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Abstract Control of the structure and dynamics of the actin cytoskeleton is essen-
tial for cell motility and for maintaining the structural integrity of cells. Central to
understanding the control of these features is an understanding of the dynamics of
actin filaments, first as isolated filaments, then as integrated networks, and finally as
networks containing higher-order structures such as bundles, stress fibers and acto-
myosin complexes. It is known experimentally that single filaments can exhibit large
fluctuations, but a detailed understanding of the transient dynamics involved is still
lacking. Here we first study stochastic models of a general system involving two-mono-
mer types that can be analyzed completely, and then we report stochastic simulations
on the complete actin model with three monomer types. We systematically examine
the transient behavior of filament length dynamics so as to gain a better understanding
of the time scales involved in reaching a steady state. We predict the lifetime of a cap
of one monomer type and obtain the mean and variance of the survival time of a cap
at the filament end, which together determine the filament length fluctuations.
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1 Introduction

1.1 Background

Actin is the most abundant protein in many cell types, and the regulation of actin
filament dynamics is essential for numerous cellular processes, including locomotion,
cytokinesis and phagocytosis. Actin is involved in most aspects of cellular motil-
ity in eukaryotes, and actin polymerization is used by pathogens such as Listeria
monocytogenes to propel themselves within and between host cells. In solution actin
can self-assemble into filaments, bundles and higher-dimensional structures, but in
vivo the type of structure formed is tightly controlled by intracellular regulatory mol-
ecules and extracellular mechanical and chemical signals. Depending on the context
and the signal, a variety of structures can be formed, ranging from microspikes and
filopodia, to larger pseudopodia and broad lamellipodia. These structures, which are
distinguished by their topology, filament lengths and dynamics, not only provide the
tracking and binding sites for many signaling and motor molecules, but also directly
generate the active force required for many cellular activities (Pollard and Borisy
2003). In lamellipodia actin forms a network at the leading edge, the structure of
which is determined by the growth of actin filaments at the leading edge and the depo-
lymerization of actin from the meshwork in the interior of the cell. The protrusion
speed or maximal protrusive force is a function of the filament length distribution and
its elongation rate, and is limited by the availability of actin monomers, hydrolysis of
actin-bound nucleotides and loading (Carlsson 2008). Within the broader distributed
lamellipodium, actin filaments form a dense 3D dendritic structure with the grow-
ing ends abutting the membrane. In filopodia filaments are aligned in parallel and
elongate at their barbed ends and disassemble at the pointed ends, thereby leading
to protrusion of a filopodium. The half-life of actin filaments in the lamellipodium
ranges from around 20 s to 2 min (Theriot and Mitchison 1991) and is correlated
with cell speed: turnover is more rapid in rapidly-moving cells than in slower ones
(McGrath et al. 2000). In any case, the turnover of filaments is more than two orders
of magnitude faster than the turnover of pure actin filaments in solution (Zigmond
1993), and the in vivo system is far from thermodynamic equilibrium and under tight
control.

The finely-tuned control of the structure of the cytoskeleton, which comprises the
actin network, molecular motors, stress fibers and microtubules, ensures both the struc-
tural integrity of a cell, and the ability to rapidly change that structure. The properties
of the cytoskeleton are determined in part by the local monomer concentration and in
part by the dynamic control of monomer access to barbed-ends that stems from the
presence or absence of various cofactors. Fluctuations in the local structure of the actin
network are reflected in local fluctuations of the membrane, which facilitates searching
for the direction in which to move or grow (Ponti et al. 2004; Bugyi and Carlier 2010).
A filament that is growing against a load does so at a slower rate, and in the tethered
filament-load models filaments that are not pushing the membrane exert passive drag
forces via the stretching of the tether, thus opposing membrane protrusion. The effec-
tive force that a group of filaments can exert is a complex function of the filament
polymerization rate as regulated by monomer availability, monomer nucleotide types
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Actin filament length fluctuation 1003

and filament-surface attachment (Mogilner and Oster 1996; Dickinson et al. 2004).
Experiments show that the length fluctuations of growing filaments can lower the max-
imal force compared with that exerted by an ensemble of filament of equal lengths
(Marcy et al. 2004; Footer et al. 2007; Schaus and Borisy 2008).

Filaments can also exhibit large length fluctuations in the absence of a load on the
growing end, due to the stochastic exchange of monomers between the filament and
the monomer pool, but controlled studies of these fluctuations are relatively recent.
The theoretical single-monomer-type polymerization model proposed by Oosawa and
Asakura (1975) predicted that at the steady ‘treadmilling’ state, the filament length
distribution undergoes a diffusion process at the rate k−, the off rate of monomer
at filament ends. Later, Hu et al. (2007) studied the length distribution in solutions
of filaments and showed that in a deterministic single-state model—where only one
monomer type is present—the instantaneous diffusion rate constant is the mean of the
polymerization and depolymerization rates. That analysis identified and characterized
four distinct regimes of polymerizing filaments. As will be shown later, in these mod-
els both the elongation rate and diffusion constant are linear functions of monomer
concentration over the entire concentration range. However, Carlier et al. showed ear-
lier that the growth rate of filaments can be described to first order by two distinct
linear functions applicable in different regimes of monomer concentration (Carlier
et al. 1986). Filaments depolymerize below a critical concentration, whereas above it
filaments grow at a constant rate and the slope of the elongation rate below the critical
concentration is higher than that above it. At the critical concentration the growth rate
vanishes, and filaments treadmill. In a seminal experiment, Fujiwara et al. observed
that individual filaments show surprisingly large length fluctuations in the treadmilling
phase (Fujiwara et al. 2002), and other experiments confirmed this high diffusion rate
(Kuhn and Pollard 2005). A stochastic simulation of the length fluctuations of a single
filament, using recent kinetic data for filament growth, is shown in Fig. 1.

One sees there that the pointed end shrinks continuously, with relatively small fluc-
tuations in the mean position of the end. However, there are large fluctuations at the
barbed (upper) end of the filament. One sees in (b) that when the filament has an ATP
cap it grows, and that it decreases rapidly when the end monomer contains ADP (see
inset to (b) at ∼ 232 s). Furthermore, a significant number of ADP-Pi monomers, in
which both ADP and phosphate are still bound to the protein, survive to the pointed
end in this realization.

The diffusion coefficient for the length fluctuations of a single filament measured
by Fujiwara et al. is 30–45 times as large as the prediction of previous models based
on a single monomer type, and raises the question as to how it can be explained.
A number of possible explanations have been suggested (Fujiwara et al. 2002; Kuhn
and Pollard 2005; Fass et al. 2008): firstly, because the on- and off-rates of G-ADP and
G-ATP are different, secondly, because the depolymerization of actin may occur via
oligomers instead of single monomers, and finally because of the inability to exper-
imentally definitively track filaments due to the spatial fluctuations in the solutions.
As others have suggested and we show later, the first explanation suffices.

There are other biopolymers that exhibit very dynamic and rapidly-changing
structures that can quickly adapt to local conditions within and outside the cell. Micro-
tubules are bundles of polymer filaments called protofilaments that are built of α- and
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Fig. 1 a and b The length and nucleotide profile of a single filament during the polymerizing and treadmil-
ling phase. Here the barbed end is at the top and the pointed end at the bottom — the former growing and
the latter shrinking. Black represents an ADP-containing monomer, gray ADP-Pi, and intermediate ATP-
containing monomers. These correspond to blue, yellow and red respectively in online version. Time in (a)
and (b) is divided into 1-s steps, whereas in the inset to (b) it is divided into 0.1-s blocks. The simulation is
based on the method described in Matzavinos and Othmer (2007) using the kinetic data in Pollard (2007)
and shown in Fig. 2. Initially 5,000 filaments consisting of 10 ADP-subunits polymerize in a 7.0 µM ATP
actin monomer pool of 500 µm3

β- tubulin dimers that polymerize into the protofilaments. In tubulin solutions microtu-
bules exhibit what is called dynamic instability, in that they alternate rapidly between
periods of growth and shrinking (Mitchison and Kirschner 1984). The ability to rap-
idly switch between growth and shrinking is thought to be essential for the random
searching used to locate binding sites at the plasma membrane or on the nucleus,
and in general is essential for the organization of the cell structure (Tolic-Nørrelykke
2010). The computational results given in Fig. 1 for actin show large fluctuations at the
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barbed end and suggest that it is the difference in the on- and off-rates of monomers
with different associated nucleotides that may explain the dynamic switching between
growth and shrinkage. In particular, the barbed-end dynamics reveal that elongation
at that end requires an ATP-actin cap, but when the cap is lost the filament shrinks,
more rapidly when the end monomer contains ADP. A similar explanation may apply
to microtubules as well, since the switch-like behavior of microtubules depends on
GTP hydrolysis. Most tubulin dimers in solution have GTP bound to their β-subunit,
and the hydrolysis of this GTP to GDP is triggered by polymerization. While the
on- and off-rates of the different monomers are not known, it is likely that the fluctua-
tions have an explanation similar to that for actin filaments, even though there are 13
protofilaments in a microtubule and there may also be effects of mechanical stresses
(VanBuren et al. 2005).

Other examples of biopolymer systems that show similar length fluctuations occur in
bacterial plasmid segregation, where ParM forms bundles that have intrinsic dynamic
instability (Popp et al. 2007), and in dendritic spines, where changes in their shape and
size are correlated with the strength of excitatory synaptic connections and involve
remodeling of the underlying actin cytoskeleton in a spine (Hotulainen and Hoogen-
raad 2010).

1.2 Previous models and analysis

Hill (1986) developed a deterministic model of cap formation, but only analyzed the
steady state behavior and did not address the length fluctuations. Vavylonis et al.
(2005) analyzed the growth of a single filament polymerizing in a constant monomer
pool and showed that the diffusion constant first grows rapidly and then drops sharply
as the critical monomer concentration is approached from below, as shown in Fig. 3.
Using a two-state model, they predicted a sharp tooth-shaped diffusion coefficient ver-
sus concentration curve, which qualitatively matches with that with simulations using
three monomer types. Later, Stukalin and Kolomeisky analyzed the long-time dynam-
ics and predicted a large diffusion constant under the assumptions that hydrolysis in
the filament is vectorial and that the ratio q = kT c/(wT + rh), which is a measure
of the probability of having an actin cap, is less than one. Here c is the ATP-actin
concentration, kT c is the monomer on-rate,wT is the off-rate, and rh is the hydrolysis
rate (Stukalin and Kolomeisky 2006). Recently, Ranjith et al. re-analyzed this model
and identified a new dynamical phase of filament growth called the bounded growth
phase, in addition to two previously-known unbounded growth phases (Ranjith et al.
2009). This analysis has been extended, again in the long-time regime, to incorporate
dynamics at both ends of a filament and to compare the effect of vectorial versus
random hydrolysis of ATP (Ranjith et al. 2010).

