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The effect of the signalling scheme on
the robustness of pattern formation

in development
Hye-Won Kang†, Likun Zheng† and Hans G. Othmer†,*

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA

Pattern formation in development is a complex process which involves spatially distributed
signals called morphogens that influence gene expression and thus the phenotypic identity of
cells. Usually different cell types are spatially segregated, and the boundary between them
may be determined by a threshold value of some state variable. The question arises as to
how sensitive the location of such a boundary is to variations in properties, such as parameter
values, that characterize the system. Here, we analyse both deterministic and stochastic
reaction-diffusion models of pattern formation with a view towards understanding how the sig-
nalling scheme used for patterning affects the variability of boundary determination between
cell types in a developing tissue.

Keywords: pattern formation; robustness; stochastic models
1. INTRODUCTION

1.1. Morphogenetic fields and positional
information

The emergence of new cellular phenotypes during the
development of organisms involves both the selection
of a particular developmental pathway via transcription
of one or more genes, and differentiation, which involves
protein production and other downstream steps. Both
processes are usually tightly coupled, and hereafter we
simply speak of differentiation. Although differentiation
is a cell-level process and can occur in isolated cells, our
focus is on differentiation in a tissue containing many
cells, and in particular, on how reliably the spatial
location of the boundary between distinct cell types
can be specified under various signalling schemes. Such
spatially varying differentiation, or pattern formation,
requires the appropriate spatial pattern of a transcrip-
tion factor or other cellular state variable, and this
pre-existing pattern or pre-pattern may be maternally
inherited, it may stem from an earlier spatially controlled
pattern of gene expression, or it may arise spontaneously
within the tissue. Thus, pattern formation is a hierarchi-
cal process in which successive steps build on pattern
formation in previous steps.

The local distribution of extracellular molecular
species, mechanical stresses and other factors defines
the morphogenetic landscape from which cells extract
information, and frequently alter by release of com-
ponents into the extracellular space. In the simplest
case, diffusible molecules called morphogens, a term
orrespondence (othmer@math.umn.edu).
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coined by Turing [1], affect the internal state in a concen-
tration-dependent manner. More precisely, morphogens
are defined as secreted signalling molecules that: (i) are
produced in a tissue, frequently in a restricted region;
(ii) are transported by diffusion [2], active transport,
relay mechanisms or other means within the tissue [3];
(iii) are detected by specific receptors or bind to regulat-
ory regions of DNA; and (iv) initiate an intracellular
signal transduction cascade that initiates or terminates
the expression of target genes in a concentration-
dependent manner. The concept of a morphogenetic
landscape, usually described as a developmental field
similar to the classical fields in physics, played a role
throughout the early history of theoretical work in pat-
tern formation [4,5]. When morphogens are the carriers
of the extracellular state, the morphogenetic landscape
usually varies smoothly in space, but the response to
an established pre-pattern may require conversion of a
smoothly varying extracellular signal into a step-like
response via some downstream mechanism.

The establishment of pattern from spatial homogen-
eity is called Turing’s problem [1], which is to specify
mechanisms under which an aggregate of cells, all
initially in similar states, undergoes awell-defined spatial
pattern of differentiation leading to a non-uniform distri-
bution of cell types. In Turing’s model, two or more
morphogens react within each cell and diffuse between
cells. All cells are assumed to be identical initially, and
under appropriate boundary conditions, the reaction–
diffusion equations that describe the model have a
solution that is spatially uniform. What Turing showed
is that this uniform state can be unstable to some non-
uniform disturbances if the kinetic interactions and the
diffusion constants are chosen appropriately. Such
instabilities, which Turing called symmetry breaking,
can lead to a steady or a time-periodic non-uniform
This journal is q 2012 The Royal Society
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Figure 1. (a) Patterning of epithelial cells in the Drosophila wing imaginal disc by Dpp. (i) Top view showing the pouch and (ii) a
slice along the midline in (i) showing the geometry of the columnar cells. (iii,iv) Patterning involves several reaction and transport
processes that affect the Dpp distribution, including diffusion around columnar cells (iii) or transcytosis through columnar cells
(iv) (reproduced with permission from Othmer et al. [12]). (b) Primary components in the signalling network for wing disc pat-
terning. Ptc, patched; Smo, smoothened; CiA(R), cubitus interruptus activator (repressor); Ubx, ultrabithorax; Col, collier; Dfz,
Drosophila frizzeled; Dsh, dishevelled; Nkd, naked; Gro, groucho; Pan, pangolin.
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distribution of morphogens. The unstable wavelengths
are fixed by the kinetic coefficients and the diffusivities,
and therefore each unstable system has an intrinsic
chemical wavelength. Thus, identical systems will give
rise to an identical distribution of morphogens and,
via an appropriate interpretation mechanism, to an
identical pattern of cell differentiation. Turing himself
suggested that the model could account for the regular
spacing of tentacles on Hydra and that it might be
applicable to phyllotaxis. Many generalizations and
applications of the model have been proposed [6–9].

Turing’s original model may be well-suited for
explaining mosaic development, in which removal of a
part of a developing embryo at one stage results in
the absence of that part in later stages, but it is less
successful in predicting the degree of resilience or
robustness of patterning in response to changes in the
size of an organism, the strength of inputs or the
values of the many parameters involved in signal trans-
duction and gene control networks. Some degree of
regulation for simple patterns can be achieved using
simple reaction–diffusion models, as will be shown
later, but more complex schemes are often needed.
One approach is to postulate that the kinetic and trans-
port coefficients are space-dependent to reflect the past
history of development. This is certainly in the direction
of greater biological reality because, as Turing himself
observed, ‘Most of an organism, most of the time, is
developing from one pattern into another, rather than
from homogeneity into a pattern’ [1]. What remains
in doubt is whether the mechanism in its original
form, which generates pattern via an instability of
a uniform state, is applicable to biological systems.
Whatever the ultimate status of Turing’s theory as a
mechanism of biological pattern formation may be, it
has both stimulated a tremendous amount of research
and strongly influenced how spatial pattern formation
in biology is understood by emphasizing the important
role of the interaction between reaction and diffusion.

Another widely studied class of morphogen-based
models are those in which morphogen production is
Interface Focus
spatially localized. These are often called positional
information (PI) models, in that a cell must ‘know’ its
position relative to other cells in order to adopt the cor-
rect developmental pathway [10], but they could also be
called pre-pattern models, as the next stage of pattern-
ing is predicated on gene expression or morphogen
production in a previous stage. In practice, in both
Turing’s model and most PI models, the system is
usually regarded as an initially spatially homogeneous
medium, transport is described by Fick’s law, and
cell–cell communication is indirect via secretion into
the extracellular space, followed by re-uptake by a var-
iety of mechanisms. However, previous rounds of
patterning may establish spatial variations in the
expression of various signalling molecules, as in
dorsal–ventral patterning in the Drosophila embryo
[11], and there are several other modes of cell–cell com-
munication that may play a role [12]. Detailed models
of endo- and exocytosis have not been included in this
context, for this is a formidable task, as suggested by an
example of the Drosophila wing disc shown in figure 1a.
The signalling networks in the disc add another level of
complexity to the geometric complexity, as shown in
figure 1b. The principle morphogens are hedgehog (Hh),
decapentaplegic (Dpp) and wingless (Wg), and one sees
that each of the primary pathways has feedback loops
and cross interactions with other pathways. In particular,
there is a negative feedback loop in each of the three:
through Ptc–Smo–CiA–Ptc in the Hh pathway, through
Tkv–pMad–Brk–Omb–Tkv in the Dpp pathway and
through Dfz–Dsh–Arm–Dfz in the Wg pathway. The
complexity in the interactions of the different transport
and signalling processes is frequently hidden when inter-
preting experimental data, because the spread of
morphogens is analysed using a simple reaction–diffusion
system [13]. However, it is usually difficult to relate the
individual steps in what may be a very complex process
to such a high-level description, and homogenization of
the disc so as to preserve the relevant biochemical and
mechanical interactions at the cell level is beyond reach
at present.

http://rsfs.royalsocietypublishing.org/
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Figure 2. The signalling scheme used in development of the
vertebrate limb. A morphogen produced in the zone of
polarizing activity (ZPA) is part of a feedback loop that controls
production of growth factors in the apical ectodermal ridge
(AER), which in turn affects production of the morphogen.
The intermediate steps, which are not shown in detail, involve
formin (Fmm), gremlin (Gre), bone morphogenetic protein
(BMP) and fibroblast growth factor (Fgf). Reproduced with
permission from Freeman [15]. Shh, sonic hedgehog.

