
Chapter 1

Cell-Based, Continuum and Hybrid Models

of Tissue Dynamics

Hans G. Othmer

Abstract Movement of amoeboid cells is involved in embryonic development,

wound repair, the immune response to bacterial invasion, and tumor formation and

metastasis. Individual cells detect extracellular chemical and mechanical signals via

membrane receptors, and this initiates signal transduction cascades that produce

intracellular signals. These signals control the motile machinery of the cell and

thereby determine the spatial localization of contact sites with the substrate and the

sites of force-generation needed to produce directed motion. The coordination and

control of this complex process of direction sensing, amplification of spatial differ-

ences in the signal, assembly of the motile machinery, and control of the attachment

to the substratum involves numerous molecules whose spatial distribution serves to

distinguish the front from the rear of the cell, and whose temporal expression is

tightly controlled. How chemical and mechanical signals are integrated, how spatial

differences in signals are produced, and how propulsive and adhesive forces are

controlled are issues that are amenable to mathematical modeling. An overview of

some approaches to these complex problems is the subject of this chapter.

1.1 Introduction

Cell and tissue movement is an integral part of many biological processes, such

as large-scale tissue rearrangements or translocations that occur during embryoge-

nesis, wound healing, angiogenesis, the immune response, and axon growth and

migration. Individual cells such as bacteria migrate toward better environments by a

combination of taxis and kinesis, and macrophages and neutrophils use these same

processes to find bacteria and cellular debris as part of the immune response. Our

understanding of signal transduction and motor control in flagellated bacteria such

as E. coli that move by swimming and bias their movement by control of their run

lengths is quite advanced [2, 93, 108] compared with our understanding of how

amoeboid cells such as macrophages crawl through tissues. Some basic issues in the
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latter context include how directional information is extracted from the extracellular

signals, how cells develop and maintain polarity, how cells exert traction on their

environment, and how adhesion to substrates or other cells is controlled.

Many eukaryotic cells can detect both the magnitude and direction of extracel-

lular signals using receptors embedded in the cell membrane. When the signal is

spatially nonuniform they may respond by directed migration either up or down

the gradient of the signal, a process called taxis. When the extracellular signal

is a diffusible molecule the response is chemotactic, and when it is an adhesion

factor attached to the substrate or extracellular matrix (ECM) the process is called

haptotaxis [1]. Cells frequently must integrate several signals downstream of the

respective receptors, but the mechanisms for doing this are not well understood

[45]. Chemotaxis controls the migration of single-celled organisms such as the slime

mold Dictyostelium discoideum (Dd hereafter), toward a source of cyclic AMP

(cAMP), and the movement of leukocytes toward attractants released by bacteria

in a tissue. Movement toward a chemoattractant involves directional sensing and

orientation, assembly of the motile machinery, polarization of the cell, and control

of the attachment to the substratum or ECM. Many eukaryotic cells share common

mechanisms, to be described shortly, for sensing and responding to chemoattractant

gradients via G-protein-coupled receptors (GPCRs), and to adhesion gradients via

integrins or their homologs.

At sufficiently high densities a cell’s movement is strongly influenced by that

of its neighbors. In some cases cells repeatedly form contacts with neighbors to

gain traction, and then break them, only to re-attach to other nearby cells. Examples

occur in the streaming and slug stages of the slime mold Dd, to be described later. In

other cases cells remain attached to one another, and movement involves massive,

coordinated rearrangements of entire tissues, such as folding of the neural plate

to form a tube [26, 103]. Movement in both cases involves the same processes as

for individual cells, with the addition of more-or-less tight coupling between the

movement of neighboring cells, and we refer to both cases as tissue movement.

The classical description of amoeboid cell movement—which roughly speaking

is ’crawling’ movement that involves cell deformation and protrusions of various

types—involves at least four different stages: protrusion, attachment to the substrate,

translocation of the cell body, and detachment of the rear (Fig. 1.1) [71, 88]. (1)

Cells first extend directed protrusions (lamellipodia, filopodia, or pseudopodia) at

the leading edge. The force for this results from localized actin polymerization

(discussed later) into cross-linked networks of filaments in lamellipodia or bundles

of filaments in filopdia or pseudopodia. Behind the protrusion there is a region

of actin disassembly, where filaments are disassembled, crosslinks broken and

actin monomers recycled to the site of active polymerization [1]. (2) To persist,

protrusions must anchor to the substrate, the extracellular matrix (ECM), or another

cell via adhesive complexes, which serve as sites for molecular signaling and force

transmission [91, 92]. In mesenchymal motion such as in fibroblasts, the adhesive

complexes at the leading edge grow into larger focal adhesions that serve as traction

‘pads’ over which the cell body moves [33, 90]. (3) Next, depending on the cell

type, actomyosin filaments contract at the front, in the perinuclear region, or at the
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Fig. 1.1 The four stages of eukaryotic cell motion. From [3]
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rear, to move the cell body forward. (4) Finally, cells release attachments at the rear

[80]. In Dd or keratocytes the adhesion is weak and cells move rapidly, whereas in

fibroblasts it is strong and cells move slowly.

The cytoplasm in many amoeboid cells has been characterized as a viscoelastic

material whose properties are dominated by actin filaments, intermediate fila-

ments and microtubules, collectively termed the cytoskeleton [54]. The controlled

deformation and remodeling of the cytoskeleton that are involved in the shape

deformations and protrusions are essential for movement. Its stress/strain response

can be varied from that of a solid to that of a liquid by controlled assembly,

cross-linking, and disassembly of its components. Thus the cytoskeleton is a

dynamically-reorganizable nanomachine. The biochemical control processes, the

microstructure of the cytoskeleton, and the formation and dissolution of adhesion

sites are coordinated at the whole-cell level to produce the forces needed for

movement [5, 8, 61]. Much is known about the biochemical details of the con-

stituent steps in signaling and force generation, and the focus is now shifting to

understanding whole-cell movement. For this one needs a mathematical model that

links molecular-level behavior with macroscopic observations on forces exerted, cell

shape, and cell speed because the large-scale mechanical effects cannot be predicted

from the molecular biology of individual steps alone. However, how to formulate a

multiscale model that integrates the microscopic steps into a macroscopic model is

poorly understood in this context. What is needed are successively more complex

model systems that will enable one to test the major modules in an integrated model

sequentially. Some of these components are discussed later, and in the following

section we begin with actin dynamics. However we first introduce a model system

that is widely-used for both experimental and theoretical studies.

1.1.1 Dictyostelium Discoideum as a Model System

The cellular slime mold Dictyostelium discoideum is an important system for the

study of many developmental processes, including intercellular communication,

chemotaxis and differentiation. In a favorable environment the free-ranging indi-

vidual amoeba feed on bacteria and divide by binary fission, but if the food supply

is exhausted an elaborate developmental program is initiated (Fig. 1.2). After a

period of starvation the cells attain relay competence and can respond to an external

cyclic AMP signal by synthesizing and releasing cyclic AMP. This is called the

relay response. The fraction of relay competent cells in a population increases with

time after starvation, and at 10 h post-starvation almost all cells are relay competent

[43]. At about 8 h post-starvation the cells begin aggregating in response to periodic

waves of cyclic AMP initiated by randomly-located pacemaker cells. The proportion

of autonomously-signaling cells in an aggregation field rises from zero at about 7 h

post starvation and saturates at a small fraction of the total population within 21 h

[82]. At the end of aggregation the cells form a cylindrical slug or grex which may

migrate on the substrate for some time. Following migration the slug forms a fruiting
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Fig. 1.2 (a)–(i) The life cycle of Dictyostelium. From [86] with permission

body, which consists of an erect stalk that supports a spherical cap containing spores.

Under favorable conditions of temperature and humidity the spores are released and

can germinate, and the cycle begins anew [6].

Many biological networks that occur in higher organisms first appeared in lower

organisms such as Dd, and thus Dd has been widely-used for studying signal

transduction, chemotaxis, and cell motility. Dd uses adenosine 3’,5’-monophosphate

(cAMP) as a messenger for signaling by randomly-located pacemaker cells that

emit cAMP periodically in time to control cell movement in various stages of

development [74]. The production by pacemakers and relay of cAMP pulses by

cells that are excitable but not oscillatory, leads to cAMP waves that propagate

outward from a pacemaker, and this coupled with chemotactic movement toward

the source of cAMP, facilitates the recruitment of widely-dispersed cells (Fig. 1.3).

In early aggregation the cells move autonomously, but in late aggregation and in

the slug stage they interact strongly and the collective motion is tissue-like [74].

In the absence of cAMP stimuli Dd cells extend protrusions called pseudopods

in random directions. Aggregation-competent cells respond to cAMP stimuli by

suppressing existing pseudopods and rounding up (the ’cringe response’), which

occurs within about 20 s after the initial stimulus and lasts about 30 s [20]. Under

uniform elevation of the ambient cAMP this is followed by extension of pseudopods

in various directions, and an increase in the motility [44, 101, 105]. A localized
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Fig. 1.3 Spiral cell density waves observed in aggregation. From [89] with permission

application of cAMP elicits the cringe response followed by a localized extension

of a pseudopod near the point of application of the stimulus [95]. How the cell

determines the direction in which the signal is largest, and how it organizes the

motile machinery to polarize and move in that direction, are major questions from

both the experimental and theoretical viewpoint. Since cAMP receptors remain

uniformly distributed around the cell membrane during a tactic response, receptor

localization or aggregation is not part of the response [55]. Well-polarized cells are

able to detect and respond to chemoattractant gradients with a 2 % concentration

difference between the anterior and posterior of the cell [76]. Directional changes

of a shallow gradient induce polarized cells to turn, whereas large changes lead to

large-scale disassembly of motile components and creation of a new ‘leading edge’

directed toward the stimulus [37].

The first step in developing models for the movement of individuals and

population-level aggregation patterns is to identify the distinct processes involved in
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producing the different types of response. What a cell must do can be summarized

as follows.

• Some cells (or small groups of cells) must become pacemakers. It is known from

theoretical studies that a single cell suffices to create an aggregation wave [29],

but this has not been demonstrated experimentally.

• A cell must detect the external cAMP and transduce it into an internal signal. A

model of this process is discussed later.

• It must choose a direction in which to move and rebuild the cytoskeleton if

needed to exert the necessary forces for movement.

• Cells must amplify and relay the signal, and adapt to the ambient signal.

• They must respond to an oncoming wave but not to a receding wave (this is the

‘back-of-the-wave’ problem), and they must move for an appropriate length of

time.

• Eventually a cell interacts with its neighbors and moves collectively, first in pairs,

then in streams, then in the slug and finally in the erection of the fruiting body.

• Slightly later it has to ‘decide’ what type of cell to become in the final fruiting

body. This is a collective decision reached by the community (absent cheaters!).

• The entire aggregate has to stop migrating and erect the fruiting body.

The central theme in this chapter can be summarized in the question ‘how do we

model and analyze these behaviors, and what do we learn from that process?’ Since

there are many processes involved we approach these steps individually, and for the

description of single cell behavior we modularize it as shown in Fig. 1.4.

1.2 Actin Dynamics

1.2.1 The Basic Biochemistry

Actin is a cellular protein that exists either in the globular, monomeric form,

called G-actin, or in the polymeric two-stranded filament form, called F-actin. In

solution G-actin can self-assemble into long filaments, into bundles, and into higher-

dimensional structures. The filaments are long and flexible in vitro, and buckle

easily, but in vivo cells create a dense dendritic network of short, branched filaments

by tightly coupling nucleation, branching, and cross-linking of filaments in the

lamellipodium, a thin (0.1–0.2 �m), sheet-like protrusion at the leading edge of

a moving cell [21, 94]. Figure 1.4 shows the processes and some of the auxiliary

molecules involved in vivo, and suggests the complexity of models to describe

this. Table 1.1—revised from [80]—gives representative concentrations of G- and

F-actin, and various auxiliary molecules.

The stiffness of the network enables new filaments to exert force on the

membrane and provides the structural basis for polymerization-driven protrusion.

The type of structure formed is tightly controlled by extracellular mechanical



8 H.G. Othmer

1

2

Extracellular stimuli

3 Activate
4

 

Activate Arp2/3

70

complex to initiate

new filaments

WASp/Scar

Activated GTPases

and PIP2

WASp/Scar

Arp2/3 complex

FH2

Formin

Actin subunits

Pointed end

Formin mechanism

Profilin catalyzes exchange of ADP for ATP

ADP-actin

Pool of ATP-actin

Aging8 ADF/cofilin severs
and depolymerizes
ADP-filaments

9

PAK

LIM-kinase

Capping protein

Barbed ends

elongate

terminates elongation

ADF/cofilin
inhibits

12

7

5

bound to profilin
11

10

FH1

Barbed end

Produce active

GTPases & PIP2

6 Growing filaments push membrane forward

o °

Fig. 1.4 Top: A schematic of the modularization of the processes involved in movement at the cell

level. Center: A schematic of the signal transduction network that activates intracellular processes

involved in movement (From [59] with permission). Green arrows, enzyme activation; blue arrows,

membrane localization; red arrows, production and signalling; dashed arrow, complex regulations

that have yet to be fully established. (Image) Myosin heavy chain (MHC) and actin filament

distribution in polarized cells. Lower: The dendritic actin network, showing some of the major

components involved (From [79], with permission)
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Table 1.1 Concentrations in �M of actin and auxiliary molecules in various systems

Protein Acanthamoeba Dictyostelium Neutrophil Xenopus egg

Polymerized actin 100 90 100 4

Unpolymerized actin 100 160 300 12

Profilin 100 5

ADF/cofilin 20 <100 3

Arp2/3 Complex 2-4 present 1–2

and chemical signals and by intracellular regulatory molecules. Depending on the

context and the signal, a variety of motility structures can be formed, ranging

from microspikes and filopdia, to larger pseudopodia and broad lamellipodia. In

lamellipodia the structure of the dendritic network represents a balance between

the formation of actin polymers at the leading edge, most of which occurs at the

membrane, and the depolymerization of actin from the meshwork in the interior of

the cell. The half-life of actin filaments in the lamellipodium ranges from around

20 s–2 min [98] and is correlated with cell speed: turnover is more rapid in rapidly-

moving cells than in slower ones [66]. In any case the turnover of filaments is

more than two orders of magnitude faster than the turnover of pure actin filaments

in solution [111], and the in vivo system is far from thermodynamic equilibrium

and under tight control. This should be contrasted with man-made polymers, which

typically are static and designed for long-term stability. Additional discussion of the

processes involved is given in [11].

Pollard et al. [80] provide an excellent overview of the basic issues by the series

of questions around which they organize their review of the biochemistry. These

serve here to provide an overview of areas in which mathematical modeling may be

productive.