Our objective is to systematically examine the transient behavior of filament length
dynamics so as to gain a better understanding of the time scales involved in reaching the
asymptotic results obtained by others. First, we consider the filament dynamics in the
single-state model. The filament elongation rate and diffusion constants are explicitly
calculated when single or multiple filaments polymerize in a closed or open system.
Then we present the two-state model, which is formally the same as in (Ranjith et al.
2009), but we obtain an analytical solution for a more general Markov jump process
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in a two-dimensional state space, of which the actin model is a special case. The
asymptotic behavior of the filament length fluctuation is related to the dynamics of the
ATP cap at the filament end. We predict the lifetime of a cap and obtain the mean and
variance of the survival time of a cap at the filament end, which together determine the
filament length fluctuations. Our general 2D stochastic model can also be applied to
the dynamics of other polymers such as microtubules, and to other Markov jump pro-
cesses in 2D, including the diffusion of molecules in a comb-shaped environment or
diffusing particles that become immobilized by binding to receptors or other binding
sites. We indicate some of these extensions in the Sect. 6.

2 The single monomer type model

To prove the necessity of having multiple states or types for the monomers, we first
analyze filament growth when the monomers are of a single type: first in a closed
system for which the total number of actin monomers is conserved, and then in an
open system in which the monomer concentration is fixed. Thus filaments are com-
posed of single-state subunits, and elongate at a rate that is linearly dependent on the
monomer concentration. The addition and disassociation rate of monomers are k+ and
k−, respectively. (If one end is capped, k+ and k− refer to the rate constants at the free
end; if both ends are free, they refer to the summed on- and off- rates for both ends.)
For the single-state filament model, the critical concentration of monomers at which
the net filament growth vanishes is thus ccrit = k−/k+. Some of the results in this
section are well-known, but we give them for completeness and later comparison.

2.1 A closed system with a single filament

Suppose a single filament polymerizes in a solution of volume Vo. The filament con-
sists of l0 subunits, and there are m0 monomers in the solution. Let q(n, t) denote the
probability of monomer pool having n monomers at time t, p(n, t) be the probability
of the filament being of length n at time t , and let N = l0 + m0 be the total number
of monomers. Under mass action kinetics the evolution equation for q(n, t) is

dq(0, t)

dt
= −λ q(0, t)+ μ q(1, t) (1)

dq(n, t)

dt
= λ q(n − 1, t)− (λ+ nμ) q(n, t)

+(n + 1)μ q(n + 1, t) (1 ≤ n ≤ N − 1) (2)
dq(N , t)

dt
= λ q(N − 1, t)− Nμ q(N , t) (3)

where

λ = k−, μ = k+/(NA · Vo)

and NA is the Avogadro’s number.
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One finds that the steady-state monomer distribution is

q∞(n) = lim
t→∞ q(n, t) = 1

n!
(
λ

μ

)n /(
N∑

k=0

1

k!
(
λ

μ

)k
)

(4)

and p∞(n) = q∞(N − n).1 The mean and variance of the distribution are

M∞ =
N∑

n=0

n q∞(n) = λ

μ

[
1 − 1

N !
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λ

μ

)N /(
N∑

k=0

1

k!
(
λ

μ

)k
)]
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(
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(
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− 1
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(
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1
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(
λ

μ

)k

(
λ

μ

)2

(6)

Since

N∑
k=0

1

k!
(
λ

μ

)k

−→ e−λ/μ, as N → ∞

the steady-state monomer distribution tends to a Poisson distribution for large N with
mean λ/μ, which is the monomer number at the critical concentration.

When N is sufficiently large, we can approximate the transient dynamics of the
monomer pool as a random walk on the non-negative integers Z+ = {0, 1, 2, . . .},
and the evolution equations for q(n, t) are now

dq(0, t)

dt
= −λ q(0, t)+ μ q(1, t) (7)

dq(n, t)

dt
= λ q(n − 1, t)− (λ+ nμ) q(n, t)+ (n + 1)μ q(n + 1, t) for n≥ 1

(8)

1 Note that this is not a simple binomial distribution, since the transition rates depend on the number of
monomers.
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If there are i0 monomers initially

q(i0, 0) = 1, q(n, 0) = 0 for n �= i0 (9)

We obtain the solution by the method of generating functions and find that

q(n, t) = (λ/μ)n(1 − e−μt )n+i0 e−(λ/μ)(1−e−μt )

×
min{n,i0}∑

j=0

(λ/μ)− j e− jμt (1 − e−μt )−2 j

(n − j)!
(

i0
j

)
(10)

The evolution of the mean and variance of q(n, t) are

M(t) = (λ/μ)(1 − e−μt )+ i0e−μt (11)

σ 2(t) = (λ/μ+ i0e−μt )(1 − e−μt ) (12)

and the diffusion rate constant is

D(t) = 1

2

dσ 2(t)

dt
= λ+ 2i0μe−2μt

which coincides with the value predicted by Oosawa and Asakura (1975) in the limit
t → ∞.

For the special case of i0 = 0, i.e., if we begin with a filament, the distribution is a
Poisson distribution for all time

q(n, t) = 1

n!
(
λ

μ
(1 − e−μt )

)n

e− λ
μ
(1−e−μt )

, n ∈ N (13)

and in either case the asymptotic distribution as t → ∞ is

q∞(n) = 1

n!
(
λ

μ

)n

e−λ/μ (14)

Therefore the steady-state distribution is always a Poisson distribution with mean λ/μ.

2.2 A closed system with multiple filaments

Next we begin with N f filaments, all of length l0 in subunits, immersed in a solution
which contains no monomers. Let q(m, t) be the probability of having m monomers at
time t , and p(n, t) the probability of a filament being of relative length n at time t . The
relative length is defined as the length difference between the current filament length
at time t versus the length at t = 0. We are interested in the filament length fluctuations
on a time scale when no filaments disappear completely. As will be shown, when the
total monomer concentration is above the critical value, the mean and variance of the
monomer and filament length distributions stabilize before any filaments disappear.
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Since it is supposed that the initial filament length is large enough, hereafter we
approximate the dynamics of the system by assuming the relative length n ∈ Z =
{. . . ,−1, 0, 1, . . .}. The evolution of the monomer distribution then satisfies the system

dq(0, t)

dt
= −λN f q(0, t)+ μN f q(1, t) (15)

dq(m, t)

dt
= λN f q(m − 1, t)− (λ+ mμ)N f q(m, t)

+(m + 1)μN f p(m + 1, t), m ≥ 1 (16)

and the initial condition is

q(0, 0) = 1, and q(m, 0) = 0 for m ≥ 1 (17)

One easily finds that the monomer distribution is as given in Eq. (13)

q(m, t) = 1

m!
[
λ

μ

(
1 − e−μN f t

)]m

e−λ/μ (1−e−μN f t
) (18)

and as before

q∞(m) = 1

m!
(
λ

μ

)m

e−λ/μ (19)

Thus the monomer pool approaches the same distribution for multiple filaments as for
the single filament, but at a rate that is N f times as fast. The evolution of the filament
length distribution, p(n, t), is given by

dp(n, t)

dt
= μ

( ∞∑
m=0

m q(m, t)

)
p(n − 1, t)+ λ p(n + 1, t)

−
[
μ

( ∞∑
m=0

m q(m, t)

)
+ λ

]
p(n, t), n ∈ Z (20)

with the initial condition

p(0, 0) = 1, and p(n, 0) = 0 for n �= 0 (21)

Equation (18) gives

∞∑
m=0

m q(m, t) = λ/μ · (1 − e−μN f t ) (22)
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and one can then solve the system (20), (21) to obtain

p(n, t) = e
−2λt+ λ

μN f
(1−e−μN f t

)
∞∑

k=0

(
− λ

μN f
(1 − e−μN f t )

)k

k! In−k(2λt) (23)

where In(z) is the modified Bessel function of the first kind. Using either this solution
or the evolution equations directly, one can show that the first two moments of p(n, t)
are

∞∑
n=−∞

n p(n, t) = − λ

μN f
(1 − e−μN f t ) (24)

∞∑
n=−∞

n2 p(n, t) = 2λt +
(

λ

μN f
(1 − e−μN f t )

)2

− λ

μN f

(
1 − e−μN f t

)
(25)

Therefore, the mean and variance of the filament lengths are

M(t) = − λ

μN f
(1 − e−μN f t ) (26)

σ 2(t) = 2λt − λ

μN f
(1 − e−μN f t ) (27)

and thus the time-dependent diffusion rate constant is

D(t) = 1

2

dσ 2(t)

dt
= λ

(
1 − 1

2
e−μN f t

)
(28)

At large times the mean filament length approaches a constant, whereas the variance
grows linearly with time. Both the mean length and the diffusion coefficient relax
to their asymptotic value on a time scale of T1 = 1/(μN f ). A filament of length l0
disappears on a time scale of T2 = l0/k−. The necessary condition required for a
stabilized filament length dynamics before filaments disappear is that T1 < T2, i.e.
l0 N f /(NAV0) > k−/k+ , which means the total monomer concentration is above the
critical value.

Thus with multiple filaments the monomer pool approaches a Poisson distribution
as in the case of single filament system, but the filament length undergoes a diffusion
process with the diffusion rate constant as k−, which agrees with the diffusive phase
of filament growth in a deterministic model studied in (Hu et al. 2007).

2.3 An open system with a fixed monomer bath

If instead of a fixed total monomer concentration let consider polymerization in a
constant monomer bath of concentration c, then the dynamics of the probability of the
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filament with relative length of n subunits at time t, p(n, t), is

dp(n, t)

dt
= k+c p(n − 1, t)+ k− p(n + 1, t)− (k+c + k−) p(n, t) (29)

Since the monomer constant the filaments do not interact with one another via the pool,
and the evolution of the length distribution is a standard birth-death process with rates
of k+c and k−, respectively. The mean and variance of the filament length distribution
are

M(t) = (k+c − k−)t (30)

σ 2(t) = (k+c + k−) t (31)

and thus the diffusion rate constant is

D(c) = 1

2

dσ 2(t)

dt
= k+c + k−

2
(32)

Here both the mean and the variance increase linearly with time.
In summary, when multiple filaments polymerize in a closed system, the monomer

pool approaches a Poisson distribution with parameter equal to the critical monomer
number λ/μ for the given volume. The relaxation time τ for the monomer pool is
linearly dependent on the filament numbers N f and the solution volume V0 as follows

τ ∼ NAV0

k+N f

The diffusion coefficient asymptotically approaches the monomer off-rate k−. When
a single filament polymerizes in a closed system, the monomer pool also approaches
a Poisson distribution if N is large enough. If filaments are polymerizing in a constant
monomer pool, the filament lengths undergo a convection-diffusion process with both
mean and variance increasing linearly with time. In this case the diffusion coefficient
is asymptotically proportional to a linear function of the fixed monomer concentration.
Thus, whatever the configuration, the single-state filament model cannot reproduce the
change in the growth rate and the non-monotonic behavior of the diffusion coefficient
near the critical concentration that is observed experimentally.

