zeroes i and the rate of any reaction in which the reactant complexigllacomplex is usually constant.
For instance, any transport reaction of the fatt — M introduces a null complex and the corresponding flux of
M represents a constant input to the reaction network, peavttiat the rate of the transport step does not depend
on the concentration of a time-dependent species. Of cparsenstant species that appears in a complex which also
contains a variable species likewise represents an inghéetoetwork, and to distinguish these from inputs due to null
complexes, the former are call@dplicit inputsand the latter are callegkplicit inputs

Another simplification that can be used to reduce a netwottk @iminate fast reactions via singular perturbation
arguments. For example, whenever the enzyme-catalyzegonE — S = ES — E + P appears, it is often
replaced by the ste§ — P where the rate for that step has the Michaelis-Menten fojm,. S/ (K + S). This
reduction eliminates one vertex and two edges from the gamphthe invariant due to conservation of the enzyme is
accounted for by the assumption ti@at- constant. A rigorous analysis of the validity of such redtwts can be found
in Heineken et al. (1967).

Finally, if both reactant and product complexes in a reactice null complexes, that reaction can be eliminated
entirely. Thus ifo(1) and0(2) are null complexes and the mechanism is

C(1) = 0(1) = 0(2) = C(2),

it can be reduced to

thereby eliminating one vertex and one edge.

3Hereaftern will denote the number of species whose concentration maiyrieedependent.



The formulation of the dynamical equations given at (4) shokat there are three distinct aspects of a set of
reactions that contribute to the over-all rate of change sfiecies’ concentration. These are the stoichiometry of the
complexes, as reflected in the underlying structure of the reaction network, whicttdsmtained in the incidence
matrix £, and the reaction phenomenology that is embedded in théuattionsP;(c). In an abstract context, each
of these three factors can be varied separately, and ourigjtaknalyze how each affects the existence of reaction
invariants, the structure of the set of time-independehtti®ms, and the transient behavior of the system. To dg this
we must first introduce some more terminology.

3.2 Some Basic Concepts from Graph Theory and Convex Analysi

Since there is at most one reactioiti) — C(j) for any pair of complexes, a directed edgé&jican be characterized
by its initial and terminal vertices and in the followingetbrdered paifi, j) denotes the directed edge frdm — V.
An undirected graplg® is obtained fromg by ignoring the orientation of the edges. There are at mostadges
connecting any pair of vertices #f, and when it is necessary to distinguish between them tleewditen(i, j); and
(1,7)2. VerticesV; andV; are said to bedjacentf (i, j) is in the edge set af, and theadjacency matrix4 of G is
defined as follows:

A { +1 if (4,4) is an edge off
v 0 otherwise

An edge sequencef lengthk — 1 is a finite sequence of the forfiy, i) (i2,i3) ... (ik—1,ik), k > 2. When the
edges in an edge sequence are all oriented in the same aiirgtié sequence isdirected edge sequented. When
i1 = iy the sequence is closed, and otherwise it is ogén.is the initial vertex,V;, is the terminal vertex, and all
others are internal vertices. pathin G° is an open edge sequence in which all vertices are distirsftclain G° is a
closed path in which the internal vertices are distiiiitected pathanddirected cyclesn G are defined analogously
to their counterparts iig;°, andV; is said to bereachablefrom V; if there is a directed path frorit; to V;. G°(G)
is said to beacyclicif it contains no cycles (directed cycles). Thredegree (out-degreg)f a vertexV; ¢ G is the
number of edges entering (leaving) and these are denotdg*l andd; , respectively. Thelegreed; of V; is the sum
of the in- and out-degrees.

An undirected graph isonnectedf every pair of vertices is connected by a path.cAmponents a connected
subgraphg; C G that is maximal with respect to the inclusion of edges, f&j.iis a connected subgraph and
G C Go C G, thenG; = Go. Anisolated vertex is a component and every vertex is coathin one and only one
component. A directed graph s$rongly connected for every pair(V;, V;), V; is reachable fronV; and vice-versa.

A strongly-connected componesitG (a strong componerfor short) is a strongly-connected subgraphtofhat is
maximal with respect to inclusion of edges. As in the undedaraph, an isolated vertex is a strong component
and every vertex belongs to one and only one strong compotitec&n be shown that a directed graph is strongly
connected if and only if there exists a closed, directed estggience that contains all the edges in the graph (Chen
1971). Since the union (in a set-theoretic sense) of a éidgeath froml/; to V; and a directed path fro; to V; is a
directed cycle, every strongly connected graph contaiteaat one directed cycle and the corresponding cycle matrix
contains at least one row in which all nonzero entries hages#ime sign.

An oriented cyclen G is a cycle inG° with an orientation assigned by an ordering of the vertioghe cycle. A
cycle matrixi3 associated witlyy has elements defined as follows.

+1 if E; isin thei*" oriented cycle and the cycle and edge orientation coincide
Bi; =< -1 if E;isinthei'" oriented cycle and the cycle and edge orientation are ofgoosi
0 otherwise.

Bis anr’ x r matrix, wherer’ is the number of independent cyclesgf. It has a row in which all nonzero entries
have the same sign for every directed cyclgin



It proves convenient to associate wighor G° two vector spaces defined as follows. lét= {V;, ... V,} be
the set of vertices of andE = {F,... E,} the set of edges if, and denote by, (C,) the set of all real-valued
functions onl” (E). BothCj, andC; have the structure of finite-dimensional real vector spaadimensiorp andr,
respectively. Iff : V — R then f can be represented by the vector, ..., v,)T, wherev; = f(V;). The canonical
basis{b,|b; = (0,...,1,...0),5 = 1, ... p} in Cy corresponds to the functior8; defined byB;(Vy) = di,
whered;;, is the Kronecker delta. An analogous representation haldéuhctions inC;, and bothCy andC; are
Euclidean spaces under the standard inner product. FusatiaC, are called 0-chains and thosedn are called
1-chains, although generally the scalars are taken fromtalidn group rather than a field, aa§y andC; are then
called chain groups (Hocking and Young 1961; Giblin 197 @rt&in aspects of reaction networks have been studied
within that framework by Sellers (1966).

In the vector space framework the incidence matrix is theaggntation with respect to the canonical bases of the
’boundary’ operato€ : C; — Cy.* If G hasp vertices and; components then it is easily shown thdf) = p — ¢
(Chen 1971%.

Anye € NV (€) is called a leycle and 1-cycles are related to the oriented cycles and cldsecteld edge sequences
of G as follows. For any oriented cyct® € G, letg € C; be such that

+1 if E; € G; and the orientation of the cycle and the edge coincide
g(E;) =< —1 if E; € G; and the orientation of the cycle and edge are opposite
0 otherwise.

The components df g are the inner products of the rows &fwith g, and if V; € Gy, thej*» row of € is zero and the
corresponding inner product vanishesVlfe G; andE} is incident atl/;, then&;;, = =1 according a€’;, terminates
or originates at/;, and it is easy to see that the corresponding inner produshas. Therefore, if represents an
oriented cycle itis a 1-cycle, and as a result

EB(; = (6)

for every row, ;) of any cycle matrix. This shows th&(B”) C N(E) andp(B) < dmN(E) =7 —p+q. An
elementary argument shows that the row#afpan\/ (£) and therefore

r=pB)=r—p+q
Any closed directed edge sequergkeC G can be written as the union of directed cyclegjimand it can be seen that
the latter are represented by those 1-cycleSjiwhose nonzero components are 1Glis strongly connected it must
contain one or more directed cycles, and it is easy to sedrtliais case any oriented cycle that is not directed can be
written as the symmetric difference of two directed cyclésnsequently, whenevéris strongly connected, a basis
{e'} for N(E) can be chosen so theit> 0.

A subgraphl” C G° is atreeif it is connected and acyclic, andspanning treef it is a tree that contains all the
vertices ofG°. If G° is a tree then any two vertices are connected by a unique pdtha p — 1. A cocycleof G° is
a minimal set of edges whose removal increases the numbengienents by one. Every edge of a tree is a cocycle,
as is the set of edges incident at a vertex. A cocycle or an-dij@int union of cocycles is called @autset and an
oriented cutsein G is a cutset irg° with an orientation defined as follows. ! andV'2 are the disjoint subsets into
which V is partitioned by a cutset, the orientation of the cutsepictfied by ordering the subsets@s', V2) or as

4This operator is usually denoted Bybut to simplify notation we use the same symbol for a lineangformation and its representations.

SHere and hereaftep(A), R(A) and N'(A) denote the rank, range and null spacedofrespectively. The dimension of a vector spacés
denoted diml/.

SFor any vectom, . > 0 means that every component is non-negative and at leass positive,u >0 means that all components may be equal
to zero, and: > 0 means that all components are positive.



(V2 V1). Thecutset matrixQ of a directed graply is thes’ x p matrix obtained by setting

1 if E;isin cutset and the orientations of the cutset and edge coincide.
Q;; = —1 if Ejisin cutset and the orientations of the cutset and edge are opposite
0 otherwise.