1. How do cells maintain a pool of unpolymerized actin subunits?

2. How are signals directed to the Arp2/3 complex?

3. How do cells create actin filaments with free barbed ends?

4. How do new filaments elongate?

5. How do growing filaments push the membrane forward?

6. What limits the growth of filaments?

7. How are filaments marked for depolymerization?

8. How do filaments depolymerize?

9. How do stable filaments survive in the cytoplasm?

10. How are subunits recycled to the ATP-actin-profilin pool?

We will not address all of these, but to these we add the question ‘how do these

processes balance to control the length distribution and the dynamic response?’, as

shown in Fig. 1.5.1

1Phalloidin functions by binding and stabilizing F-actin and thus this may not represent the true in

vitro distribution, but later we obtain very similar distributions.
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Fig. 1.5 The size distribution of actin filaments determined by fluorescence of phalloidin-

rhodamine tagged actin (From [63])

In solution and in vivo G-actin can bind to either ATP (the high-energy

triphosphate form) or ADP (the diphosphate form), and the phosphate group in

G-ATP is slowly hydrolyzed to ADP. Thus there are three monomer types, G-

ATP, G-ADP-Pi, and G-ADP, that can bind to a filament, and each filament is

asymmetric in that the rate of monomer addition is higher at the plus (barbed) end

than at the minus (pointed) end for all monomer types (see Fig. 1.6). The asymmetry

of the filament stems in part from the fact that monomeric units are asymmetric

themselves, having a plus and minus end.

Because nucleation of a new filament is energetically less favorable (it requires

formation of a trimer, as seen later) than addition to an existing one, the tendency

in an in vitro solution is to produce longer rather than more filaments. Thus some

insight into the dynamics of a solution can be gotten from a simple model in which

the monomers are not distinguished and only addition and release at the plus and

minus ends are taken into account. At each end of a filament the reaction

Am C cm

kC

�!
 �
k�

AmC1 (1.1)

occurs, where Am is the filament and cm is the G-actin monomer concentration. If

we neglect all processes but addition or release at the ends, the evolution at each end

is governed by the equation

dAm

dt
D �kCcm � Am C k�AmC1; (1.2)
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Fig. 1.6 The full set of binding rates. From [79], with permission

and therefore at equilibrium

Kd �
k�

kC
D

cm � Am

AmC1

or cm D
Kd � AmC1

Am

:

Consequently for each given form of the monomer there is a critical concentration

c˙ � Kd for each end of a filament at which the on- and off-rates exactly balance.

Above this the filament grows at that end, while below it the end shrinks. G-ATP

has a much higher on-rate at the plus end than at the minus end (cf. Fig. 1.6), and

therefore the critical concentration cC is lower than the critical concentration c� for

the minus end. Now consider what happens as the G-actin concentration is changed.
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Fig. 1.7 The growth rates of plus and minus ends for G-ATP as a function of the monomer

concentration

Since cC < c�, the crossover for net growth at the plus end is reached at a lower

concentration than at the minus end. For any c < cC a filament shrinks, and for any

concentration c > c� the filament grows. Thus there is a unique cC < cs < c�

at which net growth at the plus end is balanced by net decay at the minus end,

and the length remains constant (cf. Fig. 1.7). For this reason the process is called

treadmilling at c = cs. Note that the center of mass of the filament does not remain

fixed in space during treadmilling.

In reality, the cycle consists of addition of a G-ATP at the plus end, hydrolysis of

the ATP to ADP as the monomer traverses the filament, and loss of a G-ADP at the

minus end. Obviously this is a highly-simplified picture, since there is a non-zero

rate of addition of G-ADP at the plus end and hydrolysis is probably not obligatory.

There is also a more serious problem—at physiological conditions there is about

100 �M unpolymerized actin (Table 1.1), and most of this is in the G-ATP form

[84]. However, if one computes the Kd from Fig. 1.6 one sees that the Kd at both

ends is much less than this, so according to Fig. 1.7, both ends grow and all actin

should be polymerized. Thus there must be other factors involved, some of which

are discussed next in the context of binding proteins.

1.2.2 Regulation of Polymerization, Filament Severing and

Branching

Motility in amoeboid cells requires localized remodeling of actin networks at the

leading edge, or formation of actin bundles in precise locations such as filopodia,

and this usually involves additional proteins that regulate actin filament assembly

and disassembly locally. Proteins involved in actin-filament turnover are usually

localized at the leading edge and are spatially-regulated. The barbed ends of

the filaments face towards the leading edge where actin assembly predominates,

which leads to cycles of assembly at the front and disassembly in the rear of

a lamellipodium. Electron-microscopic images of the lamellipodia of keratocytes
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and fibroblasts show an extensively-branched array of actin filaments [called the

dendritic brush—cf. Fig. 1.4 (lower)] at the leading edge [94].

The proteins involved in local control of filament and network formation can be

grouped according to their function as follows.

• Sequestering proteins: these sequester actin monomers to prevent spontaneous

nucleation of filaments (ˇ�thymosins) or interact with actin monomers to

enhance nucleotide exchange (profilin).

• Crosslinking proteins: these cross-link the actin filaments and can induce a sol-

to-gel transition. Examples are ˛-actinin. Others such as vinculin, talin, and zyxin

link the actin network beneath the membrane, which is called the cortex, to the

plasma membrane.

• Severing proteins: these sever F-actin to generate more filament ends for

assembly or disassembly (the ADF family (actin depolymerization factor/cofilin;

ADC) of proteins, gelsolin).

• Other proteins function to cap filament ends to regulate addition or loss of actin

subunits (capping protein, gelsolin, the Arp2/3 complex), to nucleate filament

growth (the Arp2/3 complex), or to enhance subunit dissociation by cofilin.

A schematic of how the different types of proteins affect the filaments and network

structure is shown in Fig. 1.8. Their role is also illustrated in Fig. 1.4 (lower).

Despite the high concentrations of G-actin in many cells, filaments rarely

nucleate spontaneously in vivo in the presence of the monomer-binding proteins

profilin and thymosin-4 [80]. These sequestering proteins maintain a pool of actin

ready to polymerize upon the creation of barbed ends [80], although as is seen in

Table 1.1, cells such as Dd lack both, so the story may be more complex. Gelsolin

Fig. 1.8 A schematic of the effects of the various types of proteins
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and other capping proteins also serve to prevent filament growth by capping the

ends, as will be discussed later.

The interplay between all the factors involved produces a size distribution of

actin filament lengths. One example is shown in Fig. 1.5, which is for a relatively

simple situation, wherein either there is only actin monomer initially (albeit there is

a protein phallodin that localizes the fluorescent label and stabilizes long filaments).

Others also find an exponential length distribution under normal conditions [87],

and we will see later how these can be reconciled.

1.3 A Mathematical Model for In Vitro Filament Dynamics

To gain some understanding of the evolution of the filament length distribution, we

consider a closed system containing N monomers of a single type, we incorporate

nucleation of filaments, and we analyze the temporal evolution of the distribution.

The development here follows that in Hu et al. [47]. Let Mi denote a filament of

length i and let Ci be the corresponding concentration. Of course this implicitly

assumes that it makes sense to speak of concentrations, since initially there are no

filaments present, but we defer until later a discussion of stochastic effects. Thus we

consider the sequence

M1 C M1

k
C
1

�!
 �
k�1

M2

k
C
2 M1
�!
 �
k�2

M3

„ ƒ‚ …
Nucleation

k
C
3 M1
�!
 �
k�3

M4 � � �Mn

k
C
n M1
�!
 �
k�n

MnC1 � � �

„ ƒ‚ …
Propagation

Define the flux from a filament of length n-1 into a filament of length n as

jn � kC
n�1C1Cn�1 � k�

n�1Cn:

Then the evolution equations can be written

dC1

dt
D �2.kC

1 C2
1 � k�

1 C2/ �
PN

nD2.k
C
n C1Cn � k�

n CnC1/ D �2j2 �
PN

nD3 jn

:::
dCn

dt
D .kC

n�1C1Cn�1 � k�
n�1Cn/ � .kC

n C1Cn � k�
n CnC1/ D jn � jnC1

dCN

dt
D .kC

N�1C1CN�1 � k�
N�1CN/ D jN :

Since the system is closed the evolution is subject to the conservation conditionPN
nD1 nCn D C0, and this implies that solutions exist globally in time for any

finite N.
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The steady state can be found as follows. Define Kn � kC
n =k�

n ; then the steady

state relations ji D 0 lead to

Cn D Kn�1C1Cn�1 D Kn�1Kn�2C2
1Cn�2 D � � � D

 
n�1Y

iD1

Ki

!
Cn

1 � �nCn
1

and the conservation condition becomes

NX

nD1

nCn D

NX

nD1

n�nCn
1 D C0:

The left-hand side in the last equality is monotone increasing in C1 and vanishes at

zero, and therefore the steady-state is unique. One can also prove [47] that

• The Gibb’s free energy G D
PN

nD1 xn�n is a Lyapunov function. Here the

chemical potentials are defined as

�n D �0
n.T; P/ C RT ln

Cn

CT

D �0
n.T; P/ C RT ln xn:

Further, xn is the mole fraction of species n and CT is the total concentration,

including water. Since actin solutions are typically in the 10–100 �M range

[80], we can ignore the small changes in total concentration that accompany

polymerization and thus assume that CT is constant at constant temperature and

pressure. Thus the solution always converges to the steady state.

• For any fixed N >3, there exists a critical concentration C�
0 such that the profile

is monotone increasing for C0 > C�
0 and n � 4, and monotone decreasing for

C0 < C�
0 . The critical C�

0 gives C1 D K�1, where K D Kj for j � 3.

• For any fixed C0 > 0 there exists an N > 3 such that the profile is monotone

decreasing.

1.3.1 The Initial Evolution of the Distribution

The next objective is to understand the evolution of the length distribution in vitro.

To fix the context, we stipulate that the initial condition is a pure monomer pool

in a volume of 2000 �m3, which is a typical cell size. We always the state initial

conditions as concentrations, but we display the results in terms of the numbers

of the different types of species. To convert between them use the fact that 1 �M

corresponds to 600 molecules/�m3; thus the total number of monomers in the

standard volume used is 1:2 � 106. We know from the preceding that the final

distribution is monotonic, and for these initial conditions it is monotone increasing,

but the computational result in Fig. 1.10 shows that the evolution is complex. In that
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figure and hereafter we use rate constants from [87] given as follows.

kC
n D 10 for all n k�

1 D 106 k�
2 D 103 k�

n D 1 n � 3

Here first-order rate constants have units s�1 and second-order constants have units

�M�1 � s�1. For these rate constants the critical concentration is 0:1 �M—above

this the filaments grow and below this they shrink. Since the trimer ! dimer and

the dimer! monomer steps are 3 and 6 orders of magnitude faster, resp., than other

first-order steps, it is difficult to nucleate filaments in solution unless the monomer

pool, and hence the forward rate kCC1, is sufficiently large.

To understand the evolution shown in Fig. 1.10, we lump the species into

four pools, comprising monomers, dimers, trimers, and filaments of length four

and longer, respectively. From this diagram one can see that different processes

may balance at different stages of the evolution, as seen in Fig. 1.10. There are

three distinct regimes in Fig. 1.10: the first one characterized by formation of the

maximum peak height in the distribution, the second is a polymerization-driven

advective phase in which the mean length increases in a wave-like movement along

the length axis, and the third is a diffusive stage in which monomers are redistributed

among filaments and the length distribution evolves to the steady-state distribution.

The long final phase in which the profile converges to the steady state distribution

is not shown in the figure.

The disparity between the off-rates for filaments of length greater than three

monomers and those for dimers and trimers leads to four well-defined time scales

in the early dynamics that arise from different balances in Fig. 1.9. In increasing

order in the evolution they are (1) equilibration of monomers and dimers (T1 �

.k�
1 C 4kCC1.0//�1 � O.10�6) s), (2) the time at which the trimers reach their

maximum (T2 � .k�
2 C 9 � kC

2 K1C1.0/2/�1 � O.10�3) s), (3) establishment of the

total number of filaments (T3: � 30 s), and (4) equilibration of the monomer pool

with the filaments (T4: to be estimated later). T1 only plays a role in a perturbation

analysis done later.

Fig. 1.9 A schematic of the network for nucleation and filament growth
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On the time scale T2 the trimer population peaks, and then dimers and trimers

equilibrate with the monomer pool, whereas the slower formation of filaments can

be neglected on this scale. As is shown in [47], one can truncate the steady-state

equations at trimers and estimate the number of them quite accurately on this time

scale. Following this, filaments are formed from the trimers, and the monomer pool

decreases due to both filament formation and monomer addition to the growing

filaments. In this phase the trimer concentration or number decreases monotonically,

and when it reaches a level at which there is only one trimer, the total number of

filaments essentially stops increasing. Of course at this point stochastic effects will

play a significant role.

Once most of the trimers have been converted into filaments the total number

of filaments of length at least four is fixed, and the system enters a hyperbolic

phase in which the mean length of the filaments increases. This phase corresponds

to the wave-like movement of the peak in the distribution (Fig. 1.10), which ends

at around 30 s. This is followed by the penultimate phase in which the monomer

concentration is approximately at the critical level and the number of filaments is

approximately constant. In this phase there is a slow redistribution of monomers

among the filaments.

To understand the hyperbolic, diffusive and terminal regimes mathematically,

begin with the evolution of the filaments for n D 4; 5; : : : ; N � 1 written as follows.

dCn

dt
D .kC

n C1Cn�1 � k�
n Cn/ � .kC

nC1C1Cn � k�
nC1CnC1/

D �.kCC1 � k�/.Cn � Cn�1/ C
kCC1 C k�

2
.CnC1 � 2Cn C Cn�1/:
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Fig. 1.10 The time evolution of the filament length distribution, starting from a G-actin concen-

tration of 10 �M. The profiles correspond to 1, 3, 6, 30, 103, 3 � 103, and 104 s, respectively. From

[47], with permission



18 H.G. Othmer

If us denote by C.x/ the concentration of filaments of length x D nı (where ı is the

half length of a monomer), then we have the continuous approximation as

@C.x/

@t
D kCC1.C.x � ı/ � C.x// � k�.C.x/ � C.x C ı//

� �.kCC1 � k�/ı
@C

@x
C

kCC1 C k�

2
ı2 @2C

@x2

and from this we see that the convective velocity is .kCC1 � k�/ in monomer/s,

which vanishes at the critical concentration, and that the diffusion coefficient is

.kCC1 C k�/=2 monomer2/s. When the monomer concentration C1 is above the

critical concentration the filaments polymerize as they diffuse, at the rate kCC1 �k�

monomer/s, but when the monomer concentration drops to the critical value the

polymerization essentially stops and diffusion dominates. Before establishment

of the monomer-polymer equilibrium, convection dominates diffusion, and one

observes in the computational results that the maximum of the length distribution

increases at a predictable speed [47].