1The definition of symbols used here and later are given in table 1.
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The most widely studied type of pre-pattern for mor-
phogen signalling involves specialized spatial regions
that are either maternally specified or determined in
previous patterning steps, and that produce morphogen
and release it into the extracellular space. The morpho-
gen is then either actively or passively transported
throughout the tissue, to be interpreted locally by
cells according to their position in the morphogenetic
landscape. We call the interpretation of the morphogen
distribution the response. Here, we treat it as a scalar
variable that depends on both morphogen levels and
other factors that turn specified genes on or off, and
this dependence is encoded in the response functional.
We call the combination of one or more specified
morphogen sources and a downstream interpretation
mechanism a signalling scheme. This is a generalization
of the motif concept used in studying networks [14], in
that the same motif may be used either in combination
with different morphogen sources or different response
functionals. Our objective is to analyse how different
signalling schemes affect the sensitivity, the precise
measure of which is defined later, of the spatial location
of a specified response level to parametric changes.
An example of a signalling scheme that arises in the
early development of vertebrate limbs is shown in
figure 2. This example is more complicated than those
we analyse later, but it illustrates the interplay of the
spatial location of morphogen sources and the network
of the downstream interactions, a theme that will recur
throughout. Some of the effects of morphogen inter-
actions in limb bud development have been analysed
[16], but a much more systematic approach along the
lines developed later is needed. A more detailed discus-
sion of related issues in pattern formation appears in the
study of Othmer et al. [12].
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1.2. The dynamic versus static interpretation of
morphogen levels

The first species known to serve as a morphogen in the
foregoing sense is Bicoid, a protein that is produced
from maternally inherited mRNA embedded in the
anterior 20 per cent of the plasma membrane of the
embryo [17]. Bicoid is a transcription factor that initiates
a hierarchy of sequential gene expression that involves the
gap genes, the pair-rule genes and ultimately, the segment
polarity genes [12]. In the early stages, the embryo is a
syncytium with nuclei spread throughout the cytoplasm,
but later the nuclei are embedded in the surrounding
membrane. Bicoid production in the anterior portion of
the embryo gives rise to a spatial distribution of the
protein [18], and since the earliest gap gene expression
occurs about 1.5 h after egg deposition, the question
arises as to whether the Bicoid gradient is essentially at
steady state at this time. Others have addressed this
issue [19–21], but some important aspects deserve re-
examination. In the remainder of this section, we analyse
how reaction and diffusion interact to determine the time
scale for relaxation to the steady-state distribution, and
we show how to track the propagation of a chosen concen-
tration level into the domain. With regard to the latter, we
show that depending on the signalling scheme, the pos-
ition of a threshold level of morphogen may first
overshoot its location in the steady state and then retreat.
With regard to the former, we show that the relaxation
time to the steady state is given by:1

T1 ;
1

ðDp2=L2Þ þ k
: ð1:1Þ

From this, one sees that either diffusion or morphogen
decay can dominate the relaxation process, and their
effect is additive. Furthermore, the contribution of diffu-
sion decreases with a decrease in D or an increase in L,
while that of protein decay affects the time similarly. Esti-
mates of the half-life of Bicoid range from approximately 8
min [22] to less than approximately 30 min [21], and we
use 20 min as an intermediate estimate, and thus k ¼
0.05 min21. Estimates of the diffusion coefficient range
upward from 0.3 mm2 s21 [21], and thus for the lowest D
and an embryo length of L ¼ 500 mm, the relaxation
time of the slowest decaying mode is approximately 20
min, and is determined almost solely by the degradation
rate. If the foregoing estimate of k is accurate, then there
are several half-lives of the slowest mode in the approxi-
mately 1.5 h period from egg-laying to appearance of
gap gene expression in cycle 10 [23], and one can assume
that the Bicoid gradient has stabilized at this time.

The simplest model for describing the spatial distri-
bution of Bicoid protein is based on a one-dimensional
spatial domain, with protein synthesis localized at
the anterior pole, transport by diffusion throughout the
syncytium and a uniform protein decay rate. While this
model is over-simplified and the system is more complex
in reality, for instance, with respect to the localization of
protein synthesis [17,22], it serves as a model that illus-
trates the underlying concepts. The governing equations
for the time-dependent morphogen concentration c,

http://rsfs.royalsocietypublishing.org/


Table 1. Symbols and their definitions.

symbol meaning

c morphogen concentration
t time variable
x space variable
k morphogen decay rate
K reference concentration used for

non-dimensionalization
L length of the domain
D morphogen diffusion constant
j morphogen input flux
u ¼ c/K dimensionless morphogen concentration
j ¼ x/L dimensionless space variable
t ¼ kt dimensionless time variable
d2 ¼ D/(kL2) dimensionless diffusion constant
J ¼ jL/(KD) dimensionless input flux
T1 the time scale for relaxation to the

steady-state
R the symbol for the response functional that

determines the response to a morphogen
gradient. Its definition depends on the
signalling scheme

r the gradient operator
D the Laplace operator ¼r .r
Vn the normal velocity of a level set
nc the unit normal to a level set
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assuming that transcription, and hence the influx of
Bicoid, is turned on at t ¼ 0, describe the evolution of
the concentration of the morphogen owing to the effects
of reaction and diffusion in the interior of the domain,
combined with conditions that describe the influx at
the anterior pole and the fact that there is no loss of
morphogen at the posterior pole.

@c
@t
¼ D @2c

@x2 � kc x [ ð0;LÞ,

�D @c
@x
¼ j x ¼ 0,

@c
@x
¼ 0 x ¼ L;

and cðx; 0Þ ¼ 0 x [ ð0;LÞ:

9>>>>>>>>>>=
>>>>>>>>>>;

ð1:2Þ

It is not difficult to relax the assumption that the
mRNA is localized at the anterior pole by adding a space-
dependent source to the right-hand side of equation (1.2)
and setting j¼ 0, and this hasbeendonebyLittle et al. [17].

We convert these equations to dimensionless form by
defining j ¼ x/L, t ¼ kt, d2 ¼ D/(kL2), J ¼ jL/(KD)
and u ¼ c/K, where K is specified later. Then the
equations become:

@u
@t
¼ d2 @

2u

@j2 � u j [ ð0; 1Þ,

� @u
@j
¼ J j ¼ 0,

@u
@j
¼ 0 j ¼ 1;

and uðj; 0Þ ¼ 0 j [ ð0; 1Þ:

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð1:3Þ
Interface Focus
The steady-state solution satisfies

d2 d2us

dj2 ¼ us j [ ð0; 1Þ,

� dus

dj
¼ J j ¼ 0;

and
dus

dj
¼ 0 j ¼ 1:

9>>>>>>>>=
>>>>>>>>;

ð1:4Þ

The solution of this is

usðjÞ ¼ Jd
e�j=d þ eðj�2Þ=d

1� e�2=d

� �
; JdfðjÞ

¼ j

K
ffiffiffiffiffiffiffi
kD
p fðjÞ: ð1:5Þ

From this solution, one sees that the spatial
decay of the morphogen gradient is governed by
d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=ðkL2Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tk=Td

p
, which involves the ratio of

a kinetic time scale Tk ; k21 to a diffusion time scale
Td ; L2/D. Thus, reducing the kinetic scale by redu-
cing the half-life of the morphogen, or increasing the
diffusion time scale by decreasing the diffusion con-
stant, leads to sharper, more rapidly decreasing
spatial profiles. While it is sometimes assumed that
this combination also controls the approach to the
steady state, we see from equation (1.1) that this is
not the case. It should also be noted that the second
term in both the numerator and denominator of
equation (1.5) arises from the finite length of the
domain, and can only be neglected if d � 1.

To derive the expression in equation (1.1) for the time
scale for approach to the steady state, we observe that the
difference w ; u 2 us, which captures the transient
component of the solution, satisfies equation (1.3) with
J ¼ 0 andw( j, 0) ¼ 2us ( j). The solution of the resulting
system is:

wðj; tÞ ¼
X1
n¼1

ane�lntcosnpj; ð1:6Þ

wherein the constants an are determined by the steady-
state solution. The exponential decay rates ln are
given by:

ln ¼ d2ðnpÞ2 þ 1; n ¼ 1; 2; . . . ; ð1:7Þ

and the smallest of these, l1, defines the relaxation time of
the slowest decaying mode cos(pj) in the transient
solution. The reciprocal of this is a dimensionless
relaxation time, and converting it to dimensional form
leads to equation (1.1). As stated earlier, one can conclude
that there is adequate time for establishment of the Bicoid
gradient in Drosophila, even if the half-life of Bicoid
is 30 min.

There is also adequate time for stabilization of the
morphogen distribution in other systems. For example,
in the Drosophila wing disc, the patterning occurs over
several days, but the profile of the dominant morphogen
Dpp is established in about 8 h [24]. However, in some
systems, particularly those involving feedback in the
early steps in signal transduction, the pattern of gene
expression evolves significantly in time. In dorsal–ventral

http://rsfs.royalsocietypublishing.org/
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patterning of the Drosophila embryo, the downstream
factor pMad is first expressed in a broadly distributed,
low-level pattern, and later sharpens dramatically to
localize patterning of the amnioserosa [25], and this has
been explained with a model based on a positive feedback
loop that controls production of a protein that acts as a
co-receptor [11,26].