The row dimension o is the number of nonempty oriented cutsets, which is

Xp:<z>_2p—1.

k=1

However, these are not all independent, and in fact it is éasge that the orientation of threcutsets that isolate a
single vertex can be chosen so thas a submatrix ofQ. ThereforeR(Q) 2 R(E), and sop(Q) > p(E) but since
any cutset can be written in terms of those that isolate desiytex, equality holds in both cases. It follows from (6)
that

9Bl =0 (7)
for every rowB;) of any cycle matrix. Hereafte@ will designate a cutset matrix in which the rows are linearly
independent, and sd will equalp — g.

The relationship between the various spaces and maps cdaagramimed as follows.

Rr/ R:/
X y

&
Re 2 ¢ Co —2 + R

T ET T
R, 2 o cr 2 R

Here’x’ denotes the dual of a spade, is the row space oB and Ry, is the row space oM. Both R,/, andR,,
can be identified with subspaces®©f, of dimensiornp — ¢ andr — p + ¢, respectively. These are called the cutset
and cycle subspaces, respectively, and according to (¥)ateeorthogonal under the Euclidean inner product. If we
identify each space with its dual in the usual way, via isasiméomorphisms defined along the vertical lines of the
diagram, then we have the orthogonal decompositions
Ci = R(B")®R(Q")
= N(E)® R(ET)
Co = R(E)®N(ET) ®)
= N(@)® R
R, = Rw)eN@").

Of course we can treat£ as a single map fror@’; to R,,, and this viewpoint leads to the following diagram.

n

Co
@ cg (l%é
vE
y Co
we)"



It also provides the additional decompositions:

C; = N®wE) @ R((vE)T)

and

R, = R(wE) o N((v&E)T).

The usual treatment of kinetics in essence deals only witthtrizontal edge of the triangle, but as we shall see, there
are cogent reasons for factoring the mdp throughCy.

A flowon G is a real-valued function on the edge seGoénd it is represented by a vectpre C;. For a given
choice of cycles and cutsets, every flow, or more precisslyepresentative, has the unique decomposition into sycle
and cutsets given by

=+ =¢"w+Q"2 9)
wheref? € N(€) andf! € R(ET). The vectorsy andz are the cycle and cutset weights associated yitA flow is
balancedwvhenz = 0 (f! = 0), cobalancedvhenw = 0 (f° = 0), andpositive, nonnegativer strictly nonnegative
accordingag > 0, fZ0or f > 0, respectively. Certain classes of flows treated later aegjial flows, which means
that the components gfare integers, but we do not require thatndz be integral at present.

The incidence matriX is the discrete analog 6fV-, the negative of the continuum divergence operator, and
balanced flows are analogous to solenoidal flows in the fliedfranical context.Indeed, the analogy can be pursued
further with a slightly different representation ¢f viz.

f=BTw+ETd. (10)

One may regar®”w as the 'curl’ ofw and E”® as the gradient ob. The operator\ = —££7 /2 is the discrete
Laplacian, and a balanced flow is one for which

26f =0=—ADd.

Thus,® must be 'harmonic’. The representation at (10) is remimscd the Helmholtz decomposition of a vector
field v in three-space into a solenoidal and irrotational partcivlyiields

v=VXxw+Vo,

whereV - w = 0 (Aris 1962).

The last series of definitions concerns properties of aegabsets of vector spaces, and for the remainder of this
sectionU denotes an n-dimensional real vector spaceoAein U is a closed subsét such that N {—K} = {0}
andaK + K C K for all real scalarsy, 320. K is solid if its interior is nonempty. A cone igeneratedor
spannedy a set of vectors it if any x € K can be written as a linear combination of vectors in the sghgionly
nonnegative coefficients. Tiigmensiorof K is the number of elements in a minimal generating set. A vecto K
is anextremal vectoif z = y + z with y, z € K implies that bothy and z are nonnegative mulitples of, and any
cone is generated by its extremal vectors (Vandergraft LF&d any setS C U, thedual S* of S is defined as

S*={yelU| <z,y>>0VzxelS}
and clearly the dual of a subspace is its orthogonal compiénieX is a cone, thénterior of K* is the set

INtK*={ye K" |ze K,z #0,=<xz,y>>0}

“The negative sign arises from our definition &fwhich is the negative of the usual definition, but which isrenconvenient in the present
context. The definition given here makes sense if for evege€j) there is an edge (j,i), but more generally one codfire A = ££7.

10



and theboundary ofK* is the set
OK*={ye K*|qa #0€ K > < z,y >=0}.

A faceof a solid coneX is a subsef’ of K such thatF' is a cone having the property thatif— y € K,z € F and
y € K, theny € F. For instance, lefl be anm x n matrix. The set of vectors € R,, such thatdz 20 is a cone in
R,; itis bounded by then hyperplanes< A;),x >= 0 whereA; is theit" row of A. Similarly, the set of vectors
y € R, suchthaty = Az, z 2 0, is a cone inR,,, spanned by the column vectors of4.

4 Reaction Invariants

4.1 General Rate Functions

The decomposition of any flow into cutset and cycle parts radfaai in the time-dependent equations
— =vEP(c) (11)

we can write

whereP; € N'(€) andP, € R(ET). Consequently,

% =vEP(c)

and so only the cutset part of any flow enters the transierdtéans. Said otherwise, if the flow is balanced at some
instantt, thendc/dt = 0 for all ¢ > t;, and as a result, a time-dependent flow cannot be balancedeoMer, if
EPy(c) € N(v), c(t) must again be constant, and to further analyze the trarsiehsteady state behavior of (11) we
must analyz&k (v€) in more detail.

Every elementary chemical reaction in the network consemmass, although this may not be apparent after the
concentration of each time-invariant species is absonbidd rate constant. However, the total mass of the mixture
need not be constant because the system is open and theremayybantities that are conserved during reaction. A
vector{) € R,, defines an invariant linear combination of concentratibns i

< Q,vEP(c) >=0, (12)
for then y
C
Q —_— =
< Q, 7 >=0
and so
< Q,c(t) >=< Q,¢0) > . (13)

The solutions? of (12), which we shall call invariants when no confusion eaise, span three disjoint subspaces
I; C R, of respective dimensioi}, defined as follows.

L =N
I =span{Q e R, | vTQ e N(ET), < Q,z >=0Vz € L}
I3 = span{Q € R, | < ETVTQ, P(c) >=0Vc € R}, ETvTQ #0}.

According to (13), each invariafit can be thought of as comprising the 'stoichiometric’ coéffits of a non-reacting
complex, although in general the coefficients are not irstieeynd some may be negative. Thosdirare independent
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of both the network structure and the rate functions; theyfixed solely by the stoichiometry of the complexes. In
some networks the non-null complexes are all species oriptegtof species and in such cases= 0, for then
v = [11 | 0], wherev, is ann x n diagonal matrix. A similar conclusion holds when the spgeiad complexes can
be ordered so that; is either lower or upper triangular.

The existence of af € I; indicates that the: species are not all required to define the stoichiometry ef th
complexes, but since;; > 0, there are né2 > 0 in I;. Therefore suck’s indicate that certain differences of species
concentrations are conserved. For example, consider dutioa

1
2H5 + Oq : 2H50
2

which is represented as

Here

N@') = spard(1, —=2,0)T} =,

and so the invariant combination of concentrations {8) — 2¢z(¢).
Clearly I C R(v), but more precisely,

I, = preimagéR (v*) NNV (ET)].

Therefore
ip = dim[R(v") N N(ET)] < min{n — iy, ¢}

and there can be no more independent invarianfs than there are componentsgn In particular, ifG is connected
theniy < 1, and if there is a null complex as well, thén= 0.
It is easily seen that the complexes can be labeled so that any/(£7) has the form

q
u= @ (14)
a=1

whereu,, is a p,-dimensional vector of ones, the,’s are scalars, ang, is the number of vertices in the!”
component of. Consequentlyi, # 0 if and only if v7Q = « has a solution, i.e., if and only i v, u >= 0 for
everyv € N(v). When the complexes are linearly independefithas a right inverse ang is certainly non-zero.
This is the case in the previous example, and one finds thatiBosoof

BHIES
00 2 21 71
Q32
is Qy = (2/5,1/5,1/2)T. Taken together2; and 2, spanN (ETvT), and the reader can readily show that the
invariants that represent conservationfbfindO atoms can be constructed frdm and(2,.
The invariants in/; and I, will be called kinematic invariants because their exiseedoes not depend on the

rate functionsP;(c). SinceN (ETvT) = I @ I, the number of independent reactions in the network, call i
n — (i1 +i2). The orthogonal compleme®(v€) of N'(€7vT) is called the reaction subspace, or more properly, the
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kinematic subspace defined by the mechanism. The intessesftthe coset oR (v€) through a point, € R with
R, is a closed subset &2,, called the reaction simplex through. We denote this by2(c). Itis a simplex in the
mathematical sense when it is bounded, and hence compaetdéedomposition oR; of the preceding example is
shown in Figure 1.

