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SUMMARY

Dictyostelium discoideum (Dd) is a widely studied model system from which fundamental insights
into cell movement, chemotaxis, aggregation and pattern formation can be gained. In this system
aggregation results from the chemotactic response by dispersed amoebae to a travelling wave of the
chemoattractant cAMP. We have developed a model in which the cells are treated as discrete points
in a continuum field of the chemoattractant, and transduction of the extracellular cAMP signal into
the intracellular signal is based on the G protein model developed by Tang & Othmer. The model
reproduces a number of experimental observations and gives further insight into the aggregation
process. We investigate different rules for cell movement, the factors that influence stream formation,
the effect on aggregation of noise in the choice of the direction of movement, and when spiral waves
of chemoattractant and cell density are likely to occur. Our results give new insight into the origin
of spiral waves and suggest that streaming is due to a finite amplitude instability.

1. INTRODUCTION

Dictyostelium discoideum (Dd) is a widely studied
system because its life cycle incorporates a number
of basic processes that occur throughout develop-
mental biology. Dd cells live as individual amoebae
during the vegetative cycle of their life, feed on de-
caying logs, humus and bacteria (Bonner 1982), and
multiply by binary fission. After a period of starva-
tion they become chemotactically sensitive to cyclic
adenosine 3′, 5′-monophosphate (cAMP), as well as
relay competent. As a result, the cells sense and move
toward a source of cAMP, and they relay the signal
as well by secreting cAMP. Virtually all of the cells
are relay competent 6–10 h after the onset of star-
vation (Gingle & Robertson 1976). After about 8 h

of starvation randomly located cells, called pacemak-
ers, begin to emit cAMP periodically (Raman et al.
1976), the chemotactically competent cells move to-
ward these pacemakers, and eventually the entire
population forms a mound-shaped aggregate of up to
105 cells. Differentiation into anterior and posterior
cells begins in the mound stage. Usually the mound
topples over and forms a slug, and after migrating
for a period of time, the slug forms a fruiting body.
The anterior cells push down through the posterior
cells, thereby forming a stalk tube, and the posterior
cells migrate upward along this tube. The posterior
cells become spores which remain dormant until con-
ditions are favourable, at which time the life cycle
begins again.

A great deal has been learned about signal trans-
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duction, gene control and pattern formation in Dd,
and there are mathematical models for a number of
these processes (Tang & Othmer 1994; Schaap et al.
1997). However, there are a number of basic ques-
tions about cell movement in aggregation and in the
slug that are unresolved, including the microscopic
issues of how a cell decides when to move, how it
determines the direction in which to move, and how
long it moves. Since cell movement plays a fundamen-
tal role in such diverse processes as embryonic de-
velopment, the response of the immune system, and
wound healing, a better understanding of cell move-
ment in Dd will be valuable in a number of other
contexts. Knowledge of the behaviour of individual
cells will also help in understanding the types of col-
lective cell motion possible in populations of cells,
including the various types of aggregation patterns
seen in Dd. In this paper we develop and analyse a
discrete cell model for the aggregation of Dd that in-
corporates a realistic model for signal transduction,
cAMP production and cAMP release, and which al-
lows us to explore the effect on macroscopic aggrega-
tion patterns of changes in the microscopic rules by
which cells determine their direction and duration
of movement. Our objectives are to understand (a)
whether cell motion is determined by the local tem-
poral or spatial gradient of cAMP, or neither, (b)
what properties of the cells and their initial distri-
bution in space determines whether spirals or target
patterns form in aggregation, (c) what factors deter-
mine whether streams are formed in aggregation, and
(d) how the fraction of pacemakers affects the size
and morphology of the aggregation territories. The
model we develop is sufficiently robust that we can
study the effect of experimental alterations of prop-
erties, such as excitability, on the aggregation pat-
terns, and we can compare the predicted behaviour
for various mutants with the observed aggregation
patterns.

Earlier models of Dd aggregation can be grouped
into two major categories: those that treat the cells
as discrete units and those which use a continuum
description for the cell density. Although these mod-
els have given some insight into the aggregation pro-
cess, they all have limitations which preclude a de-
tailed analysis of the questions we address. The mod-
els developed by Parnas & Segel (1977), MacKay
(1978) and Vasieva et al. (1994) fall into the first
category. The first two of these are similar in that in
each the cells are treated as black boxes which, when
stimulated, output a fixed amount of cAMP. No de-
scription of signal transduction, cAMP production,
or adaptation is incorporated, but diffusion of cAMP
is taken into account. The model of Parnas & Segel
only deals with one space dimension and can only
address the questions of how the cell decides when
to move and, in a very simplistic manner, which di-
rection the cell moves. MacKay’s model is two di-
mensional and can reproduce the observed stream-
ing patterns, the effect of two competing pacemak-
ers, and spiral waves. These models are a first step in
the modelling process, but the rules are formal and

not based on a mechanistic description of signal de-
tection, transduction, cAMP production, and cAMP
secretion. In more recent modelling by Vasieva et al.
the diffusion of cAMP is not even incorporated; in-
stead they use a cellular automaton model with rules
by which neighbours are activated. They are able to
reproduce streaming patterns and find self-sustaining
sources of excitation, but because the model is purely
formal, little can be said about its relevance to Dd
aggregation.

The models developed by Levine & Reynolds
(1991), Vasiev et al. (1994) and Höfer et al. (1995)
fall into the second category. The Levine & Reynolds
and Höfer et al. models are based on a modified form
of the Martiel & Goldbeter (1984) model for cAMP
production and signalling, whereas Vasiev et al. use
a modified FitzHugh–Nagumo model for these pro-
cesses. Several objections can be raised to either of
the models for the local dynamics. First, the Martiel
& Goldbeter (1984) model is based on receptor de-
sensitization by phosphorylation as the mechanism
for adaptation, but it is now known that this is not
how adaptation occurs. A more serious objection is
that there is no single Martiel & Goldbeter (1984)
model that describes the different behaviours in Dd;
the parameters which describe the behaviour in sus-
pensions must be changed by orders of magnitude to
reproduce the observed waves (Tyson et al. 1989),
and there is no suggestion in the literature that such
changes are realistic. The FitzHugh–Nagumo model
is even less suitable as a model for the local dy-
namics, for it incorporates nothing of what is known
about signal transduction and cAMP production in
Dd. Furthermore, since Höfer et al. and Levine &
Reynolds use continuum chemotaxis equations to de-
scribe cell motion, ad hoc assumptions are needed to
incorporate adaptation of the tactic component of
the movement. The need for such assumptions can
be understood as follows. Adaptation in the signal
transduction system leads to adaptation in the loco-
motory response, which means that there is no bias
in the random movement when there is no spatial or
temporal variation of extracellular cAMP. Thus it is
the intracellular dynamics which determine the tactic
component of the motion, and at present there is no
algorithm or procedure for translating the ‘rules’ for
individual cell motion into macroscopic parameters
such as the chemotactic sensitivity when the sensory
systems adapt. In fact work on this problem suggests
that the intracellular dynamics must be retained for
an adequate description of motion in the presence of
adaptation (Othmer 1997).

The attraction of continuum models is that it is
somewhat easier to obtain analytical insights from
continuum descriptions with simplified local dynam-
ics, and the computational algorithms needed to sim-
ulate the evolution are relatively simple. The primary
insights gained from these models relate to the ap-
parent instabilities which cause streaming patterns.
Vasiev et al. conclude that the major factor in stream
formation is a change in the speed of the cAMP wave
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as density varies, but we do not agree with that con-
clusion. Levine & Reynolds conclude that stream for-
mation is the result of an instability generated by the
coupling of the density and the signalling. Höfer et al.
conclude that patterns are generated by an interac-
tion of the excitable medium and the multicellular
morphogenesis.

Despite the analytical and computational simplic-
ity of continuum models, we have developed a hy-
brid discrete/continuum model in which the cells
are treated as individual units and the extracellular
cAMP is described by a continuum reaction-diffusion
equation. A detailed description of signal transduc-
tion and adaptation is possible in such a model,
and movement rules based on the intracellular dy-
namics can be explored. We use the Tang & Oth-
mer (1994) signal transduction model, which incor-
porates the known biology more completely than any
other model. In addition, it also produces the correct
cAMP levels in both the perfusion and suspension ex-
periments without a change of parameters (Tang &
Othmer 1994), and predicts the observed wave speeds
and spatial patterns of cAMP when the cells are im-
mobile (Tang & Othmer 1995). Not only does this
model allow us to examine in detail how changes in
the microscopic rules for movement affect the macro-
scopic patterns of aggregation, but by comparing the
results of our model with the results of the previ-
ous models we can determine which predictions are
model dependent and which are likely to be biologi-
cally significant.

In the following section we describe the model,
which is done in two steps. First, we describe the
cAMP production and diffusion component, and in-
dicate how the resulting equations are solved numer-
ically. Following this we introduce two sets of move-
ment rules and provide the justification for their use.
In § 3 we present the results of the numerical simula-
tions, which address five issues. First, we discuss sim-
ulations with various movement rules, and then we
present numerical results that simulate experiments
in which the excitability of the system is modified.
Next we study the effect of density on the observed
patterns of aggregation and we explore the effect of
varying the fraction of pacemakers on the aggrega-
tion patterns. Finally, we look at the sensitivity of
the system to the cell’s chosen direction. We conclude
with a discussion of the insights that are gained from
this model.