Of course, this does not mean that gene expression
does not begin until the spatial distribution of the
morphogen stabilizes. When the local morphogen con-
centration is time-varying, the downstream response
may be determined by the instantaneous or time-
delayed morphogen concentration, there may be no
response until the absolute or integrated signal exceeds
a certain level, or the response may adapt in time and
thus require a minimal rate of change of the signal
[27]. In many cases, the morphogen production is
switched on at time zero, and it is of interest to deter-
mine how fast the concentration of morphogen rises at
any given spatial location. In the context of Drosophila
anterior-posterior (AP) patterning, gene expression
probably begins as soon as a critical concentration is
exceeded, which implies that one should observe a
Bicoid-initiated wave of Hunchback expression that
propagates down the AP axis. We analyse this for gen-
eral systems here by computing the speed of
propagation of surfaces of constant concentration
(level sets) in reaction–diffusion systems. We do this
for any spatial dimension, and thus the level sets can
be curved and their curvature will affect the speed of
propagation.

First consider a slight generalization of (1.2) written as:

@c
@t
¼ DDc þ f ðcÞ; ð1:8Þ

and suppose that a level set c ; c0 ¼ constant is
defined by specifying the position vector r(t) of any
point on the surface. Then an observer moving with
that surface sees no change, which means that the
Lagrangian derivative of c evaluated on that surface
vanishes, i.e:

dc
dt

����
c¼c0

¼ 0 ¼ @c
@t
þrc � dr

dt
¼ @c
@t
� Vnjrcj:

Here, the normal vector to the surface and the speed
in the normal direction are defined as:

nc ; � rc
jrcj and Vn ; nc �

dr
dt
;

and all terms are evaluated at c ¼ c0. By definition, the
normal is directed towards decreasing c levels.
Therefore, if jrcj= 0, then:

Vn ¼
ct

jrcj

����
c¼c0

¼ DDc þ f ðcÞ
jrcj

����
c¼c0

;
Fðc;DcÞ
jrcj

����
c¼c0

: ð1:9Þ

Obviously, Vn . 0, whenever ct is positive, and either
or both Vn and jrcj vanish on the set, where F vanishes,
i.e. where c has reached a steady state. Furthermore, one
Interface Focus
sees that the speed of propagation increases with the
magnitude of ct and decreases with the steepness of
the gradient. Thus, level sets in a shallow gradient pro-
pagate faster than those in a steep gradient, and the
most striking example of this is the infinite speed of
propagation of the zero level set in a pure diffusion pro-
cess. For a scalar equation, the velocity is of one sign
during the approach to a steady state, but this need
not be true in systems, as discussed below. The asympto-
tic speed of travelling waves of permanent form on
infinite domains is well-understood [28], but the profiles
of interest here are not of constant shape.

In general, the response will be more complex—for
example, gene expression may be a nonlinear function
of the morphogen level, or it may involve both positive
and negative control. We discuss an extension of the
foregoing to two species, but it can easily be done in
general. Suppose that the two morphogens (c1,c2)
evolve according to

@c1

@t
¼ D1Dc1 þ f ðc1; c2Þ

and
@c2

@t
¼ D2Dc2 þ gðc1; c2Þ;

9>=
>; ð1:10Þ

and suppose that the response is given by R(c1,c2).
Further suppose that the threshold response corre-
sponds to the level set R ¼R* ¼ constant. As before,
this surface moves according to

dR
dt
¼ 0 ¼ @R

@t
þrR � dr

dt
¼ @R
@t
� VRjrRj:

If R depends on both species then:

@R
@t
¼ @R
@c1

@c1

@t
þ @R
@c2

@c2

@t

and jrRj ¼ @R
@c1
rc1 þ

@R
@c2
rc2

����
����;

and ifrR = 0 then:

R¼

@R
@c1

� �
ðD1Dc1þf ðc1;c2ÞÞþ

@R
@c2

� �
ðD2Dc2þgðc1;c2ÞÞ

jrRj :

ð1:11Þ

From this, one sees that it is easy to construct
response functionals for which the threshold level set
overshoots its steady-state position. Suppose, for
instance, that the spatial domain is one-dimensional,
that f(c1,c2) ¼ 2c1, g(c1,c2) ¼ 2kc2, and that2

R ¼ cm
1

1þ cm
1

1
1þ cn

2
: ð1:12Þ

Thus, c1 is an activator of the response, and we
assume that there is an input flux of c1 at x ¼ 0, while
c2 acts as an inhibitor and is input at x ¼ L. If both
inputs are switched on at t ¼ 0, and if c1 relaxes to its
steady-state distribution much faster than c2 does, the
rapid establishment of the c1 profile will initiate a
response in some portion of the domain, but as c2

http://rsfs.royalsocietypublishing.org/
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gradually increases, the threshold level set movement
will reverse and move towards x ¼ 0. One can see this
most easily by supposing that c1 reaches steady state
instantaneously. Examples in which there is overshoot
are known from systems in which there is negative feed-
back via morphogen-stimulated production of a receptor
[29,30]. Other signalling schemes are possible—e.g. it
may also happen that the response involves two activa-
tors produced at opposite ends of the domain, and
numerical examples of both activator/inhibitor and
dual-activator systems are given later.

The response in equation (1.12) may apply to AP
patterning in Drosophila, in which we identify the mor-
phogens as Bicoid and Nanos, and the response as
Hunchback expression. A similar analysis can be
applied to downstream steps in the gene expression hier-
archy in AP patterning, and it is known for instance
that the spatial domains of gap gene expression shift
as development proceeds [31]. This system and others
will require other forms of the response functional,
and these may have multiple components, such as
R1 �R1

* and R2 �R2
*, but the foregoing approach

applies in general.
1.3. Resilience, robustness and reliability in
patterning

The overall process of development, including pattern
formation, differentiation, growth and the other devel-
opmental processes, can usually tolerate a certain level
of disturbances encountered during development and
yet produce a normal adult, and we say that such
systems regulate. There are many examples of this, par-
ticularly at early stages of development. For instance,
each of the cells that results from the first cleavage in
amphibian eggs can, when separated from the other,
develop into a normal, albeit smaller, adult. Certainly,
this type of regulation requires some form of inter-
cellular communication and some kind of feedback
mechanism, whereby removal of part of an organism
is sensed by the remainder, and development is redir-
ected to compensate for the part removed. Here,
we focus on less-drastic perturbations, and begin by
defining some terminology.

Robustness, resilience and reliability all capture,
to varying degrees, the idea that systems can develop
‘normally’ under certain types of perturbations. In
computer science, robustness refers to the ability of a
programme to cope with errors in inputs or calculations
during execution, and this best describes the notion
that systems can regulate in the sense used previously.
Consider a dynamical system of the form

du
dt
¼ Fðu;F; SðtÞÞ; uð0Þ ¼ u0; ð1:13Þ

where u is the state, F a set of parameters and S(t) an
input. This form is sufficiently general to encompass the
reaction–diffusion equations described earlier when u is
an element of a suitable Banach space, and equation
(1.13) is viewed as an evolution equation in that
space, but the reader can, without loss of understand-
ing, regard equation (1.13) as an evolution equation
for a finite number of state variables.
Interface Focus
We can identify at least three classes of perturbations
that lead to three types of robustness.

— Robustness with respect to changes in model par-
ameters, constant inputs, and so on. One
biologically important example in this class is
robustness with respect to changes in the size of
the system. A general class of reaction–diffusion sys-
tems that show perfect scale-invariance is known
[32], and a detailed study of scale-invariance in var-
ious patterning mechanisms will be reported
elsewhere [33]. This type of robustness can be
measured by a suitably defined sensitivity of the
response, examples of which are given later.

— Robustness with respect to transient changes in the
input S(t). By this, we mean that changes in time-
dependent external inputs only evoke a transient
response, but constant offsets in the input are
ignored in the long run. Such systems nullify changes
in a specified class of inputs by generating the inputs
internally and employing suitable feedback to nullify
them [34]. In particular, this includes the capability
of systems to respond only to transient changes in
inputs, and to ignore time-independent inputs.

— Robustness with respect to changes in the structure
of the equation itself. Systems that are robust in this
sense can withstand the inclusion of a new com-
ponent in a signal transduction pathway without
significantly altering the input–output behaviour
of the system. For small changes in the equation,
this is described by the mathematical concept of
coarseness or structural stability—a vector field is
structurally stable if its associated flow is orbit
equivalent to the flow generated by any vector
field in a sufficiently small neighbourhood in a suit-
able topology [35]. A global criterion for structural
stability is known for linear vector fields in finite
dimensions, but only local results are known for non-
linear finite-dimensional systems, and therefore
cannot be used for large changes.