Reaction Cz

Subspace

Subspace of —
- N —

Kinematic

Invariants

5
- B
|

G

A\

Figure 1: The decomposition of state space into a subspakie@hatic invariants and a complement, the reaction
subspace

The number of kinematic invariants is related to other iediof the network in the following way. Since
RT) +N(ET) = N(v)* + R(E) = N (v) NR(E)]* (15)

it follows that
dimR(v") + dim N (ET) — dim[R(v") NN (ET)] = dim[N (v) N R(E)]*
and so
n—i1+q—iz =p—dim[N () NR(E)].
Letd = dim[N(v) N R(E)]; then

d=p—q—(n—(i1+i2)) =p—1—s=p(E) - p(v€). (16)

Thusé is the difference between the maximal number of independsmtions based on the structure of the graph
and the actual number of independent reactions. This nymiéch is clearly non-negative, is called the deficiency
by (?), and when it vanishes does not annihilate any elements{¢). Whend = 0, v is one-to-one fronR (&)
to R(v€) and therefore has a left inverdéfrom R (v€) to R(£). In this case the reaction subspace is isomorphic to
R(€) and the natural definition of the complex concentratiors is Ne, for then

dC —_dc

E:NEZEP(C),

as in the formal definition at (3). BecauRdE) andR(v€) are isomorphic the dynamical behavior can be described
in terms of complexes only, simply by settinft) — ¢(0) = v[C(t) — C(0)]. However, it should be noted that these
definitions may lead to negative complex concentrationd,that onlyp — ¢ independent complexes are needed as
coordinates iR (€).

The dimension of the third subspace of invariaiits can be determined as follows. Afly € I3 can be written

Q=01+
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whereQ); € N(ETvT) andQ, € R(vE). Therefore
< ETVTQ, P(c) >=< o, vE P(c) >

as before, and so it is necessary that eitRgic) = 0, in which caseP(c) is identically proportional to an oriented
cycle, or the cutset part must satisfy
< Qo, VEPQ(C) >=0.

The latter requires that eith€r, = 0, which means thd® ¢ I3, orv £ P>(c¢) must vanish identically. Consequently,
is certainly zero iy = 0 andg is acyclic, and iy > 0, i3 > 0 only if the cutset part is such that(c) € N (v) for
all c € R;f. Thereforeiz < § whenever it is positive, andc/dt = 0 in this case. Obviously this is a very degenerate
situation, as the following example illustrates.
Suppose that the mechanism is

AO
BO
A+ B

24

2. B

EINYe!

c L,
where A%, B® andC® are held constant. We order the active species in alphabetider, identifyA°, B® andC®
with C(5), and label the remaining complexes as

c(1)=4
C(2)=B
c@3)=C
C(4)=A+ B.
The graphg is
O
D=~ @\
e
and so(p, ¢, ) = (5,1,4). One finds that
10 0 0
100 10 0 1 0 0
v=70 1 0 1 0 E= 0 0 1 -1
001 0O 0 0 -1 0
-1 -1 1

and it follows thatp(€) = 4, p(v€) = 3, andi; = iy = 0. Sinceg is a tree,P; (¢) = 0, and some computation shows
thatis = 1 if and only of P = P, has the form

1
P(c) = Xe) 1
1

whereA(c) £ 0. Thus if all the rates are the same functioncp®very point inR; is a steady state composition.
Needless to say, it is very rare thgt> 0.
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4.2 Mass Action and Related Types of Rate Functions.

A special but important class of rate functions is that inehthe rate of thé'” reaction can be written

t=1,...7

Pi(c) = kij R;j(c) i1 p

(17)

for every reaction that involves th#" complex as the reactant. This includes ideal mass actienamis, in which

the rate is proportional to the product of the concentratiofithe species in the reactant complex, each concentration
raised to a power equal to the stoichiometric coefficienhef¢orresponding species in the complex. It also includes
enzyme-catalyzed pathways of the form

provided that the Michaelis constants for the enzyifieand E are identical.
The rate vectoP(c) can be written
P(c) = KR(c) (18)
whereK is anr x p matrix with k;; > 0 if and only if thei!" edge leaves th¢" vertex, andk;; = 0 otherwise. The
topology of the underlying grapé enters inta/” as follows. Define thentrance matriXt; of G by replacing all-1's
in £ by zero, and define the exit matdy as&; — £. Let K be ther x r diagonal matrix with thé:;;'s, i =1, ...,
along the diagonal, ordered by their first subscript. Thénéasy to see thdt = ng and that

EK =EKET = KT — & KEL. (19)
It follows from the definitions o€, andé&; that
(i)  The(p,q)" entry of&ffgff is nonzero (and positive) if and only if there is a directeded;, p) € G.
(ii) Eoffg is ap x p diagonal matrix whosg'" entry is the sum of th&;;'s for all edges that leave thié" vertex.
(i)  The columns of€ K7 all sum to zero, and sp(EKET) < p — 1.

Since& is fixed by the network, it is advantageous to modify the d&fins of I; and /3 slightly. We define
L =spafQ e R, | vTQ e N(EKET), < Q,z>=0Yzc N1}

and alter the definition of; in the obvious way. The advantage of modifying these defingilies in the fact that now
I3 = {0} for mass action kinetics, either of ideal or non-ideal typ®yvided only that the activitg; — 0 asc; — 0
in the latter case. As a result, all invariants are kinemiatiariants in the extended sense.

The maximum number of independent kinematic invariants,iis dimj\/(&)f{ET), and this number can be
determined as follows. Suppose tiahasq componentsj,, a = 1, ... ¢, and that there arg, vertices inG,. For
eachgG, determine the strong componegts; and partition the vertex set to conform with this partitidritee graph.
Thus write

V=W W,...V}

and
Va = {Val, .. .Va,y(a)}s

8Any or all of theV, 3 may consist of single vertices.
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wherevy(«) is the number of strong componentsdn. TheV; are disjoint and the edge set can be partitioned in the
same way a¥; thusEf(EoT has the direct sum decomposition

EKEY =@, 82K (£9)T
whereE“ is the incidence matrix fog,. The partition ofG into components leads to the decompositions

C’0 = Ba C()a

20
CVl = ®o¢Cla ( )

whereCy,, has dimensiop, andC1, has dimensiom,. It follows that we need only conside(gaKaggT) for a
fixed «, for the results will be additive in. For simplicity we suppress theon £ and & until further notice.
The strong componeng, s in the partition ofG,, are of three types, namely,

(i)  those in which no edges from other strong componentsiteat®; such strong components are cafiedrces

(i)  strong components on which edges from other strong aomepts terminate and from which edges to other
strong components originate; these are caliéernal strong components

(i) those from which no edges to other strong componernitimate; these are callembsorbingstrong compo-
nents orsinks

Clearly no vertex in a source is reachable from any vertesidatits component and no vertex in a sink is reachable
from a vertex in any other sink. Thus the relationship of hediility defines a partial order on the strong components

o o
of G, and this in turn leads to the acyclic skele®g of G, which is defined as follows. Associate a verigxwith
each strong component ¢f,, and introduce a directed edge frdmto V; if and only if one (and hence every) vertex
o
in V,; is reachable fronV,;. G, is connected sincg, is connected, but it is acyclic; in fact, it is a directed tree

EitherG,, consists of a single vertex and no edges, which occurs Whesonsists of one strong component, or it has
at least one vertex of in-degree zero and at least one vefrtax-@egree zero. By relabeling the strong components if

[e]
necessary, the adjacency matrixgyf can be put into the form

8 88 8|© O
8 88 8|© O
8 88 Ol O
8 8|0 ol ©

olo o|lo o
o olo o|lo o

0

where thex’s represent blocks that may be non-zero. The three diaddoeks are square matrices of dimensions
equal to the number of sources, the number of internal sttongponents, and the number of sinks, respectively. Note
that the vertices corresponding to internal strong comptmean always be ordered so that the central block is lower
triangular by virtue of the fact that the strong componentsaaximal with respect to inclusion of edges. The number
of sinks or absorbing strong components is the number of @@omns ofA.

The edge set of,, can be partitioned intg« subsets, ;, the j** of which contains all the edges that leave the

16



vertices in thej* strong component, and the incidence matrix can then beanrits follows.

(&2 0 0 0 0
0 &9 O 0 0
E31 €30 E33 -

Ey Ei2 Eu3 Esa -
Es1 Es2 Es3 Esa Ess
E1 Eo2 63 Eeua 0 Eseo |

(21)

o O O o O

(For illustrative purposes, we have writt€rfor a case in which there are two each of sources, sinks aadhitstrong
components.) The non-zero elements in the off-diagonakisiare alH-1, and sincef, is formally obtained front
by dropping+1’s and changing the sign ef1’s, it follows that

[ &0 O 0 0 0 0 ]
0 Exp - 0
1o 0  Eo - 0
=1 | 0 0 &uo -+ 0 (22)
0 0 0 0 &so O
| 0 0 0 0 0  Eseo

If K andz are partitioned in conformance with then the system

ERE =0
can be written in the block form
[ &1 K.E5, 0 0 0 0 0 |
0 522K25§20 0 0 0 0 X1
. } N T2
531K15,1T10 . 533K35§30 0 0 0 x3 0
- T - oT v |
543K35330 544K45440 0 0 Ts
555[%555?;)0 O Te
| Ea K€l . 0 EosK6Edgo |

Therefore the first step in findimym/\/’(SOf{ET) is to determine the rank of each of the diagonal blocks.
The diagonal blocks;; of £ are not the incidence matrices of a subgraph but they candmmjeosed as

Ejj = &1 | €2l

where€;; is the incidence matrix corresponding to all edges thatiosig and terminate withig,, ;, while ;5 corre-
sponds to edges that originategn, but terminate in another strong componenggf Similarly,

Ejjo = €10 | —E€j2]
and so
£ K€ = EnK — j&fiy — EpKiE.
For every absorbing strong componeﬁ}if(jng2 is absent, and consequenﬁyﬂkjgﬁo corresponds to a strongly-

connected subgraph consisting of the edges that origimateeaminate within the component. The ranlé’gff(jgﬁo
for such components is one less than the number of vertidths komponent, as is shown in the following proposition.
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Proposition 1 If G, is strongly connected, thefEKET) = po — 1.