2. THE MATHEMATICAL MODEL

(a) Signal transduction

The mathematical model developed in Tang &
Othmer (1994) and Tang & Othmer (1995) postu-
lates two major pathways in the transduction of and
adaptation to an extracellular cAMP signal. cAMP
(denoted H) binds to the receptors cAR1 (denoted
Rs), and the complex HRs catalyses the activation of
the α subunit G′s of the stimulatory G protein Gs.
This in turn binds with the inactive form of adenylyl
cyclase (AC) and produces the activated form G′sAC.

Figure 1. A schematic of the simplified transduction and
adaptation scheme in Tang & Othmer (1995).

A GTPase activity intrinsic to the α subunit of the G
protein terminates the activation. In the inhibitory
pathway an inhibitory G protein G′i is produced by
analogous steps. However, the symmetry between the
pathways is broken at this point, because G′i binds
with HRs, and in this bound form HRs cannot acti-
vate Gs. The version of the model developed in Tang
& Othmer (1994) leads to a system of seven differen-
tial equations and auxiliary algebraic equations for
the time evolution of the intracellular species. How-
ever, as was shown in Tang & Othmer (1995), the
scheme can be reduced to four primary species for the
intracellular dynamics without affecting the input–
output behaviour significantly. The reduction done
there leads to the network for signal transduction
shown in figure 1.

There are several aspects of this scheme which have
not been confirmed or are now known to be incor-
rect. First, the α subunit of G′s does not activate the
cyclase; this is done by the β subunit in conjunc-
tion with a cytosolic regulator of adenylyl cyclase
(CRAC) (Lilly & Devreotes 1995). As we noted in
Tang & Othmer (1994), this leads to difficulties if
there is an inhibitory G protein with the same β
subunit, since the ‘inhibitory’ pathway would in fact
not be inhibitory. Thus far the postulated inhibitory
receptor Ri and the inhibitory G protein Gi have
not been found experimentally, even though pertus-
sis toxin blocks adaptation (Snaar-Jagalska & Van
Haastert 1990), and it may be that there is no sec-
ond pathway. This suggests that another mechanism
for adaptation is employed, possibly phosphorylation
of the β subunit (P. Schaap, personal communica-
tion), or by interference between CRAC and the β
subunit. However, this probably does not involve a
cAMP-dependent kinase, for it is known that adapta-
tion occurs even in the absence of cAMP production
(Theibert & Devreotes 1986). This kinase could be
activated by the α subunit or by some other mecha-
nism that does not involve a G′i. Some of these facts
could be taken into account by changing the identity
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of the species in the postulated network. For exam-
ple, it is immaterial for our purposes whether α or β
activates AC if the adaptation mechanism does not
involve a G′i. Since little is known about the pre-
cise mechanism of adaptation at this point, we have
chosen to retain the existing model and terminology,
because it meets the primary test for a signalling
model in that it reproduces the appropriate time for
adaptation, the response to multiple stimuli, and the
amplitudes and speeds of the cAMP waves when the
cells are immobilized.

The governing equations for the intracellular dy-
namics are

dwi1
dτ

= α4u
i
2 − wi1 − α4u

i
2w

i
1,

dwi2
dτ

= β2β3c2u
i
4 − β5w

i
2 + β6c3w

i
3

−c3β4u
i
1w

i
2 − β2β3c2u

i
4(wi2 + c3w

i
3),

dwi3
dτ

= −(β5 + β6)wi3 + β4u
i
1w

i
2,

dwi4
dτ

= γ1γ2w
i
1 + Γ5(1− Γ7w

i
1)

−γ4
wi4

wi4 + γ3
− sr(wi4),



(1)

where

ui1 =
α0w5(xi) + (β5 − α0w5(xi))wi3

α1 + α0w5(xi) + β4wi2
,

ui2 =
α2α3c1u

i
1(1− wi1)

1 + α4 + α2α3c1ui1 − α4wi1
,

ui4 =
β0w5(xi)

β1 + β0w5(xi)
.

Here superscript i designates the ith cell, whose posi-
tion in the plane is denoted xi, and sr is the function
denoting the dimensionless secretion rate of cAMP.
The dimensionless variables above are related to the
molecular species in table 1. Here Γ5 = γ5/(1+L5) =
2.4, L5 = (l−5 + l∗5)/l5[ATP], Γ7 = 1 + L7 = 1.091,
and L7 = l1/(l−1 + l2). The definitions of the vari-
ables and the parameter values are the same as those
in Tang & Othmer (1995) unless otherwise stated.

The evolution of extracellular cAMP is governed
by the partial differential equation

∂w5(x)
∂τ

= ∆1∇2w5(x)− γ̂9
w5(x)

w5(x) + γ8

+
N∑
i=1

Vc

V0
δ(x− xi)

(
sr(wi4)− γ7

w5(x)
w5(x) + γ6

)
.

(2)

Here ∆1 = D/k5, γ̂9 = γ9NVc/Vo, N is the num-
ber of cells, Vc is the volume of a cell, Vo is the vol-
ume of the extracellular medium, x is a generic point
in the plane, and δ is the Dirac distribution. The
terms on the right-hand side of the partial differential
equation represent, in order, a diffusive contribution,
the degradation due to external phosphodiesterase
(PDE), which is assumed to be constant in space and
time, the secretion of cAMP and the degradation of
cAMP by membrane-bound PDE. Although we treat

cells as point sources of cAMP the secretion rate and
degradation rate are first computed per unit volume
(see Appendix 1), since then the equations for the lo-
cal dynamics can be carried over from previous work
without change. In this paper the cells only interact
via the extracellular cAMP signal.

The algorithm we have developed to solve these
equations can be summarized as follows. Given the
initial cell states and the cell distribution, which may
be uniform or random, in a square domain, and the
initial distribution of extracellular cAMP we perform
the following steps.

(i) Solve the extracellular equation on a regular
grid, using an alternating-direction implicit (ADI)
method for the partial differential equation, lag-
ging the secretion term.

(ii) Interpolate cAMP from the grid to the cell po-
sitions and update the intracellular variables and
the secretion by an implicit scheme.

(iii) Update cell movement. If a cell is not moving,
should it begin to move? If so, compute the direc-
tion and start movement. If it is moving, should it
continue?

(iv) Transfer the secreted cAMP to the grid and re-
peat the cycle.

A typical aggregation territory is approximately
1 cm2, and the density typically ranges from 2.5 ×
104 cells cm−2, which is the lower limit for successful
propagation, to 106 cells cm−2, the density needed
to produce photographs of aggregation territories
(Alcantara & Monk 1974). At the lower density
limit cells are approximately 60 µm apart if they are
placed uniformly on a square grid. In step (i) above
we use a grid of 201 points in each direction, and
therefore a grid cell is 50 µm × 50 µm. Since we ex-
clude cells from a strip of width one grid cell at the
boundary, there are 39 601 grid cells in which the
cells are distributed, and at an intermediate density
of 80K cells there are two cells per grid cell. If the dy-
namics in each cell are treated individually, as above,
the computational time is large, and to reduce it we
reduce the number of cells and increase their weight
proportionally so as to obtain the correct production
and destruction rates of cAMP. The effect of this
is that we have fewer but stronger point sources of
cAMP.

Reducing the number of cells and increasing their
weight has little effect on the results. To support this
contention we compare the one-dimensional distribu-
tion of a diffusible substance resulting from a point
source of strength with one located at the centre of
a grid cell with that due to point sources at 1/4 and
3/4 the length of a grid cell, each of strength 1/2.
The solution for the concentration in the first case is

f1(x, t) =
1√

4πDt
exp

(−(x− 0.5)2

4Dt

)
,
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Table 1. The correspondence between the dimensionless variables and the molecular species

variable proportional to the concentration of

u1(t) stimulus receptor bound with cAMP
u2(t) activated α subunit of the stimulatory G protein
u4(t) inhibitory receptor bound with cAMP
w1(t) activated adenylyl cyclase
w2(t) activated α subunit of the inhibitory G protein
w3(t) activated α subunit of the inhibitory G protein bound with the stimulus receptor cAMP complex
w4(t) intracellular cAMP
w5(t) extracellular cAMP

x

co
nc

en
tr

at
io

n

Figure 2. A comparison of the concentration profiles for
a single point source (solid line) and two separated point
sources of half the strength (dashed line).

whereas the solution for the second case is

f2(x, t) =
1

2
√

4πDt

×
(

exp
(−(x− 0.25)2

4Dt

)
+ exp

(−(x− 0.75)2

4Dt

))
.

These solutions are shown in figure 2, wherein f1
and f2 are evaluated at t = 0.0025. This time corre-
sponds to half of the smallest allowable time step and
gives the greatest error. The variables are scaled such
that the interval corresponds to 50 µm and the dif-
fusion coefficient is as used in the model. The figure
shows that the concentration profiles differ by small
amounts at the endpoints where the diffusing grid ex-
ists. In any case, assuming a dimensionless amount 2
at the point 1/2 or the amount of 1 at 1/4 and 3/4,
the interpolating scheme for this one-dimensional do-
main gives the same cAMP, namely 1, at each of the
nearest grid points. The same would be true in 2D
for regularly spaced cells. Of course differences will
arise when cells are not symmetrically located in a
grid cell, but on the scale of several grid cells this
will average out.