3 The two-state filament model

3.1 The description of the side walk model

In the presence of sufficient ATP the displacement of ADP by ATP on actin monomers
is rapid and nearly complete, and thus a solution of actin monomers comprises mainly
G-ATP. In contrast, a sufficiently old filament is composed primarily of G-ADP (cf.
Fig. 1). As shown in Fig. 2, the kinetic rates of G-ADP and G-ATP addition and release
at filament ends are very different, and it has been proposed that the three distinct
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Fig. 2 The rates associated with addition and release of the three monomer types in actin polymerization.
From Pollard (2007), with permission

capping states of the filament tip, as illustrated in Fig. 1, contribute to the non-mono-
tonic behavior (Fujiwara et al. 2002; Kuhn and Pollard 2005). Here we investigate a
two-state polymerization model wherein the nucleotide in either monomeric or fila-
mentous actin is either ATP or ADP. Initially we do not include the transition of G-ATP
to G-ADP relevant for actin, but later we take into account the possible influence of
vectorial ATP hydrolysis by lumping the reactions from G-ATP to G-ADP into one
first-order reaction, thereby neglecting the intermediate G-ADP-Pi state. It is reported
that a G-ADP-Pi monomer at the filament tip releases its phosphate faster than when
it is in the interior of a filament (Fujiwara et al. 2007), which suggests that most
G-ADP-Pi monomers will become G-ADP monomers before they either disassociate
from a filament end or are internalized via addition of another monomer. However, the
realization of filament growth shown the inset of Fig. 1b shows that G-ADP-Pi can
persist at the tip.
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Fig. 3 The elongation rate and diffusion constant of filament lengths as functions of the monomer
concentration (from Vavylonis et al. (2005) with permission)

In the following we consider a more general two-state polymer growth model,
and for simplicity we consider the dynamics at one end. Suppose that a filament is
immersed in a mixture of type B and type A monomers, both of which bind reversibly
to the polymer. However, when a type A monomer is at the filament end no type B
monomer can bind: thus A serves as a cap with respect to B (cf. Fig. 4a). As a result
the polymer can have at most two non-overlapping regions: a type A portion and a
type B portion, and the polymer length is the sum of the lengths of these portions.
The polymer state is uniquely determined by (m, n), where m and n are the lengths
in monomers of the type A and B segments, respectively. Let p(m, n, t) denote the
probability of the polymer with configuration (m, n) at time t . The transition steps
and rate between the various configurations are depicted in Fig. 4b. The on- and off-
rates of type-A and type-B monomers are (α, β) and (r, s), respectively. The length
m of the type A segment is a non-negative integer, and increases or decreases by one
following a horizontal step, during which n is unchanged. Vertical steps of one unit
are allowed only when the polymer is free of any type A cap, i.e., when m = 0. As in
Sect. 2.2, we assume that n ∈ Z , since we deal with sufficiently long filaments, and are
interested in the elongation and length fluctuation before the filament depolymerizes
completely. To describe the reactions easily, we designate transitions along the vertical
axis (m = 0) as the main walk, whereas the horizontal transitions comprise the side
walk. If the side walk is limited to one step—i.e., m=0 or 1, this model can be applied
to model the translocation of a molecule diffusing and possibly drifting in a fluid envi-
ronment and subject to receptor binding at the boundary. The specific experimental
setting we address later is similar to that in Stukalin and Kolomeisky (2006), Ranjith
et al. (2009)—a long ADP-filament polymerizing only at its barbed end in a constant
G-ATP pool. However, we obtain both the transient and the asymptotic behavior of
the filament lengths, and our primary concern there is the transient and asymptotic
behavior of filament length fluctuations around the critical concentration of G-ATP.

We point out that this two-state polymer model is not applicable to actin filament
polymerization in general, since the addition of actin monomers does not depend on
the end state. However, the assumption that only a constant G-ATP is available in the
monomer pool simplifies the filament growth, and reduces it to a special case of the
two-state polymer model, where type A and B monomers are G-ATP and G-ADP,
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1014 J. Hu, H. G. Othmer

Fig. 4 a The schematic of a polymer with a core of type B monomers and a cap of type A monomers.
b Each point of the grid (m, n) represents a polymer state, where m, n are the lengths of type A and B,
respectively. (α, β, r, s) are kinetic rate constants for the reactions

respectively, and accordingly the parameters are

α = k+
T c, β = k−

T , s = k−
D, r = 0

where c is the G-ATP concentration, k−
D the off-rate constant for G-ADP, and k+

T , k−
T

are the on- and off-rate constants for G-ATP.
In view of the above description, the polymer configuration, p(m, n, t), evolves

according to

dp(0, n, t)

dt
= −α p(0, n, t)+ β p(1, n, t)− (r + s) p(0, n, t)

+r p(0, n − 1, t)+ s p(0, n + 1, t) (33)
dp(m, n, t)

dt
= α p(m − 1, n, t)+ β p(m + 1, n, t)

−(α + β) p(m, n, t) (m ≥ 1) (34)

As a first step toward deriving the dynamic behavior of the first and second moments
of the polymer length distribution, we define the probability of the filament having an
A-cap of length m and the mean length of the B segment for such a filament as

Pm(t) =
∞∑

n=−∞
p(m, n, t), Lm(t) =

∞∑
n=−∞

n p(m, n, t) (35)
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Actin filament length fluctuation 1015

where m ∈ Z+. According to Eqs. (33) and (34), they satisfy

d P0(t)

dt
= −α P0(t)+ β P1(t) (36)

d Pm(t)

dt
= α Pm−1(t)+ β Pm+1(t)− (α + β) Pm(t) (m ≥ 1) (37)

and

d L0(t)

dt
= −α L0(t)+ β L1(t)+ (r − s) P0(t) (38)

d Lm(t)

dt
= α Lm−1(t)+ β Lm+1(t)− (α + β) Lm(t) (m ≥ 1) (39)

The extra P0(t) term in the dynamics of L0(t) is due to loss of B monomer when an
A-cap is removed from the polymer. Assuming that the polymer is initially composed
of l0 type B monomers alone, the initial condition becomes

P0(0) = 1, Pm(0) = 1 (m ≥ 1) (40)

L0(0) = l0, Lm(0) = 0 (m ≥ 1) (41)

3.2 The solution for the Pm’s and Lm’s

As will be shown in the next section, the transient behavior of the mean and variance of
the filament length depends on P0(t) and L0(t), so we must solve (36)–(41) first. Pm

can be represented explicitly in terms of modified Bessel functions as follows (Goel
and Richter-Dyn 1974):

Pm(t) = ρm/2e−(α+β)t
(

Im(ωt)+ ρ−1/2 Im+1(ωt)

+(1 − ρ)

∞∑
k=2

ρ−k/2 Im+k(ωt)

)
(42)

where ρ = α/β, ω = 2
√
αβ, and Im(z) is a modified Bessel function of the first kind.

In particular, we have

P0(t) = e−(α+β)t
(

I0 + ρ−1/2 I1 + (1 − ρ)

∞∑
k=2

ρ−k/2 Ik

)
(43)

where for simplification the variable ωt of In is suppressed hereafter unless otherwise
specified.

To solve for the Lm’s, we first nondimensionalize the Lm’s by the change of variables

Km(t) = Lm(t)/ l0 (44)
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and then the Km’s solve

d Km(t)

dt
= α Km−1(t)+ β Km+1(t)− (α + β) Km(t) (m ≥ 1) (45)

d K0(t)

dt
= −α K0(t)+ β K1(t)+ (r − s) P0(t)/ l0 (46)

with the initial condition

K0(0) = 1, Km(0) = 0 (m ≥ 1)

The term involving P0 enters as a nonhomogeneous term in (46), which complicates
the solution of the system and precludes use of a generating function. To circumvent
this, we extend the process symmetrically to Z , using (45), and later impose conditions
that guarantee that (46) is satisfied. As a first step we introduce as yet undetermined
initial conditions for the extended process as

K−m(0) = dm (m ≥ 1). (47)

The generating function for the extended process is

G(z, t) =
∞∑

m=−∞
Km(t) zm (48)

and this satisfies

∂G(z, t)

∂t
= (z − 1)(α − β/z) G(z, t) (49)

G(z, 0) = 1 +
∞∑

m=1

dm z−m (50)

The general solution to (49) is

G(z, t) = φ(z)e−(α+β)t
∞∑

m=−∞
ρm/2 Im zm (51)

and, using the fact that I0(0) = 1 and Ik(0) = 0 for k �= 1, the initial condition implies
that

φ(z) = 1 +
∞∑

m=1

dm z−m (52)

To solve for the Km’s, which are the coefficients of the powers of z in (48), we have to
find the dm’s. To ensure that the evolution equation for K0 is the same in the original
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Actin filament length fluctuation 1017

and extended system we must impose the condition

α K−1(t)− β K0(t) = (r − s)P0(t)/ l0 (53)

Since K−1(t) and K0(t) are the coefficients of the terms containing z−1 and z0 in (51),
we have

K0(t) =
(

I0 +
∞∑

k=1

dk Ikρ
k
2

)
e−(α+β)t (54)

K−1(t) =
(
ρ− 1

2 I1 +
∞∑

k=1

dk Ik−1ρ
k−1

2

)
e−(α+β)t (55)

Using these and P0 in (53), one obtains

β

(
(ρ d1 − 1) I0 + ρ

1
2 (ρ d2 + 1 − d1) I1 +

∞∑
k=2

ρ
k
2 (ρ dk+1 − dk) Ik

)

= r − s

l0

(
I0 + ρ− 1

2 I1 + (1 − ρ)

∞∑
k=2

ρ− k
2 Ik

)
(56)

Since the equality holds for all t one can show, by successively differentiating the
series, setting t = 0, and using properties of the Bessel functions, that the coefficients
of the Ik’s must be identical on both sides of the equality for each k. As a result, one
finds that

d1 = ρ−1
(

1 + 1

β

r − s

l0

)
(57)

dk = ρ−k
(

1 − ρ + 2

β

r − s

l0
+ (k − 2)

1 − ρ

β

r − s

l0

)
(k ≥ 2) (58)

It follows from (51) and (52) that

Km(t) = e−(α+β)t
(
ρm/2 Im +

∞∑
k=1

dkρ
(m+k)/2 Im+k

)
(59)

for m ≥ 0, and therefore, using (57)–(58), one obtains the Lm’s as

Lm(t) = l0 Pm(t)+ r − s

β
e−(α+β)t

(
ρ(m−1)/2 Im+1

+2ρ
∞∑

k=2

ρ(m+k)/2 Im+k + (1 − ρ)

∞∑
k=2

kρ(m−k)/2 Im+k

)
(60)
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Together (42) and (60) give the complete evolution of the probability of an A-cap of
length m and the mean length of the B-segment.

In particular, the mean length of filaments without an A-cap is

L0(t) = l0 P0 + r − s

β
e−(α+β)t

(
ρ− 1

2 I1 + 2ρ
∞∑

k=2

ρ− k
2 Ik + (1 − ρ)

∞∑
k=2

ρ− k
2 k Ik

)

(61)

Depending on the relative size of the on- and off-rate of A monomers, the dynamics
of the Pm’s and the Lm’s have different qualitative and asymptotic behavior.
Case I: α �= β When α < β, i.e. the off-rate of A monomer is larger than the on-rate,

lim
t→∞ Pm(m, t) = P∞

m = ρm(1 − ρ) (62)

while for α > β,

lim
t→∞ Pm(m, t) = P∞

m = 0 (63)

This corresponds to the case in which both the mean and variance grows linearly for
the single-monomer model analyzed in the previous section. In addition, when α �= β,
it can be shown (Doorn 2001) that Pm(t) converges to its equilibrium exponentially
at the rate

|Pm(t)− P∞
m | ≤ Ce−t (α+β−2

√
αβ) (64)

which shows that the relaxation time of Pm(t) is of the order of

T1/2 =
(√
α − √

β
)−2

(65)

Thus the relaxation time is related to the difference between square roots of the on-
and off-rate, which stems from the boundary effect in the system. When the on-rate
approaches the off-rate linearly, i.e. (α − β)/β = ε → 0, the relaxation time is

T1/2 ∼ 4

β

1

ε2

For this special case where α �= β, L0(t) can be rewritten as

L0(t) = l0 P0 + r − s

β

2ρ

1 − ρ
P0 + (r − s)(1 − ρ)P0 t

−r − s

β
e−(α+β)t

(
2ρ

1 − ρ
I0 + ρ

1
2

1 + ρ

1 − ρ
I1

)
(66)
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Case II: α = β From Eq. (43), we have

P0(t) = e−2βt (I0 + I1) (67)

and

P0(t) ∼ 1√
πβt

−→ 0, as t → ∞ (68)

We also find that

Pm = e−2βt (Im + Im+1) (69)

Lm = l0 Pm + r − s

β
e−2βt

(
Im+1 + 2

∞∑
k=2

Im+k

)
(70)

A comparison of the two cases shows that when α < β there is a finite probability of a
cap of any length, whereas when α ≥ β the probability of any finite cap length decays
to zero. In the former case the cap size at long times is exponentially distributed.