Proof. : From properties (i) and (ii) fo(EOT given earlier, it follows that fog sufficiently large A(s) = 5K5{+SI
is non-negative. Sincé,, is strongly connecteoE’KSéF is irreducible (cf. (Berman and Plemmons 1979)) and so is
A(s). Therefore the Perron roet A) is such that

mjin ; Aij S IHJE_IX ; Aij

with equality on either side if and only if the minimum and rnmaym sums are equal (Seneta 1973; Berman and
Plemmons 1979). Since these sumsare(A) = s and it follows thatSf{gg has a simple zero eigenvalue. ,
p(é‘f(é‘{{) =po — 1.

We know thatt”u = 0 whereu = (1,..., 1)7, and therefore the left eigenvector&f £ associated with the zero
eigenvalue is:.
The foregoing shows that for argy,,

p(EKET) < p — (# of absorbing strong components).

In fact this is an equality, as is shown next. For every noseafing strong c:ompon(-l-ﬂﬁjgKijT2 is a diagonal matrix
with non-negative diagonal elements, and therefore

B(s) = 571K 5 ngKj‘S‘,jz; + sl

is non-negative for sufficiently large Since&;; is the incidence matrix of a strong componelits) is irreducible
and the Perron root is again bounded between the maximum aricham column sums. Since at least one edge
leaves every non-absorbing strong component, there efists- 0 such that

s—e<r(B)<s.

Therefore the spectrum &, f(jEjTO - EjQKjEjTQ lies strictly within the left-half plane, and so the diagbblacks cor-
responding to non-absorbing strong components are alkimanilar. Consequently, for everye N(EKE(JT), x; =10

if the i** component is non-absorbing, which proves tdi]iam/\/'(SK(?{{) is equal to the number of absorbing strong
components igj,,. By adding the results over all componentgjobne obtains the following theorem.

Theorem 2 Let G be a graph withy componentg,,, and letN, be the number of absorbing strong components in
G.. Ther?

q

N =dimN(EKED) = dim N (EKET) = Z (23)

The theorem provides an upper bound feibut the actual number can only be determined after the Stoicdiry

is specified. It should be noted that because the numberaigtbsorbing components gfis at leasty, N >

q = dim NV(ET). Consequently, if ang,, has more than one absorbing strong component then it carehappt

i > dim NM(£T), which would indicate that the subspakefor mass-action-type rate functions contains invariants
that would appear ids if the definitions of the preceding section were applied.

9Here& and K refer to the entire grapl
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4.3 Compactness of the Reaction Simplex.

In closed systems the total mass of the mixture is consearetias a result, there is &> 0 in NV (£7vT). This in
turn implies that2(cy) is bounded, and hence compact, and an application of Broufiseed point theorem shows
that there is at least one equilibrium point (Wei 1962). Aifamconclusion holds for open systems when a positive
Q exists, as the following proposition due to Horn and JackK4®72) shows. To avoid the trivial situation in which
everyc € Riisa steady state, we assume hereafterithat 0.

Proposition 3 Let0 < ¢y < oo be given. Thef2(¢p) is bounded, and hence compact, if and only if there iQan 0
in V(ETVT).

Proof. : Suppose that there is &h> 0 in A/(£7v7T). Since the components ofare finite,
< Qe>=< N, ¢y >< 0,

and the intersection of this hyperplane Wilt), is necessarily a bounded set. Conversely, supposeXtg is
bounded. Since o
Q(co) = {co + R(WE)} N Ry
it follows that L
R(vE) N Ry = {0}
becausél(c) is bounded. The existence of &> 0 is now a direct consequence of an alternative theorem due to
Stiemke (1915), which asserts that either the system

ETVTQ=0 (24)
has a solutioif2 > 0 or the system
v€z >0 (25)

has a solutiorr, but never both. As was noted earlier, there iShe 0 in I;, and thereforé)(c) is compact if and

only if
vIQ=u (26)

has a positive solution. Hereis given by(14), in which the scalars); are now non-negative. It is permissable that
somew; = 0, but only if the corresponding columns of are zero. However, the latter means that some species do
not appear in any complexes and without loss of generaldy tan be ignored. Therefore we require that> 0 for
all 5.

LetU be thep x ¢ matrix given by

I U7 0 . . .0 i
O (V%)
0
U =
L0 0 Ug |
Then the problem of solving (25) is equivalent to finding ausioh (Q,w) > (0, 0) of the system

Q

| -U] < ) =0. (27)
w
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By Stiemke’s theorem, this has a positive solution if and/aithe system

[_[”]T} x>0 (28)
has no solution.

Proposition 4 If there is at least one null complex in the network, then (28)27)) does not have a positive solution.

Proof. : First suppose that = 1 and that there arg! null complexes. Write
v={[v|0]
wherey; is n x (p-p'), and partitionz to conform with the partition of. Then (28) reads

1% 5] Z 0

1 1
p

x1; + Z x25 < 0.
1 J=1

p—

bS]

K2

The first of these is satisfied if we choase= (1, 1 ... 1)7 and the second can be satisfied by an appropriate choice
of z4. Therefore (27) has a solution and so (26) has no positivgisal
Wheng > 1, suppose that there is exactly one null complex, and by edifadif necessary, suppose that it appears
in the first component. Partition the vertex setdofs in Section 3.2 and partitianto conform with the partition.
Then
v=[ 0] [va | ... | v

and given a conformal partition af, (28) becomes

q
vix11 + Zl/jl‘j >0 (29)
i=2
p1—p' p'
(x11); + Z (x12)r <0 (30)
j=1 k=1
Pa
Zxakgo a=2,...q. (32)
k=1

If we chooser,, =0, a = 2, ...¢, then (31) is satisfied and (29) and (30) are identical to thmtons foly = 1. This
proves the proposition when there is only one null complex, @n analogous argument covers the generalCase.

The consequence of this result is that when there are nulptmaas in the network one cannot assepriori that a
positive steady state exists. The following example itigts why one cannot expect to do better using stoichiometri
information alone. Suppose that the reaction network is

A0 2,4 L g2 RO

10As will be shown later, a network with more than one null coexptan always be transformed into an equivalent network witl null
complex.
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and that reaction 1 is enzyme-catalyzed and follows Midkddenten kinetics. If the rate of the input reaction is
constant and exceeds thg,.. of the enzyme, the concentration dfwill simply increase monotonically and there
will be no steady state.

Another class of mechanisms for which (25) has no positilgtiem is given by the following proposition. Without
loss of generality we assume that there are no null compiexbs network.

Proposition 5 Suppose that the complexes of a network are distinct andhbattoichiometric vectors of two com-
plexes in the same componentgare proportional. Then there is ib> 0 in A (ETvT).

The proof is left to the reader. It is not true that proporébty of complexes in different components precludes the
existence of af > 0, a fact that is demonstrated by a mechanism due to (Wegsshd02).

1 1
Al T Ay 241 24,

Itis easily shown that/'(£7v1) = spar{(1,1)T} for this mechanism.

It is more difficult to identify general classes of systemisvidnich there exists af® > 0, but here is one example.
Suppose thgh < n and that the complexes are independent. Then (26) has #osduit generally it is not positive.
However, ifv” has the form

vt = [Ag | Ai]
whereAj isp x p andp(4y) = p, then

I/TQ = [AO | Al] <%) = AQQl +A192 =Uu
2

and so

Ql = Aal(u — Alﬂg).
If Q3 > 0, thenA4;Q, > 0 andu — A;Q, can be made positive by choosing thgs sufficiently large. Therefore
Q> 0ff Agl is non-negative. It is difficult to characterize the classridtrices that have a non-negative inverse,
but it certainly contains the diagonal matrices with pesitiliagonal elements. This will be true df whenever the
species and complexes can be ordered so thag'theomplex,q = 1,...p, contains at least th¢" species and
perhaps one or more of thg + 1)t throughn'” species. Evidently this is true if all complexes are nonstant
species.

5 Dynamical Equivalence of Networks.

The stoichiometric and incidence matrices associated avitetwork are fixed once a choice of complexes and reac-
tions is made, but even if the reactions are all elementaey, heed not be independent. This raises the more general
guestion as to what transformations of the complexes, imacand rate functions preserve the dynamical behav-
ior of the network. The dynamical behavior is completelyedetined by the tripldv, E, P(c)), and two networks
characterized byv, E, P(c)) and(v/, E’, P'(c)) respectively, are said to lyynamically equivalenit

(i) The domains ofP(c) andP’(c) are identical.
and
(i)  vEP(c)=v'E'P'(c)forall ¢ in the domain ofP.