Another simplification used in the implementation
is to combine cells when they are within a distance
of 5 µm of one another, and after doing this they
are treated as one cell with twice the strength. This

is biologically reasonable since cells tend to adhere
to one another when they come in contact (Siu &
Kamboj 1990). Numerical tests indicate that doing
this only changes the outcome of the simulations in
minor ways.

A complete description of the computational pro-
cedure can be found in Appendix 2. Unless other-
wise stated, the number of cells used is 10 089, each
weighted by 16 according to the rules given in Ap-
pendix 1. For those computations that use a pace-
maker the cells that lie within a disc of radius 0.05 cm
centred at the origin have parameters which would
make them oscillatory, were they to be put in a uni-
form suspension of the same density. This is done by
decreasing the value of γ2 linearly from 0.4 at the
centre to 0.17 at the boundary of the disc. The cells
exterior to the disc are excitable but not oscillatory.

(b) Movement rules

We use two major types of movement rules. The
first set is formal, i.e. not based on a model for move-
ment, and has ad hoc features similar to those used
by Parnas & Segel (1977) and MacKay (1978). We
use it as a base against which we can compare the
effects of changing these rules.

(i) The cell moves if the time derivative of the ex-
tracellular cAMP concentration is greater than
0.02 µM min−1.

(ii) All cells move for a fixed duration (100 s for
wild-type cells) in the direction of the cAMP gra-
dient at the cell when the motion started.

(iii) The cell moves at a speed of 30 µm min−1.

The experimental basis for choosing these rules is as
follows. (1) The threshold for the time derivative was
chosen so that a triangular wave of cAMP of duration
200 s above baseline and amplitude 0.1 µM initiates
movement. (2) Cells are observed to move for about
100 s (Alcantara & Monk 1974; Tomchik & Devreotes
1981) during aggregation. However, this is undoubt-
edly not because there is an internal movement clock,
but rather because 100 s corresponds approximately
to the rising phase of the wave under typical condi-
tions (in fact the rising phase varies between 1 and
2 min). In general, the duration will depend on the
cell density and the amplitude of the wave, and in
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the following section we experiment with other du-
rations for movement. Because the cells are treated
as points, the ith cell is assumed to move in the di-
rection of the gradient of cAMP at xi. Treating the
cells as points precludes evaluating the concentration
around the periphery of a cell and basing the direc-
tion of motion on a rule such as ‘move in the direction
of the line from the centre of mass to the point on
the periphery at which cAMP first exceeds a thresh-
old’. To deal with this limitation we are currently
studying a model in which the detailed space-time
profile of cAMP at the boundary, as well as the in-
tracellular concentrations, can be evaluated (Dallon
& Othmer 1997). Preliminary results show that gra-
dients of intracellular variables such as calcium can
be reliably established under typical aggregation con-
ditions. Such gradients could then be used to guide
assembly of the locomotory apparatus. As we shall
see in a later section, cells can aggregate reliably even
in the presence of considerable noise in the direc-
tional choice. (3) The speed of 30 µm min−1 is the
maximum cell speed measured in Alcantara & Monk
(1974), but a more commonly observed speed is 12–
15 µm min−1 (Soll et al. 1993). If the latter speed
applies throughout aggregation it would be difficult
for the cells to aggregate in territories of 1 cm in
about 6 h, since a cell moving continuously at 12–
15 µm min−1 would only move ca. 0.5 cm in 6 h. Yet
the cells do not move in straight lines or continu-
ously during the aggregation cycle. One explanation
for the discrepancy is that the cells become more ef-
ficient in their movement with successive waves of
cAMP and at different stages of their development
(Varnum et al. 1985). Furthermore, it is known the
cells move more rapidly once they form streams (De-
vreotes 1982). Either or both of these factors could
account for the observed timescale of aggregation.

As we shall see, these formal rules can produce
aggregation, but they ignore some essential biolog-
ical facts. For example, as we already noted, if the
profile of the cAMP wave is altered the 100 s move-
ment rule will probably not be applicable. A detailed
model of how a cells chooses the direction of motion
and the length of a ‘run’ is not available, nor would
it be feasible to use such a model in the present
computations. However, we can develop more real-
istic rules based on internal variables as follows. It is
known that cAMP activates the cGMP pathway via
G proteins in addition to activating the cAMP pro-
duction pathway (Newell et al. 1990). It is also known
that cGMP is near the beginning of the chemotactic
response pathway (Kuwayama et al. 1993; Valkema
& Van Haastert 1994) and that cGMP production
adapts to the cAMP stimulus on a timescale of about
30 s. If cGMP adapts then downstream components
will also adapt, except in unusual circumstances,
perhaps on a longer timescale. The identity of this
downstream ‘motion controller’ is not known, but it
must be used in such a way that the cell moves only
when cAMP is increasing, for it is known that cells
only move in the rising phase of the cAMP wave. In
the absence of detailed information about the con-
troller dynamics, we use as a stand-in a quantity in
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Figure 3. Several internal variables and extracellular
cAMP as a function of time at a randomly chosen cell in
an aggregation field. There are 80 089 cells, each weighted
by 2, in the field. Throughout the solid line is extracel-
lular cAMP(µM), while in (a) the dashed line is w1, in
(b) the dashed line is u1, and in (c) the dashed line is u2

times 5.
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Figure 4. The aggregation pattern in a field of wild-type
cells (from Loomis (1975) with permission).

the cAMP pathway that has the appropriate time-
course. Suitable candidates are u1, u2 or w1, and to
decide which of these to use, we display their time-
course at a randomly chosen cell in figure 3, along
with the cAMP concentration at that cell. One sees
in figure 3a that w1 is probably not suitable if the
rule is that motion persists only as long as w1 is in-
creasing, since motion would cease before the peak
of cAMP reaches the cell. However, the gap between
the cAMP and w1 peaks is small, and it is not known
that a cell stops precisely as the peak of the wave
passes. One sees in figure 3b, c that either u1 or u2
could be used if the rule is that motion persists as
long as these variables are above a suitable thresh-
old, and we have chosen to use the time-course of u2
to determine cell motion.

These considerations lead us to the second set of
movement rules, which we designate the ‘u2’ rules.

(i) The cell moves if the dimensionless concentration
of u2 is greater than 0.004.

(ii) The cell moves in the direction of the gradient
of cAMP when the motion was started.

(iii) The cell moves at a speed of 30 µm min−1.

We do not incorporate a diffusive component of mo-
tion in either set of rules because it is observed that
this component is small and is suppressed when the
cell receives a superthreshold chemotactic signal. In
the following sections we present simulation results

from the model which show that aggregation pat-
terns for both wild-type and for mutant cells can be
reproduced, and we present results on the effects of
changes in density, the excitability, the fraction of
pacemakers present, and the directional sensitivity
on the aggregation patterns.

3. RESULTS FROM SIMULATIONS OF THE
MODEL

(a) Experiments with different movement rules

The first set of computational experiments is
aimed at understanding the effect of changes in the
duration of movement. These experiments use three
fixed durations: 20 s, the nominal 100 s, and 500 s.
The first value was chosen because it has been shown
by Futrelle et al. (1982) that cells can alter their
direction within 20 s after the location of a source
of cAMP is changed. Thus there is no long-term
(greater than 20 s) persistence in the motion, and the
question arises whether the artificial mutant, jittery,
which can change direction every 20 s, aggregates.
The rationale for the second duration has already
been discussed, and the third duration is intended
to mimic the behaviour of the streamer F mutants,
which move five times more slowly than normal cells
(Ross & Newell 1981). The results of the simulations
are shown in figure 6.

These results are to be compared with the wild-
type aggregation pattern shown in figure 4. A com-
parison of this figure with figure 6b shows that a du-
ration of 100 s produces large-scale aggregation pat-
terns that are similar to those observed for wild-type
cells. This is not unexpected, because we know from
earlier work that the model for signal transduction
and relay produces the correct secretion rate, and
that the cAMP waves have the correct amplitude
and duration when the cells are immobilized (Tang
& Othmer 1994, 1995). Thus this comparison can be
regarded as one more check on the model, albeit a
much weaker one than those used in previous work.
As we shall see later, other movement rules produce
even better correspondence between the model re-
sults and the experimental observations.

The cells which move for 500 s form fewer but
larger and more compact streams (figure 6c). These
results are in agreement with experimental data,
which shows that the streamer F mutant forms long
streams and larger aggregation territories (Ross &
Newell 1981). One can see in figure 6a that the aggre-
gation pattern is quite different for jittery. There are
certainly hints of stream formation, and the branch-
ing pattern shows some similarity with that in fig-
ure 6b, especially in the upper left-hand quadrant.
However, there is little long-range aggregation, the
streams are fragmented, and aggregates are small
and highly localized.