Several general strategies for reducing sensitivity to
perturbations include: (i) operation at saturation,
which implies that changes in input have no effect;
(ii) employment of suitable feedback mechanisms to
compensate for changes in inputs; and (iii) employment
of a hierarchical system, such as that which terminates
in the segment polarity genes in Drosophila.

In the remainder of this paper, we focus on the robust-
ness of the location of boundaries between different
emerging cell types in a developing tissue under pertur-
bations in boundary inputs and parameters. As we
have already seen, if the boundary is set by a prescribed
threshold value of a response functional, then in general
it moves during establishment of the morphogen profiles.
In the following section, we analyse deterministic sys-
tems, and in the penultimate section, we analyse
stochastic systems. In both cases, the primary focus is
on a static or stationary-in-time interpretation of the
response—the dynamic case will be treated elsewhere.
We identify a number of distinct types of spatial signal-
ling schemes and analyse the robustness of boundary
placement under these distinct schemes.
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2. THE ROBUSTNESS OF BOUNDARY
PLACEMENT IN DETERMINISTIC
MODELS

2.1. The French flag problem

In the simplest version of a PI or pre-pattern model,
either specialized source and sink cells located at the
boundary of the developmental field maintain the con-
centration of the morphogen at fixed levels, or they
produce or destroy the morphogen at a fixed rate. If
there is no degradation of morphogen in the first case,
then given fixed thresholds between different cell
types, a one-dimensional system can be proportioned
into any number of cell types in a perfect scale-invar-
iant way. However, this scheme is clearly not robust
as it stands, since the flux between source and sink in
a one-dimensional system of length L scales as 1/L,
and thus the morphogen-producing or consuming cells
at the boundary must adjust production to adjust for
the size of the system.

For the second scheme, we consider the simple sig-
nalling scheme analysed earlier, in which the flux at
the boundary, rather than the concentration, is fixed.
The steady-state solution given by equation (1.5) is
characterized by the dimensionless parameter d that
involves the ratio of a kinetic time scale Tk ; k21 to a
diffusion time scale Td ; L2/D, and the dimensionless
parameter Jd, which we write as:

Jd ¼ L=
ffiffiffiffiffiffiffi
kD
p

ð j=KLÞ�1 ;
Trd

Ti
: ð2:1Þ

This is the ratio of a time scale Trd defined by reaction
and transport within the domain, to the time scale Ti

defined by the scaled input KL/j. The parameter d

enters in the shape function f via the exponential
terms and determines how rapidly the morphogen con-
centration decays in space: if Tk�Td, then d� 1 and
the solution decays rapidly from its value at the
source. It is clear that for a fixed input flux j, both the
amplitude and the shape of the morphogen distribution
depend on L, and thus this simple scheme does not
suffice when significant variations in length occur in
the developing system. Perfect shape-invariance could
be achieved by modulating D or k appropriately [32],
but robustness with respect to the input flux requires
a more sophisticated scheme as it requires that the
ratio in equation (2.1) remains constant. More complex
patterning driven by pre-patterns can result when there
are several specialized boundary regions, an example of
which arises in vertebrate limb development, where
species produced in specialized regions called the zone
of polarizing activity and the apical ectodermal ridge
interact for direct outgrowth and patterning [16,36].
Several simple schemes that illustrate some of the effects
of multiple inputs are analysed later.
2.2. Sensitivity of thresholds in a static
interpretation

As stated earlier, our focus in the remainder of the paper
is on the robustness of determination of the boundary
between cell types in a developing tissue, and in the
Interface Focus
remainder of this section, we focus on deterministic
models. We first develop a general method for comput-
ing one measure of the sensitivity of the location
of a threshold to parametric changes. The measure
we adopt is simply the derivative of the threshold
location to a chosen parameter, but since the governing
equations are typically nonlinear, this must be done
numerically. A number of specific examples are analysed
in detail in the following subsections.

Suppose that the equations for the local dynamics—
binding reactions, enzyme-catalysed steps, and so
on—are written as the system

du
dt
¼ Fðu;FÞ; ð2:2Þ

where now u [ Rn represents the dimensionless concen-
trations and other state variables, while F represents
parameters and inputs that we treat as constants. For
a spatially distributed system, we write the steady-state
equations as:

DDu þ Fðu;FðxÞÞ ¼ 0 in V

and � D
@u
@n
¼ Bðu;FBÞ on @V;

9=
; ð2:3Þ

where D is now an n � n matrix of dimensionless diffu-
sion constants, and B incorporates the fluxes at the
boundary. We assume that this has a unique solution
and differentiate (2.3) with respect to F to obtain

DDuF þ FuuF þ FF ¼ 0 in V

and � D
@uF

@n
¼ Buðus;FBÞus

F on@V:

9=
;
ð2:4Þ

If there are q parameters in F, then uF is an n � q
matrix.

Now suppose that the boundary between cell types
is determined by a threshold value of a particular com-
ponent ui, or by a functional (a scalar-valued function)
of the solution. The latter might, for example, be the
condition that an activator is above a certain level
and the inhibitor is below a certain level. As before,
let R(u) denote the response, and define R* as the
threshold response. Then at a steady state, the level
set that corresponds to this threshold defines a set in
space—a point in one dimension, a curve in two dimen-
sions or a surface in three dimensions—on which the
response is at the threshold. On one side of this point,
curve or surface—depending on the space dimension—
the response is above threshold, while on the other
side it is below threshold. This level set is defined
implicitly by the relation:

Rðusðj�;FÞÞ ¼ R�; ð2:5Þ

where j* is the spatial coordinate on the level set. Let p
be one of the entries of F; then by differentiating
equation (2.5) with respect to the chosen parameter,
we obtain the following relation:

kRu;rulj�p þ kRu; uFFpl ¼ 0;
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for the sensitivity:

j�p ;
@j

@p

of the threshold position. Here k.,.l denotes the
Euclidean inner product, and to simplify the formulae,
we use subscripts to denote partial derivatives.

Therefore, if kRu,rul = 0,

j�p ¼ �
kRu; uFFpl

kRu; ujl
: ð2:6Þ

One sees from equation (2.6) that two components,
given by the numerator and the denominator, contrib-
ute to the sensitivity, and increasing the latter
reduces the sensitivity of the threshold location. If
kRu, ujl ¼ 0, then jp

* is indeterminate at this order.
When the response is a function of only one species,

equation (2.6) reduces to:

j�p ¼ �
uFFp

uj

; ð2:7Þ

and therefore the derivative Ru cancels, and as a result
for any response function that depends on only one
factor or species, the sensitivity jp

* of a threshold location
to a parameter p is independent of the sensitivity Ru of
the response functional to the concentration u.

Thus, no matter how complicated the internal signal
transduction mechanism may be, if the overall input-
response behaviour is as shown in scheme I of table 2,
i.e. the downstream response to a morphogen depends
only on that morphogen, then the sensitivity of the
location of any threshold level is independent of the sen-
sitivity of the response functional to the morphogen
level. This is a very strong conclusion, but of course,
the actual location of the threshold does depend on R.
2.2.1. The single morphogen scheme
Consider the scalar, steady-state problem analysed ear-
lier whose solution is given in equation (1.5). Suppose
that the response is defined as:

RðuÞ ¼ unh

1þ unh
;

and that the threshold is set atR* [ (0,1). This defines the
first scheme I in table 2. For simplicity, let us assume that
the reaction time Tk is short enough when compared with
diffusion time Td, so that d is small. With this assumption,
the boundary at x ¼ L has a negligible effect. Then:

u� ¼ R
1�R

� �1=nh

; ð2:8Þ

and

j� ¼ d lnJd� 1
nh

ln
R

1�R

� �
: ð2:9Þ

In particular, if R* ¼ 0.5, then u* ¼ 1 and

xi� ¼ dlnJd; j�d ¼ 1þ lnðJdÞ; and j�J ¼
d

J
:

Interface Focus
Thus, jd
* is one when Trd ¼ Ti, and otherwise

depends on the relative size of these time scales. It
only vanishes if ln(Jd) ¼ 21, but then j* lies outside
the domain. Therefore, one cannot guarantee robust
placement of the boundary location under changes in
the ratio of the time scales defined by d. Since

j�J ¼ d=J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D3K2=ðkj2 L4Þ

q
, sensitivity with respect

to the input flux is decreased by decreasing the dif-
fusion coefficient or increasing the degradation rate
or the input flux. One also sees that in either case,
the location of the threshold and its sensitivity with
respect to parameters are independent of nh for R* ¼
0.5, and therefore of the steepness of the response
at the chosen threshold. However, this is not true
for other choices of the threshold, as equation (2.9)
shows. Calculation of the sensitivities of the location
with respect to the measurable quantities such as the
diffusion coefficient or the input flux requires one
additional step.