If one side of the equation in (ii) vanishes identically tHeyth must, and thereforg is invariant under trans-
formations that preserve equivalence (equivalence toamsftions hereafter). It follows from (10) that the subspac
spanned by the kinematic invariants is also unchanged,tasdplies that both; + i and the reaction subspace
remain fixed.

Three types of equivalence transformations are of intdrexs, namely
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(1) The identification of equal complexes.
(2) The removal of cycles in the graph.
(3) The removal of elements iN (v) N R(E).

The first of these leavesfixed and changes and perhaps, the second changesand leave® andq fixed, and the
third changes and perhapg andq. The first type is not as trivial as it may appear to be at firahge, because 'equal’
complexes need only be equal with respect to the time-depeisgecies.
Letv( denote a column af. let £y denote a row of7, and suppose that;) = v(;) for some pair(i, j),7 # ;.

Then
€

v€ = [1/(1) VG VG V(p)] .

)

can be contracted to
&)

| €(p)
&’ is the incidence matrix of a grapff derived fromG by moving all edges incident at vertgxto vertex: and
deleting vertex. G’ may have cycles evendf is acyclic, but because the reactioiti) — C(;) is not admitted when
Vi) = V(4), G’ has no cycles of length one. Furthermore, if botindj react tok, G” will have two edges froni to
k. This creates a cycle, which is removed in the next step. yrcase € = v/£’, and since thé’;’s are unchanged,
the foregoing is an equivalence transformation. By appjyhis identification procedure repeatedly if necessawy, th
number of null complexes in a network can always be reduced¢o

The removal of cycles, which are elements\i{€), proceeds as follows. Choose a spanning treg amd write

E=1[&|&]

whereé&; contains the edges in the chosen tree. A set ofg independent cutsets can be chosen so that every edge
of the tree is in one and only one cutset, and so that the atientof the cutset through a tree edge agrees with the
orientation of the tree edge. The resulting cutsets coraafgsndamental sednd the cutset matrix for this set is

Q=[] (32)

whereQ; contains the edges not in the tree. Since an edge of the tersdots exactly one cutset, it is easy to see that
&y = £1Q1, and therefore

E=&[Q1 | 1]. (33)
Consequently,
vEP(c) = v&1[Q1 | I|P(c) = v&1P'(c) (34)
where
P'(c) = [Q1 [ T]P(c). (35)

Sinceé; is the incidence matrix for a tree, the new network, whoséligrece matrix is€;, contains no cycles.
However, in removing the cycles we have to reassign the mtesiges not in the tree to the tree edges. The definition
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of P’(c¢) shows that the new rate on a tree edge is the sum of the sigtesdassociated with the edges in the unique
cutset containing the tree edge, with the sign of each rateeisum fixed by the orientation of the corresponding edge.

Finally, we remove the elements ii(v) N R(E). Suppose that the intersection is spanned lbplumn vectors
£(j) and that

P—aq
EG) =Y dyel?
i=1

whereEl(i) is thei'® column of&;. Since there are no elements of the folﬁj\) € N (v) after equal complexes are
identified, we can assume without loss of generality thaffilsep — ¢ — 6 columns off; span the complement of
N@)NR(E)INR(E). Then
EP(c) =&[9Q1|I]P(c)=&1P"(c)
=& DD 'P"(c) = E"P"'(c)

whereD is defined so that
E"=6D =W, grma=d M) £

The matrix&” is not the incidence matrix of a graph in general, but we recane from it by dropping the last
0 columns. The truncatefl”, which we call’, defines the graph of the netwogk equivalent tog. Of course the
lasté rows of D! must also be dropped, and the resulting vedtbgives the rate vector fag’. It can happen that
in the reduced system there are non-reacting complexesdasied by zero rows if’. These can be removed from
v and&’ can be collapsed vertically. It should also be noted that avaeat remove alk € A/(v), but only those in
N(v)NR(E). Certain dependencies between complexes are dynamicalnviant, and wheti = 0 they all are. The
foregoing shows thagvery network is dynamically equivalent to one for whiché = 0.

A concrete example will illustrate the effect of the tramsfiations. Consider the Prigoine-Lefever mechanism

A—-X—>F
B+X—->Y+D (36)
2X+Y —3X
whereinA, B, D and¢ are held constant. With the obvious definition of compleiais,can be written

C(5) -5 O(1) =2 C(6)

(1) = C(2)
C(3) - C(4).
The first step is to identify’'(5) with C(6) andC(7) with C'(1). Then the graph is
C(5) é c(1) 2 c(2)
0?3) 2. o)

and to obtain a spanning tree simply drop reaction 1. We digeedges in their natural order and then find that

-1 0 -1

01 00 1 0 0

Q= [ 0 01 0] & = 0 -1 0
-1 0 0 1 0 1 0

0 1
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and
1 0 2 3 0

01100

V=

It follows thatp(v€) = 2, which implies that there are no kinematic invariants, ad@be predicted from Proposition
3. Sincep(€) = p—1=3, 6 =1 and one finds that

N()NR(E) = spar{(—1,1—1,1,0)}.

If we choose to retain reactions 2 and 4, then

1
D=10
0

and some elementary computations show ¢Has given by

= o O

S = =
| I

o) 2 o) = o)

where the rates are as indicated. If we retain reactions 2lahdng’ is
c(1) “BE" o)
c(3) "B o)

The reader can analyze the remaining possibility.

The foregoing example shows that the number of complexestendumber of components may be different in
two equivalent networks, each of which h¥is= 0, distinct complexes, and an acyclic graph. Of course thesgers
are not independent, becausés invariant under equivalence transformations and so whes 0, ¢ = p’ — s.
However,r’ is the same for equivalent networks if both are acyclic.

We noted earlier that, + i5 is invariant under equivalence transformations, but inffiethi; andi, are separately
invariant. Identifying equal complexes changes the nurnobeows of v” but only removes redundant equations in
the system'7'Q = 0, and therefore does not altéim N (v7). Thusi; remains fixed and so also dois

6 Necessary Conditions for the Existence of a Steady State.

6.1 The Relationship Between Local and Global Deficiency.

When there is no positive in (€77, as happens for instance when there are null complexes inetveork,
arguments for the existence of a steady state based on theactmess of the reaction simplex are not applicable,
and it is much harder to answer the existence question affirel Indeed, it is easier to give sufficient conditions
for the absence of any steady state, and such conditionssxed in this section. From an analytical standpoint it
is easier to treat the case in which tRgs are nonnegative, and therefore we assume at the outsetrthanetwork
transformations that are made preserve this nonnegativity

It can be seen from (4) that there are three distinct classs&teady states® of the network, defined by the sets

So={c* € R} | P(¢*) = 0}
Si={c" € R | EP(c*) = 0, P(c*) > 0} (37)

S ={c’ € R | vEP(c®) =0, EP(c®) # 0}.
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The first of these is empty when there are non-vanishing eaahgtputs to the network. Furthermore, since the
forward and reverse reactions of a reversible pair aredrkagparately, a steady state for such a reaction pair would
fall into this class only if the rate of each reaction vaniblseparately. This would be unusual but it can happen in
autocatalytic reactions or in reactions involving thrdshiighenomena.

The net rate of formation of each complex, as formally defihgd3), vanishes at a steady state in the second
class. In circuit-theoretic terms, the flux 6f(i) into thei*" vertex balances the flux away from ti#é¢ vertex and
Kirchoff’s current law applies (Oster and Perelson 197#4)the terminology used by Horn and Jackson (1972), the
system iscomplex balancedt steady states ifi;. At anyc® € Ss, the rate of formation of each species vanishes but
there exists at least one vertex in the graph at which theunebfithe complex in nonzero.

Suppose, as in Section 3.2, thathasq components, and leP, be the number of vertices ii,. Order the
complexes in accordance with the partition ®finto components and partition £ and P to conform with this
ordering; then (4) can be written

de &t 0
pri Wt v v &2 = Z veEY P (38)
0 E1 «a

Herev® isn x p, £¢ 1S po X 1o, and P% is r* x 1, wherer,, is the number of reactions ii,. Each&® is the
incidence matrix for the corresponding subgraphandp(£*) = p, — 1. As before, the partition leads to a direct
sum decomposition af’y andC}.

The columns of each®£® are the stoichiometric vectors for the reactiongin and the number of these that are
independent, call it,, is given byp(v*£). Sincep(£*) = p, — 1, Sylvester’s law (Minc and Marcus 1964) implies
thats,, cannot exceegd, — 1. Thelocal deficiency,, is defined as

0o = Pa —1— 84
= dim R(£Y) — dim R(v*E)
= dim[N (v*) N R(EY)]

and it vanishes if and only if the number of independent ieasting,, is exactly the number set by the graph structure,
namely,p,, — 1. The total number of independent reactions computed faxaiponents ig(€) and it follows from
(36) that

s=p(€) <Y sa <p—q.

Therefore the global deficiendyis
§=p—q—s>p—q—Y sa= ba

and since), > 0, § = 0 implies thaty, = 0, « = 1,...¢q, but not conversely. For future reference, we summarize
these facts and others in the following proposition.