3.3 The statistics of filament length elongation and diffusion

In order to quantify the statistics of the different segments of a filament or polymer,
we define the following variables and analyze their transient evolution.

Mx (t) =
∞∑

m=0

∞∑
n=0

m p(m, n, t), Vx (t) =
∞∑

m=0

∞∑
n=0

m2 p(m, n, t)

My(t) =
∞∑

m=0

∞∑
n=0

n p(m, n, t), Vy(t) =
∞∑

m=0

∞∑
n=0

n2 p(m, n, t)

Mx+y(t) =
∞∑

m=0

∞∑
n=0

(m + n) p(m, n, t), Vx+y(t) =
∞∑

m=0

∞∑
n=0

(m + n)2 p(m, n, t)

Some of these can be re-written in terms of known quantities as follows:

Mx (t) =
∞∑

m=0

m Pm(t), Vx (t) =
∞∑

m=0

m2 Pm(t), My(t) =
∞∑

m=0

Lm(t) (71)

In view of (33)–(41), the time evolution of the above quantities are

d Mx (t)

dt
= α − β + β P0(t) (72)

dVx (t)

dt
= 2(α − β)Mx (t)+ α + β − β P0(t) (73)
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d My(t)

dt
= (r − s) P0(t) (74)

dVy(t)

dt
= 2(r − s) L0(t)+ (r + s) P0(t) (75)

d Mx+y(t)

dt
= (α − β)+ (β + r − s) P0(t) (76)

dVx+y(t)

dt
= (α + β)+ 2r P0(t)+ 2(α − β) Mx+y(t)

+(β + r − s) (2L0(t)− P0(t)) (77)

From these one obtains the evolution equations for the variances of these lengths as

dσ 2
x (t)

dt
= α + β − β P0(t) (1 + 2Mx (t)) (78)

dσ 2
y (t)

dt
= (r + s)P0(t)− 2(r − s)

(
My(t)P0(t)− L0(t)

)
(79)

dσ 2
x+y(t)

dt
= (α + β)+ (r + s − β)P0 − 2(β + r − s)

(
Mx+y P0 − L0

)
(80)

According to Eqs. (72), (74) and (76), we have

Mx+y = − β

r − s
l0 + (α − β)t + β + r − s

r − s
My (81)

Mx = Mx+y − My (82)

where My is given in (71).
When ρ �= 1, i.e. α �= β, it follows from (60) and (71) that

My(t) = l0 − r − s

β

1

1 − ρ
+ r − s

β

1 + ρ

1 − ρ

P0

1 − ρ
+ (r − s)P0 t

−r − s

β
e−(α+β)t

(
2ρ

(1 − ρ)2
I0 + ρ

1
2

1 + ρ

(1 − ρ)2
I1

)
(83)

and from Eq. (82)

Mx (t) = 1

1 − ρ

(
1 + ρ

1 − ρ
P0 − 1

)
+ (α − β + β P0) t

−e−(α+β)t
(

2ρ

(1 − ρ)2
I0 + ρ

1
2

1 + ρ

(1 − ρ)2
I1

)
(84)
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Therefore,

My P0 − L0 = −r − s

β

ρ

1 − ρ
P0 + r − s

β

1 + ρ

1 − ρ

P0

1 − ρ
(P0 − (1 − ρ))

+(r − s) (P0 − (1 − ρ)) P0 t

−r − s

β
e−(α+β)t (P0 − (1 − ρ))

×
(

2ρ

(1 − ρ)2
I0 + ρ

1
2

1 + ρ

(1 − ρ)2
I1

)
(85)

and in addition

Mx+y P0 − L0 = β − r + s

β

ρP0

1 − ρ
+ β + r − s

β

1 + ρ

1 − ρ

P0

1 − ρ
(P0 − (1 − ρ))

+(α − β + βP0)P0 t + (r − s) (P0 − (1 − ρ)) P0 t

−c0 I0 e−(α+β)t − c1 I1 e−(α+β)t (86)

where

c0 = 2ρ

(1 − ρ)2

[
P0 + r − s

β
(P0 − (1 − ρ))

]
(87)

c1 = (1 + ρ)ρ
1
2

(1 − ρ)2

[
P0 + r − s

β
(P0 − (1 − ρ))

]
(88)

As a result, we obtain the following for the transient elongation rate and the diffusion
coefficient of various filament segments. The net fluxes are given by

jx (t) ≡ d Mx (t)

dt
= α − β + β P0(t) (89)

jy(t) ≡ d My(t)

dt
= (r − s) P0(t) (90)

jx+y(t) ≡ d Mx+y(t)

dt
= α − β + (β + r − s) P0(t) (91)

and the diffusion coefficients are given by

Dx (t) = 1

2

dσ 2
x (t)

dt

= α + β

2
− β P0

[
1

2
+ 1

1 − ρ

(
1 + ρ

1 − ρ
P0 − 1

)
+ (α − β + β P0) t

−e−(α+β)t
(

2ρ

(1 − ρ)2
I0 + ρ

1
2

1 + ρ

(1 − ρ)2
I1

)]
(92)
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Dy(t) = 1

2

dσ 2
y (t)

dt
= (r + s)

2
P0 + (r − s)2

×
⎡
⎣ ρ

β(1 − ρ)
P0 − 1 + ρ

β(1 − ρ)

P0

1 − ρ
(P0 − (1 − ρ))

− (P0 − (1 − ρ)) P0 t + 1

β
e−(α+β)t (P0 − (1 − ρ))

×
⎛
⎝ 2ρ

(1 − ρ)2
I0 + ρ

1

2
1 + ρ

(1 − ρ)2
I1

⎞
⎠

⎤
⎦ (93)

Dx+y(t) = 1

2

dσ 2
x+y(t)

dt
= α + β

2
+ r + s − β

2
P0 − (β + r − s)

×
[
β − r + s

β

ρP0

1 − ρ
+ β + r − s

β

1 + ρ

1 − ρ

P0

1 − ρ
(P0 − (1 − ρ))

+(α − β + βP0)P0 t + (r − s) (P0 − (1 − ρ)) P0 t

−c0 I0 e−(α+β)t − c1 I1 e−(α+β)t
]

(94)

Case I: α < β In this case the probabilities Pm of the cap sizes asymptotically
approach their steady state value ρm(1 − ρ) given in (62). Therefore, the mean cap
size relaxes to

lim
t→∞ Mx (t) =

∞∑
m=0

m P∞
m = α/β

1 − α/β

at large times. If α �= β, the modified Bessel functions have the asymptotic properties

tm In(2
√
αβ t) e−(α+β)t → 0, as t → ∞ (95)

for any fixed m, n ∈ Z+ (Abramowitz and Stegun 1965). Thus the transient elonga-
tion rate and the diffusion coefficient for the B-segment have the following asymptotic
behavior

lim
t→∞ jy(t) = (r − s)(1 − α/β) (96)

lim
t→∞ Dy(t) = r + s

2

(
1 − α

β

)
+ (r − s)2

β

α

β
(97)

and those for the complete filament are

lim
t→∞ jx+y(t) = (r − s)(1 − α/β) (98)

lim
t→∞ Dx+y(t) = r + s

2

(
1 − α

β

)
+ (r − s)2

β

α

β
(99)
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Thus

lim
t→∞(Mx+y(t)− My(t)) = lim

t→∞ Mx (t) = α/β

1 − α/β
(100)

and

lim
t→∞

(
dσ 2

x+y

dt
− dσ 2

y

dt

)
= 0 (101)

which implies that when the on-rate of A-monomer is less than its off-rate, the average
cap size is finite at large times, and the diffusion of the total filament length results
primarily from that of the B-segment.

Case II: α > β Since limt→∞ P0(t) = 0 at an exponential rate as in (64) for α > β,
Eq. (72) gives the average cap growth rate

lim
t→∞ jx (t) = α − β (102)

and Eq. (78) leads to

lim
t→∞ Dx (t) = α + β

2
(103)

Using similar arguments as for the case of α < β, we find that

lim
t→∞ jx+y(t) = α − β (104)

lim
t→∞ Dx+y(t) = α + β

2
(105)

Thus this is a degenerate case of the two-state polymer model, since at large times the
B-core is never exposed, and the filament length fluctuation is due only to the A-cap.
This result agrees with that from the single-state filament model.

Case III: α = β In the intermediate case of α = β, the mean length of the A- and
B-segments and the total filament length can be obtained from (69) and (70):

Mx (t) = −1

2
+ 1

2
e−2βt I0 + 2βte−2βt (I0(2βt)+ I1(2βt)) (106)

My(t) = l0 − r − s

2β
+ r − s

β
e−2βt

[
1

2
I0 + 2βt (I0 + I1)

]
(107)

Mx+y(t) = l0 − β + r − s

2β
+ β + r − s

β
e−2βt

×
[

1

2
I0 + 2βt (I0 + I1)

]
(108)
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From (68), we have the leading term of the large time approximation as

Mx (t) ∼ β

√
4

πβ
t1/2, My(t) ∼ (r − s)

√
4

πβ
t1/2 (109)

Mx+y(t) ∼ (β + r − s)

√
4

πβ
t1/2 (110)

In addition,

My P0 − L0 = −r − s

β
(1 − P0/2)

+r − s

2β
e−2βt I0 + 2t (r − s)P2

0 (111)

Mx+y P0 − L0 = −
(
β − r + s

2β
P0 + r − s

β

)
+ β + r − s

β
P0

×
[
e−2βt I0/2 + 2βt P0

]
(112)

where P0(t) = e−2βt (I0(2βt)+ I1(2βt)). Accordingly, the transient elongation rate
and diffusion coefficients are

jx (t) = βe−2βt (I0(2βt)+ I1(2βt)) (113)

jy(t) = (r − s)e−2βt (I0(2βt)+ I1(2βt)) (114)

jx+y(t) = (β + r − s)e−2βt (I0(2βt)+ I1(2βt)) (115)

Dx (t) = β − β

2
e−4βt (I0(2βt)+ I1(2βt))

× [I0(2βt)+ 4βt (I0(2βt)+ I1(2βt))] (116)

Dy(t) = (r + s)

2
e−2βt (I0(2βt)+ I1(2βt))

+ (r − s)2

β

[
1 − e−2βt (I0(2βt)+ I1(2βt)/2)