1.3.2 The Long-Time Evolution of the Distribution

In the final stage of the evolution the unimodal distribution evolves, albeit very

slowly, into an exponential steady-state distribution. If one assumes that the

monomer pool is approximately constant at the critical concentration in this phase,

one has the linear system

dC

dt
D

"
K1 K2

K3 K4

#
C C � � KC C �; (1.3)

where

C D .C2; C3; � � � ; /T � D
�
kC

1 C2
1; 0; � � � 0

�T

and the .N � 1/ � .N � 1/ matrix K is given by
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K D

2
666666666666664

�.kCC1 C k�
1 / k�

2 0 0 � � �

kCC1 �.kCC1 C k�
2 / k� 0 � � �

0 kCC1 �.kCC1 C k�/ k� � � �
::: kCC1 �.kCC1 C k�/ k�

::: kCC1 �.kCC1 C k�/

::: 0
:::

3
777777777777775

The following properties are established in [47].

• The matrix K has two large negative eigenvalues given approximately by �k�
1

and �k�
2 , corresponding to the relaxation rate of monomers $ dimers and dimers

$ trimers, respectively.

• The remaining eigenvalues are those of K4 to lowest order. K4 is a perturbation

of a tridiagonal matrix of the form

K4 D .kCC1/J � .kCC1 C k�/I C k�JT

where J is the lower diagonal shift.

• The eigenvalues of this are

�p D �.kCC1 C k�/ C 2
p

k�kCC1 cos �p �p �
p�

N C 1

• Since kC D 10; k� D 1, the critical concentration is C1;crit D 0:1, it follows

that

�p ! 0 as N ! 1:

This shows that the slowly-evolving quasi-attractor in the diffusive stage is not

an artifact of the assumption that the maximum filament length is finite. A more

detailed spectral analysis of K shows that the slowest mode relaxes on a time scale

of order of N2, which for N D 2000 is of order 106 s [47]. This exceptionally slow

relaxation provides a possible explanation for why different experiments lead to

different conclusions concerning the steady-state distribution.
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1.4 Stochastic Analysis of Actin Dynamics

Thus far we have modeled actin dynamics from a continuum, deterministic view-

point, and the analysis of the resulting models gives significant insights into the

evolution of filaments in solution. However, as we noted at several points, when

there are only a few copies present of a particular species the deterministic model

probably breaks down, and a stochastic description should be used. As we also noted

previously, G-actin is present in three different forms, but to simplify the analysis

we considered only one heretofore. In particular, ATP has not been singled out for

any role beyond supplying the necessary energy, which is stored in some unspecified

way in the filament lattice and dissipated by hydrolysis as a monomer moves from

the plus to the minus end of a filament. Thus a more precise description of filament

dynamics would include adding G-ATP at the plus end, hydrolysis, release of the

inorganic phosphate Pi as ATP is hydrolyzed, and dissociation of G-ADP at the

minus end. We deal with these issues in this section.

Actin rapidly hydrolyzes ATP upon polymerization [4] and releases bound

phosphate several 100 s later [70]. ATP hydrolysis and phosphate dissociation do not

cause immediate filament disassembly, but enable interaction with depolymerizing

factors such as cofilin. ATP hydrolysis by actin thereby determines the overall rate

of filament turnover, and some suggest that the nucleotide bound to actin filaments

serves as a timer to control actin filament turnover [4].

In addition, actin filaments can be stiffened by actin-binding molecules such

as the toxin phalloidin, which has been shown to delay the release of inorganic

phosphate after ATP hydrolysis, i.e., the lifetime of the intermediate F-actin-ADP-

Pi is significantly increased by phalloidin [25]. Thus it seems reasonable to conclude

that the portion of the filament with Pi bound will be stiffer than the part following

release, and this suggests that one should perhaps take position along the filament

into account when considering either or both branching and severing. A summary

of how some of the sequestering and severing proteins contribute to maintaining

the filament length is shown in Fig. 1.11. Obviously unpolymerized actin can be

sequestered in a variety of states so as to maintain a pool for rapid polymerization.

In addition to simple breakup of filaments, they can also exhibit large length

fluctuations, due to the stochastic exchange of monomers between the filament

and the monomer pool. Early theoretical studies on a single-monomer-type model

like that used in the previous section predicted that at the steady ‘treadmilling’

state, the filament length distribution undergoes a diffusion process at the rate

k�, the off rate of monomer at filament ends [72]. However, as we showed in

the previous section, the instantaneous diffusion rate constant is the mean of the

polymerization and depolymerization rates. In these models both the elongation

rate and diffusion constant are linear functions of monomer concentration over the

entire concentration range. However, Carlier et al. showed that the growth rate of

filaments can be described to first order by two distinct linear functions applicable

in different regimes of monomer concentration [14]. Filaments depolymerize below



1 Cell Models 21

Barbed (plus) end with lower Cc

increased by

Association rate Dissociation rate

Severed by ADF/cofilin

ADF/cofilin

increased by

ADF/cofilin

Unassembled

ADP–actin monomer

ATP

ADP ATP

ATP–actin ADP-Pi–actin ADP–actin ADF/cofilin Phosphorylated
ADF/cofilin

kinase

Phosphatase
Pi

LIM

ADF/cofilin

ADP

pool increased by

Pi Pointed (minus) end with higher Cc

(+) (–)
T T

T Pi

Pi Pi

D D

D D

D

D D

D D

D

D

D D

D D

D

Pi

D
Pi

D

DPi

D
Pi

D

Pi
D

D D D

D D

D

D

D

D

D

D

D

D
P

P
D

Pi
T

T T

T T

T

T

+ +
T

T

Fig. 1.11 A schematic of the effects of ADF/cofilin and profilin on filament length (From [17])

a critical concentration, whereas above it filaments grow at a constant rate and

the slope of the elongation rate below the critical concentration is higher than

that above it. At the critical concentration the growth rate vanishes, and filaments

treadmill. In a seminal experiment, Fujiwara et al. observed that individual filaments

show surprisingly large length fluctuations in the treadmilling phase [34], and other

experiments confirmed this high diffusion rate [60]. A stochastic simulation that

illustrates the large length fluctuations at the barbed end is shown in Fig. 1.12.

One sees there that the pointed end shrinks continuously, with relatively small

fluctuations in the mean position of the end. However, there are large fluctuations

at the barbed (upper) end of the filament. One sees in (b) that when the filament

has an ATP cap (red) it grows, and that it decreases rapidly when the end monomer

contains ADP (see inset to (b) at � 232 s). Furthermore, a significant number of

ADP-Pi monomers, in which both ADP and phosphate are still bound to the protein,

survive to the pointed end in this realization.

This example raises several questions, namely (1) how does one do stochastic

simulations of polymer networks, and (2) what are interesting questions and what

can be learned from them. Some answers to the second one are as follows.
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Fig. 1.12 (a) and (b) The length and nucleotide profile of a single filament during the polymeriz-

ing and treadmilling phase. Here the barbed end is at the top and the pointed end at the bottom—the

former growing and the latter shrinking. Red represents an ATP-containing monomer, yellow ADP-

Pi, and blue ADP-actin-containing monomers. Time in (a) and (b) is divided into 1-s steps, whereas

in the inset to (b) it is divided into 0:1-s blocks. From [46] with permission
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• What is the average nucleotide profile of an actin filament?

• How do different biochemical factors such as ADF/cofilin alter the average

nucleotide profile and conversely, how does the nucleotide profile affect the

action of these factors?

• What is the dynamic response of the distribution of length and nucleotide profiles

to an “external” signal that produces an increased amount of globular actin?

• Can the types of catastrophes described above that occur near the critical

concentration be explained?

• In what regimes are both the continuous and the stochastic models valid, and

when must one use a stochastic model?

1.4.1 The Mathematical Description of Reaction Networks

Suppose we have a set M of s chemical species Mi that participate in a total of r

reactions. We write the reactions as

X

i

reac:
�reac

ij Mi !
X

i

prod

�
prod

ij Mi j D 1; : : : r;

where �ij is the stoichiometric coefficient of the ith species in the jth reaction. The

set of reactions gives rise to a directed graph G as follows. Each linear combination

of reactants or products is called a complex, and each complex is identified with a

vertex Vk in G and a directed edge E` is introduced into G for each reaction. The

topology of G is encoded in its vertex-edge incidence matrix E , which is defined as

follows.

Ei` D

8
<
:

C1 if E` is incident at Vi and is directed toward it

�1 if E` is incident at Vi and is directed away from it

0 otherwise

Suppose there p complexes—then E has p rows and r columns, and every column

has exactly one C1 and one �1. Each edge carries a nonnegative weight R`.c/ given

by the intrinsic rate of the corresponding reaction. For example, the simple reaction

M1 C M2 • M3 is written as the two steps C.1/ ! C.2/ and C.2/ ! C.1/,

where C.1/ � M1 CM2 and C.2/ � M3: This network gives rise to the following

graph and incidence matrix.

1 2
2

1

E
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The evolution equation for the concentrations .c1; c2/
T of M1 and M2 now has

the factored form

dc

dt
D �ER.c/; c.0/ D c0 � �

2
4

1 0

1 0

0 1

3
5

The weight functions Rj define a flow on the graph, and one says that the flow is

balanced if ER.c/ D 0 [73]. In this case the fluxes entering and leaving each vertex

are balanced and the solution can be represented in terms of cycles in the graph.

Similar statements apply in general. For a network governed by ideal mass-action

kinetics the composition .c1; c2; � � � ; cs/
T satisfies the evolution equations

dc

dt
D �ER.c/; c.0/ D c0 (1.4)

where

R`.c/ D k`Pj.c/ D k`

sY

iD1

c
�ij

i

This class of kinetics is called vertex-controlled, because the flows on an edge are

controlled by the composition of the complex at the source vertex

One can also describe the evolution of a reacting system in terms of the number

of molecules present for each species. Let n D .n1; n2; : : : ; ns/ denote the discrete

composition vector whose ith component ni is the number of molecules of species

Mi present in the volume V . This is related to the composition vector c by

n D NAVc, where NA is Avagadro’s number, and although the ni take discrete

values, they are regarded as continuous when large numbers are present. Thus the

deterministic evolution for n is

dn

dt
D �E QR.n/ (1.5)

where QR.n/ � NAVR.n=NAV/. In particular, for ideal mass-action kinetics

QR`.n/ D NAVk`Pj.n=NAV/ (1.6)

D NAVk`

sY

iD1

�
ni

NAV

��ij

D
k`

.NAV/
P

i �ij�1

sY

iD1

.ni/
�ij (1.7)

D D Ok`

sY

iD1

.ni/
�ij : (1.8)
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This is still a deterministic description, and in a stochastic description the

numbers of the individual components are followed in time and the reactions

are modeled as a continuous-time Markov jump process. Let Ni.t/ be a random

variable that represents the number of molecules of species Mi at time t, and let

N denote the vector of Nis. Let P.n; t/ be the joint probability that N.t/ D n, i.e.,

N1 D n1; N2 D n2; : : : ; Ns D ns. Clearly the state of the system at any time is

now a point in Z s
0, where Z0 is the set of nonnegative integers. Formally the master

equation that governs the evolution of P is

d

dt
P.n; t/ D

X

m2S.n/

R.m; n/ � P.m; t/ �
X

m2T .n/

R.n; m/ � P.n; t/ (1.9)

where R.m; n/ is the probability per unit time of a transition from state m to state n,

R.n; m/ is the probability per unit time of a transition from state n to state m, S.n/

is the set of all states that can terminate at n after one reaction step, and T .n/ is the

set all states reachable from n in one step of the feasible reactions. The notation is

meant to suggest the ‘source’ and ‘target’ states at n; one could also call S.n/ the

predecessors of state n and T .n/ the successors of state n. The predecessor states

must be positive for conversion, degradation and catalytic reactions. Similar bounds

on the target states are naturally enforced by zero rates of reaction when the reactants

are absent.

The sets S.n/ and T .n/ are easily determined using the underlying graph

structure. It follows from the definition of � and E that the `th reaction C.j/ ! C.k/

induces a change �n.`/ D �E.`/ in the number of molecules of all species after one

step of the reaction, where subscript ` denotes the `th column. Therefore the state

m D n � �E.`/ is a source or predecessor to n under one step of the `th reaction.

Similarly, states of the form m D n C �E.`/ are reachable from n in one step of

the `th reaction. Once the graph of the network and the stoichiometry are fixed, we

can sum over reactions rather than sources and targets, and consequently the master

equation takes the form

d

dt
P.n; t/ D

X

`

R`.n � �E.`// � P.n � �E.`/; t/ �
X

`

R`.n/ � P.n; t/ (1.10)

However, the transition probabilities R`.n/ are not simply the macroscopic rates
QR`.n/ if the reactions are second-order (or higher), because as Gillespie [41] and

others have noted, combinatorial effects may play a significant role when the

number of molecules is small. Hereafter we restrict attention to mass-action kinetics,

and we suppose that the `th reaction involves conversion of the jth to the kth

complex: C.j/ ! C.k/. Then using Gillespie’s notation, we can write,

R` D c`hj.`/.n/ (1.11)
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where c` is the probability per unit time that the molecular species in the jth complex

react, j.`/ denotes the reactant complex for the `th reaction, and hj.`/.n/ is the

number of independent combinations of the molecular components in this complex.

Thus

c` D
k`

.NAV/
P

i �ij.`/�1
D Ok` (1.12)

and

hj.`/ D
Y

i

 
ni

�ij.`/

!
: (1.13)

In the definition of h we use the standard convention that
�

n

0

�
D 1.

The master equation (1.10) is not solvable in general, and it is generally even

difficult to obtain a closed set of equations for the moments of the distribution P.n; t/

when the network involves bimolecular reactions, since the evolution equation

for a kth-order moment typically involves higher-order moments [36]. However,

for linear reaction systems one can solve for first and second moments explicitly

(modulo solving a spectral problem) and one can do this in a distributed system

governed by a reaction-diffusion equation that is discretized in space [35, 56].

Remark 1 In the deterministic description of a reacting system the existence of

a compact invariant set implies that solutions are bounded and exist globally in

time, but the deterministic invariant set may have no significance in the stochastic

description. However, the probabilities of very large numbers of species can be very

small.