We consider scheme I as a base case for later
comparison with other signalling schemes. For this pur-
pose, we compute the response and the location of the
boundary numerically for several thresholds, and for a
range of input fluxes and d, using the exact solution of
the steady-state problem (1.5). It follows from equations
(1.5) and (2.7) that (u)j , 0, (u)d . 0 and (u)J . 0,
and therefore the boundary position j* moves right as
either d or J are increased, as expected. The base par-
ameters d ¼ 0.1 correspond to a half-life k21 � 20 min,
a diffusion coefficient D ¼ 1mm2 s21 and a domain
length of length L ¼ 100mm. Using a reference concen-
tration K ¼ 0.1mM, the base input flux j ¼ KDJ/L
corresponds to 600 molecules/(mm2 s21). The morpho-
gen profile and the response profile for these base
values and three values of the Hill coefficient are
shown in figure 3a, and the response surface as a function
of d is shown in figure 3b.

The computed threshold positions as a function of d
and J are shown in figure 4 for threshold levels of R* ¼
0.25, 0.50, 0.75. As d increases, the effect of diffusion
time scale decreases relative to that of reaction. This
leads to an increase in the morphogen concentration
and the response throughout the domain, and therefore
the threshold positions determined by the chosen
thresholds move right, and for sufficiently large d lie
at the boundary (cf. figure 4a). An increase in the
dimensionless input flux J has a similar but less dra-
matic effect—the morphogen concentration increases
in direct proportion with J, as seen from equation
(1.5), and thus the threshold location moves further
into the domain. In either case, we can conclude that
boundary placement under scheme I is not robust to
variations in the dimensionless parameters d or J.

For the base parameters and thresholds chosen, an
increase in the Hill coefficient has little effect on
the robustness, despite the fact that the response is
sharpened (cf. figure 3a), because the morphogen gradi-
ent is steep for the chosen thresholds in the response.
However, an increase in nh has a significant effect at
lower thresholds, but the effect of this for a wider para-
metric range remains to be investigated. Of course,
other forms of single-morphogen response functions
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Figure 3. (a) The morphogen profile (blue) and the response function (red) for scheme I, using the base parameters d ¼ 0.1, J ¼
103 and nh ¼ 1,2 and 4. (b) The response surface as a function of d and j, where d ¼ 10n21.
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Figure 4. The spatial location of the specified thresholds as a function of (a) d and (b) J for scheme I. The parameters are given by
(a) d ¼ 10n21 and (b) J ¼ 10nþ3 using the base set. Here and hereafter blue (dash-dot lines), green (dashed lines) and red (solid
lines), denote thresholds R* ¼ 0.25, 0.5, 0.75, respectively.
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may lead to different conclusions, but would require
some biological motivation.
2.2.2. Signalling schemes with independent activation
and inhibition
There are numerous other more complex signalling
schemes used in pattern formation, several of which
are shown in table 2. The next simplest is the one in
which a morphogen that initiates activation of gene
transcription is produced at one end of the domain,
while an inhibitory signal that represses transcription
is produced at the other end, as shown in scheme II of
the table. In this scheme, there is no upstream inter-
action between the morphogens, and they exert their
effect on the response independently. The Bicoid–
Nanos–Hunchback system, in which Bicoid activates
expression of Hunchback, whereas Nanos represses it
[37], is an example of this signalling scheme.

Since the morphogens do not interact, the activating
signal, denoted u1, is as in the previous example with
d and J replaced by d1 and J1. Denote by u2 the dimen-
sionless concentration of the inhibitory morphogen, and
suppose that this morphogen is produced at j ¼ 1.
Detailed governing equations for u1 and u2 are given
in table 2.
Interface Focus
The response function is chosen to be:

RðuÞ ¼ F 1ðu1ÞF 2ðu2Þ ¼
u

nh1
1

1þ u
nh1
1

� 1

1þ u
nh2
2

; ð2:10Þ

where the nhi
s represent the respective Hill coefficients.

This form arises, for example, when activating and inhi-
biting transcription factors bind independently to a
promoter [38]. We choose the same thresholds as before
and let h* denote the spatial position corresponding to
a threshold, i.e. R(u(h*)) ¼R*. In addition, we let j*
be the spatial location of the threshold when u2 ¼ 0, in
which case the response in scheme II reduces to that in
scheme I. When u2 = 0, F2jj¼h* , 1 and it follows
from the fact that F1jj ¼ j* ¼ F1 .F2jj ¼ h* ¼R* and
the monotonicity of F1 that j* . h*. In other words,
adding an inhibitor lowers the overall response level
and retains a decreasing response gradient with the
maximum level at the source location of the activator,
as in scheme I. Therefore, the boundary location deter-
mined by the threshold moves towards the source of
the activator, as expected.

In figure 5, we show the effect of changes in the dis
when both are equal. When both are small (n , 0),
the location of the threshold increases with di, as in
figure 4. However, owing to the effect of the inhibitor,
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the threshold location in figure 5 is generally closer to
the activator source than it is in figure 4. On the
other hand, when both exceed the base value n ¼ 0,
the threshold locations rapidly move towards j ¼ 0,
and for sufficiently large di, the thresholds are never
reached. This can be understood in terms of the com-
peting processes involved. As the dis are increased, the
effect of diffusion relative to degradation increases and
the level of both the activator and the inhibitor
increases. When both dis are small, the level of both
the activator and the inhibitor are low, F1� 1 and
F2� 1 in equation (2.10), and the effect of the
increased activator on the response is larger than that
of the increased inhibitor. As a result, the location of
the threshold moves towards the source of the inhibitor.
When d1 ¼ d2 is large, the level of both the activator
and the inhibitor is larger, F1 	 1 and F2 	 1 in
equation (2.10), and as a result, the effect of the
increased inhibitor on the response dominates and the
location of the threshold moves towards the source of
the activator. The effect of varying the input fluxes sim-
ultaneously is less dramatic—in each case, the threshold
position first moves outwards from j ¼ 0 and then gradu-
ally retreats. Simultaneous variation in the Hill
coefficients of activator and inhibitor has little effect on
the threshold locations.

The effects are quite different when the ds are varied
independently, as shown in figure 6. At fixed d2, increas-
ing d1 moves the threshold outwards from j ¼ 0, similar
to both the single morphogen and the symme-
tric activator–inhibitor cases. However, for n . 0, the
threshold location stabilizes because the activation is
saturated and the response is determined by the inhibi-
tor, which accounts for the plateau. The transition
value of d1 for different thresholds is essentially indepen-
dent of the threshold. Similarly, when d2 is sufficiently
small, the effect of the activator dominates and the
threshold location is independent of d2. In fact, the results
in figure 5 can be understood as the diagonal slice of
a three-dimensional representation of the top panels
in figure 6.

The effect of the input fluxes is less pronounced, as
seen in figure 6. The threshold positions are shifted
towards j ¼ 0, as inclusion of the inhibitor lowers the
Interface Focus
level of response slightly, and for small values of J1

they increase approximately linearly, as in figure 4.
However, the effect of the inhibitor limits the increase
as activation saturates, and the cumulative effect is
less over the full range. Similarly, the effect of the
inhibitor flux is weak at low inputs but stronger at
high inputs, and the thresholds are moved significantly
leftwards towards the activator source owing to the
lower level of response as we increase J2. The Hill coeffi-
cients of activator and inhibitor have little effect on the
boundary positions determined by the thresholds
because the gradients of activator and inhibitor are
quite steep.

Thus, the inclusion of an independently acting inhibi-
tor can significantly reduce the sensitivity of threshold
locations to variations in the dimensionless parameters
di in suitable ranges, and thus lead to robustness of the
placement of the boundary between cell types. The
large values of d1 needed for fixed values of the remaining
parameters can be achieved by increasing the diffusion
coefficient or the half-life of the activator, and inversely
for smaller values of d2. However, this signalling scheme
does not lead to precise boundary location in the face of
variations in the input fluxes.
2.2.3. The incoherent feedforward network
The question then arises as to whether upstream inter-
actions between activator and inhibitor can increase the
robustness. As an example, we add production of the
inhibitor catalysed by the activator, as shown in
scheme III of table 2, to the previous network. As the
additional production of the inhibitor increases its
level throughout the domain, the boundary location
z* corresponding to the threshold R*, which is
implicitly defined by R(u(z*)) ¼R*, moves towards
the activator source, i.e. z* , h*.

The introduction of a catalytic effect of the activator
on the inhibitor leads to some different effects under
variation of some parameters. The variation of the
threshold with d1 shown in figure 7 is qualitatively simi-
lar to that in the symmetric case shown in figure 5,
although the maxima for lower thresholds are displaced
to larger n. However, the effect of increases in the input
flux of activator is very different. At small values of J1,
the variation of the threshold is similar to that shown in
figure 6, but for large J1, the higher level of activator
induces more inhibitor and the threshold level sets
intersect z* ¼ 0. Thus, depending on n, one has either
a super-threshold region from 0 to an upper value of
z, or an interior super-threshold region, surrounded by
sub-threshold regions near each boundary.