+ 2βt e−4βt (I0(2βt)+ I1(2βt))2
]

(117)

Dx+y(t) = −(r − s)+
(

r + s

2
− (r − s)2

2β

)
e−2βt (I0(2βt)+ I1(2βt))

+ (β + r − s)2

β

[
1 − e−4βt (I0(2βt)+ I1(2βt))

× (I0(2βt)/2 + 2βt (I0(2βt)+ I1(2βt)))
]
. (118)
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Therefore, at large times

lim
t→∞ jx (t) = 0, lim

t→∞ Dx (t) = β − (β + r − s)

(
2

π
− r − s

β

)
(119)

lim
t→∞ jy(t) = 0, lim

t→∞ Dy(t) =
(

1 − 2

π

)
(r − s)2

β
(120)

lim
t→∞ jx+y(t) = 0, lim

t→∞ Dx+y(t) = −(r − s)

+ (β + r − s)2

β

(
1 − 2

π

)
(121)

Note that

lim
t→∞ Dx (t) ≥

(
2
√

1 − 2/π − (1 − 2/π)
)

|r − s| ≥ 0 (122)

lim
t→∞ Dx+y(t) ≥

(
3 − 8

π

)
|r − s| ≥ 0 (123)

Therefore, when the on- and off-rates of A are equal, the mean length of the A-,
B-segments and the total filament length increases as t1/2 at large times as in (109),
(110), so the time rate of change of mean filament length approaches zero as t → ∞.
Furthermore, the diffusion coefficients of all three lengths are constant at large times,
as indicated by (119)–(121). As later simulation results show, the diffusion coefficient
is generally discontinuous at α = β, which can be seen from their limits when α
approaches β from below and above:

D− = lim
α→β− lim

t→∞ Dx+y(t) = (r − s)2

β
(124)

D+ = lim
α→β+ lim

t→∞ Dx+y(t) = β. (125)

In particular

D−
D+

=
(

r − s

β

)2

(126)

Therefore, when |r − s| ≥ β, D− ≥ D+; otherwise, D− < D+.

3.4 The lifetime of a cap

The foregoing results show how the presence of a cap influences the filament length
fluctuations, and in this section we investigate how the lifetime of the cap is related to
these fluctuations. In particular, we determine the distribution of the lifetime of a cap
initially of length m0, and compute the first two moments of this distribution.

The cap size changes can be modeled as a biased random walk in Z+, and because
the lifetime of a cap is the time at which the walk hits m = 0, the length of the B-core
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is irrelevant. Let p(m, t) be the probability of a cap of initial length m0 being of length
m at time t . These evolve according to

dp(m, t)

dt
= α p(m − 1, t)− (α + β) p(m, t)+ β p(m + 1, t) (127)

dp(1, t)

dt
= −(α + β) p(1, t)+ β p(2, t) (128)

dp(0, t)

dt
= β p(1, t) (129)

with the initial conditions

p(m0, 0) = 1, p(m, 0) = 0 (m �= m0) (130)

The analytical solution of p(m, t) is known (Goel and Richter-Dyn 1974) and given by

p(m, t) = ρ(m−m0)/2e−(α+β)t [Im−m0(ωt)− Im+m0(ωt)
]
(m ≥ 1) (131)

The rate of absorption u(t) at m = 0 is

u(t) = dp(0, t)

dt
= β p(1, t) = m0 ρ

−m0/2 t−1 e−(α+β)t Im0(ωt) (132)

and therefore, the probability of the cap eventually reaching m = 0 is

lim
t→∞ p(0, t) =

∞∫
0

u(t)dt (133)

= m0 ρ
−m0/2

∞∫
0

t−1 e−(α+β)t Im0(ωt)dt (134)

= m0 ρ
−m0/2

∞∫
0

t−1 Im0(t) e
− α+β

2
√
αβ

t
dt (135)

The integral term of (135) can be viewed as value of the Laplace transform of t−1 Im0(t)
at s = (α + β)/(2

√
αβ). Since the Laplace transform of Im0(t) is (

√
s2 − 1)−1
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(s + √
s2 − 1)−m0 , one obtains

lim
t→∞ p(0, t) = m0 ρ

−m0/2

∞∫
α+β
2
√
αβ

(√
s2 − 1

)−1 (
s +

√
s2 − 1

)−m0
ds (136)

= −ρ−m0/2

∞∫
α+β
2
√
αβ

d

((
s +

√
s2 − 1

)−m0
)

(137)

=
(√

β

α

)m0
{

1

2

∣∣∣∣∣
√
α

β
+

√
β

α

∣∣∣∣∣ + 1

2

∣∣∣∣∣
√
α

β
−

√
β

α

∣∣∣∣∣
}−m0

(138)

That is,

lim
t→∞ p(0, t) =

{
1, if α ≤ β

(β/α)m0 , if α > β
(139)

Therefore, the cap will disappear with probability one when the on-rate of A is less than
or equal to its off-rate. Otherwise, it has a probability of 1−(β/α)m0 of never reaching
m = 0. The first case is equivalent to the well-known result for random walks in 1D.

We next calculate the mean and variance of the first passage time to the origin when
α < β, in which case the walker visits m = 0 with probability one. By definition, the
probability density of the first passage time g(t) is equal to the absorption rate u(t)
for this model, i.e.,

g(t) = dp(0, t)

dt
= m0 ρ

m0/2 t−1 e−(α+β)t Im0(ωt) (140)

The mean first passage time is

〈t〉 =
∞∫

0

t g(t)dt

= m0 ρ
−m0/2

∞∫
0

Im0(ωt) e−(α+β)t dt

= m0 ρ
−m0/2 F(α + β)

= m0/(β − α) (141)

where F(s) is the Laplace transform of Im0(ωt). Thus the mean first passage time
can be understood as the cap size divided by the net disassociation rate. The second
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moment is

〈t2〉 =
∞∫

0

t2 g(t)dt

= m0 ρ
−m0/2

∞∫
0

t Im0(ωt) e−(α+β)t dt

= −m0 ρ
−m0/2 F ′(α + β)

= m2
0

(β − α)2
+ m0(β + α)

(β − α)3
(142)

where F ′(s) is derivative of the Laplace transform of Im0(ωt). Therefore the variance
of the first passage time is

〈t2〉 − 〈t〉2 = m0(β + α)

(β − α)3
(143)

It should be noted that this diverges as β → α. In the following section we show
that this variance is important for an alternate route to the long-time filament length
diffusion coefficient.

3.5 An alternate route to the stationary drift and diffusion rates

Since changes in the lengths of the A- and B-segments are mutually exclusive
processes, a coarser description of the evolution of a filament is as a random walk
with two-states—one corresponding to the B-segment and one to the A-cap—with
an embedded Markov process that switches between the states. One state transition
is from a cap-free B-segment to the capped state, whereas the other transition is the
reverse of this. The asymptotic behavior of a two-state random walk in continuous
time and space has been studied by Weiss (1976). In that model a diffusing species
can switch between two states having different diffusion constants. The probability
density for a single sojourn in state i is denoted as ψi (t)(i = 1, 2). The dynamics of
molecules in these two states are characterized by their average speed vi and diffu-
sion constant Di . Assuming that the mean and variance with respect to ψi (t), 〈t〉i and
σ 2

i , are both are finite, Weiss obtained the asymptotic convective speed and effective
diffusion rate constants as

v̄ = 〈t〉1

〈t〉 v1 + 〈t〉2

〈t〉 v2 (144)

Def f = 〈t〉1

〈t〉 D1 + 〈t〉2

〈t〉 D2

+1

2
(v1 − v2)

2

[( 〈t〉2

〈t〉
)2

σ 2
1 +

( 〈t〉1

〈t〉
)2

σ 2
2

]
/〈t〉 (145)

where 〈t〉 = 〈t〉1 + 〈t〉2.
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In the present context, the uncapped state is terminated upon addition of the first
G-ATP, which is a Poisson process with parameter α because the monomer concentra-
tion is constant. Therefore the probability density for the time that a filament remains
uncapped is exponential with constant α. On the other hand, the dynamics for transi-
tions from the capped state with an initial cap size of one is identical to the dynamics
of the random walk beginning at m = 1 with the absorbing boundary condition at
m = 0, as described by Eq. (128). At this level of description the filament sojourns in
two distinct states: the uncapped and the capped state, and the probability density of
the sojourn time in the uncapped state is

gu(t) = e−αt (146)

and that in the capped state is as in Eq. (140) with n0 = 1, i.e.,

gc(t) = √
α/β t−1 e−(α+β)t I1(2t

√
αβ) (147)

Therefore, the mean and variance of the sojourn times in the two states are

mu = 1

α
, σ 2

u = 1

α2 (148)

mc = 1

β − α
, σ 2

c = β + α

(β − α)3
(149)

Note that if the maximal cap size mmax = 1, as applies if the ‘side-walk’ is bind-
ing to a receptor, then the mean time in the capped state is 1/β, which differs from
mc = 1/(β − α) when the cap size can be of any integer.

When α < β, the occasional capping of a filament prevents the core from
(de)polymerizing – thus the length of the core is unchanged – whereas in the absence
of a cap, the core undergoes a biased random walk. Thus the elongation rates and
diffusion rates for the B-core in these states are

ju = r − s, Du = (r + s)/2 (150)

jc = 0, Dc = 0 (151)

Using Eqs. (144), (145) one can obtain the same asymptotic elongation and diffusion
constants as in Eqs. (98) and (99). Therefore the effective elongation rate is equal to
the elongation rate when the cap is absent times the proportion of time that the cap is
absent. The effective diffusion coefficient has two sources: first, the stochastic Poisson
process of monomer disassociation when the cap is absent, and second, the stochastic
capping. Both the mean and variance of the cap life time determine the diffusion rate
constant. However our treatment of a generic two-state filament model also provides
the transient behavior of the mean and variance of filament lengths, which is important
for understanding the approach to the stationary values.
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4 Applications to actin filament dynamics

The previous results apply to general polymerization reactions, but can be specialized
for actin filaments. In this section we analyze some actin-specific problems, that of
fragmentation and that of hydrolysis of ATP.

4.1 The role of fragmentation at the ATP-ADP interface

Spontaneous filament fragmentation and/or protein-regulated severing can also con-
tribute to the large length fluctuations, and where in a filament they occur is known
to depend on the actin-bound nucleotide type. It is known that ADF/cofilin (AC) bind
preferentially to ADP-containing monomers in a filament, and that filaments tend to
break at AC-free monomers between neighboring ACs (De La Cruz 2009). It is also
known that the fragmentation rate increases at low AC concentrations but decreases
at high AC concentration, which indicates that the filament is stabilized at high AC
concentrations (De La Cruz 2009). In the following we assume that fragmentation
occurs only at the interface between monomers containing ATP and ADP. Thus the
following analysis can be regarded as a first approximation to the dynamics at high
AC concentrations, when the most probable fragmentation site is at the ATP-ADP
interface, because the ADP-Pi state is ignored here. As in previous sections, we calcu-
late the mean and variance of the lifetime of the cap in order to obtain the large-time
behavior of the filament length fluctuations.