Consider the simple process �
k1

�! A
k2

�! �, and let pn.t/ be the probability of

having n molecules of A in the system at time t. Let ˝ D exp.�k2t/; then

pn.t/ D
1

k2nŠ

�
k1

k2

�n�1

.1 � ˝/n�1
�
k1.1 � ˝/2 C k2n˝

�
� exp

�
�

k1

k2

.1 � ˝/

�

Therefore the stationary distribution is a Poisson distribution given by

lim
t!1

pn.t/ D
1

nŠ

�
k1

k2

�n

exp

�
�

k1

k2

�
;

Thus pn.t/ is non-zero for arbitrarily large n in both the transient and stationary

distributions, but it decays rapidly with n. For example, if k1=k2 � O.1/ and n D 25,

pn � O.10�25/ in the stationary distribution. Even if the stationary mean k1=k2 �

O.10/, pn � 10�10 for n �� 50 (one must always choose n greater than the mean

in order that pk < pn for k > n).
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1.4.2 The Stochastic Simulation Algorithm

Since it is generally impossible to solve the master equation analytically in

interesting cases, numerical simulation methods have to be used. Numerous stochas-

tic simulation algorithms (SSAs) have been proposed since the original exact

algorithms, called the first reaction method and the direct method, were formulated

by Gillespie [42]. Suppose that the system volume V is well-mixed and that there

are r reactions amongst s species, as before. In Gillespie’s notation, the probability

density for reaction type ` is

p`.�/ D h`c`e�
Pr

iD1 hici� D a`e
�a0� (1.14)

where

a` D c`h`; a0 D

rX

iD1

ai:

In the Monte Carlo simulation algorithm of the direct method, a basic reaction cycle

comprises three steps: first, determine the waiting time for the next reaction; second,

determine which reaction will occur; and lastly, update the system state to reflect

changes in the species involved as reactants or products in the reaction that has

occurred. Accordingly, during each cycle two random numbers r1; r2 2 URN[0,1]

are generated, one of which is used to calculate the waiting time according to

� D �
ln.r1/

a0

(1.15)

and the other of which is used to determine the next reaction type ` according to

j�1X

iD1

ai < r2 � a0 �
X̀

iD1

ai: (1.16)

The detailed algorithm is as follows.

Gillespie’s Direct Method

1. Initialization (set the initial numbers of molecules, and set t D 0).

2. Calculate the reaction rate functions Ri.i D 1; : : : ; r/.

3. Generate two random numbers r1 and r2 from a uniform distribution on .0; 1/.

4. Calculate � as follows:

R0.n/ D
X

Rj.n/; � D
1

R0.n/
ln

1

r1
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5. Determine the smallest integer n0 that satisfies

n0X

iD1

Ri.n/ > r2R0.n/

6. Update the states of the species to account for changes due to reaction n0 and set

t D t C � .

7. Go to 2.

For large systems the algorithm is computationally costly, especially if there is

a wide disparity in the reaction rates, and many ways of optimizing the original

direct method algorithm by reducing the cost of specific steps have been proposed.

These include pre-ordering the reactions according to their firing frequency and

recomputing only the propensities of reactions which are affected by the current

reaction [13], by an optimal binning algorithm [85], or by an extended enhanced

direct method used for polymer dynamics to be described next [65].

A deficiency in using the direct method or most modifications of it in simulating

polymer systems is that we have to account for the fact that new ‘species’ are

created continuously, and thus the underlying state space can change as the sim-

ulation proceeds. These new species arise from polymerization/depolymerization,

fragmentation of filaments, annealing of filaments, and the hydrolysis of ATP and

the release of phosphate. This has led to a new algorithm described in [65], called

the MO algorithm, that is significantly faster than the direct method. A comparison

of the times for the two methods is shown in Fig. 1.13. A major factor that leads to

the large reduction in computational time as compared with the direct method is the

use of equivalence classes of species, as described in [65].

An example of the results when the method is applied to actin filament dynamics

is shown if Fig. 1.14. In that figure the simulation involves a volume of 1000 �m3

initially containing 150 filaments, each 4 �m long. The initial actin concentration

is 0:7 �M and the actin filaments are initially composed of ADP-actin monomers

only, while the initial G-actin pool consists of ATP actin only. Each filament is

characterized by its length and nucleotide sequence, and the state of the system

is characterized by the numbers of filaments of various lengths and nucleotide

sequences.The reaction channels incorporated are those mentioned above, namely,

polymerization/depolymerization, fragmentation of filaments, annealing of fila-

ments, and the hydrolysis of ATP and the release of phosphate. With respect to

fragmentation, it was assumed that at each time there is an equal probability of

breakage, modelled as a Poisson process, at every possible position on the filament.

Larger filaments are more prone to fragmentation due to the fact they contain more

locations at which fragmentation can occur.

There are many other outstanding questions to be addressed in the context of

filament dynamics, and next we turn to in vivo experiments and modeling that deal

with the rebuilding of the cytoskeleton following treatment that depolymerizes the

actin network.
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Fig. 1.13 A comparison of the computational times for the direct and modified methods. From

[65] with permission

1.4.3 Actin Wave Dynamics in Dictyostelium Discoideum

A central question in cell motility is how a cell generates the forces necessary to

produce movement by controlled remodeling of the cytoskeleton. In the absence

of directional signals Dd cells explore their environment randomly, and thus the

intracellular biochemical networks that control the mechanics must be tuned to

produce signals that generate this random movement. Thus far there is little

understanding about how the dynamic rebuilding is controlled, but some insights

have been gained by observing the rebuilding of the actin network following

treatment with latrunculin A (latA). LatA sequesters monomers with high affinity

and leads to depolymerization of the network, and following washout of it, the

rebuilding of the actin network can be observed using total internal reflection

microscopy (TIRF) and confocal microscopy. TIRF targets labeled species within

a thin region near the cell-substrate interface (usually less than 200 nm) and thus

allows visualization of components near the surface. An example of the evolution in

time of the reconstruction of the network is shown in Fig. 1.15. The waves shown in

this figure only arise at those parts of the cell membrane in contact with a substrate,

and thus membrane-surface interaction is essential. Actin structures in the shape of

spots initially form on the ventral membrane of the substrate-attached (SA) cell,

and then propagate radially in roughly circular shape with a prominent wave front

and a decaying wave back [40], as seen in Fig. 1.16. TIRF imaging shows that the

wave propagates not via direct transport of existing filaments, but rather, through de
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Fig. 1.14 The results of a typical simulation that includes fragmentation

untreated latrunculin A patches waves recovered

Fig. 1.15 The spatial patterns of actin network re-organization after treatment with latA and

washout of the drug. The images shown, from left to right, are cells moving on a glass surface

before the treatment with latA; cells after 16–20 min of incubation with 5 mM latA; patches that

appear after the wash-out of latA; waves appear at a later stage of reorganization before normal

cell shape is recovered. Patches are formed within the first 15 min after the removal of latA, waves

are most abundant after 20–30 min, and recovered cells are observed after 40 min or longer. From

[40] with permission
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Fig. 1.16 A cross-sectional view of the actin network within a wave, showing net polymerization

at the front and net depolymerization at the top and rear (From [9], with permission)

novo polymerization at the leading edge of the wave and in situ depolymerization

at the trailing edge [40]. Imaging of the three-dimensional actin waves shows that

continual growth of the actin network at the membrane pushes the network upward

into the cytoplasm as shown in the schematic in Fig. 1.16.

Imaging of labeled components has identified the critical actin-binding proteins

(ABP’s) involved in network re-construction [9]. The actin network in the wave

is believed to be dendritic, similar to that in the lamellipodium, due to the high

concentration of Arp2/3 complexes measured. The Arp2/3 complex is composed

of seven subunits, and can be activated by binding to nucleation-promoting factors

(NPF’s), G-actin and existing filaments. This interaction can lead to the formation

of new filaments, in which the Arp2/3 complex caps the pointed end and attaches

it to the primary filament. In latA-treated Dd cells, myosin-IB (MyoB), a single-

headed motor molecule that binds to the membrane and to actin filaments in the

cortex, is localized at the wave front, close to the membrane. The scaffolding

protein CARMIL is probably recruited to the wave front by MyoB, and acts as

an NPF for the Arp2/3 complex. In addition to CARMIL, other NPF’s, such as

WASP and SCAR [81], may activate Arp2/3. However, NPF’s must first be activated

on the membrane by binding to phospholipids. It is also observed that coronin,

which is bound to filaments at the top and the back of the wave (cf. Fig. 1.16),

probably destabilizes the network by removing Arp2/3 from a branch junction, thus

exposing the pointed end to depolymerization [12]. A suggested schematic of these

interactions is shown in Fig. 1.17 [9].

The signaling cascades that initiate and sustain the actin waves are not well-

defined as yet, but a skeleton of the network has been established, and there are

several distinct phases involved. The fact that waves are only initiated on membrane

that is attached to a surface means that there is an unknown dependence on substrate

adhesion. However, the relationship is complex, because it has been shown that a

wave of activated integrin receptor follows F-actin both temporally and spatially
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Fig. 1.17 A schematic of a suggested model for actin wave formation. The tail of Myo-IB (blue)

binds to the plasma membrane while the motor attempts to move toward the plus end of an actin

filament, which maintains attachment of the growing filament to the membrane. The head may also

attach to the scaffold protein CARMIL (yellow), which links it to the Arp2/3 complex, where new

branches are formed via Arp2/3 binding (green). The activity of the Arp2/3 complex is inhibited

by coronin (brown circles). (From [9] with permission)

[15]. Thus one must construct a model that contains the essential processes, and

a schematic of the model developed in [58] is shown in Fig. 1.18. That model is

a continuum model and was shown to capture the essential features of the waves.

However, it is too detailed for our purposes here, and we adopt a simpler scheme to

describe the role of the actin network in the propagating waves. A schematic of the

simplified network is shown in Fig. 1.19.

The following major assumptions have been made in the simplified model (J.

Hu, V. Khamviwath, H.G. Othmer, A stochastic model for actin waves in eukaryotic

cells, 2012. Unpublished manuscript).
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Fig. 1.18 A schematic of the stochastic model for actin waves. From [58], with permission

Fig. 1.19 The interconversion of the three states in the simplified model. From J. Hu, V.

Khamviwath, H.G. Othmer (A stochastic model for actin waves in eukaryotic cells, 2012.

Unpublished manuscript)

1. We assumed that a single molecule, NPF, in its three states is responsible for the

signaling. This retains the main features of the signaling network, such as the

positive feedback loop between signaling and actin dynamics.

2. The existence of an inactive state of NPF, namely NPF**, and its slow recovery

to NPF controls the collapse of actin wave at the rear.
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3. We assume that backbone filament nucleation sites exist on the membrane. They

can generate backbone filaments, which provides a basal level of actin network

on the membrane. We also assume that filament branching always requires a

docking site for Arp2/3 on other filaments, either a backbone or a previously-

formed branched filament.

4. NPF is activated only by free barbed ends that are in close proximity to the

membrane. In other words, only active filament ends in the proximity of the

membrane participate in the positive feedback.

The Mathematical Model The system domain is the rectangular solid ˝3d D

Œ0; Lx�� Œ0; Ly�� Œ0; Lz�, where Lx; Ly; Lz are the lengths in the three axial directions.

The interior of ˝3d represents the cytosol, and the membrane is represented by

the plane ˝2d D Œ0; Lx� � Œ0; Ly� � Œz D 0�. The state variables are divided into

three groups: the diffusible species in the cytosol, membrane-bound species and

filament-associated species. We suppress the presence of time and space variables

in equations for the evolution of the state variables unless they are needed for clarity.

The definitions and values of the parameters used in the equations are defined in the

next section.

The evolution of the mobile cytosolic species—G-actin (g), Arp2/3 (arp), coronin

(cor) and capping proteins (cp)—are governed by

@Œg�

@t
D Dgr2Œg� C Rg

@Œarp�

@t
D Darpr2Œarp� C Rp1

@Œcp�

@t
D Dcpr2Œcp� C Rcp

@Œcor�

@t
D Dcorr

2Œcor� � Rp2 C Rp1

with homogeneous Neumann boundary conditions on the surface @˝3d except on

the membrane ˝2d. On that surface the fluxes are given by

�Dg

@

@z
Œg�jzD0 D �kC

bkŒg�jzD0 � Fbkfree

�kC
ganŒg�jzD0 � Œnpf �_arp� C k�

ganŒnpf �_arp_g�

�Darp

@

@z
Œarp�jzD0 D �kC

anŒarp�jzD0 � Œnpf �� C k�
anŒnpf �_arp�

�Dcp

@

@z
Œcp�jzD0 D �kC

capŒcp�jzD0 � Fbkfree

�Dcor

@

@z
Œcor�jzD0 D 0
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where R’s represent various reactions at filament ends, and Fbkfree the concentration

of backbone filaments (J. Hu, V. Khamviwath, H.G. Othmer, A stochastic model for

actin waves in eukaryotic cells, 2012. Unpublished manuscript).

The proteins that reside on the membrane are the various states of NPF’s and

their association with Arp2/3 and G-actin. We allow 2D diffusion for free (non-

complexed) states of NPF’s, but not for complexes. The dynamics of these state

variables satisfy

@Œnpf �

@t
D Dnpf r

2Œnpf � � kactvFbrfree � Œnpf � C kdegŒnpf �� C krecovŒnpf ���

@Œnpf ��

@t
D Dnpf�r

2Œnpf �� C kactvFbrfree � Œnpf �

�kdegŒnpf �� � kC
anŒarp�jzD0 � Œnpf �� C k�

anŒnpf �_arp�

@Œnpf �_arp�

@t
D kC

anŒarp�jzD0 � Œnpf �� � k�
anŒnpf �_arp�

�kC
ganŒg�jzD0 � Œnpf �_arp� C k�

ganŒnpf �_arp_g�

@Œnpf �_arp_g�

@t
D kC

ganŒg�jzD0 � Œnpf �_arp� � k�
ganŒnpf �_arp_g�

�knuclŒnpf �_arp_g� � Fbtot

@Œnpf ���

@t
D Dnpf��r

2Œnpf ��� C knuclŒnpf �_arp_g� � Fbtot � krecovŒnpf ���

on the domain ˝2d, with zero Neumann boundary conditions at @˝2d. The averaged

concentrations of free barbed ends and total barbed ends of branched filaments

within the nucleation zone adjacent to the membrane are

Fbrfree D
1

Lnucl_zone

X

n�
2Lnucl_zone

ı

( X

nL;ptag

fr.n; nL; 0; ptag/

)

Fbtot D
1
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(X
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fk.nL/ C
X

n�
2Lnucl_zone

ı

0
@ X

nL;btag;ptag

fr.n; nL; btag; ptag/

1
A
)

:

Backbone filaments are generated on nucleation sites and remain attached to

the sites until they are capped and thus considered as a member of the connected

branched filaments. We assume that the latter is a rigid filament cluster, which

is able to move vertically due to the polymerization at the membrane-adjacent

barbed end of any member filament. The nucleation site is occupied by attached

backbone filament and cannot nucleate new backbone filament until the occupied

one is capped. Let Sf denote the concentration of free nucleation sites for backbone
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filament. These species satisfy the following equations.