The differences in the aggregation patterns shown
in figure 6 are not due to differences in cell density or
initial conditions, nor do they stem from differences
in the cAMP waves in the early stages: the under-
lying waves for each simulation started out identical
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(a)

(b)

(c)

Figure 5. Extracellular cAMP (µM; solid line) and the
amount of time remaining on the movement clock in min-
utes (dashed line) are shown in (a) and (b) for a randomly
chosen cell in an aggregation field. In (a) the cells move
for 100 s and in (b) they move for 20 s. In (c) the motion
is determined using the u2 rules. The solid line shows ex-
tracellular cAMP and the dashed line is 1 when the cell is
moving and 0 otherwise. In all cases there is a pacemaker
at the centre, and the density is 0.2.

and changed only as the aggregation patterns were
established. In all cases the waves have virtually the
same duration of elevated levels of cAMP. Thus we
conclude that the differences stem from the different
movement durations.

In order to better understand the results of the
20 s movement rule, we display the external cAMP
concentration and the amount of time remaining for
movement in a cycle in figure 5. Obviously cells which
only move for 20 s must go through three cycles of
movement and possibly re-orientation during the 60 s
interval in which the major increase of cAMP oc-
curs at the leading edge of the wave. Because there
are multiple localized sources of cAMP, the ampli-
tude of the cAMP waves varies rapidly in space, as
is shown at a fixed instant in figure 10. From this
one sees that if the cells adjust their course during
the passage of a wave they have a high probability of
moving in the wrong direction, and in particular, of
moving toward a receding wave. This is the familiar
‘back-of-the-wave’ problem, which here accounts for
the relatively fragmented character of aggregation in
figure 6a. When that simulation is run for a longer
period one finds that the streams break into many
small aggregates. The relative ineffectiveness of ag-
gregation when cells may re-orient every 20 s suggests
that either the cells do not undergo several distinct
‘runs’, i.e. several quantized cycles of movement and
re-orientation, during a global cAMP wave, as was
conjectured by Soll et al. (1993), or that other mech-
anisms such as cell polarization or adaptation in the
transduction step are at work.

The need for other mechanisms can be understood
by noting that there are two space scales involved
in the cAMP distribution, one characterized by the
small-scale local variations that arise from the local-
ized bursts of cAMP emitted by cells, and a longer
one characterized by the wavelength of a locally
smoothed version of the cAMP wave. The cell sees
only the small space scale, yet the foregoing simula-
tions show that aggregation is more effective if the
cell in effect takes a ‘longer view’. Rather than sim-
ply imposing this longer view in the form of a rule
using longer runs, we can either build some polarity
into the movement process, or incorporate adapta-
tion into the transduction process. Polarization of
the movement is essentially equivalent to imposing
longer runs, but has a firmer biological basis. In the
form we later incorporate it, adaptation turns off the
movement when cAMP is decreasing and automati-
cally solves the back-of-the-wave problem for a cell.

Evidence that Dd cells polarize in the presence
of chemical gradients of cAMP was reported by
Varnum-Finney et al. (1987), and we incorporate po-
larity into the movement rules as follows. If the cell
has not been moving in the previous time step and
the time derivative of cAMP is superthreshold, it
moves in the direction of the local gradient. If the
cell has been moving, the next move is in the direc-
tion given by the vector sum of two thirds of the
old direction and one third of the direction given by
the local gradient. In either case the run length is
maintained at 20 s. With cell polarization built into
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Figure 6. Aggregation patterns for simulated mutants and wild type cells. The aggregation patterns shown are: in (a)
for the jittery mutants with movement duration 20 s, in (b) for the wild-type cells with a movement duration of 100 s
and in (c) for the streamer F mutants with a movement duration of 500 s. The final time is 95 min, and cell densities
greater than or equal to 1 are shown in red. (A cell density of 1 represents approximately 800 000 cells cm−2.) Cells in
the centre are oscillatory with γ2 ranging between 0.4 and 0.17.

the movement rules, the resulting aggregation pat-
tern contains more streams, each of which is smaller
and more highly branched when compared with the
pattern that results from using a run length of 100 s
(cf. figure 6b and figure 7). This aggregation pattern
appears to better match the experimentally observed
patterns shown in figure 4.

From figure 7 one can conclude that polarization
of the cells can overcome the fragmentation of aggre-
gation that results when cells re-orient several times
during a wave. However, there are cell types which
lack myosin II and as a result do not polarize well, but
which still form streams and aggregate (Wessels et al.

1988). These cells exhibit chemotactic behaviour, but
they are less efficient in their movement than nor-
mal cells. In another mutant, which attaches to the
substratum very strongly and also does not polarize
well, streams form and aggregation is successful, and
the patterns of aggregation are only slightly different
from wild-type cells (Claviez et al. 1986) (figure 8).
These two mutants demonstrate that polarization is
not necessary for successful aggregation.

From the foregoing simulations we learn that if
cells use a fixed run length, then in the absence of
polarization they must use a sufficiently long run to
aggregate successfully. If cells polarize in the manner
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Figure 7. Aggregation patterns for polarized cells using a 20 s run length. The aggregation pattern is shown at 95 min
and cell densities greater than or equal to 1 are shown in black.

described above they can aggregate successfully even
if the run length is quite short. Since the mutants
demonstrate that polarization is not necessary, they
must either use a long, fixed run length or some other
mechanism. An alternate mechanism is encoded in
the u2 movement rules. According to these rules, if
the intracellular motion controller exceeds a thresh-
old the cell moves in the direction of the local gradi-
ent, and continues to move as long as the controller
remains above threshold. By hypothesis, this con-
troller adapts to constant extracellular cAMP levels
and thus will only exceed a threshold when the ex-
tracellular cAMP levels are rising sufficiently rapidly.
The results of a simulation that uses these rules are
shown in figure 9. The aggregation pattern compares
very well with both the result using polarized move-
ment (figure 7) and the wild-type aggregation pat-
tern shown in figure 4.

One can see from figure 5 that the total duration
of movement in a passing wave is approximately the
same, whether the cell uses the u2 rules, the polar-
ized rules, or the jittery rules. What is different is
how cells choose their direction of movement. In this
respect figure 5 is incomplete, for it does not show the
local gradient at the cell. If the wave is essentially pla-
nar at the cell then all three rules will lead to a simi-
lar pattern of motion. However, this is rarely the case,

for as we noted earlier, the cell sees the composite of
many small waves which emanate from nearby cells.
To clarify the effect this has on cell motion when dif-
ferent rules are used, we show the cell paths of five in-
dividual cells in figure 11. An overlay of these figures
would show that each of the cells starts at the same
point in the five figures. Note that cells which use the
u2 rules have the smoothest paths, since they only
make a directional choice about 30 times, while cells
which use the jittery rules have the roughest paths
since they make 90 decisions. The three lower right
cells in the jittery mutant seem to be converging to
a point rather than entering a stream as in the other
simulations. Cells using a 100 s run length almost get
trapped at roughly the same point in space, but are
able to escape this region. Those using a 500 s run
length frequently double back across streams, but
this would not occur if we incorporate the fact that
cells in a stream adhere to each other. These tracks
help to clarify the macroscopic patterns shown ear-
lier. Generally speaking, the longer run lengths lead
to more compact streaming, but individuals back-
track much more than with a shorter run length. As
we observed earlier, the jittery mutant results in a
fragmented pattern of many local aggregates, which
is not observed in experiments. The u2 and polarized
rules produce a much more ramified aggregate, with
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(a) (b)

Figure 8. Normal cell aggregation patterns (a) and an aggregation pattern of mutants with flattened cells (b). The
scale bar shown is 0.5 mm. (From Claviez et al. (1986), with permission.)

many small branches. These aggregates are the most
comparable with the experimentally observed ones.

As we remarked earlier, it is known that cGMP
adapts and that it is involved in the locomotory ma-
chinery, probably via control of the calcium levels in
the cell. Thus the u2 rules seem more realistic bio-
logically, but since it is also known that cells polarize
this probably also plays a role in wild-type cell ag-
gregation. Either set of rules can effectively overcome
the back-of-the-wave problem discussed in Soll et al.
(1993), but the u2 rules are more reliable in this re-
gard. If the u2 rules are used, changes in the ampli-
tude and duration of the cAMP wave will change the
chemotactic response, in that the cells will move for a
longer or shorter period of time. Observing the cells’
behaviour in response to a variety of wave amplitudes
and durations would help to clarify the movement
rules used.

(b) The effects of AC activity on patterns of
aggregation

The next aspect to be investigated is the effect
of changes in the excitability of the cells or in their
basal cAMP production rate. The excitability can
be changed experimentally by adding caffeine to an
aggregation field, as was done by Siegert & Wei-
jer (1989). This has several effects, one of which is
to enhance formation of cores that are free of cells,
around which a stream of cells migrates (these are
also seen occasionally in untreated fields). The size

of the core is directly proportional to the amount of
caffeine added. It is speculated by Siegert & Weijer
(1989) that core formation is enhanced because caf-
feine lengthens the period of the cAMP wave. In an
earlier model the caffeine effect was on intracellular
calcium, which inhibited the cyclase (Monk & Oth-
mer 1989a), but here its effect is simulated by low-
ering the value of γ2, which is normally set at 0.17.
(Recall that γ2 is a measure of the activity of the
activated adenylyl cyclase.) In the following simula-
tions a spiral wave is started as described in the figure
caption. When γ2 is too low (γ2 . 0.12) the cAMP
waves do not propagate at all, and for γ2 = 0.13 the
tip of the spiral wave meanders, never anchoring to
a spot or rotating around a fixed core. The results
for three values of γ2 which produce stable cores are
shown in figure 13.