The one-step changes in the filament remain as described in the previous sections,
but now the cap can also be removed from the filament at a rate k f . Let c(m, t)
denote the probability of a filament with a cap of size m at time t , which is given by
c(m, t) = ∑

n p(m, n, t) and satisfies

dc(0, t)

dt
= −α c(0, t)+ β c(1, t)+ k f

∞∑
m=1

c(m, t) (152)

dc(m, t)

dt
= α c(m − 1, t)− R c(m, t)+ β c(m + 1, t) (m ≥ 1) (153)

where α = k+
T c, β = k−

T are the on- and off-rate of G-ATP and R ≡ α+ β + k f . The
steady state of the cap size distribution is found to be

c∞
m = lim

t→∞ c(m, t) = (1 − x) xm (154)

where

x = R − √
R2 − 4αβ

2β
(155)

Thus the probability of a filament being bare is 1 − x , whereas it is capped with prob-
ability x . Interestingly, the steady-state cap size with fragmentation is a geometric
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distribution as in the case without fragmentation. Note that at equilibrium the right
hand side of Eq. (153) leads to a linear recurrence relation for the c∞

m ’s, which provides
an alternate route to the steady-state distribution.

To obtain the survival time of a cap, we denote the probability of the cap being
of size m at time as s(m, t) and suppose the initial size of the cap is m0. As in the
previous section, we have to solve the following ODE

ds(m, t)

dt
= α s(m − 1, t)− R s(m, t)+ β s(m + 1, t) (156)

ds(1, t)

dt
= −R s(1, t)+ β s(2, t) (157)

ds(0, t)

dt
= β s(1, t)+ k f

∞∑
m=1

s(m, t) (158)

with an absorbing boundary condition and with the initial condition

s(m0, 0) = 1, s(m, 0) = 0 when m �= m0

By applying the method of generating functions, one can write the solution in terms
of modified Bessel functions as follows

s(m, t) = e−R t
(√

α

β

)m−m0 (
Im−m0

(
2
√
αβ t

)
− Im+m0

(
2
√
αβ t

))
(159)

As in the previous section, the probability density of the survival time for a cap with
initial size m0 = 1 equals the absorption rate at the boundary m = 0, i.e.

g(t) = ds(0, t)

dt
= β s(1, t)+ k f

∞∑
m=1

s(m, t) (160)

=
(
β + β

α
k f

)
I0 e−R t

+k f

√
β

α
I1 e−R t − β I2 e−R t

+k f

(
1 − β

α

) ∞∑
m=0

[(√
α

β

)m

Im e−R t
]

(161)

It is easy to check that

1 =
∞∫

0

g(t)dt

=
(
β + β

α
k f

)
F0(R)
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+k f

√
β

α
F1(R)− β F2(R)

+k f (1 − β

α
)

∞∑
m=0

[(√
α

β

)m

Fm(R)

]
(162)

where Fm(s) is the Laplace transform of the modified Bessel functions Im(ωt). This
indicates that the cap eventually disappears, which is different from the earlier case in
which this integral could be less than one in the absence of fragmentation and α > β.
Fragmentation prevents unbounded growth of the cap even for α > β.

One can also calculate the first and second moments of g(t), and one finds that

∞∫
0

t · g(t) dt = −
(
β + β

α
k f

)
F

′
0(R)

−k f

√
β

α
F

′
1(R)+ β F

′
2(R)

−k f

(
1 − β

α

) ∞∑
m=0

[(√
α

β

)m

F
′
m(R)

]

= 1

α

x

1 − x
(163)

∞∫
0

t2 · g(t) dt =
(
β + β

α
k f

)
F

′′
0 (R)

+k f

√
β

α
F

′′
1 (R)− β F

′′
2 (R)

+k f

(
1 − β

α

) ∞∑
m=0

[(√
α

β

)m

F
′′
m(R)

]
(164)

where x is defined in (154), and F
′
m, F

′′
m are the first and second derivatives of Fm ,

respectively. Therefore, the mean and variance of the survival time of caps are

〈t〉 =
∞∫

0

t · g(t) dt = 1

α

x

1 − x
(165)

〈t2〉 − 〈t〉2 =
∞∫

0

(t − 〈t〉)2 · g(t) dt

= R

4α2k2
f

(R − 2α − Q )2

Q
(166)
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where

Q =
√

R2 − 4αβ (167)

Just as in the previous case, a filament subject to fragmentation sojourns in two states:
the uncapped state and capped state. The mean and variance of sojourn time in these
states are

mu = 1

α
, σ 2

u = 1

α2 (168)

mc = 1

α

x

1 − x
, σ 2

c = R

4α2k2
f

(R − 2α − Q )2

Q
(169)

The elongation rates and diffusion coefficients for these two states are

ju = −k−
D, Du = k−

D/2, jc = 0, Dc = 0 (170)

According to the results of Weiss’ two-state random walk (see Eqs. (144) and (145)),
the asymptotic expression for the mean elongation and effective length diffusion coef-
ficient are

j = −s
2β − R + Q

2β
(171)

D = s
2β − R + Q

4β
+ (2β − R + Q)(R − Q )s2

4 β2 Q
(172)

where α = k+
T c, β = k−

T , s = k−
D and R, Q are defined in (167).

The dependence of the elongation rate and length diffusion coefficient on the G-ATP
concentration and fragmentation rates is shown in Fig. 5. We note that with fragmenta-
tion the net elongation rate is negative at all monomer concentrations, because removal
of the caps exposes the ADP-core—which shrinks rapidly. In Fig. 5, we also observe
that the higher the fragmentation rate, the higher the net shrinking rate filaments, due
to the increased frequency of exposing the ADP-subunits. When the fragmentation
increases, the diffusion rate constant curve smooths out in the neighborhood of the
critical concentration. In the presence of fragmentation, the filament exposes ADP-
core at all monomer concentrations. However, without fragmentation, when α > β,
the addition of G-ATP is faster than loss, and the ADP-core will rarely be exposed at
large times. In short, the size of the discontinuity of the diffusion coefficient depends
on the frequency at which the ADP core is exposed during polymerization. Moreover,
the maximal diffusion coefficient decreases with increasing fragmentation.

4.2 Filament length fluctuation with ATP hydrolysis

In the previous section we investigated the dynamic and asymptotic behavior of actin
filament length fluctuations, when the filament is composed of non-overlapping ADP
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Fig. 5 The asymptotic elongation rate (a) and the diffusion constant (b) versus the G-ATP concentration
and the fragmentation rates. The kinetic constants used in the simulations are from Vavylonis et al. (2005):
k+

T = 11.6 µMs−1, k−
T = 1.4s−1, k−

D = 7.2s−1

and ATP segments and no hydrolysis of ATP is considered. In this section we study the
dynamics of the filament lengths when vectorial ATP hydrolysis occurs, i.e., hydro-
lysis occurs at one point in the filament, which defines the junction between the two
segments. The rate of hydrolysis (or conversion of ATP to ADP) is h. The master
equation for p(m, n, t) then becomes

dp(0, n, t)

dt
= −α p(0, n, t)+ β p(1, n, t)− (r + s) p(0, n, t)

+r p(0, n − 1, t)+ s p(0, n + 1, t)+ h p(1, n − 1, t) (173)
dp(m, n, t)

dt
= α p(m − 1, n, t)+ β p(m + 1, n, t)− (α + β) p(m, n, t)

+h p(m + 1, n − 1, t)− h p(m, n, t), m ≥ 1 (174)

where as before m, n denote the size of the ATP- and ADP-segments, and α =
k+

T c, β = k−
T , s = k−

D, and r = 0.
Similarly, we define the following quantities

Pm(t) =
∞∑

n=−∞
p(m, n, t), Lm(t) =

∞∑
n=−∞

n p(m, n, t)

My(t) =
∞∑

m=0

Lm(t), M(t) =
∞∑

n=−∞

∞∑
m=0

(m + n) p(m, n, t)

V (t) =
∞∑

n=−∞

∞∑
m=0

(m + n)2 p(m, n, t), σ 2(t) = V (t)− M2(t)

where M(t) and σ 2(t) are the mean and variance of filament lengths, respectively.
From Eqs. (174), (173), we have
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⎧⎪⎨
⎪⎩

d Pm(t)

dt
= α Pm−1(t)+ (β + h) Pm+1(t)− (α + β + h) Pm(t)

d P0(t)

dt
= −α P0(t)+ (β + h) P1(t)

(175)

⎧⎪⎨
⎪⎩

d Lm(t)

dt
= α Lm−1(t)+ (β + h) Lm+1(t)− (α + β + h) Lm(t)+ h Pm+1

d L0(t)

dt
= −α L0(t)+ (β + h) L1(t)+ (r − s) P0(t)+ h P1

(176)

We assume that the polymer contains l0 ADP-bound monomers initially, and thus the
initial condition is

P0(0) = 1, Pm(0) = 1 for m ≥ 1 (177)

L0(0) = l0, Lm(0) = 0 for m ≥ 1 (178)

The solution for Pm(t) is similar to that given in Eq. (42),

Pm(t) = e−(α+β+h)t

(
ρ

m/2
h Im(ωht)+ ρ

m−1
2

h Im+1(ωht)

+(1 − ρh)

∞∑
k=2

ρ
m−k

2
h Im+k(ωht)

)
(179)

where ρh = α/(β + h), ωh = 2
√
α(β + h). We also find that Lm(t) is

Lm(t) = L0
m(t)+ ht Pm+1(t)+ δm(t) (180)

where

L0
m(t) = l0 Pm(t)− s − r

β + h
e−(α+β+h)t

(
ρ

m−1
2

h Im+1(ωht)

+2ρh

∞∑
k=2

ρ
m−k

2
h Im+k(ωht)+ (1 − ρh)

∞∑
k=2

ρ
m−k

2
h k Im+k(ωht)

)

and

δm(t) = h

t∫
0

Pm(t − τ) τ d P0(τ )

= −ρ1/2
h

t∫
0

P0(t − τ) e−(α+β+h)τ I1

(
2
√
α(β + h) τ

)
dτ (181)
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Moreover, when α < β + h

lim
t→∞ δm(t) = − h

β + h
ρm+1

h

and when α > β + h

lim
t→∞ δm(t) = 0

The evolution equations for the mean and variance can be derived from Eqs. (173),
(174), and are given by

d My(t)

dt
= h − (s + h − r) P0

dσ 2
y (t)

dt
= h + (r + s − h)P0 + 2(s + h − r)(My P0 − L0)

d M(t)

dt
= α − β + (β + r − s) P0 (182)

dσ 2(t)

dt
= (α + β)+ (r + s − β) P0 − 2(β + r − s)(M P0 − L0)

So

M(t) = β + h

s + h − r
l0 +

(
α − β − s − r − β

s + h − r
h

)
t + s − r − β

s + h − r
My

My(t) =
∞∑

m=0

Lm(t)

= l0 + (h − (s + h − r)P0) t

− s + h − r

β + h

1

1 − ρh

(
1 + ρh

1 − ρh
P0 − 1

)

+ s + h − r

β + h
e−(α+β+h)t

(
2ρh

(1 − ρh)2
I0 + 1 + ρh

(1 − ρh)2
ρ

1/2
h I1

)
(183)

Therefore,

M(t) = l0 − s − r − β

β + h

1

1 − ρh

(
1 + ρh

1 − ρh
P0 − 1

)