@Sf

@t
D � kC

nukŒg�jzD0Sf C kC
capŒcp�jzD0

X

n�2

fk.n/ C k�
nukfk.1/

@fk.1/

@t
D kC

nukŒg�jzD0Sf � k�
nukfk.1/ C k�

pkfk.2/ � kC
bkŒg�jzD0fk.1/

@fk.n/

@t
D kC

bkŒg�jzD0fk.n � 1/ C k�
pkfk.n C 1/

� .kC
bkŒg�jzD0 C k�

pk/fk.n/ � kC
capŒcp�jzD0fk.n/; .n � 2/

The dynamics of the branched filament is dictated by the filament-end reactions,

which include the Arp2/3 removal facilitated by coronin binding and subsequent

depolymerization at the pointed end, and polymerization and capping at the barbed

end. The details are given in J. Hu, V. Khamviwath, H.G. Othmer (A stochastic

model for actin waves in eukaryotic cells, 2012. Unpublished manuscript).

As written these equations appear to describe a continuum description, and as

noted earlier, a related continuum description is analyzed in [58]. However there

are generally few nucleation sites and other species may be present in low copy

numbers, which suggests that a stochastic description is more appropriate. We saw

earlier how this is done for a well-mixed system, and to develop an algorithm here

we have to extend this to incorporate diffusion. This leads to several questions,

which include (1) how does one discretize the domain correctly, and (2) how does

one develop an efficient computational algorithm. The first question is answered in

[57], and the second is addressed is a somewhat simpler context in [48]. A brief

summary of the algorithm is as follows.

The membrane domain is partitioned into square compartments of size lx � ly,

and the cytoplasmic space into cubic compartments of size lx � ly � lz, where the

side lengths are all 0:1 �m. This is small enough that each compartment can be

considered well-mixed. The Monte Carlo method is used to generate realizations

of the stochastic model, and specifically, we implement the numerical algorithm

using a modified Gillespie direct method described earlier and in [65]. In the

original Gillespie direct method, two random numbers are generated for advancing

the model system in each time step: one random number is used to determine the

waiting time for the next reaction, and the other is used to determine which reaction

type occurs [41]. In this method the reactions are distinguished by the reactants

involved, and therefore, for instance, the reaction of monomer depolymerization

from the pointed end of a filament of length n is considered different from that

of size n C 1. In the MO method, the state of the systems consists of equivalence

classes of filaments characterized firstly by their length, and then subdivided into

classes of the same nucleotide profile. In the model developed here the nucleotide

profiles play no role. Then monomer depolymerization from filaments of any size

is considered as one reaction type in an equivalence class of reactants. Another

reaction type consists of all the reactions involving monomer addition at a barbed
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end, irrespective of how long the elongating filament is, which is legitimate since

the on-rate for monomer addition is independent of the filament length. Thus a third

random number is needed after the reaction type that occurs is determined in order

to decide which reaction within the equivalence class occurs. This treatment reduces

the computational cost by 2-3 orders of magnitude by making an optimal use of the

structure of the underlying reaction network (cf. [65] and Fig. 1.13).

The detailed algorithm is as follows. Suppose that the system has Nrct_type

equivalent reaction classes and that the rate constant of the jth reaction type is

rj. Assume that there are Ncmprt computational compartments, in the ith of which

there are RA
j

i possible reactions for reaction type j. Therefore, for the jth reaction

class of the domain, the total number of this reaction in the entire domain is

RA
j
tot D

PNcmprt

iD1 RA
j

i. In addition, suppose cRA
j

k denotes the total number of reactions

of type j in the k-th subset in the totality of Nsub subsets. After setting the above

system configuration, the state of the system is advanced as follows. At time ti, the

steps proceed as follows.

1. Generate a random number to determine the waiting time �ti for the next reaction

by the reaction propensities derived from RAtotj and rj according to the Gillespie

direct method.

2. Generate a second random number, and decide which reaction type the next

reaction will be from RAtotj and rj according to the Gillespie direct method.

3. Generate a third random number and decide in which compartment the reaction

type determined in Step 2 is located. In this step, instead of checking the Ncmprt

compartment one by one, we first subdivide the compartments into subsets,

determine in which subset the reacting compartment falls, and then within that

subset determine the appropriate reaction compartment. In essence this is done

as in step one, except that we compute total propensities within subsets and use

these to determine the subset, in effect treating subsets as individual steps. (An

optimization of the choice of the number of subsets is shown in Fig. 1.20.)

4. In the chosen compartment, we proceed as follows.

• if the reactants for the chosen reaction are identical molecular species, pick

any reactants to react. For example, for molecular diffusion, which molecule

of the same type diffuses out of the current compartment makes no difference,

since the combinatorial coefficient used in computing propensities reflects the

identity of the species.

• if the reactants are not identical molecular species, then generate another

random number to decide which reactant or reactant pair to react. For example,

if the pointed-end depolymerization is to occur in the reacting compartment,

the filaments whose pointed end lies in the compartment may be of different

lengths, and thus we must randomly choose one of these filaments.

5. Update the system configuration, and advance the time to tiC1 D ti C �ti where

�ti is the random time determined in step 1. Repeat Steps 1–4 until the targeted

time is reached.
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Fig. 1.20 The CPU time for a computation as a function of the number of sub-domains in the

domain

The effect of subdividing of the total number of compartments in Step 3 on the

computational time is shown in a simulation trial which produces the results shown

in Fig. 1.20.

The stochastic model of actin assembly at the membrane, one realization of

which is shown in Fig. 1.21, predicts the emergence and propagation of actin waves.

In this simulation, the membrane-bound NPF partially activated at the lower left

corner triggers downstream actin assembly that propagates outward as shown in the

snapshot at 5.0 s in Fig. 1.21. Subsequently, the wave expands radially until it hits a

boundary, where it dies. Occasionally new waves emerge spontaneously in the wake

of the primary wave, as is observed experimentally. If waves are initiated at several

points in the domain the waves annihilate when they meet. Thus the system has the

standard characteristics of an excitable system.

One can analyze the dynamics along a line in the direction of propagation and

one finds that the wave travels at about 0.1 �m/s, comparable to what is observed

experimentally. Moreover, the increase in actin density at the wave front is steep,

compared with the decay at the back of the wave. The F-actin level in the area well

behind the wave is stabilized at about 20–25 % of that at the wave peak, consistent

with the qualitative description of experimental results shown in Fig. 1.16.

While much remains to be done, some of the essential processes are embedded

in the model, and some of the experimental observations can be replicated.
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Fig. 1.21 A computational TIRF sequence for the formation and propagation of an F-actin wave.

The initial G-actin concentration is 10 �M, and half of the NPF is activated at the lower left

corner. The color index indicates the total F-actin within 100 nm of the membrane projected to

each membrane compartment. The maximal density in the color representation is set to be 70

monomers per compartment, and thus densities larger than 70 are not distinguishable. [From J.

Hu, V. Khamviwath, H.G. Othmer (A stochastic model for actin waves in eukaryotic cells, 2012.

Unpublished manuscript)]

1.5 Signal Transduction, Direction Sensing and Relay

In Sect. 1.1.1 we listed the steps that a single cell must execute to successfully

aggregate. These include signal detection, signal transduction, direction sensing,

signal relay and movement. The mechanics of movement have not been ‘solved’

in previous sections, but some of the issues involved in modeling actin dynamics

have been addressed. In this section we focus on the signaling aspects of the cellular

response, which as was discussed earlier, centers on cAMP. Figure 1.22 shows the

primary steps involved in detection, transduction, relay and the connection with

the actin network. There are two main pathways in this diagram, one that leads to
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Fig. 1.22 Signal transduction in Dictyostelium discoideum. Modified from [59]

production of cAMP via Gˇ and adenylyl cyclase (ACA) and secretion of cAMP—

the relay response, and one that leads to modification of the cytoskeleton via Gˇ

PI3K, etc. Despite the number of components shown, the diagram only contains

some of the principal actors, and we will not discuss all the components in that

diagram in detail, but only those directly involved in steps considered later.

The first intracellular response to a change in extracellular cAMP is an increase

in activated G proteins, catalyzed by the increase in cAMP-occupied receptors

(GPCRs). G-proteins consist of an ˛ subunit, G˛ that contains a GTP/GDP binding

domain as well as intrinsic GTPase activity, and a complex of a Gˇ and a G

subunit. The ˛ and ˇ subunits dissociate after activation, and each can regulate the

activity of different targets, including adenylyl cyclase, the enzyme that catalyzes

cAMP production. A subsequent step is the generation of pleckstrin homology

(PH) binding sites by the phosphorylation of the membrane lipid PtdIns(4,5)P2

(PIP2) by phosphoinositide 3-kinases (PI3Ks) to produce PtdIns(3,4,5)P3 (PIP3),

which in turn is dephosphorylated to produce PtdIns(3,4)P2 (PI34P2). In Dd PIP3

is produced by a class IA type kinase (PI3K1 and PI3K2) and a class IB type, kinase

designated PI3K [19]. The former are activated via cytosolic tyrosine kinases,

whereas the latter consists of a catalytic unit and a regulatory unit that is activated

by Gˇ . Both PIP3 and PI34P2 provide binding sites for various cytosolic proteins

containing PH domains (PHds) and recruitment is rapid: localization of PHds at the
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membrane peaks 5–6 s after global stimulation with cAMP [19, 49]. Both green-

fluorescent-protein (GFP)-tagged CRAC (cytosolic regulator of adenylyl cyclase)

and a PHCRAC-GFP construct accumulate at the membrane following stimulation

[32, 55]. PI3K is constitutively expressed, but both PIP3 and PI34P2 are tightly

regulated by the phosphatases PTEN and SHIP, and within 10–15 s following

uniform cAMP changes the PHds return to the cytoplasm, probably because the

PH binding sites have been destroyed [19, 76]. This burst of PIP3 at the membrane

couples the extracellular signal to actin polymerization [52]. The level of activated

G-proteins in continuously-stimulated cells reaches a stimulus-dependent level,

while membrane-associated CRAC first increases, but then returns to its basal level.

Therefore adaptation of the PIP3 and cAMP responses is downstream of Gˇ [53],

and a recently-developed model shows that this occurs at the level of Ras [18],

which is activated by Gˇ (see Fig. 1.22). As is shown in Fig. 1.15, the increase in

PIP3 trails the actin increase in the developing waves, which suggests that there is

a feedback from actin to the earlier steps in signal transduction shown in Fig. 1.22.

Theoretical predictions as to how PI3Ks, PTEN and SHIP are spatially-regulated

help in understanding how cells respond to changes in the signal [18, 58] .

Chemotactic signals also produce a rapid, transient, PI3K-dependent activation

of Akt/PKB, a protein kinase that is essential for polarization and chemotaxis:

mutants lacking Akt/PKB cells cannot polarize properly when placed in a chemotac-

tic gradient and the cells move slowly [68]. Akt/PKB is activated upon recruitment

to the membrane, and in Dd it activates the kinase PAKa, which regulates myosin II

assembly, cortical tension, and retraction of the uropod (the tail) of the cell [19] (see

Fig. 1.22). PIP2 provides another link between signal transduction and mechanical

events in that it acts as a second messenger that regulates the adhesion of the plasma

membrane to the underlying cytoskeleton [67, 83].

There are a number of models for how cells extract directional information

from the cAMP field. It was shown in [23], using what is in essence a model

for the Gˇ -AC-cAMP part of the network in Fig. 1.22, that a cell experiences a

significant difference in the front-to-back ratio of cAMP when a neighboring cell

begins to signal. This shows that it is certainly possible that PI3K components in the

signal-transduction pathway may also show significant front-to-back differences.

Meinhardt [69] postulated an activator-inhibitor model with a third species that

serves as a local inhibitor. Amplification of small external differences involves a

Turing instability in the activator-inhibitor system, coupled to a slower inactivator

that suppresses the primary activation. While this model produces qualitatively

correct results, there is no biochemical basis for it; it is purely hypothetical and

omits some of the major known processes, such as recruitment of molecules to the

cell membrane from the cytosol. Several methods for achieving perfect adaptation

to any extracellular signal are discussed, some of which are closely related to a

simplified model of adaptation proposed earlier [74].

More recently, a model that takes into account some of the known biochemical

steps, such as activation of PI3K and subsequent activation of other enzymes
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involved in the phosphorylation and de-phosphorylation of membrane lipids, has

been proposed [62]. The positive feedback in this scheme arises from activation

of PIP2 production, but this model also ignores recruitment of most PHds to the

cell membrane. A recent model based on detailed descriptions of the underlying

biochemistry can replicate a variety of experimental observations that are not

addressed by other models [18]. In particular, it shows that front-to-back symmetry

breaking can occur at the level of Ras, and it provides a solution to the ‘back-of

-the-wave’ problem.

The other main pathway concerns the production and secretion of cAMP, and

we turn to this next. Several methods for achieving perfect adaptation to any

extracellular signal are discussed in [74], and we discuss one of these in detail.

1.5.1 The Model for Signal Transduction and Relay

There are three main configurations that shed light on different aspects of a cell’s

response to cAMP. In the first the cells are perfused with a cAMP stream of known

concentration, and the downstream level of labeled carbon is measured to determine

the cell’s response. These perfusion experiments, done primarily by Devreotes

[27, 28], were the first to characterize the input-output response of cells. In this

configuration the cAMP secreted by cells in response to the stimulus is quickly

washed away, thereby precluding self-stimulation. The second configuration applies

when cells are suspended in a well-mixed solution and feedback via self-stimulation

occurs. Experiments of this type were done before the perfusion experiments

and showed that under certain conditions the extracellular cAMP in the solution

could oscillate periodically in time [39, 107]. The third configuration obtains in

aggregation fields, where cells are simply plated out and allowed to develop. As

shown in Fig. 1.3, complex patterns of cAMP and cell density can emerge. We shall

begin with a model for the first two configurations, and then apply it to the third one.

The network for the main steps in the transduction scheme used in the model

developed in [96] is shown in Fig. 1.23 and the detailed biochemical reactions are

given below it.

There are three major pathways in the transduction of and adaptation to an

extracellular perfusing cAMP signal (cAMP0: H for short) in perfusion experiments.

In the stimulus pathway H binds to GPCRs Rs, and the complex HRs catalyzes the

activation of the stimulatory G protein G0
s. This in turn binds with the inactive form

of adenylate cyclase (UC) and produces the activated form of adenylate cyclase

(G0
sAC). A GTPase activity intrinsic to the ˛ subunit of the G protein terminates

the activation. In the inhibitory pathway, an inhibitory G protein G0
i is produced by

analogous steps. However, the symmetry between the pathways is broken at this

point, because G0
i binds with HRs, and in this bound form HRs cannot activate Gs.