Proposition 6 Let G be the graph of a reaction network witlcomplexesy reactions andg components. Then
() ra = pa —12 sa4
r>p—q>s
(i) 0o =pa—1—58,>0
d=p—q—5>>.6a>0

(i) s =3 s, ifand onlyifs = " é,.
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(iv) 8, = 0iff N(v*) NR(EY) = {0}
§d=0iff N(v)NR(E) = {0}
(v) 6 =0impliesé, =0,a=1,...q.

It follows from (i) that the number of dependent reactiens- s, in component: is at least as large as the number
of oriented cycles ir§j,,, and likewise for the entire graph. The excess nuna@esertainly vanishes if the complexes
in that component are independent, but this is not a negessadition. The strongest conclusions that can be reached
are as follows.

Proposition 7 Let G be as in Proposition 5. Then
(i) if there is exactly one null complex i@, and ifdim NV (v%) = 1, thend, = 0
(i) if 4, = 0thendim N (v*) <1
(ii) if 6 = 0thendim N (v) < gq
(iv) If 6o =0, =1,...q, andif the set of non-null complexes for the entire netwsrkriearly independent, then
0=0.
Proof: Let K* = C—Ja u {—C—g“a}. Since) ", y; = 0 foranyy € R(£%),
R(EY)N K = {0}
and thereforéd, = 0 if all z € N (v®) lie in K*. If dim NV (v*) = 1 and there is exactly one null complexdh,,
which we label as thg!", then(0,0,...0,1)T € N'(v*) and thereford,, = 0.
If 6o = 0thenR(EY) NN (v*) = {0}, and sinceNV'((£2)T) N N (v*) = {0}, it follows thatdim N (v*) <
min{1, p, — 1}. Since there are no non-reacting complexgs> 2 and consequently,
dim N (v®) < 1.
If 6 = 0, a modification of the foregoing shows that
dim N (v) < min{q,p — ¢}
and sincep,, > 2, p > 2q. Therefore
dim N (v) < gq.
Under the conditions in (iv),

p(v€) = p(r™E*) = p(€%) = p(€).

It follows from (ii) thatd,, > 0 if there is more than one dependent complex in any compo&ever, we know
from Section 4 that whenever the dependencies are due toréisence of several null complexes, the network is
dynamically equivalent to one with only one null complex. difn A/(v*) = 1 for every component in the new
graph, the according to (i), = 0 for every component. The conclusions in (i) and (ii) are thetkpossible in that
dim A (v*) = 1 does not by itself imply thad, = 0. This is illustrated in the following example. Suppose that
(n,p,q,7) = (2,3,1,2) and thatg, v, and€ are as follows.

(1)
@/ \G)
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V_{l/u V12 V13] e | 1 o

V21 V22 23
Suppose that(v) = 2, and that
V@3) = ar) + fr ).
One finds thatlet v€ = (1 — (a + f3))[v11v22 — vi2v21], and consequently

5— 0 if a+p#1
_{1 if a+p=1

If « andg are non-zero and + 5 # 1, the example also illustrates the fact that linear indepeand of the non-null
complexes is not a necessary condition for having 0. However, according to (ii) and (iii) of Proposition 7, tleer
can be at most one linear relation between the stoichiometgtors of the complexes in componentf §,, is to
be zero, and at most overall if § is to be zero. Becausg y; = 0 for anyy € N (%), the most general linear
relationship between the complexes that is compatible fitk- 0 is of the form

p p
Syl =0, > yr#£0. (39)
=1

=1

If these are satisfied for adl and there are no inter-component relations of the form

p p
=1 =1
thend = 0 as well. Thus an autocatalytic reaction of the form
C(i) < \C(i) A>1

does not, by itself, lead to a non-zero deficiency. However Wegscheider mechanism discussed in Section 3 has
two inter-component relations between the complexes amettbres > 0 for this mechanism, even though = 0
for each component.

6.2 Nonexistence of Balanced Flows

At a steady state® € S,, the flow P(c®) satisfies

and the partitioned form of the equations at (38) shows that
EP¥(c*)=0 a=1,...q. (41)

Consequently, the flowP*(¢*) on each component ¢ is a balanced nonnegative flow and is strictly nonnegative
on at least one component. Our next objective is to determiren such flows cannot exist, and for this purpose we
require the following special case of a theorem due to (Mot2R36)*

Theorem 8 Let A be a non-zero matrix. Then eithder = 0,2 > 0 has a solution oA’y > 0 has a solution, but
never both.

11The complete statement of this theorem, Stiemke’s thecaghmore general alternative theorems can be found in (Msaniga 1969).
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Theorem 9 Let G be the graph of a reaction network wittcomplexesy reactions ang components.

(i) If G is acyclic then there exists no strictly nonnegative bagairftow.

(i) There exists a positive balanced flow if and only if evepmponent,, of G is strongly connected.

Proof. : To prove (i), all we have to do is show that
ETy >0 (42)

has a solution wheg is acyclic. Without loss of generality, we can assume that 1, for otherwise we apply the
argument to each component. In order that there be a solittismecessary and sufficient thasatisfy

—Yi +y; > 0 (43)

for every ordered paifi, j) in the edge of set af. To construct g that satisfies (43), we proceed as follows. Sigce
is acyclic, there is at least one veriéxwith dj = 0 (an initial’ vertex) and at least ong, with ;" = 0 (a 'terminal’
vertex). Choose a directed path from an initial vertgxto a terminal verte¥, and, beginning withy; = 1, define
yr+1 = Yy + 1 for those vertices on the chosen path. If there is only onk path througly this provides the desired
y. If more than one path leavés, or if there is more than one initial vertex, repeat the pohre for each path. If
more than one path is incident at some veiitexassigny; the largest of the values associated with the paths incident
atV; and repeat the foregoing procedure for each path leajn@ he resulting, satisfies (40) and this proves (i).

Sinceg, is strongly connected if and only if there exists a close@d&d edge sequence that contains all the
edges, it follows that a positive balanced flow exists whegreg,, is strongly connected. To prove the converse,
we show that if somg,, is not strongly connected then there exists no positiverizald flow. This will follow from
Stiemke’s theorem if we can show that

ey >0 (44)

has a solution, for then
E2=0,2>0

has none. We can again assume that 1 without loss of generality. Partitiod,, into strong componer§,s as in
3.2, and then (44) becomes

Ehooo&ho¢elh &L &L

0o &4 &b &L &L, &L L&

Y2
e, 0 0 &L &L &n e |2y
' 0 0 0 &L & &4 ya |~
Ys
0 0 0 0 EL 0
%5 Ye
O 0 0 0 0 &%

(As before, we illustrate the case in which there are two ediclources, sinks and internal strong components, but the
arguments used apply in general.) Now recall thatand&gs are the incidence matrices for strong components, and
therefore

ELy; >0  j=5,6

)

has no solution because
gijj = 0, Zj >0
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has a solution by virtue of the 'if’ part of (ii) applied to tteubgraphs. Furthermore, recall that the off-diagonal
blocks are non-negative, and singg is not strongly connected and> 1, there is at least one such block that is not
identically zero. Therefore, if we choose

y;=04=1,...4

Yj = Uy j:5,6

then
ETyJ =04j=1,...6

and for at least one paft, j)
51_] y]

The theorem implies tha$; can be nonempty only if at least one componeng afontain a cyclic sequence of
reactions of the form
cC(l)—-C2)—...—C(1).

'Apparent’ cycles may in fact not be cyclic in the foregoirense. For instance, the feedback system
Sg — S1 — Se — ... — S, — Products

in which all reactions shown are irreversible, is acyclicentthe rate function for the first reaction is taken to be
f(Sn) - So (Tyson and Othmer 1978). However if the concentrationSpénd the products are time invariant and if
the associated complexes are identified, the resultingorktis strongly connected.

6.3 Conditions under whichS, = ¢.

The flows corresponding to steady stateSincontains both cycles and cutsets and therefore the steatyyersion
of (38) reads

O_Zyagapa s Zyaga Ba)Twa+ QaT a Zyaga Qa Pl _ q (45)

whereinz® #£ 0 for at least onex. The sum vanishes either if every term vanishes or if thezeaiteast two nonzero
terms whose sum vanishes. In the former case the steadyflstates said to bdocally-compensatetiecause the
unbalanced part of the flow is annihilated BYE* on every componerd,,. The flow is onlyglobally-compensated
at ¢® in the latter case because there is at least one species system for which the net rate of production in
one component of is compensated for by a net rate of consumption in anothepooent. In either case the flow
can be balanced on as manyrascomponents, wherem = ¢ — 1 (¢ — 2) for a locally-compensated (globally-
compensated) steady state flow. Of course all flows that dented are automaticlly locally-compensated, and
becaus&r (£) = @R (E¥), balanced flows are always balanced component-wise (irvéatex-wise).