+ (α − β − (s − r − β)P0) t

+ s − r − β

β + h
e−(α+β+h)t

(
2ρh

(1 − ρh)2
I0 + 1 + ρh

(1 − ρh)2
ρ

1/2
h I1

)
(184)
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According to (180),

L0(t) = l0 P0 − s − r

β + h

2ρh

1 − ρh
P0 + (r − s)(1 − ρh)P0 t + h P1 t + δ0

+ s − r

β + h
e−(α+β+h)t

(
2ρh

1 − ρh
I0 + 1 + ρh

1 − ρh
ρ

1/2
h I1

)
(185)

and from Eqs. (179), (184) and (185) we obtain the transient dynamics of the elongation
rate and diffusion constant

j (t) = α − β + (β + r − s) P0 (186)

D(t) = α + β

2
+ r + s − β

2
P0 − (β + r − s)(M P0 − L0) (187)

They have the following asymptotic behavior:

Case I: α < β + h At large times, one has

lim
t→∞ j (t) = hα

β + h
+ (r − s)

(
1 − α

β + h

)
(188)

lim
t→∞ D(t) = αh

2(β + h)
− αh(r − s)

(β + h)2

+r + s

2

(
1 − α

β + h

)
+ α(r − s)2

(β + h)2
(189)

Since α = k+
T c, β = k−

T , s = k−
D, and r = 0 for an actin filament, we have

lim
t→∞ j (t) = k+

T c h

k−
T + h

−
(

1 − k+
T c

k−
T + h

)
k−

D (190)

lim
t→∞ D(t) = h

k−
T + h

k+
T c

2
+

(
1 + h − k−

T

h + k−
T

k+
T c

k−
T + h

)
k−

D

2

+ k+
T c

k−
T + h

(k−
D)

2

k−
T + h

(191)

This corresponds to the bounded growth Phase I and intermediate Phase II in Ranjith
et al. (2009), where the ATP-cap length is finite. According to Eq. (190), the critical
concentration of G-ATP at which the net filament elongation vanishes is

ccrit = k−
T + h

k+
T

k−
D

k−
D + h

= k−
T

k+
T

1 + h/k−
T

1 + h/k−
D

(192)

which is larger than the case without hydrolysis ( h = 0) because k−
T < k−

D . The
transition concentration of Phase I and II in Ranjith et al. (2009) is exactly the crit-
ical concentration as defined in (192). In Ranjith et al. (2009), the filament length
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distribution in Phase I approaches to a finite steady state, which has zero elongation
rate and diffusion coefficient. However, we consider the stable elongation and length
fluctuation before the filament length reaches zero. This is why we have values for
elongation and diffusion which differ from those in Ranjith et al. (2009).

Case II: α > β + h In this case

lim
t→∞ P0(t) = 0, lim

t→∞ M(t)P0(t) = 0, lim
t→∞ L0(t) = 0

and therefore at large times

lim
t→∞ j (t) = k+

T c − k−
T , lim

t→∞ D(t) = (k+
T c + k−

T )/2 (193)

Thus the cap size expands linearly at large times, which permanently caps the ADP-
core. This corresponds to the rapidly growing Phase III of filament polymerization
with hydrolysis in Ranjith et al. (2009).

Case III: α = β + h Here we find that the asymptotic behavior of the elongation
rate and diffusion constant are

lim
t→∞ j (t) = h (194)

lim
t→∞ D(t) = h/2 + k−

D + k−
T − k−

D

k−
T + h

h

π
+ (k−

T − k−
D)

2

k−
T + h

(
1 − 2

π

)
(195)

This is the transition case between a finite and infinite the cap. For the three cases,
when h approaches zero, the elongation rate and diffusion coefficient approaches to
those derived in the absence of hydrolysis.

The dependence of the asymptotic elongation rate and diffusion coefficient on the
G-ATP concentration and the hydrolysis rate is depicted in Fig. 6. The elongation
rates are continuous for all G-ATP concentrations, whereas the diffusion coefficient
is discontinuous at c = (k−

T + h)/k+
T . When α > β + h, the addition rate of G-ATP

exceeds the decay rate, and thus the filament end is capped by ATP on average. The fil-
ament length fluctuations under this condition are due to the kinetics of G-ATP. When
α < β + h, the filament occasionally loses its ATP-cap and exposes the ADP core,
which has different kinetics from that of G-ATP. The combined dynamics of G-ADP
and G-ATP give rise to large filament length fluctuations. The maximal diffusion
coefficient occurs as α approaches β + h from below, i.e. as c → (k−

T + h)/k+
T ,

Dmax = h

2
+ k−

D + h

k−
T + h

k−
D

which agrees with previous results in Stukalin and Kolomeisky (2006), Ranjith et al.
(2009). From (191) and (195), the diffusion constant drops at the discontinuity
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Fig. 6 The asymptotic elongation rate (a) and diffusion constant (b) versus the G-ATP concentration
and the hydrolysis rate. The kinetic constants used in the simulations are from Vavylonis et al. (2005):
k+

T = 11.6 µMs−1, k−
T = 1.4 s−1, k−

D = 7.2 s−1. The leftmost line in (a) represents the critical concen-

tration of G-ATP as in (192), whereas the rightmost line depicts the concentrations, c = (k−
T + h)/k+

T , at
which the elongation rate curve changes slope

Fig. 7 A cross-section of
Fig. 6b showing the maximum
diffusion coefficient as a
function of the hydrolysis rate
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(196)

Moreover, the higher the hydrolysis rate the lower the maximal diffusion rate constant
is, and the monotone relationship between these two is shown in Fig. 7. The elongation
rate and diffusion rate constant with two different hydrolysis rates (h = 0, 0.3) are
compared in Fig. 8. At the same G-ATP concentration, hydrolysis slows the elonga-
tion rate. It also increases the critical concentration. When the G-ATP level is less
than k−

T /k+
T , the fluctuations without hydrolysis are higher than with it. However, the

fluctuation is larger with hydrolysis when the level of G-ATP is between k−
T /k+

T and
(k−

T +h)/k+
T . Moreover, at the discontinuity concentration the diffusion constant drop

is larger in the presence of hydrolysis as in Fig. 8.
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Fig. 8 The asymptotic elongation rate (a) and diffusion constant (b) versus the G-ATP concentration for
two hydrolysis rates, using the kinetic constants in Fig. 6. Note that vectorial hydrolysis reduces the diffusion
constant fluctuation near the critical concentration

4.3 The dynamics of the cap in the presence of hydrolysis

In the presence of vectorial hydrolysis, the probability of a cap of length m, c(m, t),
evolves according to

dc(0, t)

dt
= −α c(0, t)+ (β + h) c(1, t) (197)

dc(m, t)

dt
= α c(m − 1, t)− (α + β + h) c(m, t)

+(β + h) c(m + 1, t) (m ≥ 1) (198)

The transient dynamics of the mean and variance of cap lengths are given by

mc(t) = (β + h)(ρh − 1)t + (β + h)

t∫
0

P0(τ )dτ (199)

σ 2
c (t) = (β + h)(1 + ρh)t + 2(β + h)2(1 − ρh)

t∫
0

P0(τ ) τ dτ

−(β + h)

t∫
0

P0(τ )dτ − (β + h)2

⎛
⎝

t∫
0

P0(τ )dτ

⎞
⎠

2

(200)

where P0(t) is defined in (179).
From (175) we obtain the following variables quantifying the convergence of

Pm(t)’s to their steady state: when α < β + h

P∞
m = lim

t→∞ Pm(t) = (1 − ρh) ρ
m
h (201)
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∞∫
0

(Pm(τ )− P∞
m )dτ = (m + 1)ρm+1

h − mρm
h

(β + h)(1 − ρh)
(202)

∞∫
0

(Pm(τ )− P∞
m ) τ dτ = ρm

h

(β + h)2(1 − ρh)

×
[

ρh

(1 − ρh)2
− m(m + 1)

2

]
(203)

and when α > β + h

P∞
m = 0 (204)

∞∫
0

Pm(τ )dτ = 1

(β + h)(ρh − 1)
(205)

∞∫
0

Pm(τ ) τ dτ = ρh

(β + h)2(ρh − 1)3
+ m

(β + h)2(ρh − 1)2
(206)

Therefore, for α < β + h, the mean and variance approach

lim
t→∞ mc(t) = ρh

1 − ρh
, lim

t→∞ σ
2
c (t) = ρh

(1 − ρh)2
(207)

whereas for α > β + h

mc(t)− (α − (β + h))t −→ 1

ρh − 1
, as t → ∞ (208)

σ 2
c (t)− (α + β + h)t −→ − 3ρh

(ρh − 1)2
, as t → ∞ (209)

Thus we conclude that when α < β + h the cap size approaches a geometric dis-
tribution Pm(∞) = ρm

h (1 − ρh). When α > β + h, the cap dynamics resembles a
convection-diffusion process with drift velocity v = α − (β + h)F , and diffusion
constant D = (α + β + h)/2.

A typical filament devoid of an ATP cap goes through the following polymerization
cycle: it releases its G-ADP, which is followed by a period in which it has an ATP
cap. When the G-ADP core is exposed it shrinks rapidly. When capped with ATP, the
cap size fluctuates while the ADP portion steadily elongates due to continuous ATP
hydrolysis. When α > β + h, the ATP cap will grow indefinitely and simultaneously
the length of the ADP portion increases. Snapshots of the filament length fluctuations
at various G-ATP concentrations are shown in Fig. 9,where (a) and (b) correspond to
α < β+h, (c) to α = β+h and (d) to α > β+h. The results show that the changes of
the total filament length are controlled by changes of the ADP core, which increases
when the ATP cap is present and decreases when the cap is absent. This qualitatively
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Fig. 9 One stochastic realization showing the filament fluctuations at various fixed G-ATP concentrations
for a long filament initially composed of G-ADP only. The y-axis represents transient length of ADP-,
ATP-portion and whole filament relative to their initial sizes. The kinetic rate constants are as in Fig. 6,
except (a) k+

T c = 1.5 s−1, (b) k+
T c = 1.68 s−1, (c) k+

T c = 1.7 s−1, (d) k+
T c = 1.75 s−1

agrees with the filament length fluctuations in a closed system shown in Fig. 1. Thus
the ATP cap fluctuations produce large filament length fluctuations, which indicates a
mild dynamic instability in actin filament polymerization.

5 The three-state filament model

5.1 The master equation

In this section we investigate single filament polymerization in a system of fixed
composition of actin monomers and incorporate all three nucleotides. We assume
that both filament ends are active and we suppose that the concentrations of ADP-,
ADP-Pi- and ATP-G-actin are c1, c2, c3, respectively, and are constant (the alternate
case of a closed system with total monomer numbers fixed and transitions between
the three nucleotide-bearing monomers incorporated was studied in Matzavinos and
Othmer (2007)). We denote the on- and off-rates of the three-state actin at the barbed
end as k±1

b , k±2
b , k±3

b , respectively, and the corresponding rates at the pointed end as
k±1

p , k±2
p , k±3

p , respectively. Within a filament, the uniform random hydrolysis rate is
denoted by rh , and the subsequent Pi release rate is denoted by ri .
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We identify a single filament by a sequence of nucleotide types, where ADP, ADP-
Pi and ATP are denoted as 1, 2, 3, respectively. A typical filament of length n can
be viewed as (a1a2 . . . an), where ai indicates the nucleotide type of the i-th subunits
counted from the barbed end, i.e., a1 denotes the nucleotide associated with the barbed
end. We group all the nucleotide states into triads and order them as follows:

n = 1 : [(1) (2) (3)]
n = 2 : [(11) (21) (31)]; [(12) (22) (32)]; [(13) (23) (33)]
n = 3 : [(111) (211) (311)]; [(121) (221) (321)]; [(131) (231) (331)];

[(112) (212) (312)]; [(122) (222) (322)]; [(132) (232) (332)];
[(113) (213) (313)]; [(123) (223) (323)]; [(133) (233) (333)];

...