Finally in the pathway for the production and secretion of cAMP, the activated
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Fig. 1.23 A schematic of the interactions in the model. An extracellular cAMP stimulus serves

both as the stimulus and the inhibitory signal. Adaptation arises from the action of G0i on the cAMP-

receptor complex. Legend: cAMPo; extracellular cAMP, Rs; receptor for the stimulatory pathway,

HRs; cAMPo-receptor complex, G0s; activated stimulatory G protein, G0sAC; activated form of

adenylate cyclase, cAMPi; intracellular cAMP, Ri; cAMP receptor in the inhibitory pathway, HRi;

cAMP-receptor complex in the inhibitory pathway, G0i ; activated form of the inhibitory G protein,

HRsG
0
s; complex between HRs and G0s. The symbols uj indicate the dimensionless concentration of

that species

adenylate cyclase (G0
sAC) catalyzes the turnover of ATP to intracellular cAMP

(cAMPi). cAMPi in turn is hydrolyzed by intracellular phosphodiesterase (iPDE)

or is secreted into the extracellular medium (cAMP�
o ). Here the ‘�’ on cAMP�

o is to

distinguish the secreted cAMP from the stimulatory cAMP in the perfusion solution,

which is denoted by H. Further details about this model as well as kinetic parameters

involved can be found in the original papers [96, 97]. The reader should note that

we use G0
i to activate adenylyl cyclase, which does not agree with Fig. 1.22, where

Gˇ is used. The latter is probably correct, although at the time the model was

formulated this was not known. The model could easily be re-formulated to use

Gˇ as the effector in the stimulatory pathway, but this has not been done. On

the inhibitory side of the pathway the best evidence is that a different G˛ is used

for inhibition [10], as in the model, but the details of how this is done are not

known.
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The steps in cAMP production and release

(I) The stimulus pathway (II) The inhibitory pathway

H C Rs

k1
�!
 �
k�1

HRs

HRs C Gs

k2
�!
 �
k�2

HRsGs

HRsGs C GTP
Ok3

�! HRs C G0
s

CGDP C ˇ

G0
s C UC

k4
�!
 �
k�4

G0
sAC

G0
s

k5
�! sGDP C Pi

G0
sAC

k5
�! ˛sGDP C UC

CPi

˛sGDP C ˇ
k6

�! Gs

H C Ri

h1
�!
 �
h�1

HRi

HRi C Gi

h2
�!
 �
h�2

HRiGi

HRiGi C GTP
Oh3

�! HRi C G0
i

CGDP C ˇ

G0
i C HRs

h4
�!
 �
h�4

HRsG
0
i

G0
i

h5
�! ˛iGDP C Pi

HRsG
0
i

h6
�! H C Rs C G0

i

HRsG
0
i

h5
�! HRs C ˛iGDP

CPi

˛iGDP C ˇ
h7

�! Gi

(III) The production and secretion of intracellular cAMP

G0
˛s

AC C ATP
Ol1

�!
 �
l�1

G0
˛s

AC � ATP

G0
˛s

AC � ATP
l2

�! cAMPi C G0
˛s

AC

cAMPi C iPDE
l3

�!
 �
l�3

cAMPi � iPDE

cAMPi � iPDE
l4

�! AMP C iPDE

cAMPi

l5
�! cAMP�

o

This system of reactions involves fourteen species and six combinations of

conserved species, and is thus described by eight independent differential equations.

As we showed in [96], this model can describe the input-output behavior in the

perfusion experiments very well. However, in order to better describe certain

aspects of the oscillation experiments and the wave propagation studied in [97], we

introduced a basal activity for the un-activated adenylate cyclase, which produces

the basal cAMP concentration in the cytoplasm in the absence of an extracellular

signal. The additional reaction steps introduced by the basal activity are

UC C ATP
l5

�!
 �
l�5

UC � ATP

UC � ATP
l�5

�! cAMPi C UC:

(1.17)
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A second modification was to introduce a modified secretion function

dsr.cAMPi/ D

�
dsr1 � cAMPi if cAMPi < dsw

dsr2 � .cAMPi � dsw/ C dsr1 � dsw if cAMPi > dsw
(1.18)

and the secretion step

cAMPi

dsr
�! cAMP�

o : (1.19)

where dsr1 is the basal secretion rate, dsr2 is the active secretion rate, and dsw

is the threshold concentration. The corresponding dimensionless parameters will

be denoted as sr1; sr2; sw, and sr. The piecewise linear character of the function

dsr.�/ can introduce difficulties for certain numerical schemes that require more

smoothness than C0, and incomputations we use a smoothed version of dsr.�/. In

dimensionless form the governing equations are as follows [97].

du1

d�
D ˛H.�/ � .˛H.�/ C ˛1/u1 C .ˇ5 � ˛H.�//u6 � ˇ4u1u5

du2

d�
D ˛2˛3c1u1 � .1 C ˛4/u2 � ˛2˛3c1u1.u2 C u3/ C ˛4u2u3

du3

d�
D ˛4u2 � u3 � ˛4u2u3

du4

d�
D ˇH.�/ � .ˇH.�/ C ˇ1/u4 (1.20)

du5

d�
D ˇ2ˇ3c2u4 � ˇ5u5 C ˇ6c3u6 � c3ˇ4u1u5 � ˇ2ˇ3c2u4.u5 C c3u6/

du6

d�
D �.ˇ5 C ˇ6/u6 C ˇ4u1u5

du7

d�
D 12u3 � sr.u7/ � 4

u7

u7 C 3

C 5.1 � �7u3/

du�
8

d�
D sr.u7/

To describe the dynamics of suspensions, we only have to append reactions for the

extracellular dynamics and equations for the evolution of extracellular cAMP, and

this leads to the additional differential equations

Vo

dy14

dt
D NVcdsr.y12/ C NAcl�6y15 C Vol�8y16 � NAcl6y14z8 � NVcl8y14z9

dy15

dt
D �.l�6 C l7/y15 C l6y14z8 (1.21)

Vo

dy16

dt
D �Vo.l�8 C l9/y16 C NVcl8y14z9:
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Fig. 1.24 The reduced

network for the five primary

variables in the reduced

model. The symbols Ci, Co

and wi i = 1,2,3 beside a

species corresponds to the

symbol used in the equations

at (1.23)
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Here y14 stands for ŒcAMPo�, y15 for ŒmPDE � cAMPo� , y16 for ŒePDE � cAMPo�,

z8 for free ŒmPDE�, z9 for the free ŒePDE�, Vo for the volume of the extracellular

medium, Vc for the volume of a cell, Ac for the surface area of a cell, and N for the

total number of cells. In addition to the differential equations, there are two other

conservation equations, namely,

y15 C z8 D ŒmPDE�T

y16 C NVc

Vo
z9 D NVc

Vo
ŒePDE�T

(1.22)

It is clear that the newly introduced variables y15; y16 are both positive and

bounded. In fact, we have

0 � y15 � ŒmPDE�T 0 � y16 �
nVc

Vo

ŒePDE�T :

It follows from this that y14 is also bounded.

The resulting eight-dimensional system can be further reduced by carefully

analyzing the relative time variation of different components. Then, by applying

a singular perturbation reduction,2 the system can be reduced to a five-dimensional

system for the variables shown in Fig. 1.24. To avoid confusion, we use the symbols

wi, Ci and Co to denote the remaining variables, and then have the final form

of the reduced system for perfusion experiments and well-mixed suspensions.

In the following equations Greek letters and lower case c’s represent constants.

The definitions of the following parameters differ from those used earlier [97]:

L5 D .l�5 C l�5 /=.l5ŒATP�/, �5 D 5=.1 C L5/ D 2:4, L7 D l1=.l�1 C l2/ and

�7 D 1CL7 D 1:091; the remaining parameter values are the same as those in [97].

Many of the parameters in this model can be obtained from the literature, but the

2A brief introduction to this technique is given in Appendix.
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remainder must be estimated.

dw1

d�
D ˛4u2.1 � w1/ � w1

dw2

d�
D ˇ2ˇ3c2u4.1 � w2 � c3w3/ � ˇ5w2 C ˇ6c3w3 � c3ˇ4u1w2

dw3

d�
D �.ˇ5 C ˇ6/w3 C ˇ4u1w2 (1.23)

dCi

d�
D 12w1 C �5.1 � �7w1/ � 4

Ci

Ci C 3

� sr.Ci/

dCo

d�
D

�

1 � �

�
sr.Ci/ � 7

Co

Co C 6

� 9

Co

Co C 8

�
:

To illustrate the interpretation of terms in these equations, consider the fourth

equation, that for the change in cAMPi. The first term represents the production of

cAMPi via the activated cyclase, the second term represents the basal production

of cAMPi, the third term represents the rate at which cAMPi is degraded by PDE,

and the last term represents the rate at which it is secreted. As a result of applying

the singular perturbation, some rapidly-varying variables are related to others via

algebraic equations. Most are eliminated completely, but it is convenient to retain

some of these quantities for the purpose of explaining how the system functions.

They are the fraction of Rs bound, the amount of activated Gs, and the fraction of Ri

bound, which in dimensionless form are given by

u1 D
˛0Co C .ˇ5 � ˛0Co/w3

˛1 C ˛0Co C ˇ4w2

u2 D
˛2˛3c1u1.1 � w1/

1 C ˛4 C ˛2˛3c1u1 � ˛4w1

u4 D
ˇ0Co

ˇ1 C ˇ0Co

:

1.5.2 The Dynamics Under Imposed and Self-Generated

Stimuli

A qualitative description of how this system responds to stimuli is as follows.

Suppose first that cAMPo is clamped, and that the system is adapted to a given

level of cAMPo. A change in cAMPo is reflected in the stimulatory (inhibitory)

pathway via a change in the term ˛oCo (ˇoCo) that appears in the fraction u1 (u4) of

stimulatory (inhibitory) receptors bound with ligand. On the stimulatory side, this

input is immediately reflected in a change in u2 (G0
s) because the activation is fast.

This increases the amount of activated cyclase (w1), and this in turn produces more

cAMPi and the relay response. Simultaneously, but on a slightly slower time scale,

the inhibitory pathway activates the inhibitory G-protein Gi, which competitively
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interferes with the production of G0
s, and hence the activation of the cyclase.

This interference then leads to adaptation in the model, and the combination of

relay and adaptation qualitatively explains the response in the context of perfusion

experiments. When cAMPo is not clamped a positive feedback loop is created

via the secretion of cAMPi. Depending on how it is tuned, this feedback system

leads either to amplification of a pulse of cAMPo or to sustained oscillations.

Using experimentally-determined parameters where possible, and estimates for the

remaining parameters, this system predicts a time course of cAMP levels and

secretion rates that agrees both qualitatively and quantitatively with experimentally-

observed results in perfusion and suspension experiments.

In Fig. 1.25 we show the response to a single step change and to a four-step

increase in cAMPo in a simulated perfusion experiment, using the model above

developed in [97]. The response shown there is based on experimental parameters

where they are known, and one sees that the system does not adapt fully at large

stimuli. However this can be corrected by a simple modification of the dynamics

[74]. At all stimulus levels the cAMP and secretion responses peak at about 1 min

after stimulation, which is as observed experimentally [16].

In Fig. 1.26 we show the intracellular and extracellular cAMP oscillations in a

suspension of cells. The amplitudes of the intracellular cAMP oscillations matches

well with the experimental observations shown in the right-hand panel, but the

extracellular concentration is lower. This depends on the secretion rate, the amount

of the extracellular phosphodiesterase that degrades the CAMP, and other factors.

Suffice it to say that the model captures the essential aspects of the cellular response,

both to imposed stimuli and in suspensions, and therefore can be used to study

aggregation of spatially-distributed populations.

a b

Fig. 1.25 The predicted secretion rate in response to imposed stimuli. Left: The response to a step

from 0 to 1 �M in extracellular cAMP. Right: The response to a sequence of three tenfold steps

from 0 to 1 �M in extracellular cAMP
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a b

Fig. 1.26 Left: Periodic oscillations in a numerical simulation of suspension experiments for

2 D 0:4. Solid line: intracellular cAMP; dashed line: extracellular cAMP. Right: Experimental

measurements of intracellular (open circle) and extracellular (triangle) cAMP concentration.

Redrawn from Fig. 2 of Gerish and Wick [38]

1.5.3 The Reaction-Diffusion Equations for Early Aggregation

In aggregation fields the concentrations vary in space as well as time, and this

leads to new phenomena. At the very least this requires a different equation for the

extracellular cAMP, which can diffuse throughout space. Here one also has to decide

whether to introduce a continuum density for the cells, or retain a hybrid description

in which cAMPo satisfies a reaction-diffusion equation and the cells are treated as

point particles. We adopt the latter description here, and this leads to the following

equations. In these equations the superscript i denotes the ith cell, xi denotes the

spatial position of the ith cell, and the dependence of wi
j and Ci

i on xi is implicit in

the equations.

dwi
1

d�
D ˛4ui

2 � wi
1 � ˛4ui

2wi
1

dwi
2

d�
D ˇ2ˇ3c2ui

4 � ˇ5wi
2 C ˇ6c3wi

3 � c3ˇ4ui
1wi

2 � ˇ2ˇ3c2ui
4.w

i
2 C c3wi

3/

dwi
3

d�
D �.ˇ5 C ˇ6/w

i
3 C ˇ4ui

1wi
2

dCi
i

d�
D 12wi

1 C �5.1 � �7wi
1/ � 4

Ci
i

Ci
i C 3

� sr.Ci
i/

@Co

@�
D �1r

2Co.x/ � O9

Co.x/

Co.x/ C 8

C

NX

iD1

Vc

Vo

ı.x � xi/

�
sr.Ci

i/ � 7

Co.x/

Co.x/ C 6

�
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ui
1 D

˛0Co.xi/ C .ˇ5 � ˛0Co.xi//w
i
3

˛1 C ˛0Co.xi/ C ˇ4wi
2

ui
2 D

˛2˛3c1ui
1.1 � wi

1/

1 C ˛4 C ˛2˛3c1ui
1 � ˛4wi

1

ui
4 D

ˇ0Co.xi/

ˇ1 C ˇ0Co.xi/

The next question is how to solve these equations. The geometry of a two-

dimensional domain is as shown in Fig. 1.27, wherein the size of the cells is

exaggerated.

The computational algorithm can be summarized as follows—for details see

[22].

1. Solve the extracellular equation on a regular grid, using an Alternating-Direction

Implicit (ADI) method for the partial differential equation, lagging the secretion

term.

2. Interpolate cAMP from the grid to the cell positions and update the intracellular

variables and the secretion by an implicit scheme.

3. Update cell movement. If a cell is not moving, should it begin to move? If so,

compute the direction and start movement. If it is moving, should it continue?

4. Transfer the secreted cAMP to the grid and repeat the cycle.

Two examples of the wave patterns in aggregation predicted by the model

are shown in Fig. 1.28. These are certainly qualitatively consistent with the

experimentally-observed waves in Fig. 1.3.

What do the analysis and computations of the continuum and cell-based models

explain and predict? Some of these are discussed here—for others see the original

literature cited above.

Fig. 1.27 The computational grid for the aggregation problem. The black ellipses represent the

cells, but not to scale
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Fig. 1.28 Aggregation waves. On the left is shown a large field in which several pacemakers

organize local aggregation patterns. On the right is the spiral cAMP wave (dark blue) superimposed

on the cell streams. Note that in both images some cells are left behind. The time evolution of these

patterns shows that cells always move toward the highest local concentration of cAMP, which leads

to the observed streams

• A single cell can be a pacemaker. This is not addressed herein, but is done in

[29].