If §&¢ = 0 for all « there are certainly no locally-compensated flows that atdalanced. This occurs, for instance
whenN (v*) = {0} for all «, in which case the complexes within each component are gmignt. In order foé to
be positive, it is necessary thatf) C @R (r*£%), i.e., the reaction subspace for the entire network mustgreger
subspace of the direct sum of those for the components. émntire,

Nw)={yeColy= (", ...y vy =0,y £ 0fory* # 0} = N (46)

in this case. E xamples of this case are given by the Prigegafiever mechanism and by the Wegscheider mechanism,
a special case of which will be discussed later.
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In general
N@w) ={@ N} &Ny 47)
and the opposite extreme occurs whién= {0}. Now there are no inter-component linear combinations offienxes
that are zero, and all steady-state flows that are unbalareatkecessarily locally-compensated. In orderfto be
positive, there must bed, # 0 for at least oney, and hereR (v€) = @R (v*E*). Thuss = > s, and by Proposition
5 §=>da.

The foregoing provides sufficient conditions for the absent locally-compensated flon®, = 0 for all «),
sufficient conditions under which there are no globally-pemsated flow$d = > 4,,), and sufficient conditions for
Sa = ¢ (6 = 0). However, these conditions are not necessary, as a laterpdeavill illustrate. A sharper set of
conditions is obtained as follows. Let

Ky ={y* € Con | y* = Y2, 2% € Chq, 2° > 0}. (48)

Then the equations
veEYx =0 a=1,...q (49)

have a solution for whicl®“xz® £ 0 for at least onex only if there is anx for which
N@®)n{K —{0}} # ¢. (50)

Therefore there is no locally-compensated flow that is ntarized on at least one componéptif and only if

NY*)NKS={0}, a=1,...q. (51)
Similarly, So = ¢ if
N(v)n K, ={0}, (52)
where
Ki={yeCy|y=E&x,x € Cy,x >0} (53)

Certainlyé, = 0a = 1,...q implies (51) andd = 0 implies (49), but not conversely, as the following example
illustrates.

Consider again the example following Proposition 6, angpssp thaty + 3 = 1, which means thaf = 1. The
coneKj is generated by the vectofs-1, 1, 0)” and(—1, 0, 1)7 and N (v) is spanned bya,1 — a, —1)T. Some
elementary computation shows that wher « < 1 there is no paif A, A2) with sgn; = sgn); such that

() () ()

Therefore, for this choice dfx, 3)
N@)n{K - {0}} =¢

and soS; = ¢. Moreover, sincd; is acyclic, either there is & € R_g“ at which the flow on both edges vanishes or
there is no steady state.
When all reactions in every component are reversible, tigaitiee of any column of is also a column of, and
S0
Z1

T2
E¥ = [5(1) — 5(1) 5(2) — 5(2) ]

Ly

= (v1 —x2)E0) + (23 — 24)E2) + -+
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Consequently, it cannot happen that
N(@®) n{KT} = {0} (54)

even thougld, > 0. Of course this only asserts the existence of a vecter0 such tha€“z # 0 andv*E*x = 0;
it does not imply that for a given choice of rate functions easly state:* exists at which the flow is unbalanced.
Another case in which (51) does not occur §gr> 0 is wheng,, is strongly-connected. Then Theorem 2 shows that
there is anzy > 0 such thatt“zy, = 0, and given any:; € N (v®) N R(EY), letx = z1 + Axo with A > 0 and
sufficiently large. Thus: is a locally-compensated, unbalanced, non-negative flotvagain, this is not an existence
result for any given choice of rate functions.

Earlier we interpreted,, as the excess of the actual number of dependent reactighsdner the number set by
the structure ofj,,. An alternate interpretation is as follows. Sinten N (v*E%) = 1, — 54, there existr, — s,
linearly independent flows that are annihilated$y¢*. Since every oriented cycle i, lies in NV (v*£%) there are

Ta_Sa_(Ta_pa+1):pa_sa_lzda

independent flows iV (v*£%) that are not balanced. These are necessarily cutsets vinoéithe decomposition of
C1a, and thus,, represents the maximum number of independent cutsetsahatppear in any flow that is annihilated
by v*£<. Of course a particular flow need not contain that many; il@¢dior instance, be balanced evenif > 0. If
G, is a tree then every flow o6, is a linear combination of cutsets andjif = 0 there is no such combination that
is annihilated by *£. In this caseS; = ¢ and there are no locally-compensated steady flows*far S,. However
S> need not be empty, since there may be a globally-compeniated\s an example of this, consider the following
special case of Wegscheider's mechanism:
./\/l1 — ./\/lz
2M2 - 2M1. ’

LetC(1) = M4,C(2) = M3, C(3) = 2M4,C(4) = 2M5. Then the graphis

(—®

|

and the stoichiometric and incidence matrices are

-1 0
2 0 10

”_{ 102} E=1 0 1
0 -1

Itis evident thafp(v1€Y) = p(£') = 1 and thatp(v?£2) = p(£?) = 1; thus the flow cannot be locally-compensated,
nor can it be balanced unless it vanishes on all edges, §ineacyclic. One finds thai(v€) = 1, soéd = 1 and S,
need not be empty. A simple computation shows thatany NV (v) andz; € R(E) must have the form

—2u —x
—2v T
zZo = zZ1 =
u Yy
v -y
whereu, v, x, y are arbitrary. Consequently
—Pl (Cs)
P1 (Cs)
EP(c®) = e N
( ) PQ(CS) ( )
—PQ(CS)



if and only if the system

A
2\

Pl (CS)
PQ(CS)

has a solutior?® € R_; for some\ > 0. When a solution existS, # ¢; whether or not it does depends on the choice
of constitutive relations.

6.4 A Flow Chart For Determining Whether Any Steady State CanExist.

The foregoing leads to a prcedure for systematically dagigihether certain types of flows can exist or whether they
can be ruled out on the basis of stoichiometry and netwoudcgire alone. A schematic flow chart for such a procedure
is shown in Figure 2. The conclusion that there are no pesitalanced flows unless eveJy is strongly connected is
essentially due to Horn (1972) and is part of the zero deftgi¢hneorem (Feinberg 1977; Feinberg 1980). That 0
implies.S; = @ also follows from Feinberg (1972), but the notions of logadind globally-compensated flows are not
used there. Neither of the foregoing authors allows ratetions that vanish at positive concentrations and th&get
does not arise in their analyses.

The problem of constructing and implementing the algorghequired for the tests in the flow chart will be dealt
with elsewhere, but some general remarks are in order. Alguos for deciding whether a graph is strongly-connected
or acyclic exist, and the tests on the deficiency only requemparison of the ranks of two matrices. If the complexes
are independent these ranks are obviously equalsand ¢. A less trivial case occurs when every non-null complex
is a species, for theiV (v) = ®N (v*) and the rank condition can be checked separately for each@oemiG,, .

The general problem of deciding when (48) and/or (49) arisfead can be cast as the quadratic programming
problem

min < vz, vr >,
z € IntK;y

but this aspect will not be pursued here. If all tReare bounded above, as for instance when the reactions are all
enzyme-catalyzed and Michaelis-Menten kinetics are apble, the minimization is over a convex polyheddgh
instead of over the conk

7 Discussion

When there is only one independent reaction in the systeengiynamical behavior is completely described by the
solution of the scalar equatigh= f(¢) in the extent of reaction, and a qualitative analysis is \v@agy. One can
readily determine the steady states, the transient behfori@ll initial conditions, and the sensitivity of solutie
with respect to parametric changes and changes in the fogmlbis evidently important to be able to obtain similar
information about general networks, for such informatiawd enable one to predict, for instance, how the dynamical
behavior changes when a catalyst in some pathway is poismmaahew pathway is added. If good techniques for
obtaining this information for large systems were avaialad composite performance index that measures stability,
sensitivity and efficiency could be devised, and alterragiynthetic pathways could be compared. Such comparisons
might well provide insights into why existing biochemicatpways and networks built from them have evolved to
their present form. Unfortunately such techniques are wail@ble yet, but it is clear that the ability to systemaltica
analyze how the reaction phenomenology and network streictte reflected in the dynamical equations is a step
toward their development. The graph-theoretic methodsveduce here seem to serve this purpose well.
Substantial progress has been made by others toward usdirsg special classes of reaction networks. An
early attempt to obtain global results for open systems vwi#fal mass action kinetics was made by Shear (1967).
However, as Higgins (1968) pointed out, Shear's H-fungtignich is actually the thermodynamic availability of the
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Figure 2: A flow chart for determining the existence of steatifes.

system relative to an assumed steady state, is not a Lyagunotion for all systems, as Shear had claimed. In a
landmark paper, Horn and Jackson (1972) showed that ifclgtpositive steady state exists, the availability is aloc
Lyapunov function whenever the steady state flow is balanéete can also establish that there are no equilibria on
the boundary of the simplex, and if there is an equilibriunmp the interior of the simplex, then it is unique and
globally stable. Our formulation was originally motivatbg a desire to extend these results to networks with mass
action kinetics in general, non-ideal solutions, and tantdg other classes of networks for which similar concluso
can be reached. The latter problem is particularly impdrianthe biological context, where the rate functions in a
reduced description of a network are often rational fundi@nd feedback control within and between pathways is the
rule rather than the exception. We have made some prograbe @malysis of more general networks and in sequels

to this paper we will show
() that the availability is a local Lyapunov function for sone general class of kinetics than ideal mass-action type,
provided the flow is balanced at the steady state
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(ii) that certain networks with monotone rate functions éavunique steady state, and when they are forced pe-
riodically, they have a unique periodic solution whose peris that of the driving frequency (thus sub- and
super-harmonic solutions are ruled out.)