The variation of the threshold position with d2 and
J2 is less dramatic and similar to that shown in
figure 6, except for a slight decrease in the overall
response level. On the other hand, the catalytic par-
ameter also has a significant effect. As shown in
figure 7, for small values of k (n , 0), boundary pos-
itions are insensitive as expected, as this reduces to a
previous signalling scheme with independent activation
and inhibition, but if k is sufficiently large, the inhibitor
effect dominates and the threshold eventually retracts
to z ¼ 0 because of a lower level of response. However,
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between the low and high values lies a region in which
there are threshold crossings, which again leads to an
interior region of gene expression.
Interface Focus
2.2.4. A dual-activator signalling scheme
In the final example of the deterministic analysis, we
suppose that both morphogens are activators and thus
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both enhance the response, as shown in scheme IV of
table 2. Since activators are produced at both ends and
both must be sufficiently large to produce a super-
threshold response, one expects activation in a band,
the sharpness of which should be determined by the
Hill coefficients. The completely symmetric case (equal
inputs, equal decay lengths and equal Hill coefficients)
is easiest to analyse, but a parametric study in the case
of unequal parameters for the two morphogens reveals
some interesting effects. The results for variations in d1

and J1 are shown in figure 8, and the results for the
second pair are similar, relative to j ¼ 1.

In figure 8, we divide the loci for j* into two parts,
the upper, increasing part of the curve, and the lower,
flat part of the curve, and denote them by ju

* and jl
*.

At n ¼ 0, the system is symmetric and the results in
figure 8 reflect this, but as d1 is increased, the con-
centration of u1 increases rapidly pointwise, and the
left-most boundary (smallest j*) for R* ¼ 0.25 stabil-
izes at jl

* ¼ �0.2 for n . �2 0.25, and similarly for
other thresholds. However, the upper boundary ju

*

increases rapidly with d1, and reaches 1 for n small
and positive, and beyond this value, the interval (jl

*,
1] is above threshold and thus is turned ‘on’.

The results are qualitatively similar as J1 is varied.
The location of the boundary for the lowest threshold
is essentially fixed over the entire range of J1 shown,
whereas the upper boundary increases approximately
log-linearly. Thus, the location of the lower boundary
of the activated region is relatively insensitive for a
wide range of both the dimensionless diffusion rate d1

and the dimensionless input flux J1, more so for the
latter than the former, but the upper boundary moves
as either parameter is varied, rapidly in the case of d1

and more slowly in the case of J1.
3. THE ROBUSTNESS OF THRESHOLD
POSITIONS IN STOCHASTIC MODELS

3.1. Static interpretation for simple systems

Stochastic effects can play an important role in gene
expression and spatial pattern formation in development
if key components are present in low copy numbers. For
example, gene transcription in some bacteria involves
interactions between one to three promoter elements
and 10–20 copies of repressor proteins [39], while in
Interface Focus
dorsal-ventral patterning of Drosophila, it is known
that Dpp signalling increases from a low basal rate to
the maximal rate in the range of 10210 to 1029 M [40],
and at these concentrations, there are on average fewer
than 10 signalling molecules per nucleus. As chemical
reactions occur in discrete steps at the molecular level,
the processes are inherently stochastic and the inherent
‘irreproducibility’ in these dynamics has been demon-
strated experimentally for single cell gene-expression
events [41,42]. However, in general, organisms show a
remarkable degree of resilience or robustness in the face
of noise, and thus understanding the dynamics of a
system of interacting species and how noise influences
the outcome is important in numerous contexts.

To illustrate the importance of fluctuations owing to
small numbers of molecules, consider the French flag
problem discussed earlier. Figure 9 shows one realiz-
ation of a stochastic model of a linear chain of cells in
which the input flux is fixed at the left. The solid line
shows the mean of the distribution, which can be com-
puted directly as the equations are linear [43]. This
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curve also represents the steady-state distribution for the
corresponding deterministic system. Since each develop-
ing embryo represents one realization of the stochastic
patterning process, the results illustrate the difficulty
in determining the location of the boundaries between
cell types in the face of such fluctuations. Clearly, fluctu-
ations will be significant, and how the embryos cope with
them to pattern reliably is not understood. Thus, it
is important to determine how the structure of the
signalling scheme, which involves both the spatial
arrangement of morphogen sources and the structure
of the signal transduction network, affects the outcome.
Of course, the spatial variation of morphogens adds a
new level of complexity to the problem, and raises the
question as to what the role of diffusion is in filtering
the noise. It certainly removes rapidly varying spatial
components, and this has the effect of removing high-
frequency components in inputs. In this section, we
focus on the effect of different types of spatial signalling
schemes on the fluctuations in the boundary location.

To eliminate the ‘salt-and-pepper’ effect seen in
figure 9, cells must adopt the right type for their spatial
location with a high probability, and this leads to the cri-
terion defined later for the precision of boundary
location. As before, if a functional of the morphogen
level in a cell is above a threshold value, we assume
that the cell becomes type I, and otherwise, it becomes
type II. The first objective is to determine how different
response functionals couple with gradient-formation
mechanisms to determine the probability that the cell
adopts one of two types. At the multicellular level, we
expect that the domain can be divided into different
regions, in some of which the cells have a high probability
to be of type I and in others, the cells have a high prob-
ability of becoming type II. We define a type I domain as
one in which the cells have a probability greater than 0.5
of being of type I, and we therefore choose as the bound-
ary between regions of different types the locus on which
the probability is approximately 0.5. As shown below,
this criterion can be used to understand how different
response functionals affect the robustness of boundary
location. A one-dimensional compartmentalized system
with two simple signalling schemes is used to illustrate
the major ideas and conclusions.

3.1.1. The single activator scheme
We first analyse the stochastic version of scheme I
described in table 2. Assume that the system is of
length L, that the morphogen is injected at the left
end and that the opposite end is impermeable. The
morphogen undergoes degradation at a rate k through-
out the system and diffuses with diffusion coefficient D.
We discretize the system into n identical compart-
ments and assume that morphogen production occurs
in the first compartment as a Poisson process of rate
s. We denote by Ni the number of morphogen mole-
cules in the ith compartment, and then the stationary
distribution of (N1, N2, . . . , Nn) is given as:

PðN1 ¼ n1;N2 ¼ n2; . . . ;Nn ¼ nnÞ

¼
Yn
i¼1

e�Mi �M
ni
i

ni!
; ð3:1Þ
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where Mi is the mean number of molecules in the ith
compartment at the steady state [43,44].

We first calculate M ¼ (M1, M2, . . . , Mn) to deter-
mine the mean, and then we define the response
functional and use the stationary distribution to study
the boundary location. The mean concentrations M ¼
(M1, M2, . . . , Mn) satisfy the difference equation:

d2n2DnM � InM þ Sn ¼ 0; ð3:2Þ

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=ðkL2Þ

p
is as defined previously, In is the

n � n identity matrix, Sn ¼ (s/k,0, . . . , 0)0 and Dn is
the n � n matrix:

Dn ¼

�2 2
1 �2 1

1 �2 1
. .

. . .
.

1 �2 1
2 �2

0
BBBBBBB@

1
CCCCCCCA
:

If we discretize the one-dimensional domain in equation
(1.4) into n intervals using centred differences, and let ci be
the morphogen concentration in the ith interval, then:

d2n2Dnc � Inc þ Jn ¼ 0; ð3:3Þ

where Jn ¼ (2jn/(kL), . . . , 0)T. Therefore, for consistency
between the descriptions we must have:

M ¼ cNA V and s ¼ 2jn
L

NA V ;

where NA is Avagadro’s number and V is the volume of
a compartment.

The solution of (3.2) is then given by:

M ¼ s
k

Xn
j¼1

Pj

1� ajd
2 ;

where aj is the jth eigenvalue of Dn and Pj is the cor-
responding projection of Dn. There are no nilpotents
in this representation because Dn is semisimple, but the
eigenvalues and eigenvectors must be computed
numerically.

3.1.2. The stationary distribution of the cell types
As in the deterministic analysis, we scale the signal level
so that the half-maximal response in the Hill function is
at u ¼ 1. Thus, if there are ni morphogen molecules in
the ith compartment, the response is:

Ri ¼
unh

i

1þ unh
i
; ð3:4Þ

where ui ¼ ni/V and V ; NA . K . V. Let R* be the
threshold value and let u* be the corresponding concen-
tration, which is given by equation (2.8). Then the
probability that the ith compartment is of type I is
the marginal cumulative distribution:

Pi ; PrðNi �
�
u � � V

	
Þ

¼
X

ni�
�

u � �V
	 e�Mi �Mni

i

ni!
; ð3:5Þ
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spond to R* ¼ 0.5 and dash-dot blue lines correspond to R* ¼ 0.25.