One sees there that cores form in all cases, even us-
ing the ‘standard’ value of γ2, and that their diameter
increases as γ2 is decreased. Core formation has been
investigated in another context by Monk & Othmer
(unpublished work; 1989a, b), who showed that the
core size in a FitzHugh–Nagumo system is primarily
determined by the excitability of the system, but it is
difficult to obtain a quantitative relationship analyt-
ically. The cores shown in figure 13 are of the same
magnitude as those observed experimentally (cf. fig-
ure 15). One also sees in the figure that changes in
excitability change the number of primary streams
around the core. An increase in the excitability pro-
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Figure 9. An aggregation field in which the cells move according to the u2 rules. The aggregation pattern is shown at
95 min and cell densities greater than or equal to 1 are shown in black.

duces a tighter spiral cAMP wave, more compact cell
streams, and fewer primary streams near the centre.
The far-field structure of the aggregation pattern is
similar for all three simulations, even though the far-
field wavelength of the cAMP wave will vary with the
excitability. When the spiral is far from the core in
an aggregate with well-defined streams, the wave is
essentially many independent pulses travelling down
the individual streams (cf. figure 14).

Our computations show that the cores collapse af-
ter ca. 300 min of the simulations (see figure 12), as is
also observed experimentally (Durston 1974). This is
probably due to the fact that the normal direction to
the level curves of the cAMP wave does not coincide
with the normal direction to the circumference of the
core. As a result, there is an oblique component to
the direction of cell movement which will ultimately
lead to the collapse of the core.

The results shown in figures 12 and 13 can be com-
pared to experimentally observed patterns of Dd ag-
gregations with and without caffeine in figure 15.

In another experiment, cells are altered so that
they over-express ACG, a constitutively active
adenylyl cyclase that is unregulated by cAMP (Pitt
et al. 1993). As a result, these cells have a greater
basal production rate of cAMP. It is observed ex-
perimentally that in wt/ACG aggregation fields, the

cells initially begin to stream as they normally do,
but then the streams break up into small mounds
which form fruiting bodies (Pitt et al. 1993). We can
simulate the wt/ACG dynamics by adding a constant
to the equation for the time derivative of w4 (the in-
tracellular cAMP) for each cell, for in that way the
basal level of cAMP production is increased. The re-
sult of a simulation using these equations is shown in
figure 16. One observes several local mini-aggregates
that display normal morphology. We believe that the
local ‘organizers’ of these aggregates arise as follows.
Because all cells produce more cAMP, regions of
higher cell density can act as pacemakers and or-
ganize local regions, whereas in previous simulations
the parameters were such that this did not occur.
This conjecture is borne out by a later simulation
in which many pacemakers are dispersed throughout
the field (cf. figure 19). This phenomenon also occurs
in other species such as Polysphondylium pallidum
and Dictyoselium polycephalum (Raper 1984).

(c) The effects of density on aggregation patterns

We have shown in § 3 a that changing the move-
ment rules can have a dramatic effect on the aggre-
gation patterns. In this section we examine the effect
of cell density on these patterns. First, we consider a
set of simulations in which the initial cell and cAMP
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Figure 10. The cAMP concentration in the aggregation field at a fixed instant in time. The volumetric density is 0.4
and the colour is scaled from red to magenta where red corresponds to cAMP concentrations greater than 1 µM and
magenta corresponds to concentrations equal to 0.

distributions in the aggregation field are uniform and
in which there is a pacemaker region in the centre. If
the initial density is relatively low (ca. 0.15 or about
120 000 cells) the cAMP waves do not propagate af-
ter about 90 min. The reason for this failure is that
a gap in the cell density appears at the boundary
of the pacemaking region (results not shown). The
break in density results from the fact that cells in
the pacemaker region experience a cAMP wave that
is broader and of larger amplitude than in the ex-
citable region, and therefore they move longer by
virtue of the u2 movement rules. The cells which com-
prise the pacemaker continue to move and reorganize
after the waves stop propagating beyond the pace-
maker region. The occurrence of such a break is the
result of having a uniform initial density and a suffi-
ciently large pacemaker region; when random initial
conditions are used no breaks are observed. These
breaks are also not observed experimentally, but it
may be possible to observe them if care is taken to
distribute the cells uniformly, and to create a large
enough pacemaker region in the centre.

However, the fact that the breaks only occur for
uniform initial distributions gives insight into the
mechanism of stream formation under normal con-
ditions. Our conjecture, which is supported by sim-
ulations to be described shortly, is that stream for-
mation is the result of sufficiently large variations
in the initial distributions of cAMP or cell density,
or in non-uniform parameters in the cell popula-
tion. We believe that an initially uniform aggregation
field, comprised of identical cells, in which travelling
cAMP waves propagate outwards from a pacemaker

region, is stable to small perturbations, in contrast
to what has been found in model systems by others.
Said otherwise, we believe that stream formation re-
quires finite-amplitude disturbances.

It is easy to produce a heuristic argument that
shows why the uniform cell distribution should be un-
stable to sufficiently large disturbances. Cells move in
the direction of higher cAMP and produce it as well;
therefore a disturbance that creates a large enough
density or cAMP non-uniformity will induce cell
movement, which will reinforce the non-uniformity,
and so on. It is perhaps more difficult to see why a
uniform field should be stable to small disturbances,
but there are several reasons. First, it is known that
there is a diffusional component to cell motion, and
this will tend to stabilize the uniform distribution.
Diffusion is not explicitly included in our model, but
it can be shown that the numerical procedure intro-
duces it via the truncation errors in the interpola-
tion of cAMP back and forth from grid to cells. Sec-
ondly, it is known that the transduction pathway to
the locomotory machinery adapts to the extracellular
cAMP signal, and this fact is included in our model.
As a result of adaptation, disturbances that vary
slowly over time will not be amplified by cell move-
ment. Finally, there is a threshold in the cAMP gra-
dient of ca. 10 nM mm−1 (Fisher 1990) below which
the cells do not chemotact. These three factors, diffu-
sion, adaptation and a threshold, all mitigate against
amplification of small disturbances.

Other numerical evidence that supports our con-
jecture is as follows. In a simulation with a uniform
initial cell density of 0.2, streaming occurs after a
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(a) (b)

(c)

(e)

(d)

Figure 11. A microscopic view of aggregation showing five cell tracks. Paths in (a) are for the jittery mutant, in (b)
cells use a 100 s run length, in (c) the 500 s streamer F rules, in (d) cells are polarized and move for 20 s, and in (e)
cells move according to the u2 rules. The paths are shown for t ∈ [0, 150] min. The circles denoting the cells have a
radius of 20 µm; thus cells do not coalesce according to the rule described earlier until the overlap is sufficiently large.
The domain shown is approximately 0.235 cm on a side.
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Figure 12. The cell density in the aggregation field shown in figure 14 at a later time (t = 400 min). Note that the
core is completely filled.

period two to three times longer than in the case
with random initial density. Because the streams
form along the grid lines first and display none of
the branching structure seen using non-uniform ini-
tial conditions, we believe that the streaming is due
to grid effects and the accumulation of round-off er-
ror. In order to test this hypothesis we did a simu-
lation on a cylinder with a band of pacemaker cells
wrapped around it at x = 0.5, where x ∈ [0, 1] is
the axial coordinate. The initial conditions were uni-
form around the cylinder and the cells that are within
0.05 cm of the centre were made oscillatory by giv-
ing them values of γ2 which range from 0.4 to 0.17.
(In all the simulations referred to in this section the
number of cells used was 40 602 each being weighted
by either 3 or 4 depending on the initial density.)
In this simulation the cells moved toward the cen-
tre line, uniformly in the transverse direction, for at
least 100 min, i.e. there was no streaming before this
time. After this time the pacemaker region begins to
break up, which causes streaming in the nearby field.
The far-field structure remains largely unaffected for
at least 50 min more. In figure 20 we show the results
for this simulation, and for comparison, a simulation
using a random initial cell distribution. One can see
there (note the different density scales for the figures)
that the streaming patterns are well established in

the latter case long before the break up begins to oc-
cur in the uniform case. Thus we conclude that linear
instabilities, if they exist at all, do not effect the ag-
gregation patterns on a timescale that is relevant to
aggregation under normal conditions.