• The continuum model predicts the effect of density and cell excitability on the

frequency of oscillation, the wave speed, and the size of the central core.

• The cell-based model provides an explanation for the origin of streaming and

the origin of spiral waves: computations show that cell movement and random

variations in cell density are necessary for streaming and facilitate the generation

of spirals.

• The model predicts that cells must choose a direction within 10–15 s in order to

orient to the local gradient.

• Computations show that aggregation is very robust with respect to the choice of

direction of movement.

Of course the model for cAMP production is not correct in detail—experiments

since its formulation have contributed greatly to our understanding of the signal

transduction network leading to cAMP production, but the input-output behavior

is quantitatively correct, and thus all questions that depend only on this can be

addressed. As we show here and in the original papers, the exterior problem dealing

with aggregation can be addressed and the predictions are quite accurate. One major

factor that is missing is the cell-cell interaction that occurs when cells make contact.

This is addressed in the following section.
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1.6 Multicellular Problems

Collective cell motion occurs in the streaming, mound and slug stages of Dd [74],

as well as in vertebrate embryos [106]. In Dd streams this involves small numbers

of cells, but the slug is composed of about 105–106 cells (cf. Fig. 1.29). Weijer et

al. [31] have developed techniques to visualize the effects of signal-transduction

Fig. 1.29 A side and top view of a Dd slug gliding on a substrate
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at the single cell level, by imaging the fluorescence from GFP-tagged PHds in

response to cAMP signals. They record the movement of individual cells in three

dimensions, and find that when wild-type cells are imaged in aggregation streams,

their movement is very much like that of cells moving as individuals, despite the

fact that new adhesion systems are expressed at this stage. The cells in the center of

the stream tend to move slightly faster than those at the edge.

Mixing mutants lacking myosin II with wild type cells has shed light on the role

of myosin II in multicellular motility. Mutants lacking myosin II accumulate at the

edges of aggregation streams and the back of the slug, and become distorted by their

adhesive interaction with wild-type cells [109]. There are two adhesion systems,

characterized as A and B, expressed during the aggregation stage, and either or both

may be responsible for excluding the myosin II null cells. Xu et al. postulate that

mhcA� cells cannot generate sufficient protrusive force to disrupt contacts between

adherent cells in streams, but can enter streams where the cells are weakly adherent

[109].

The motion of Dd slugs is mechanically very similar to the motion of single cells.

Vardy et al. [100] show that the slug leaves behind cell prints in the slime sheath

as it migrates. The cell prints are either parabolic or elliptic in shape. Because the

cell prints are sharp, i.e. exhibit no smearing near their boundary, they speculate that

the cells that make up the prints are temporarily stationary and secrete a “traction

protein” that allows the slug to adhere to the substratum. It is not known whether

these traction proteins are related to integrins or contact proteins, but the underlying

mechanics of the motion of a slug is conceptually similar to single cell motion. As

will be clear later, similar computational techniques will apply in the two cases. We

begin with a description of a single cell.

1.6.1 The Mechanics of a Single Cell

As will be clear from the previous sections, the movement of an individual cell

involves the integration of numerous processes, and to incorporate all of these into

a realistic model of a deformable cell is overly ambitious at this point. In particular,

the details of how actin networks are reorganized under the membrane in response

to extracellular signals is a complex process that is only partially understood, and

it is not feasible to incorporate the level of detail required to describe this in a

multicellular model at present. However, it may be possible to understand aspects of

tissue motion, in particular that of the Dd slug, with a relatively simple mechanical

model of a cell. This has been done in [24, 75], and a schematic of the cell model

is shown in Fig. 1.30. In the approach taken in previous work, the opposite extreme

in descriptions is adopted; cells are treated as incompressible viscoelastic solids

and their stress-strain response characteristics are lumped into three elements that

coincide with the three major axes. Along each axis the stress-strain behavior is

described by a nonlinear version of a standard Kelvin element, as shown in Fig. 1.30.

Since there is an elastic element in each branch the immediate response to a step
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Fig. 1.30 A schematic of the model cell and the element of a standard solid, or Kelvin element

along each axis of the ellipsoid. It consists of a nonlinear spring in parallel with a Maxwell element,

which comprises a linear spring in series with a dashpot

change in the applied force is a step change in displacement in the elastic elements,

followed by slower flow in the viscous element. Release of the external forces leads

to a return to the rest length of the element, and since we assume that the elements

are identical along the three axes, the equilibrium shape is spherical.

This is a reasonable first description, since the cytoplasm in many amoeboid cells

has been characterized as a viscoelastic material whose properties are dominated by

actin filaments and microtubules. However, the elastic modulus of actin solutions

is concentration dependent [64], and they exhibit strain hardening [110], a property

that may be important in slug movement.

When the cell deforms due to interactions with other cells or an obstacle, the

three deformations are not arbitrary, because we stipulate that the total volume of

the cell must be conserved.3 In [75] the constant volume constraint was satisfied by

first computing the deformation and then correcting the change in all radii so as to

correct the volume.

In the computational algorithm we can decompose the total stress on an ellipsoid

into the shear along the axes of the ellipsoid and an additional ‘isotropic’ part

reflected in a pressure that constrains the overall deformation so as to satisfy the

constraint that the volume remains constant. In a continuum description of an

incompressible material this pressure serves as a Lagrange multiplier that forces

satisfaction of the incompressibility condition. In [24] and what follows here the

pressure is the deviation from a rest state and therefore may have either sign: a

negative pressure causes the cell to compress and a positive pressure causes the cell

to expand.

3This may not be true in reality, and we could allow small changes without changing the results.

Osmotic fluxes may well change the total volume during deformations, but this has not been

characterized experimentally, and incorporating it would add a great deal of complexity for an

as yet unquantifiable increase in accuracy.
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The equation governing the length of an axis of a cell is

u0
a D

�
ka

�a

Œfa.t/ C Np � f2.ua/� C f 0
a.t/

��
df2.ua/

dua

C ka

��1

; (1.24)

where ua is the change in the length of the a axis, f2 is the force from the spring

in parallel, �a is the viscous coefficient of the dashpot, ka is the spring constant for

the spring in the Maxwell element, fa is the magnitude of the force applied at each

end in opposite directions, and Np is the force due to pressure. There are three such

equations one for each axis and one equation due to the volume constraint given by

0 D ua
0.ub Cb0/.uc Cc0/C.ua Ca0/ub

0.uc Cc0/C.ua Ca0/.ub Cb0/uc
0; (1.25)

where a0, b0, and c0 are the initial lengths of the cell axes. This system of ordinary

differential equations determines the shape of a cell and is solved numerically.

1.6.2 The Multicell Problem

Suppose there are N cells in an aggregate, sufficiently close so that at least some

cells may be in contact. The forces that a cell may be subject to are classified as

follows [24].

• Active forces Ti;j a cell exerts on neighboring cells or the substrate: the reaction

force to this is denoted Mj;i.

• The reaction to forces exerted by other cells on it.

• Dynamic drag forces that arise as a moving cell forms and breaks adhesive bonds

with neighboring cells.

• Static frictional forces that exist when cells are rigidly attached to each other or

to the substrate.

We let N a
i denote the neighbors, including the substrate, of i upon which a cell

can exert traction. The ‘neighbor’ relation is symmetric for all cells; if cell i can

exert traction on cell j, then cell j can exert traction on cell i, but not true for the

substrate, which is passive in that it does not generate stress. The motive force that

i generates is

Mi D
X

j2N a
i

Mj;i;

and the total traction force which other cells exert on it is

Ti D
X

j2N a
i

Tj;i:
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The dynamic friction force on cell i due to interaction with j is defined as

Dj;i D �ij.vj � vi/;

where �ij is the friction coefficient, which is symmetric. Thus, the total dynamic

friction force on cell i, due to the set N d
i of cells that interact with i via a frictional

force, is

Di D
X

j2N d
i

Dj;i D
X

j2N d
i

�ij.vj � vi/:

By definition, statically-bound cells function as one rigid object, so that if i is

bound to j and j is bound to k, then i is bound to k. In particular, if i is statically

bound to the substrate either directly or indirectly then it can transmit forces applied

to it to the substrate. These are the only type of chains that can transmit stress from

the interior; a chain of say four cells statically bound to each other but not bound

to the substrate simply functions as a larger unit. If Sji denotes the static binding

force on the ith cell when bound to the jth, then Sji D �Sij and the cell-cell forces

cancel on all but those cells attached to the substrate. Let N s
i denote the set of cells

that statically bind to cell i; then the total force on the ith cell is the sum of all the

foregoing, viz.,

Fi D Mi C Ti C Di C
X

j2N s
i

Sji (1.26)

D
X

j2N a
i

Mj;i C
X

j2N a
i

Tj;i C
X

j2N d
i

�ij.vj � vi/ C
X

j2N s
i

Sji:

If we sum these over all cells we see that the sum of the tractions and motive forces,

as well as sum of the dynamic friction force, vanish for all cell-cell interactions

in the interior of the slug. The surviving terms are those due to direct interaction

of a cell with the substrate, or the indirect interaction via a chain of statically-

connected cells that is connected to the substrate. The latter takes the form of a force

on an interior cell equal and opposite to the traction force it exerts on a statically-

connected chain of cells. Thus in the absence of static binding there is no mechanism

by which an interior cell can transmit stress to the boundary, and accordingly, there

can be no volumetric forces on the slug in a continuum description in the absence

of other mechanisms.

In any case, one has to define precisely how cells exert forces on one another, how

to model the active forces, the drag forces, etc. This is a rather involved process, the

details of which are given in [24], and will not be repeated here. The computational

algorithm defined in [24, 75] proceeds as follows.

Step 1. Locate all cells that are within a given distance from cell i.

Step 2. Search the cell’s neighborhood to determine if the cAMP levels are above

threshold, and if so find the direction of the highest cAMP concentration.
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Step 3. If necessary, orient the cell towards the direction of the highest cAMP

concentration.

Step 4. Find all the forces that act on the cell, Fnet from each of the neighbor

cells found in Step 1, deform the three axes of the ellipsoid, and move the cell

according to (2).

Figure 1.31 shows one example of the aggregation patterns that results from the

application of this algorithm. This simulation is done with 2500 cells, but the

cAMP output of each computational cell is equivalent to that of 16 real cells

(see [75] for details). Similar results are obtained with 10K cells and a fourfold

reduction of their cAMP output. In these simulations, it was assumed that the cAMP

distribution is uniform in the z direction, which is sufficiently accurate during early

aggregation, because the cell distribution is essentially 2D, but for mound formation

Fig. 1.31 The early aggregation pattern, driven by pacemakers (red) in the center of a field of cells.

The times beginning at the upper left, are 0, 80, 160, and 320 min. From [75], with permission
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and movement of the slug a 3D computation is needed. However, Fig. 1.32 shows

that the initial stages of mound formation results when cells at the center are pushed

upward by the inward movement of the outer cells.

The similarity with the patterns that emerge when the cells are treated as particles

and their movement governed by formal rules, as in Fig. 1.28 (left), is evident.

However the more detailed treatment of the mechanics allows for more realistic

comparisons between the theoretical predictions and the experimental results.

For example, Bonner [7] discovered how to produce two-dimensional slugs that

are only one cell layer thick and migrate between a glass slide and a drop of mineral

oil. In Fig. 1.33 we show the computational equivalent of this experiment with a 2D

slug whose movement is driven by pacemaker cells at the front. In the upper left

panel another group of pacemaker cells is introduced at the side, and subsequent

frames show how this pacemaker organizes a secondary slug which then breaks

away. This also occurs in Bonner’s 2D slugs, although there the new pacemaker

arises spontaneously, presumably due to variations in properties of the cells, whereas

in the computational experiment the second pacemaker is imposed. Aside from this,

the results are quite similar.

Fig. 1.32 A cross-sectional view of the aggregation field at 80 (top) and 320 (bottom) min. From

[75], with permission

Fig. 1.33 A migrating 2D slug with an auxiliary pacemaker. From [75], with permission
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Detailed modeling of the later stages of slug movement is very complicated

because a slug can frequently elevate the leading one third of the slug as if to sample

the environment, and then touch down again, thus moving in a pulsatile motion.

During migration, cAMP waves propagate down the length of the slug [30] and

cells begin to differentiate into pre-stalk and pre-spore cells that eventually become

the stalk and spore cells in the next stage of the life cycle, the fruiting body. How the

proportions of cell types are determined is a long-standing question [77], and some

of the complexities of slug stage movement and patterning are discussed in the work

of Weijer and collaborators [78, 102, 104]. We shall not pursue this further, but for

one final question.

1.6.3 Who Does the Work in the Slug?

According to our earlier discussion of the mechanics, if our description of cell

interactions properly accounts for cell-cell and cell-substrate interactions, then cells

in the interior of the slug can only contribute to movement of the slug if there is a

chain of rigidly-connected cells that attaches to the substrate. In [24] this is called

the bedspring model, since the rigid cells form a network that transmits stress to the

boundary and allows other cells to crawl through it. This is similar to what occurs

when a single cell migrates through a tissue, but in order for this mechanism to work

in the Dd slug, the network must be dynamic and cells must be able to “freeze”

when stress is applied, but also to move. Beautiful experiments in which the total

force exerted by a slug was measured on a rotating table seemed to indicate that the

motive force scales with the number of cells in the slug, rather than the number in

contact with the substrate [50, 51]. These experiments motivated a computational

study of which cells provide the motive force in the slug. Using an extension of the

cell-based model described in the previous section, a large number of simulations

were done using different aspect ratios of the slugs [24]. The initial configurations

ranged through 250 cases having from 1 to 5 cells in the width and height, and from

1 to 10 cells in the length of the slug. In all cases the cells were stimulated to move

in a fixed direction by a traveling wave. The results are shown in Fig. 1.34. It is clear

from the left panel that the force scales with the number of cells in contact with

the surface, but the right panel suggests how one could conclude that it scales with

the volume of the slug. There the force generated by slugs having the same ratio of

volume to area in contact with the surface fall on a straight line, but the slope varies

with that ratio. Thus if this ratio was approximately constant in the experiments one

could conclude that the force scale with the volume.
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Fig. 1.34 Data from 250 different simulations for the translational force of the slug in nanoNew-

tons (vertical axis) and the number of cells in contact with the surface (left), or the total number of

cells in the slug (right) (horizontal axis). Five lines are clear in the right panel—these correspond

to subsets of the data in which the initial height of the slug is held constant, which implies that the

volume of the slug and the surface area in contact with the substrate are proportional. From [24]

with permission

1.7 Conclusion

In these notes we have attempted to describe a number of interesting problems

connected with cell motility and to indicate some aspects on which progress toward

understanding them has been made. Hopefully the reader will have gained some

insight into the role of mathematical modeling and analysis in the resolutions of

these problems, but will also recognize that much is yet to be done. We are in

fact a long way from a complete understanding of cell motility, either from the

experimental side, where experiments can shed light on specific processes, or from

the mathematical side, where the interactions of the underlying processes can only

be understood through mathematical modeling and computational analysis.