−1.5 −1.0 −0.5 0 0.5 1.0 1.5
0

0.2

0.4

0.6

0.8

1.0(a) (b)

n
−1.5 −1.0 −0.5 0 0.5 1.0 1.5

n

x*

Jd

Figure 11. The variation of the boundary locations as the flux and dimensionless diffusion coefficient are varied in the stochastic
version of scheme I. The y-axis is the compartment number normalized by 200 and the x-axis indicates the variation of the
parameters. (a) d ¼ 10n21, (b) J ¼ 103þn.

Robustness of pattern formation H.-W. Kang et al. 15

 on March 22, 2012rsfs.royalsocietypublishing.orgDownloaded from 
where du* .Ve is the smallest integer greater than or
equal to u* .V. This is obtained by summing over all
but the ith factor in equation (3.1) and using the fact
that the sums are one.

Since Pi increases with Mi, and the latter is mono-
tone decreasing with i, we define the boundary as the
smallest i such that Pi , 0.5. To define the cell type,
we define the discrete random variable Qi as:

Qi ¼
1 if Ni � du� �Ve
0 otherwise:




Thus Qi is a Bernoulli random variable and

PðQi ¼ 1Þ ¼ Pi; PðQi ¼ 0Þ ¼ 1� Pi;

EðQiÞ ¼ Pi; VarðQiÞ ¼ Pið1� PiÞ :

Therefore, E(Qi) is the expectation that the ith com-
partment is of type I and Var(Qi) measures the
spread in the types of the ith compartment around
the expectation. The variance is largest for Pi ¼ 0.5,
as a reasonable definition of the boundary between
cell types requires.

To illustrate how E(Qi) and Var(Qi) depend on the
threshold, which determines u*, we show E(Qi) and
Var(Qi) as a function of the compartment number in
the one-dimensional system in figure 10. In figure 10a,
Interface Focus
one sees that E(Qi) is close to one on the left-most part
of the system and drops rapidly to zero towards the
right-hand boundary of the system for both R* ¼ 0.5
and 0.75. Using these thresholds, the system can be
divided into two regions: in region (I), most of the com-
partments are of type I, and in region (II), most of the
compartments are of type II. Correspondingly, Var(Qi)
is almost zero in the interior of the two regions, but
larger at the boundary between them, as expected.
E(Qi) varies more slowly and the variance has broader
support when the threshold is set at R* ¼ 0.25, as is to
be expected, since the threshold lies in a region where
the morphogen distribution varies more slowly.

Thus, we can conclude that setting a higher
threshold response in the single-activator system pro-
duces a better localization of the boundary between
cell types by increasing the steepness of the Pi distri-
bution and thereby decreasing the width of the
variance distribution. This conclusion will hold for
any number of thresholds, as long as they have the
same functional form of the response at each threshold.
However, there are known examples in which the func-
tional form itself changes depending on the morphogen
level, e.g. by activating at one level and inhibiting
at another, and the analysis has to be extended for
such systems.
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Figure 12. The fluctuations in the determination of cell types in the activator–inhibitor signalling system. The x-axis is the
compartment number. Here and in figure 13, the base parameters are n ¼ 200, L ¼ 400mm, V ¼ 2mm � 0.3mm � 0.3 mm,
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p
¼ 0:1, d2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=ðk2 L2Þ

p
¼ 0:1, J1 ¼ j1

L/(K1 D1) ¼ 103, J2 ¼ j2 L/(K2 D2) ¼ 103, n1,h ¼ 1 and n2,h ¼ 1.
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Since u* is given by equation (2.8), one sees that if
R* , 0.5, increasing the Hill coefficient nh in the
response function increases u*, which moves the bound-
ary location towards the activator source and
attenuates the fluctuations in the determination of cell
types. Conversely, if R* . 0.5, increasing nh amplifies
the fluctuations in the determination of cell types. There-
fore, as stated in the deterministic section, the effect of
increasing the Hill coefficient on the precision of the
determination of cells types depends on whether R* is
larger or less than 0.5. Furthermore, as u* . R*, the
boundary location defined by using the Hill function is
closer to the activator source than that defined by
using the morphogen level directly, and therefore passing
the fluctuating morphogen concentration through the
nonlinear response filters the noise and reduces the
spread of the variance in the determination of cell types.

To illustrate that the general conclusions concerning
the dependence of the threshold location on parameters
reached for the deterministic system also apply here, we
show in figure 11 how the boundary location deter-
mined by Pi ¼ 0.5 changes as the dimensionless
diffusion coefficient d and the dimensionless flux J are
changed. For comparison with the deterministic
model, we scale the compartment number from zero
to one. Figure 11 shows that the dependence of the
boundary location on J and d is qualitatively the
same as that in the deterministic model, but a more
precise comparison will be made elsewhere.

Since R* is a deterministic function of the morpho-
gen level u, the consistency between the stochastic
predictions (figure 11) and the deterministic predictions
(figure 4) indicates that the deterministic model is suf-
ficient to study the sensitivity of the boundary location
to parameters if the downstream network is determinis-
tic, or if it is stochastic but relaxes rapidly. As in the
deterministic system, adjusting the threshold level can
reduce the fluctuations in the determination of cell
types, and using Hill functions to define the down-
stream response rather than the morphogen level can
also be used to reduce the variation in the boundary
location. Hill functions are widely used in gene control
networks to capture the fast reactions between DNA
and transcription factors, but a more detailed multi-
scale stochastic analysis is needed to justify treating
Interface Focus
this step deterministically [45], especially as there are
only a few copies of most genes.
3.1.3. The activator–inhibitor signalling scheme
Next, we consider the independent activator–inhibitor
network (scheme II) in one space dimension, and as
before, we discretize the system into n identical compart-
ments. The activating morphogen is produced in the first
compartment with rate s1 and the inhibiting morphogen
is produced in the nth compartment with rate s2. Par-
ameters such as decay constants and diffusion rates are
as defined in §2.2.2. Let N1,i and N2,i denote the
random numbers of the activator morphogen molecules
and the inhibitor morphogen molecules in the ith com-
partment, respectively. The stationary distribution of
N1,i and N2,i can be derived as in the single-activator
system. If there are n1,i activator molecules and n2,i

inhibitor molecules in the ith compartment, the response
of the ith compartment is defined as follows:

Riðn1;i; n2;iÞ ¼
u

nh1
1;i

1þ u
nh1
1;i

� 1

1þ u
nh2
2;i

;

where

u1;i ¼
n1;i

V1
and u2;i ¼

n2;i

V2
;

Vi ; NA . Ki . V and K1, K2, nh1
and nh2

are constants.
Letting R* be the threshold value, the probability of
the ith compartment being of type I is:

Pi ¼
X

Riðn1;i ;n2;iÞ�R�
PðN1;i ¼ n1;i;N2;i ¼ n2;iÞ

¼
X

Riðn1;i ;n2;iÞ�R�
PðN1;i ¼ n1;iÞPðN2;i ¼ n2;iÞ:

In this system, the threshold depends on both species
and therefore we define the Bernoulli variable that
determines the cell type as:

Qi ¼
1 if RiðN1;i;N2;iÞ � R�
0 otherwise;




and we show E(Qi) and Var(Qi) for the one-dimen-
sional system in figure 12. As in figure 10, the
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one-dimensional system can be divided into two regions.
In the type I region, E(Qi) is close to 1 and Var(Qi) is
close to 0, while in the type II region both E(Qi) and
Var(Qi) are close to 0. The boundary defined by the
threshold Pi ¼ 0.5 lies between these two regions. How-
ever, in contrast with the single-activator scheme, in
figure 12, the distribution of the variance is much
more concentrated for the two lowest thresholds,
whereas in figure 10, Var(Qi) has broader support for
R* ¼ 0.25. The deterministic analysis of the single-
activator system predicts that the sensitivity of the
Interface Focus
location of the threshold is inversely proportional
to the gradient of the morphogen (cf. equation (2.7)),
and therefore one expects a broader distribution of
the variance and larger fluctuations in the position for
lower thresholds. In the activator–inhibitor system,
the effect of the inhibitor is strongest where the
activator concentration is lowest, and this sharpens
the spatial distribution of the variance significantly.
Thus, the addition of the inhibitor increases the pre-
cision with which the boundary between cell types
is determined.
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In figure 13, we show how the boundary location
changes as the dimensionless flux and diffusion coeffi-
cients change. To be consistent with the deterministic
model, we scale the compartment number from 0 to
1. Just as in the single-activator case (cf. figure 11),
the dependence of the boundary location on J1, J2, d1

and d2 is qualitatively the same as that in the determi-
nistic model. The addition of one inhibitor sharpens the
signal gradient and reduces the fluctuations in the
determination of cell types. Therefore, in addition to
the downstream network, the upstream signalling
scheme is very important for signal precision.
location

Figure 15. The mean concentration of P for the base values of
all parameters.
3.2. A model for activation of receptor
production by morphogen-bound receptors

The final example is a one-dimensional system with
morphogen produced at one end and a feedback loop
catalysing the production of receptors throughout the
domain (cf. figure 14a). This model is used to under-
stand how the feedback loop couples with other
reaction and diffusion processes to affect the precision
of the boundary location. It provides a simplified
description of systems such as the hedgehog-patched
system illustrated in figure 1, which arises in pattern
formation in the Drosophila wing disc and in the ver-
tebrate limb. Denote by M, R, MR and P the
morphogen, receptor, morphogen-bound receptor and
downstream product protein, respectively, in the kinetic
scheme shown in figure 14b.