One can generate a triad of length n from one of length n − 1, call it (a1a2 . . . aN−1),
by addition at the barbed end to give 3(N − 1) triads of the form

[(1a1a2 . . . aN−1), (2a1a2 . . . aN−1), (3a1a2 . . . aN−1)]

and another group of triads can be generated by addition to the pointed end. Similarly,
one can generate triads of length n from those of length n + 1 by truncation at either
end.

We store the probabilities of the different nucleotide sequences of length n, ordered
as above, in the column vector Pn . For instance,

P1 = (p(1), p(2), p(3))T

P2 = (p(11), p(21), p(31), p(12), p(22), p(32), p(13), p(23), p(33))T

where p(a1a2 . . . an, t) represents the probability of a filament with the particular
nucleotide sequence (a1a2 . . . an) at time t (hereafter we suppress t).

In a system in which the monomer concentrations are constant, both filament ends
can undergo stochastic elongation and shrinkage, and the time evolution of the prob-
ability Pn is given by

d Pn

dt
= Un−1 Pn−1 + Ln+1 Pn+1 − Dn Pn + Hn Pn (210)

Here the ‘raising’ operator Un−1 and the ‘lowering’ operator Ln+1 are defined as

Un−1 = I3n−1 ⊗ (k+1
b c1 k+2

b c2 k+3
b c3)

T + (k+1
p c1 k+2

p c2 k+3
p c3)

T ⊗ I3n−1

Ln+1 =
(

I3n ⊗ (k−1
b k−2

b k−3
b )+ (k−1

p k−2
p k−3

p )⊗ I3n

)

where the tensor product of matrices is multiplication of elements of the first factor by
the second factor (Othmer and Scriven 1971). The diagonal operator D, which both
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converts nucleotides within a triad of length n and converts triads of length n to those
of length n ± 1 by addition or truncation is defined as

Dn =
⎛
⎜⎝

k+1
b + k+1

p

k+1
b + k+2

p

k+1
b + k+3

p

⎞
⎟⎠

T

·
⎛
⎝ c1

c2
c3

⎞
⎠ I3n

+ I3n−1 ⊗
⎛
⎝ k−1

b
k−2

b
k−3

b

⎞
⎠ +

⎛
⎝ k−1

p
k−2

p
k−3

p

⎞
⎠ ⊗ I3n−1

The hydrolysis term is a collection of hydrolysis and Pi release reactions on all
subunits as

Hn =
n−1∑
i=0

I3i ⊗ (R ⊗ I3n−1−i)

where

R =
⎛
⎝ 0 ri 0

0 −ri rh

0 0 −rh

⎞
⎠

The probability vector comprised of the Pns for n = 1, 2, ... is denoted

P = (P1T , P2T , P3T , P4T , . . .)T

and it evolves according to

d P

dt
= K P (211)

where the infinite constant matrix K is given by

K =

⎛
⎜⎜⎜⎜⎜⎝

H1 − D1 L2
U1 H2 − D2 L3

U2 H3 − D3 L4
U3 H4 − D4 L5

. . .

⎞
⎟⎟⎟⎟⎟⎠

We remark that in the above expression the hydrolysis and Pi release are assumed to
be the same for both terminal and interior subunit. The evolution of the mean and
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variance of the length distribution are governed by

j = d M

dt
= d

dt

(∑
n

n Pn

)
(212)

D = dσ 2

dt
= d

dt

⎛
⎝∑

n

n2 Pn −
(∑

n

n Pn

)2
⎞
⎠ (213)

where Pn is the sum of all components of Pn .

5.2 Numerical simulations

Though the dynamics of the length and nucleotide composition of a single filament
can be described in the compact mathematical form given at (211), it is not feasible
to solve this analytically, and thus we resort to numerical solutions. We use the algo-
rithm developed earlier for stochastic simulation of filament dynamics (Matzavinos
and Othmer 2007).

Different polymerization models have been proposed in the literature, depending on
the kinetics of G-ADP-Pi and Pi release at the filament ends. Some have proposed that
G-ADP-Pi is kinetically identical to G-ATP, while others argue that their dynamics are
significantly different. Another open question is whether the inorganic Pi of ADP-Pi
is released significantly faster at the terminal subunit than at the interior subunits. Here
we will examine the long-time elongation and fluctuations of filament polymerization
using the most recent kinetic model proposed by Fujiwara et al. (2007). In this model,
the off rates of G-ADP-Pi at both ends are surprisingly small and the phosphate is
released more rapidly at the terminal ADP-Pi-actin than at the interior monomers. We
also examine the effects of end capping and Pi release rate of the terminal subunit on
the long-time behavior of elongation and length fluctuation by blocking the pointed
ends and suppressing the terminal Pi release. The monomer pool is assumed to be
composed of a constant concentration of G-ATP. The long-time elongation and length
diffusion constants for each model are displayed in Fig. 10.

Interestingly, we observe that capping of the pointed end does not significantly
affect the long-time behavior of filament polymerization when Pi is released rapidly at
the tip, as is seen by a comparison of Model I and the ‘pointed-end-blocked’ Model III
in Fig. 10. This is mainly due to the relatively slow dynamics of the pointed end com-
pared to those at the barbed end. However, both the elongation and diffusion curves
change significantly when Pi in a monomer at the barbed end is released at the same
slow rate as from the interior subunits, as seen by comparing Model I and II. The slow
Pi release decreases the critical concentration of G-ATP, and produces surprisingly
high fluctuations at a G-ATP concentration slightly less than the critical concentra-
tion. With slow Pi release at the tip, the filament tip is presumably stabilized since
the dynamics of ADP-Pi-actin is extremely slow. We also re-examine a kinetic model
used by Vavylonis et al. (2005) wherein G-ADP-Pi behaves similar to G-ATP and Pi
release is slow at the barbed end. In all these models, we observed a non-monotonic
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Fig. 10 The asymptotic elongation rate (a) and diffusion constant (b) of actin filaments at various fixed
G-ATP concentrations. Both the elongation rate and the diffusion constant are averaged over 4,000 real-
izations. Model-I: full three state model with kinetic rate constant shown in Fig. 2 from Pollard (2007),
with both ends free and rapid Pi release at the tip (ri = 2 s−1); Model-II: same as Model I, but with
uniform slow Pi release (ri = 0.003 s−1); Model-III: same as Model I, but with only the barbed end free
and rapid Pi release at the tip; Model-IV: three-state filament with only barbed end free, uniform slow Pi
release and kinetic rate constants from Vavylonis et al. (2005). Note that results from Model I and III are
indistinguishable in the figure

dependence of the filament growth rate around the critical concentration, and in partic-
ular, a tooth-shaped diffusion curve occurs at concentrations below the critical value.
By comparing Figs. 8 and 10, we conclude that the two-state filament model captures
the non-monotonic feature of the full three-state model, and the large length fluctu-
ations result from the intermittent capping of filament ends by dynamically distinct
G-ATP monomers.

6 Discussion

We have developed and analyzed in detail a polymerization model involving two
monomer types A and B as depicted in Fig. 4, in which A serves as a cap on a B fila-
ment, since B does not add to an A end-monomer. We analytically derived the length
distribution and the first two moments of this distribution for the A- and B-compo-
nents of the filaments, as well as for the entire filament. We find that the evolution of
filament length is distinctly different above and below the critical concentration for A,
and in particular, the diffusion coefficient is discontinuous there. We also show that
the elongation rate and the filament length diffusion rate converge to a steady state
at a rate that can be given explicitly in terms of the on- and off-rates (see (65)). By
setting the on-rate of the B-monomer to zero, we obtain the asymptotic elongation and
length diffusion rate constants for an actin filament as shown in Fig. 11. On either side
of the critical concentration, the curves of elongation rate and diffusion constant are
linear with respect to actin monomer concentration, but both curves are of different
slopes above and below the critical value. While the elongation rate is continuous at
the critical concentration, the diffusion constant exhibits a large drop there.
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Fig. 11 The elongation rate (a) and diffusion constant (b) of the filament barbed end at large times. The
kinetic constants used in the simulations are: k+

T = 11.6 µMs−1, k−
T = 1.4 s−1, k−

D = 7.2 s−1. The circles
represent results of stochastic simulations, whereas the line is predicted according to (98), (104) and (121)

When there is no cap on a pure-B filament the filament tip executes a biased random
walk, and the stationary drift and diffusion rates, r − s and (r + s)/2, respectively, can
be computed from a simple biased random walk. Addition of an A-monomer interrupts
this and the interplay between the two processes produces the complex dependence
of the diffusion rate on the A and B on- and off-rates. We show that when α < β, the
steady-state cap size distribution is exponential with a finite mean length. Equations
(100) and (101) suggest that the length fluctuations in this case are mainly due to
the dynamic change of the B core, which is consistent with the fact that the cap size
stabilizes at large times. In the presence of A, the filament switches randomly between
the capped and uncapped states, and when the off-rate is higher than the on-rate (i.e.
α < β), the filament has a probability 1 − α/β of being uncapped. It was shown that
the mean elongation rate of the single filament is the elongation rate of an uncapped
filament (r −s) times the probability that the filament is uncapped. However, the effec-
tive diffusion of the filament is much more complicated, and involves both a weighted
diffusive component and a scaled convective component. As shown in Eq. (99), the
diffusion coefficient is comprised of that for the uncapped filament times the prob-
ability of being uncapped, plus a term in the drift of the B-segment squared times a
factor involving the probability of being capped. If the polymerization of uncapped
filament is not biased (i.e. the on-rate of B equals the off-rate), the contribution of the
second term in the effective diffusion vanishes, as does the drift. Then the capping
simply reduces the effective diffusion. In addition, when the ratio α/β is held constant,
the diffusion rate constant is a monotone decreasing function of β. When β is held
constant, the diffusion constant is a quadratic function of α. As shown earlier, the
asymptotic dynamics of a single filament can also be modeled as two-state random
walk.

On the other hand, when α > β, the probability Pm of a cap of finite size van-
ishes as t → ∞, and the cap simply grows. The B core is capped by A most of the
time, and thus the length fluctuations of the filament are mainly due to the cap. The
filament length change is thus reduced to the behavior of single-state filament model.
The difference in the dynamics for α > β (supercritical A) and α < β (subcritical A)
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is reflected in the fact that the diffusion coefficient at the critical concentration differs
from the limits from above and below, as shown in Fig. 11.

The full three monomer-type model can only be treated computationally, but the
results are broadly consistent with those of the two-type model, which indicates that
the latter captures the essential features of the dynamics.

The current two-state polymer model can be extended to investigate filament growth
subjected to an imposed force simply by incorporating the force dependence of addi-
tion and release in the on- and off-rates. Other potential applications involve the ‘hop-
ping’ of signaling molecules along a cell surface, in the axon of neurons, and between
binding sites in fluorescence assays.
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