This conclusion contradicts the conclusion reached
in Levine & Reynolds (1991) for a different model,
which is that streaming is due to a linear instabil-
ity in the governing equations. These authors use a
continuum description and show that planar travel-
ling waves can be unstable to perturbations of wave-
lengths greater than approximately 8 mm, but stable
otherwise. They conclude that streaming instability
can occur, but their results show that it is a very long
wavelength instability and thus would probably not
be seen on the scale of normal aggregation patterns.
In our model, small amplitude perturbations do not
grow, either when travelling waves are initiated with
a forcing function on a domain with uniform initial
density (results not shown), or when a pacemaker
initiates aggregation. Instead, the streaming in our
model seems to be initiated by variations in density
or other factors. When a random initial cell distri-
bution is used, the density variations tend to be re-
inforced globally, whereas when uniform initial con-
ditions are used the far-field density variations are
driven by variations which originate in the pacemak-
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Figure 13. Aggregation patterns under changes in the excitability. In (a) γ2 = 0.17, in (b) γ2 = 0.155, and in (c)
γ2 = 0.14. The pattern is shown at 150 min, cell densities greater than 1.5 are shown in red, and cells move according
to the u2 rules. A spiral wave was initiated in a 1 cm square domain by elevating cAMP in a strip extending from the
centre to one side, and imposing a refractory region behind it. The central square of side 0.5 cm is shown. The full
field corresponding to (c) is shown in figure 14.

ing region. This is understandable since the varia-
tions in density will be reinforced with each passing
wave of cAMP: thus the denser areas will produce re-
sponses of greater amplitude, thereby causing cells to
move towards those areas and increasing the density
there further.

Two additional simulations were done on the cylin-
der in order to determine the sensitivity of stream
formation to the amplitude of perturbations of the
initial cell density and the cAMP concentration. In
these simulations we began with uniform conditions
in the y direction except in a small strip near the
centre. We found that an initial density variation of

5% or more in this strip grows in time and streams
are formed. Streaming is also initiated if the central
strip is paced periodically and there is a variation of
at least 5% in the amplitude of the cAMP forcing
function. Thus variations in either the cAMP con-
centration or the density can cause streaming. This
contrasts with the conclusion of Vasiev et al. (1994),
who assert that stream formation is primarily the re-
sult of the dependence of cAMP wave speed on the
cell density. It also shows that a random initial cell
distribution is sufficient for streaming, but it is not
necessary, as was claimed by Vasiev et al. (1994).
Stream formation is influenced by many factors, in-
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Figure 14. An overlay of the cAMP wave and the density plot for γ2 = 0.14 (cf. figure 13c). The cAMP wave is plotted
if the concentration is greater than 0.1 micromolar (dark blue), and cell densities of one or greater are shown in red.

cluding density variations and cAMP concentration
variations. Each of these has effects which tend to
reinforce streaming. The questions which remain are
which mechanism, if any, is the dominant one, and
whether there are any other important factors, such
as variation in cell speeds, and variations in other cell
parameters, such as the amount of adenylyl cyclase.

(d) Formation of spiral waves

Spiral waves are the dominant pattern of aggrega-
tion in many laboratory experiments, but it is not
understood how they arise. As we showed earlier,
they can be initiated using special initial conditions,
but we have also found that they can arise sponta-
neously. Using a random initial cell density, we find
that they are generated by a pacemaker that initi-
ates axisymmetric (target pattern) waves which can
break up into a spiral when they encounter a low den-
sity region. We discovered that spirals do not form
when the initial density is too low, but they do form
at a sufficiently high density (ρ ≥ 0.4) (cf. figure 17).
These spirals initially coexist with the nearest pace-
maker, but eventually they entrain it. Recent labora-
tory experiments also suggest that the average den-
sity is an important factor in the formation of spirals
(Lee et al. 1996). Our computational experiments,
which were done before learning of these results, sup-
port these findings. To understand the density effect

we must understand two aspects: (i) how spiral waves
are initiated, and (ii) when can they coexist with a
pacemaker.

Durston (1974) was one of the first to consider
theoretically how waves can be broken during ag-
gregation, and Lee et al. (1996) observe that spirals
form at disrupted wave fronts that arise from wave–
wave interactions and from inhomogeneities in the
system. However, it is not understood why density is
an important factor in determining whether or not
spirals will form. In our simulations wave–wave in-
teractions are not important, since there is only one
pacemaking region. At low average densities a local
low density region usually elongates in the direction
of propagation as streams form on either side of the
region. Initially the cAMP wave will start to curl as
it travels around the region on both sides, but then
the two pieces rejoin at the rear to form a distorted,
yet connected wave front. At higher average densi-
ties our computational results suggest that passive
spread of cAMP through the low density region is
rapid enough to trigger a wave on the downstream
side of the low density region before the main wave
reaches that side. Initiation of this secondary wave
can then alter the cAMP environment sufficiently to
break the primary wave and form a spiral. A natu-
ral question is why this process depends on the av-
erage density, and the explanation is as follows. At
sufficiently low average densities the passive spread
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(a)

(b)

Figure 15. The experimentally observed aggregation centres: (a) normal (no caffeine added) aggregation, (b) aggregation
in the presence of 2 mM caffeine. The scale bar in the lower right is 0.1 mm. (From Siegert & Weijer (1989), with
permission.)

of cAMP never produces a superthreshold signal at
the downstream side and the primary wave rejoins
smoothly there, but at sufficiently high densities the
passive spread can trigger a secondary wave. Long-
range spread of cAMP through the low density region
is possible because of the smaller affect of mPDE.
Further work to determine whether this is the pri-
mary mechanism for break-up is in progress.

Once a wave is broken and a spiral is formed, it
must be able to coexist with a pacemaker, at least for
a period of time. It has been shown previously that a
pacemaker can coexist with a spiral wave indefinitely
in other excitable systems (Othmer & Tang 1993),
but no theoretical explanation of this was given. It is
known that for both pacemaker-initiated waves and
spiral waves, their speed and period is such that the
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Figure 16. The aggregation pattern in a field of wt/ACG cells. The basal production of cAMP is increased by the
constant amount 0.05 in each cell. Cells in the central disc are pacemakers as usual. The pattern is shown at 200 min
and the u2 rules for movement are used. Black corresponds to densities of 1 or greater.

combination lies close to the dispersion curve for pe-
riodic travelling waves (figure 18a), and thus some
insight into the effect of density on coexistence is
obtained by calculating these dispersion curves for
different densities. In order to do this, we must use a
continuum rather than a discrete description of cell
density. The dispersion curves are computed accord-
ing to the procedure described in Monk & Othmer
(1989b, 1990), and the results for four distinct densi-
ties are shown in figure 18b.

The range of periods of naturally occurring pace-
makers is 3–10 min, and under the conditions used
here the periods are in the range of 4–6 min. As a re-
sult, one can see from this figure that a high density
field is more likely to propagate every wave initiated
by a pacemaker, rather than gating the waves. Sec-
ond, it is clear that higher density fields propagate
stable waves over a much wider range of speed for
pacemaker periods in the range used here, and thus
coexistence between distinct types of waves is more
likely at high densities. In particular, a spiral wave
and an axisymmetric wave are more likely to coexist
for some time in a high-density field. Such coexis-
tence is essential to provide time for a spiral to de-
velop in a field forced by a pacemaker. Once it is fully
developed, it may or may not completely entrain the
pacemaker.

The foregoing emphasizes the role of low-density
regions in the breakup of waves, but high density
regions can also have this effect. In other compu-
tational experiments we immobilized the pacemaker
cells and allowed other cells to move as usual. This re-
sulted in a small (ca. 0.3%) increase in density at the
boundary between the pacemaker and the external
field as mobile cells moved into the pacemaker region.
We found that this small increase in density was suf-
ficient to block propagation of the wave beyond the
pacemaker region. In other cases heterogeneities can
result in reflection rather than transmission of waves,
thereby providing a third mechanism for wave block.

(e) Simulations with many pacemakers

In the computations described heretofore target
patterns were generated by initially setting the pa-
rameters in a small disc of cells so as to make them
oscillatory. Of course these cells were free to move
about as the simulations progressed. However, DeY-
oung et al. (1988) have shown that single cells can
act as pacemakers, and it is it known experimentally
that the fraction of cells that are pacemakers changes
with the time since starvation. By randomly varying
the value of γ2 for individual cells in a manner de-
scribed in Appendix 3, we were able to test the effect
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Figure 17. The cAMP wave for a simulation in which a
spiral wave arises spontaneously in a field with a pace-
maker at the centre. In (a) t = 95 and the pacemaker
fires before the spiral wave arrives. In (b) t = 110 and
the tip of the spiral coincides with the pacemaker. Con-
centrations greater than 1 µM are shown in red and zero
concentrations are represented by magenta.

of different percentages of pacemakers in an aggrega-
tion field. The results are shown in figure 19, where it
is seen that the territory size of an aggregate depends
strongly on the fraction of cells that are pacemakers.
Simulations in which more than 0.1% of the cells have
parameters in the oscillatory region form small aggre-
gation territories, and can never develop territorities
of the 1 cm scale that is observed (McRobbie 1986).
This agrees with the results of Raman et al. (1976),
who found that the number of oscillatory cells is in
the range 0.01–0.1% for the cell densities used in our
simulations.