Appendix: Singular Perturbation Reduction

We know how to express reaction dynamics as the evolution equation

dx

dt
D f .x; p/ (1.27)

where x 2 M � Rn and p 2 Rp. Suppose there is a separation of variables into those

that vary rapidly and those that change slowly on the chosen time scale. This leads
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to a system of equations of the form

dx

dt
D f .x; y; �; p/

(1.28)

�
dy

dt
D g.x; y; �; p/

wherein � is a small parameter and x (resp., y) is a slow (resp., fast) variable on the

t time scale.

• What are the implications of this separation for understanding the dynamics?

• More precisely, can we use the separation of time scales to reduce the dimen-

sionality of the problem we have to analyze?

The following simple example will illustrate some of the underlying ideas.

Consider the reaction

A
k1

�! B
k2

�! C; (1.29)

where A, B, and C are generic chemical species. We assume mass action kinetics

and first-order reactions and therefore can write the governing equations as

�
x D k1x

�
y D k1x � k2y (1.30)

�
z D k2y:

where x; y, and z stand for the concentration of A, B, and C, resp. In addition we

have the conservation condition

.x C y C z/.t/ D .x C y C z/.0/: (1.31)

x + y + z = constant

x

y

z
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Clearly A and B will disappear completely in the steady state, and the exact

solution for the transient problem for A and B is

x D x0e�k1t

y D y0e�k2t C
k1x0

k2 � k1

Œe�k1t � e�k2t�:

If k2 � k1, then after a time t � O.1=k2/ we have

y.t/ �
k1x0e�k1t

k2

D
k1

k2

x.t/:

But this is what we would get directly if we set
�
y D k1x � k2y D 0 since then

y D
k1x

k2

:

This is what we call the ‘pseudo-steady-state’ or PSS value of y , (or alternatively,

the ‘quasi-steady-state’ QSS value of y), and the hypothesis that we can do this is

called the ‘pseudo-(or quasi) steady-state hypothesis’—the PSSH or QSSA. Can we

justify setting
�
y D 0 analytically, and how do we understand it geometrically?

To formalize this reduction, consider the system

dx

d�
D f .x; y/ (1.32)

�
dy

d�
D g.x; y/;

where x 2 Rn, y 2 Rm, and � > 0 is a small parameter.

Let y D �.x/ be one of the solutions of the system

g.x; y/ D 0 (1.33)

defined on a closed bounded domain D � Rn. The degenerate or slow system

associated with (1.33) and the solution y D �.x/ is the system

dx

d�
D f .x; �.x//: (1.34)

The solution y D �.x/ is said to be isolated on D if there exists an � > 0 such

that (1.33) has no solution other than � with the property that

ky � �.x/k < �:
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The associated adjoined (or fast) system is

dy

ds
D g.x�; y/; (1.35)

where x� is regarded as a parameter.

• The isolated solution y D �.x/ is said to be positively stable in D if for all x� in

D the points y D �.x�/ are asymptotically stable stationary points, in the sense

of Lyapunov, of the adjoined system.

• The domain of influence of an isolated, positively stable y D �.x/is the set

of points .x�; y�/ such that the solution of the adjoined system with the initial

conditions y.0/ D y� tends to �.x�/ as s ! 1.

One of the earliest formal statements of what is now know as a singular

perturbation reduction is given by Tikhonov’s theorem [99].

Theorem 2 If some root y D �.x/ of g D 0 is an isolated, positively stable root

in some bounded closed domain D, if the initial point .x.0/, y.0// belongs to the

domain of influence of this root, and if the solution of the degenerate system belongs

to D for 0 � t � T, then the solution .x.t; �/; y.t; �// of the original system tends

to the solution .Nx.t/; Ny.t// of the degenerate or slow system , as � approaches 0, the

passage to the limit

lim
�!0

y.t; �/ D Qy.t/ D �.Nx; t/

holding for 0 < t � T0 < T, and the passage to the limit

lim
�!0

x.t; �/ D Nx.t/

holding for 0 � t � T0 < T.

The geometry behind the theorem is qualitatively as shown in the following

sketch.

x

y

y = ϕ(x)
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Remarks

(1) This can be generalized to allow � and t dependence in the right-hand side of

the DE.

(2) If y is sufficiently close to �.x/ then on the fast time scale this analysis can be

viewed in the framework of center manifold theory.

(3) There are many variations on the theme and many expositions of it.

1.8 Glossary

Actin is one of the most abundant proteins found in eukaryotic cells and is highly

conserved throughout evolution. Actin monomers polymerize in an ATP-dependent

process to form polarized actin filaments. The helical actin filament has a barbed

end and a pointed end. In non-muscle cells, the dynamic organization of filamentous

actin gives rise to various cell structures, such as filopodia, lamellipodia, and stress

fibers.

AKT/PKB Cellular homologue of AKT retroviral oncogene protein Ser/Thr

kinase. Also called Protein Kinase B because of homology with Protein Kinase

A and Protein Kinase C family members. AKT has an amino-terminal pleck-

strin homology (PH) domain that binds to the lipid products of phosphoinosi-

tide 3-kinase, phosphatidylinositol-3,4-bisphosphate and phosphatidylinositol-3,4,

5-trisphosphate. This binding locates it at the plasma membrane where it becomes

phosphorylated on Thr-308 (human AKT1) in the activation loop of the catalytic

domain by phosphoinositide-dependent kinase 1 (PDK1). This phosphorylation

leads to activation. Full activation requires phosphorylation at a second site (Ser-

473 of human AKT). Mammals have at least three distinct genes for AKT family

members (AKT1, AKT2 and AKT3) and they appear to at least partially redundant

in function.

Alpha-actinin is an actin cross-linking protein that belongs to the spectrin

superfamily. It forms antiparallel homodimers in a rod-like structure with one actin-

binding domain on each side of the rod. It can, therefore, cross-link two filaments

of actin.

Arp2/3 (Actin-related protein complex) Extracellular and intracellular signals

that initiate actin cytoskeletal rearrangements flow through the Arp2/3 complex.

The Arp2/3 complex is composed of seven subunits, two unconventional actin

proteins, Arp2 and Arp3, and five additional proteins. One copy of each subunit

is present in the complex. In addition to contributing to the nucleation of actin

filaments, the Arp2/3 complex caps the slow-growing pointed ends of actin filaments

and promotes the elongation of the actin filament at the fast-growing barbed end.

Arp2/3 complexes are localized at the branch point of two different filaments,

binding to both the side of the mother filament and the pointed end of the daughter

filament. These interactions create an approximate 70ı angle with the actin barbed

end oriented towards the plasma membrane. These observations serve as the basis
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for the “dendritic nucleation” model in which Arp2/3, through its interaction with

F-actin, is a key regulator of the unique meshwork of F-actin in the lamellipodial

structure. The Arp2/3 complex influences the strictly regulated reorganization of the

actin cytoskeleton in response to various signaling pathways.

B-Raf is a serine/threonine protein kinase that is a member of the Raf family of

protein kinases. Raf-B can be activated by the small GTPase Ras as well as Rap1.

cAMP activates MAP-Kinase through B-Raf.

Cdc42 is a Rho-family GTPase that was first identified as a regulator of cell

polarity and budding in yeast. In mammalian cells, Cdc42 is activated in response to

integrins and bradykinin. Activated Cdc42 induces formation of actin-rich structures

known as filopodia. Cdc42 affects actin directly by binding to its effector WASP, an

activator of Arp2/3 and actin polymerization. During cell migration, Cdc42 is also

responsible for polarization of the cell.

Chemotaxis the directed movement of a microorganism or cell in response to a

chemical stimulus.

G-proteins G-proteins are heterotrimeric proteins comprising alpha, beta and

gamma subunits. When bound to guanine nucleotide diphosphate (GDP), G-proteins

are inactive, and are activated when bound to guanine nucleotide triphosphate

(GTP). When activated, they split into alpha-GTP and beta-gamma subunits that

are separately used for control of downstream processes. The alpha subunit has

intrinsic hydrolysis activity that removes a phosphate group, whereupon the alpha-

GDP subunit recombines with a beta-gamma subunit.

G-protein coupled receptors (GPCRs) G-protein-coupled receptors are integral

membrane proteins with seven membrane-spanning helices. G-protein is bound to

the receptor in its inactive state, and when a ligand is bound, the receptor may

undergo a conformational change that facilitates the GDP-GTP exchange on a

G protein, which then detaches from the receptor. GPCRs can desensitize when

exposed to ligand for a sufficient length of time as a result of phosphorylation of a

cytoplasmic receptor domain by protein kinases.

In vitro the recreation of biological processes in an artificial laboratory environ-

ment.

In vivo biological processes that take place within a living organism or cell.

Kinase an enzyme that catalyzes addition of a phosphoryl group to proteins.

MLCK (Myosin Light Chain kinase) is a serine/threonine kinase that phospho-

rylates the regulatory light chain (RLC) of the molecular motor myosin, resulting

in increased contraction. In nonmuscle cells MLCK is involved in the regulation of

cell motility.

MLCP (Myosin Light Chain phosphatase) dephosphorylates the regulatory light

chain of molecular motor myosin, thus inactivating it. MLCP is involved in the

regulation of the actin cytoskeleton and cell spreading.

PAK (p21-activated kinase) is a serine/threonine kinase that binds to and is

activated by Rho family GTPases. The PAK family of kinases is highly conserved

among species. PAK family members have an N-terminal kinase domain and

a C-terminal p21 Rac and Cdc-42-binding domain. The binding of Rho family

GTPases to the C-terminus of PAK causes a conformational change resulting in
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autophosphorylation and activation of the kinase. PAK family members have been

shown to play a role in actin polymerization and cytoskeletal dynamics.

PI3K Phosphoinositide 3-kinase catalyzes the phosphoryation of

phosphatidylinositol-4,5-bisphosphate to produce phosphatidylinositol-3,4,

5-trisphosphate. The enzyme is cytosolic and become localized to the plasma

membrane, which activates the catalytic subunit. Binding of the catalytic subunit to

activated Ras appears to enhance the membrane association and activation.

Phosphatase an enzyme that removes the phosphoryl group from proteins.

Protease (proteinase, proteolytic enzyme) an enzyme that degrades proteins,

such as collagen, laminin, and fibrin.

PTEN is a phosphatase that can dephosphorylate the lipid products or phospho-

inositide 3-kinase, especially phosphatidylinositol-3,4,5-trisphosphate. By dephos-

phorylating these lipids, PTEN attenuates signaling via the phosphoinositide 3-

kinase pathway.

Rac is a small GTP-binding protein which belongs to the Ras superfamily.

Rac activity depends on the ratio of GTP/GDP bound forms. GEFs (guanine

nucleotide exchange factors), GAPs (GTPase activating proteins) and GDIs (gua-

nine nucleotide dissociation inhibitors) thus determine its activity by regulating

of the GTP/GDP bound form. The downstream effectors of Rac are involved in

regulation of the cytoskeleton.

Ras is a small protein that is activated by exchange proteins of the SOS (Son

of Sevenless) or Ras-GRF (Ras GDP Releasing Factor) family. The release of

GDP and binding of GTP ‘activates’ Ras, allowing it to bind to downstream

effectors, including phosphoinositide 3-kinase (PI3K). Ras is anchored at the plasma

membrane via a carboxy-terminal farnesyl group. One function of Ras is to facilitate

localization of its cytosolic effectors at the plasma membrane. Mutant forms of Ras

that stabilize the GTP bound state contribute to tumor formation.

Rho GTPase is a member of Rho family of small GTP binding proteins, which

include Rho A, B, G. It is active in the GTP-bound state and inactive when

bound to GDP. Activation of Rho results in its association with a wide variety

of effector molecules and leads to activation of downstream signaling cascades.

Rho proteins exhibit intrinsic GTPase activity Rho that is significantly stimulated

by GTPase activating proteins (GAPs). Conversely, GTP exchange factors (GEFs)

promote exchange of GDP for GTP, thus activating Rho. Rho GTPase regulates

actin cytoskeleton organization and assembly, in particular actin stress fibers and

focal adhesion formation. It is involved in cellular processes that depend on actin

cytoskeleton such as cell spreading and migration.

RLC (Regulatory Light Chain of myosin) binds to the neck region of Heavy

Chain (HC) of myosin and regulates its motor activity. When RLC is phosphorylated

by myosin light chain kinase on Ser19 it causes conformational changes in myosin

and activates its motor function. Dephosphorylation of RLC by myosin light

chain phosphatase negatively regulates myosin activity. Phosphorylation of RLC in

smooth muscle cells leads to initiation of contraction, whereas in striated muscles it

increases speed and force of contractions. There is also evidence that in nonmuscle
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cells myosins are participating in cell motility, spreading, cytokinesis and vesicle

transport.

ROCK Rho kinase/ROKalpha/ROCK-II and a related protein p160ROCK/

ROCK-I are serine/threonine kinases. Integrin-dependent activation of Rho family

small GTPases induces Rho-Rho kinase interaction and facilitates translocation of

Rho kinase to the cell membrane. Rho kinase facilitates formation of focal adhesions

and actin stress fiber assembly. It cooperates with other Rho effectors to regulate

the formation of actin structures. Rho kinase associates with and phosphrylates

myosin phosphatase. Phosphorylation leads to the inhibition of phosphatase activity

and thereby enhances myosin-mediated contractility. Rho kinase has been shown

to facilitate tumor cell invasion due to its role in cytoskeletal reorganization. In

addition, Rho kinase promotes cytokinesis by phosphorylation of myosin light chain

at the cleavage furrow.

Small G proteins A class of monomeric, low molecular weight (20–25 kDa)

GTP-binding proteins that regulate a variety of intracellular processes. The GTP

bound form of the protein is active and is inactivated by an intrinsic GTPase activity,

which is controlled by GTPase activators (GAPs), GDP dissociation inhibitors

(GDIs), and guanine nucleotide exchange factors (GEFs).

SOS (Son of Sevenless) is an exchange factor that stimulates GDP release from

Ras to allow GTP binding and formation of the active state. SOS has a pleckstrin

homology (PH) domain that mediates binding to the membrane.

WASP (The Wiskott-Aldrich Syndrome protein) mediates a variety of signals

from kinases, receptors, and small G proteins to the Arp2/3 complex and the actin

cytoskeleton. Homologs in the WASP family include SCAR and WAVE. The family

members share two similar domains: one that mediates interactions of WASP with

adaptor proteins such as profilin, and another involved in interaction with Arp2/3

complex and G-actin. GTP-Cdc42 binding to WASP stimulates the Arp2/3 complex

resulting in actin polymerization.
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