(iii) how the cycle structure of the Jacobian @F P(c) is related to the structure of the graph and the feedback
present, and how these affect the stability of a steady ataterding to a linear analysis.

A by-product of our approach is that many of the results du¢dm and Jackson (1972), Horn (1972) and Feinberg
(1977, 1980) can be obtained more directly. The separafitimeousual stoichiometric matrix into the factarsand
E makes it clear why the cage= 0 is relatively easy to treat, and new interpretations of teficiency emerge. The
general representation of a balanced flow leads to an easy frat the availability is a Lyapunov function under
certain conditions, and Theorem 2 can be used to give an easy @ parts of the zero-deficiency theorem. This is
not to detract from previous work, but only to illustrate thiae results become more transparent when the network
structure and reaction phenomenology are separated neadycl

Ours is not the first application of graph-theoretic teclieis|to the analysis of reaction networks, and in conclu-
sion we shall mention some realted work. Aris (1965) devetbihe algebraic approach to the analysis of reacting
systems and Sellers (1966) has applied ideas from algeio@atogy and graph theory to the problem. The network
thermodynamics approach developed in Oster and Perel€)&and Perelson and Oster (1974), in which bond
graphs are used to represent reactions, is related to SelMlerk. The underlying graph structure is quite different
from ours, in that species rather than complexes are asbigmeodes, and the representation of chemical reactions is
more complicated. Horn (1973a) recognized that networksdcbe represented by graphs in which the nodes repre-
sent complexes, but he did not exploit this fact in analyzirgstructure of the dynamical equations. He has also used
species graphs (those in which the nodes represent spaziasalyze systems in which all complexes have at most
two species (Horn 1973b). Williamowski and Rossler (19a&) Williamowski (1978) have continued the latter line
of investigation and have enumerated the different typeseobnd-order, ideal, mass-action kinetic networks. Toth
(1979) has obtained results on the types of systems thatidegdhdient flows. (1978) and (1973) make extensive
use of network structure in analyzing the case in which the fianctions are represented by Boolean functions. This
approach is useful in cases where the rate laws model switbli¢ in many cases this is too crude an approximation
to reality.

The linear problem that arises either when the kinetics as¢-dirder or when the stability of a steady state is
investigated has been treated by several authors. HillQLB&s used results from the topological analysis of linear
systems to obtain representations of the steady state itwatiens and fluxes for any system of reversible first-order
reactions in terms of weights on directed trees in the graftsimilar approach can be used to represent the rate
functionsR(c®) for any mass-action-like kinetics, provided that the flonbaanced. Beretta et. al. (1979) used
a technique due to Hyver (1980) to identify a class of massmé&inetics for which a steady state, if one exists, is
always stable according to linear theory. Their resultsglement those of Horn and Jackson in that it is not necessary
to assume that the deficiency is zero or that the flow is bathn€tarke (1980) provides a comprehensive review of
his own and related work on the stability problem. He alsceolss that the usual stoichiometric matrix can be written
in factored form, as we do, but does not make use of this fdeg r€lation of his work on the linear problem to our
approach will be discussed in a future paper devoted to tieatiproblem.

ACKNOWLEDGEMENTS

This paper is an outgrowth of a course offered at Rutgers&fgity in early 1979. | am indebted to the participants,
N. Greenbaun, Z. Kadas and P. Monk, for their questions amgheents, which resulted in various extensions and
clarifications. This work was partially supported under @saGM21558 and GM 29123 from the National Institutes
of Health.

34



References

Aris, R. 1962.Vectors, Tensors and the Basic Equations of Fluid Mechafosntice-Hall, New York.

Aris, R. 1965. Prologomena to the rational analysis of cleaimeactionsArchive for rational mechanics and analysis
19(2), 81-99.

Berman, A. and Plemmons, R.J. 197M9onnegative Matrices in the Mathematical Sciencisw York: Academic
Press.

Chen, W. K. 1971 Applied Graph TheoryAmsterdam: North-Holland.
DeGroot, S. and Mazur, P. 196Ron-Equilibrium Thermodynamicémsterdam: North-Holland.
Denbigh, K. G. 1952. Entropy Creation in Open Reaction Systdrans. Far SoG.48, 389—-394.

Feinberg, M. 1977. Mathematical Aspects of Mass Action Kase In: Lapidus, L. and Amundson, N. R. (eds),
Chemical Reactor Theory: A Revietinglewood Cliffs: Prentice-Hall.

Feinberg, M. 1980. Chemical Oscillations, Multiple Equiéh and Reaction Network Structur@: Stewart, W., Ray,
W. H., and Conley, C. (edspynamics and Modelling of Reaction Systetdsw York: Academic Press.

Giblin, P. J. 1977Graphs, Surfaces and Homolagyew York: Wiley.

Glass, L. and Kaufmann, S. 1973. The Logical Analysis of @oaus Nonlinear Biochemical Control Networks.
Theor. Biol, 39, 103-129.

Glass, L. and Pasternack, J. S. 1978. Stable Oscillationwthematical Models of Biological Control Systems.
Math. Biology pages 207-223.

Harary, F. 1969Graph Theory Reading: Addison-Wesley.

Heineken, F., Tsuchiya, H., and Aris, R. 1967. On the Math&malsStatus of the Pseudo-steady State Hypothesis of
Biochemical KineticsMath. Biosciencegpages 95-113.

Hocking, J. C. and Young, G. S. 196Iopology Reading: Addison-Wesley.

Horn, F. 1972. Necessary and Sufficient Conditions for CexBalancing in Chemical Kineticrch. Rat. Mech.
Anal, 49, 172-186.

Horn, F. 1973a. On a Connexion Between Stability and Grapl@hiemical Kinetics; I. Stability and the Reaction
Diagram.Proc. Roy. Soc. LonA334, 299-312.

Horn, F. 1973b. On a Connexion Between Stability and Graplhiemical Kinetics Il. Stability and the Complex
Graph.Proc. Roy. Soc. LonA334, 313-330.

Horn, F. and Jackson, R. 1972. General mass action kinétickive for rational mechanics and analysis, 81.
Mangasarian, O. 196%onlinear ProgrammingNew York: McGraww-Hill.

Mel, H. C. and Ewald, D. A. 1974. Thermodynamic Potentiald Bwolution towards the Stationary State in Open
Systems of Far-from-Equilibrium Chemical Reactions: THénty Squared Minimum Function.Journal of
Mathematical Biologyl, 133—-151.

35



Minc, H. and Marcus, M. 1964A Survey of Matrix Theory and Matrix Inequalitie8oston: Prindle, Weber and
Schmidt.

Motzkin, T. S. 1936 Beitrage zur Theorie der Linearen Ungleichungémaugural Dissertation. Basel, Jerusalem.

Nagumo, M. 1942 Uber die Lage der Integralkurven Gewonlicher Differeh@deichungen.Proc. Phys. Math. Soc.
Japan 24, 551-559.

Oster, George F. and Perelson, Alan S. 1974. Chemical Redotinamics Part I: Geometrical Structufgchive for
rational mechanics and analysis(3), 230-274.

Othmer, H. G. 1981. The interaction of structure and dynanmchemical reaction networkPages 1-19 ofEbert,
K. H., Deuflhard, P., and Jager, W. (edgpdelling of Chemical Reaction Systeriiew York, NY, USA: Spring-
er-Verlag.

Sellers, Peter H. 1966. Algebraic Complexes Applied to Gktrgn Proceedings of the National Academy of Sciences
of the United States of Americb, 693-698.

Seneta, E. 197 on-Negative MatricesNew York: Wiley.

Shear, D. 1967. An Analog of the Boltzmann H-Theorem (a LrapuFunction) for Systems of Coupled Chemical
ReactionsJour. Theor. Biol. 16, 212-228.

Toth, J. 1979. Gradient Systems are Cross-Cataligeact. Kinet. Catal. Left12, 253-257.

Tyson, J. J. and Othmer, H. G. 1978. The dynamics of feedbaatkal circuits in biochemical pathwayBrogress in
Theor. Biol, 5, 1-62.

Vandergraft, J. S. 1968. Spectral Properties of Matricegfwhave Invariant ConesSIAM J. Appl. Math.16, 1208—
1222.

Wegscheider, R. 1902Jber Simultane Gleichgewichte und die Beziehungen ZwiscHeermodynamik und Reak-
tionskinetik Homogener System@. Physik. Chem39, 257-303.

Wei, J. 1962. Axiomatic Treatment of Chemical Reaction &yst. Jour. Chem. Phys36, 1578—1584.

Williamowski, K.-D. 1978. Contributions to the Theory of & Action Kinetics. Il. Representations of Closed and
Open KineticsZ. Naturforsch33a 983—-988.

Williamowski, K.-D. and Rossler, O. E. 1978. Contributioio the Theory of Mass Action Kinetics. |. Enumerations
of Second Order Mass Action Kinetic&. Naturforsch.33a 827—-833.

36