(f ) Direction selection

Since the cAMP wave seen by a cell is very rough
(cf. figure 10) and since there is undoubtedly noise in
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Figure 18. (a) The dispersion curve for the Monk–Othmer
model of signal transduction in Dd. The symbols indicate
various phase-locking ratios. ⊕ denotes a computed spi-
ral wave and ∗ denotes a 1 to 1 response in a forced
field. (From Monk & Othmer (1989b), with permission.)
The short lines signify that two or more points are su-
perimposed on the point closest to the curve. The bro-
ken line denotes the experimentally measured portion
of the dispersion curve. (b) The dispersion curves for
the present model using different uniform densities. The
curves shown are for densities of 0.8 (solid line), 0.4, 0.2
and 0.1 (dash dot) left to right. The value of γ2 is 0.171
for all densities. The waves on the upper branch of each
curve are stable and those on the lower branch are un-
stable.

the mechanism by which the direction of motion is se-
lected, it is important to determine how reliably cells
must orient themselves in the direction of the local
cAMP gradient in order to aggregate successfully. To
determine this, several experiments were conducted
in which the true direction was replaced by one from
a uniform distribution in a cone of specified angle
whose centre line coincided with the direction of the
cAMP gradient at that point. The results are shown
in figure 22. An initially randomly distributed field
can aggregate successfully when the cone angle is
180◦ (cf. figure 22b), but fails when the cone angle is
more than 250◦. Thus the system is quite robust in
the sense that the cells need not detect the gradient
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Figure 19. The aggregation patterns that result when 0.1% (a), 1% (b) and 10% (c) of the cells are allowed to be
pacemakers. Cell densities of 1 and greater are shown in red.

precisely, but only have to orient themselves into the
correct half-space in order to aggregate. Of course it
takes longer to form a compact aggregate when the
choice of direction is very sloppy, but it is possible.

4. CONCLUSIONS

cAMP waves in an aggregation field are very irreg-
ular since they are the composite of waves initiated
at each cell. Despite this, our simulations show that
some biologically reasonable movement rules produce
aggregation patterns very similar to those observed
experimentally. Among the formal movement rules
we tested, the u2 rules provide the most realistic de-
scription of individual cell movement, since they are
based in part on what is known about the chemotac-

tic pathway in Dd. Our results also show that incor-
porating adaptation in the rules for individual cells
prevents the cell from reversing course as the wave
of cAMP passes (cf. figure 5), thereby resolving what
has been called the ‘back-of-the-wave paradox’ (Soll
et al. 1993).

Although it is found experimentally that cells are
able to re-orient within 20 s in response to large stim-
uli, our results suggest that the cells do not re-orient
this frequently under normal aggregation conditions.
Persistence in the direction of movement can miti-
gate the effect of frequent sampling of the local gra-
dient, but it seems that the best strategy is to choose
a direction and continue this as long as the concen-
tration is increasing, even if that increase has mod-
ified the local gradient sufficiently to warrant a re-
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Figure 20. The aggregation patterns for the simulations
on a cylinder. A vertical strip down the centre is the pace-
making region. The average initial density is 0.2 and the
results are shown at 70 min. The cells in these simula-
tions are weighted by 4 with a total of 40 602 cells. In
(a) the initial density is uniform, densities greater than
0.24 are shown in black, densities of less than 0.19 are
shown in white, and all intermediate densities are shown
in grey. In (b) the initial density is random, densities of
1 or more are shown in black, and intermediate densi-
ties are ramped between 0 (white) and 1. In (a) the cells
are moving in the white strips halfway through the ex-
citable region and stationary elsewhere, which reflects the
outward propagating cAMP wave. These light bands are
similar to those observed experimentally (Alcantara &
Monk 1974).

orientation based on the current gradient. This is in
agreement with the conclusions reached in Soll et al.
(1993), where the authors state, ‘We believe that cells
realign polarity in the direction of the source some-
time during this initial period, then move in a rela-
tively blind fashion . . . ’.

A more accurate description of the mechanism that
triggers cell movement is not possible until more of

(a)

(b)

Figure 21. Aggregation patterns from the same simula-
tion as that shown in figure 9 after longer run times. In
(a) the time is 400 min and in (b) the time is 800 min.
Cell densities of 1 and greater are shown in black.

the biochemical machinery is understood. It seems
likely that the choice of direction and subsequent
movement is determined not by the local gradient,
since cells cannot measure this accurately, but by
a superthreshold signal at one point on the mem-
brane which sets up an internal gradient that ori-
ents the assembly of the locomotory machinery. We
are currently studying a two-cell model which will
give us further insights into the orientation process.
As we showed, the choice of direction can be quite
sloppy and still lead to successful aggregation. There-
fore whatever mechanism is used need not be terribly
precise, which makes aggregation in this system very
robust.

We also found that density has dramatic effects on
the aggregation patterns. For example, we showed
that spiral waves which are formed by breakup of
a wave initiated from a pacemaker are less likely to
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occur in fields with density less than ca. 0.2. Further-
more, random initial variations in the density play an
important role in wave propagation at low densities,
and density variations are one type of disturbance
that can initiate streaming. Variations in the density
have several consequences, including an effect on the
speed of cAMP wave propagation (Monk & Othmer
1990) and the effect on the shape and amplitude of
the cAMP wave. Other factors not directly related
to the density, such as random differences in cell ex-
citability, would also result in variations in the cAMP
signal, which in turn can cause streaming. Our simu-
lations using uniform initial densities lead us to con-
clude that a uniform spatial distribution of cells, all
of which have identical characteristics, will aggregate
without streaming. Thus we believe that streaming
is the result of a finite-amplitude instability, and a
heuristic argument supporting this contention was
given earlier. If we are correct, it means that stream-
ing cannot be understood from the linearized equa-
tions in the continuum description adopted by other
authors (Levine & Reynolds 1991; Höfer et al. 1995).
It might be argued that the linear instability grows
very slowly, and that our computations do not show
this on the timescale of normal aggregation, but if
this is the case then such a mechanism cannot be
relevant for explaining the observed streaming.

The simulations also support the idea that cell ad-
hesion may be important in later stages of cell ag-
gregation. Siu & Kamboj (1990) conducted experi-
ments in which an antibody that prevents cell–cell
adhesion was added to preparations. Some prepara-
tions would form streams, but none would progress
beyond the mound stage. After 400 min in our sim-
ulations the cells are still moving towards the centre
and have not formed a compact aggregate (cf. fig-
ure 21). The fact that the aggregate has not reached
the mound morphology after this length of time could
easily be explained by the absence of cell adhesion in
our model. Cells adhering to each other could form
a continuous moving stream by dragging each other
along, thereby speeding the aggregation process up
significantly. Moreover, in the absence of cell adhe-
sion cells can cross cell streams and overshoot high
density areas, which causes cells to zigzag and back-
track in an unrealistic manner.

Our model could be modified to simulate cell ad-
hesion by imposing a correlation between the motion
of cells that come into contact, perhaps by putting
spring-like connections between cells. Such a modifi-
cation is essential for describing late aggregation and
the motion of the mound or slug.

This research was supported in part by NIH Grant GM
#29123. The authors are indebted to Peter Monk, who
was instrumental in the development of the algorithm
used here. The visualization software SciAn used in pro-
ducing the 2D images was provided by the Supercom-
puter Computations Research Institute and Florida State
University.

APPENDIX 1. CELL WEIGHTS

To describe the evolution of extracellular cAMP
we modify the equations for the suspensions used in
Tang & Othmer (1994). The modifications are only
made in the equations for the extracellular quanti-
ties; the intracellular dynamics are the same. The
extracellular reactions are

cAMP0 + mPDE
l6

l−6

cAMP0 −mPDE,

cAMP0 −mPDE l7−→AMP,

cAMP0 + ePDE
l8

l−8

cAMP0 − ePDE,

cAMP0 − ePDE l9−→AMP.


(3)

Here cAMP0 − mPDE denotes the complex be-
tween cAMP and phosphodiesterase on the extra-
cellular membrane, and cAMP0 − ePDE the corre-
sponding complex in the extracellular solution. The
extracellular phosphodiesterase ePDE is assumed to
be constant in space.

The modified differential equations are

V0
∂y14

∂t
= V0D∇2y14 + V0l−8y16 − V0l8y14z9

+
N∑
i=1

Vcδ(x− xi) (4)

×
(
Ac

Vc
dsr(yi12) +

Ac

Vc
l−6y

i
15 −

Ac

Vc
l6y14z

i
8

)
,

dyi15

dt
= −(l−6 + l7)yi15 + l6y14z

i
8, (5)

dy16

dt
= −(l−8 + l9)y16 + cl8y14z9.

Here y14 stands for [cAMP0], yi15 for [mPDE −
cAMP0] for the ith cell, y16 for [ePDE − cAMP0],
zi8 for free [mPDE] on the ith cell, z9 for the free
[ePDE], Ac is the surface area of an individual cell,
dsr is the dimensional secretion rate of cAMP, and
N stands for the number of cells. The cells are as-
sumed to have a volume of 696.9 µm3 and a hemi-
spherical shape, giving them a radius of

√
2×5.5 µm.

They are assumed to be submerged in a fluid of depth√
2 × 5.5 µm. Thus we calculate the surface area to

be 380 µm2. In addition to the foregoing equations
there are two other conservation equations, i.e.

yi15 + zi8 = [mPDE]iT, y16 + z9 = [ePDE]T. (6)

By scaling the new independent variables and
introducing additional non-dimensional parameters,
we obtain a non-dimensionalized system for the ui
and vi. Most of the equations are the same as in
Tang & Othmer (1994). The newly introduced di-
mensionless parameters and rapidly varying quanti-
ties are listed in table 2. We scale y14 as follows:
w5 = y14/[iPDE]T. The differential equations for the
rapidly varying quantities are

ε7
dvi7
dτ

= w5 − vi7 −
1
γ6
w5v

i
7,

ε8
dv8

dτ
= w5 − v8 − 1

γ8
w5v8.

 (7)
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Figure 22. Aggregation patterns for simulations which tested the sensitivity to direction selection. In (a) the cells move
in the direction of the gradient with certainty, in (b) the direction of motion is varied randomly within a cone centred
at the gradient with an angle of 180◦, and in (c) the cone angle is 250◦. The simulations use the standard parameters
and a random initial cell distribution. The results in each case are shown at 150 min. Cell densities of 1 and greater
are shown in red.

We set the time derivatives for these variables equal
to zero, solve the resulting system, and use the results
in the equations for the slowly varying variables. The
result is that the new equations are equations (1) and
(2) in § 2.

APPENDIX 2. THE NUMERICAL METHODS
AND THEIR IMPLEMENTATION

The equations to be solved are of the form

∂u

∂t
= D∆u+

N∑
i=1

Fi(u,vi, x, y) + F (u), (8)

dvi
dt

= Gi(vi, u), (9)

where u stands for the concentration of external
cAMP, F (u) represents the degradation of cAMP by
extracellular PDE, Fi(u,vi, x, y) are terms that rep-
resent a cell’s production of cAMP and degradation
of cAMP via membrane bound PDE, vi are vectors
which represent the intracellular variables, Gi are
vectors representing the intracellular dynamics with
i ranging from 1 to N where N is the number of cells.

The numerical method we developed to solve
this system is similar to a particle-in-cell method
(O’Rourke & Brackbill 1993). Equation (8) is
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Table 2. Additional dimensionless variables and parameters

parameters parameters variables

α0 =
k1[iPDE]T

k5
γ8 =

l−8 + l9
l8[iPDE]T

vi7 =
(l−6 + l7)yi15

l6[iPDE]T[mPDE]T

β0 =
h1[iPDE]T

k5
γ9 =

l9[ePDE]T
k5[iPDE]T

v8 =
(l−8 + l9)y16

l8[iPDE]T[ePDE]T

γ6 =
l−6 + l7
l6[iPDE]T

ε7 =
k5

l−6 + l7

γ7 =
l7[mPDE]TAc

k5[iPDE]TVc
ε8 =

k5

l−8 + l9

solved using an alternating-direction implicit method
(Peaceman & Rachford 1955) with the intracellular
variables lagged in time, and then the equations for
the intracellular variables are advanced with u time-
lagged. Since the cells are not restricted to lie at grid
points we must transfer cAMP from grid to cell and
vice versa during the time-stepping. Before we give
the discretized equations we define a tensor product
interpolating operator (Alfeld 1989):

I[Fi] =



(xw+1 − xi)(ys+1 − yi)
h2
xh

2
y

Fi,at (xw, ys),

(xi − xw)(ys+1 − yi)
h2
xh

2
y

Fi, at (xw+1, ys),

(xw+1 − xi)(yi − ys)
h2
xh

2
y

Fi, at (xw, ys+1),

(xi − xw)(yi − ys)
h2
xh

2
y

Fi, at (xw+1, ys+1),

0, otherwise.

(10)

I interpolates u from the cells to the grid where
(xi, yi) is the position of the ith cell, (xw, ys) is the
nearest grid point to the cell in the southwest direc-
tion and hx and hy are the distances between grid
points in the x and y directions respectively. This
tensor product interpolation gives a unique, continu-
ous, bivariate, piecewise linear polynomial which has
a specified maximum at the cell location, is always
non-negative (we define it to be zero where it is not
positive), whose integral is equal to the value Fi (con-
serves mass) and given any slice in the x or y direc-
tion the function decreases from the maximum at the
same rate. These are all characteristics of the heat
equation. In fact, the sequence of interpolants In[1]
where hx = hy = 1/n is a delta sequence as it should
be. Recall that the Fi’s are point sources or sinks
for the diffusing chemical, so as hx = hy → 0 the in-
terpolant should approximate the Dirac distribution.
Now define

T (u, xi, yi)

=
2∑

n=−2

( 2∑
m=−2

uj−m,k−n`j−m(xi)
)
`k−n(yi), (11)

where

`j(x)

=
(x− xj−2)(x− xj−1)(x− xj+1)(x− xj+2)

(xj − xj−2)(xj − xj−1)(xj − xj+1)(xj − xj+2)
.

(12)

T interpolates u from the grid to the cell. Since the
grid is a regular rectangular grid, T is a tensor prod-
uct interpolant using quartic Lagrangian interpola-
tion in each direction (Ralston & Rabinowitz 1978).
In equation (11) uj,k is the value of u at the grid point
(xj , yk) which is the closest grid point to (xi, yi).
The error introduced by T is O(hqxh

p
y) ∝ hqxhpy where

q+p = 5. (For our computations hx = hy and so the
error is O(h5

x).) Next we define a standard fourth-
order difference approximation to the x and y com-
ponents of the Laplacian:

δ∗xf = 1
12 [−f(x0 − 2hx, y0)
+16f(x0 − hx, y0)− 30f(x0, y0)
+16f(x0 + hx, y0)− f(x0 + 2hx, y0)],

δ∗yf = 1
12 [−f(x0, y0 − 2hy)
+16f(x0, y0 − hy)− 30f(x0, y0)
+16f(x0, y0 + hy)− f(x0, y0 + 2hy)].


(13)

The cells are excluded from a strip of width one
grid cell at the boundary, and we impose homoge-
neous Dirichlet conditions on cAMP at the bound-
ary. Since the waves propagate outward and the cells
move away from the boundary these are appropriate.
In addition we impose a symmetry condition at the
boundary which forces the derivatives to vanish as
well. This is done to simplify the use of higher-order
approximations to the derivatives and does not affect
the accuracy of the results.

The scheme can now be described by the following
discretized equations:

u
n+1/2
`,m − un`,m

=
Dk

2

(
δ∗xu

n+1/2
`,m

h2
x

+
δ∗yu

n
`,m

h2
y

)

+
k

2

[
F (un`,m) +

N∑
i=1

I`,m[Fi(T (un, xi, yi),vni )]
]
,

(14)
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un+1
`,m − un+1/2

`,m =
Dk

2

(
δ∗xu

n+1/2
`,m

h2
x

+
δ∗yu

n+1
`,m

h2
y

)

+
k

2

[
F (un+1

`,m ) +
N∑
i=1

I`,m[Fi(T (un, xi, yi),vni )]
]
.

(15)

Here k is the time step,

un`,m = u((`− 1)hx, (m− 1)hy, nk),
I`,m = I[Fi]((`− 1)hx, (m− 1)hy)

and vni = vi(nk). The system of nonlinear algebraic
equations is solved using the software package NK-
SOLV (Brown & Saad 1987).

Next the ordinary differential equations (8) are
solved. They are discretized using the trapezoidal
rule and the system is solved using Newton itera-
tions. The discretized equations are

vn+1
i − vni = 1

2k[G(vn+1
i , T (un+1, xi, yi))

+G(vni , T (un+1, xi, yi))].

At a density of 6.4 × 105 cells cm−2 there are 16
cells per grid cell, and these are replaced by one
equivalent cell. In the numerical scheme we interpo-
late the concentration from the cells to the grid. Thus
if the cells are all in one grid square the interpola-
tion to the grid should make both cases (weighted
or evenly separated) almost indistinguishable. The
interpolation from the grid to the cells will main-
tain some distinction between the two cases. If we
choose the cell shape to be a half cylinder (without
ends) rather than a hemisphere we would need to
multiply each cell by 2

3 in order to keep the appro-
priate concentrations per cell. This would make the
cell weighting about 10 for each cell. One can see
that the matter of cell weighting is somewhat am-
biguous even though the cAMP concentration per
cell is maintained to agree with experimental data.

APPENDIX 3. RANDOM VARIABLES

For the case of cells with different γ2 values, γ2
can take on 31 evenly spaced values ranging from 0.1
to 0.4. The oscillatory range is from 0.18 to 0.4. The
probability mass functions used are

p(xi) =


0.04, for xi ∈ [0.1, 0.14],
0.099, for xi = 0.15,
0.35, for xi ∈ [0.16, 0.17],
0.000 043, for xi ∈ [0.18, 0.4],

giving 0.1% in the oscillatory region,

p(xi) =


0.04, for xi ∈ [0.1, 0.14],
0.09, for xi = 0.15,
0.35, for xi ∈ [0.16, 0.17],
0.000 43, for xi ∈ [0.18, 0.4],

giving 1% in the oscillatory region and

p(xi) =


0.02, for xi ∈ [0.1, 0.14],
0.1, for xi = 0.15,
0.35, for xi ∈ [0.16, 0.17],
0.0043, for xi ∈ [0.18, 0.4],

giving 10% in the oscillatory region.
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