Here, f( p) is a function of the concentration of the
protein P that controls the production of the receptor
R. Let m, r, mr and p denote the concentrations of M,
R, MR and P at position x at time t, and assume that
morphogen M diffuses throughout the system with dif-
fusion coefficient Dm. The governing deterministic
equations of the system are as follows:

@m
@t
¼ DmDm � dmm � kbm � r þ kumr

@r
@t
¼ sr � dr � r � kbm � r þ kumr þ f ð pÞ
@mr
@t
¼ kbm � r � kumr � dmrmr

@p
@t
¼ spmr � dpp

and �Dm
@m
@x

����
x¼0
¼ jm; Dm

@m
@x

����
x¼L
¼ 0;

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð3:6Þ

where

f ð pÞ ¼ Cp �
pnh

Knh þ pnh
:

In the following simulations, we always begin with a
zero initial concentration for all species.

Since the system is nonlinear, we cannot determine
the morphogen profiles analytically, even in a station-
ary state, and we use the Gillespie stochastic
simulation algorithm [46] to study the distribution of
the boundary location numerically. Here, we consider
a line of 25 compartments, where each compartment
is a rectangular domain of dimension 0.3mm � 0.3 mm
�3mm. Morphogen M is produced in the first
Interface Focus
compartment, and the base values of parameters are
as follows:

jm ¼ 9:9� 10�3 mM s�1; sr ¼ 6:2� 10�5 mM s�1;

sp ¼ 1 s�1

dm ¼ 0 s�1; dr ¼ 6:25� 10�4 s�1;

dmr ¼ 6:9� 10�2 s�1; dp ¼ 6:25� 10�3 s�1

Dm ¼ 1mm2 s�1; kb ¼ 7:15� 10�2mM�1 s�1;

ku ¼ 6:25� 10�4s�1;

Cp ¼ 1:1� 10�3 mM s�1; K ¼ 4:8� 10�2 mM ;

nh ¼ 3:

We use the level of the protein P as a surrogate
for the response and therefore define the cell type
by the concentration of P—if it is above K, the com-
partment is defined as type I; otherwise, it is
defined to be type II. We use the compartment of
type II that is closest to the source of M to define
the boundary. Figure 15 shows the mean concen-
tration profile of P, and from this, see that for the
base values of the parameters the boundary is at the
seventh cell.

Simulations in which one parameter is varied and the
remainder fixed show how the distribution of the
boundary locations is affected by changes in the par-
ameters. Figure 16a–c show the effect of changes in
the parameters Dm, kb and dm, which control diffusion,
binding and decay, respectively, of free morphogen.
Increasing Dm or decreasing kb and dm flattens the pro-
file of M and thereby shifts the mean outward and
increases the spread of the variance in the distribution
of boundary locations. The shift of the mean is most
pronounced for Dm, whereas the increase in the spread
of the variance is most pronounced for changes in the
on-rate kb. The latter stems from the fact that reducing
kb increases the spread of the morphogen and decreases
the production of P. However, decreasing dm does
not affect the boundary location significantly, as can
be seen in figure 16c, which indicates that the degra-
dation rate of the free morphogen has little effect for
the range considered.
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Figure 16d shows that changing the degradation rate
of the receptors has a much larger effect on the bound-
ary location. For large dr (n ¼ 1 in that panel), the
location is widely distributed, but as dr decreases, the
threshold location centres at around 15 for n ¼ 2 and
then decreases steadily as dr is decreased further. This
can be understood by noting that as dr is decreased,
the level of the receptors and the protein P increases,
which thereby increases the feedback, and as a result,
the boundary between cell types moves towards the
source of the morphogen.
Interface Focus
Decreasing the degradation or internalization rate
dmr of bound receptors will lead to an increase in the
level of bound receptors MR, and hence increase the
level of P, which moves the location of the boundary
away from the morphogen source, as one sees in
figure 16e. When dmr is greater or equal to 6.9 s21

(n ¼ 1 in that panel), the signal density in all compart-
ments is below the threshold value. When dmr is less
than that (n � 2), the signal density near the morpho-
gen source is above the threshold value and the
boundary location falls into the first few compartments
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near the source. The distribution of locations is
relatively narrow for this parameter.

Figure 16f–h show how the parameters in the Hill
function affect the distribution of the boundary
location. One finds that when K 
 4.8 � 1022 mM,
changing K and n does not change the profiles of P
much (results not shown). Therefore, the distribution
of the boundary location does not change much in
figure 16f,g. When K ¼ 4.8mM (n ¼ 1 in panel ( f )),
saturation in f( p) is never reached and the gradient in
the profile of P is shallow and the distribution of bound-
ary locations is broader. Similarly, as Cp decreases from
1.1 � 1022 to 1.1 � 1024 mM s21, the profile of P
becomes flatter and the boundary location moves
away from the morphogen source and becomes more
broadly distributed. However, when Cp is less than
1.1 � 1024 mM s21, the level of receptors is small, the
profile of P is low and almost flat, and the
distribution of locations is very broad.

In conclusion, the effect of Dm, dm and dmr on signalling
is similar to their effect in the linear systems,while the effect
of dr on the boundary location can be biphasic. Moreover,
the effect of Cp can be much larger than those of K and
n, as Cp determines the strength of the feedback loop.
4. CONCLUSIONS

Despite the fact that many have analysed the effect of
noise on the location of a specified threshold morphogen
level [47–50], how developing systems reliably partition
a tissue into distinct cell types is still poorly understood.
Here, we have shown, both by a deterministic and a sto-
chastic analysis, how the number and location of
morphogen sources and the downstream interpretation
of the morphogen levels affect the precision with which
the boundary between cell types can be determined.

In §1.2, we showed how level sets propagate in reac-
tion–diffusion systems and suggested how dual
morphogen systems can lead to advance and retreat of
threshold levels, depending on how rapidly different
morphogens relax to a quasi-steady state. This occurs
only when several morphogens are involved, and may
shed light on the observed variation in the positions
of gap gene expression. This analysis may also provide
further insight into the role of positive feedback in
localizing gene expression in other systems [11].

While cells exposed to morphogens sample their
environment continuously, the establishment of morpho-
gen distributions is often sufficiently rapid when
compared with the time scale of gene expression to justify
a static analysis, as was done in §2.1. Our objective
throughout was to understand how the placement of the
morphogen source(s) and the type of interpretation func-
tion used as the response affect the location of specified
level sets of the response. This analysis was only carried
out in one dimension, but the general approach can be
used in two or three dimensions as well. This approach
requires both the determination of the level sets of the mor-
phogen(s) and those of the response, and in the
deterministic example studied here, there was no feedback
from the downstream response to the signal transduction
steps. This simplified the analysis, but the inclusion of
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feedback is important in many cases, and one example
was studied in the stochastic analysis in §3.2.

We found that the sensitivity of the response, as
measured by the Hill coefficient, has little effect on the
robustness of threshold location when thresholds are
set at levels at which the morphogen gradient is large,
as predicted by the analysis of the single-activator
system. However, in results not shown, we find that
when the threshold is set at a level for which the morpho-
gen profile varies slowly, the sensitivity of the response
can have a large effect. Probably both mechanisms are
used in different systems, but there is little quantitative
data available on this. Using four simple examples with
an activator and an inhibitor, we have shown how the
boundary positions change as we vary parameter
values. The least robust to changes in the dimensionless
diffusion coefficient(s) and the dimensionless input
flux(es) is the single activator system. Simply adding
an inhibitor produced on the boundary opposite to the
activator production can significantly improve the
robustness with respect to the di s, but the effect on the
sensitivity with respect to input fluxes is less dramatic.
The example using an incoherent feedforward network
showed a very interesting effect, in that for certain par-
ameters, the activated (above threshold) region lay in
an interval interior to the domain (cf. figure 7). This
can be understood by realizing that if the activator
also catalyses production of the inhibitor, then the
inhibitor will become large in regions of high activator
and diminish the response.

In the stochastic framework, we developed a new and
novel method for defining the boundary between cell
types by appropriately quantizing the probability of
exceeding a specified threshold in the number of a
downstream molecule, and we have shown that the pre-
dictions are consistent with those of a deterministic
model. We also analysed a positive feedback system
and showed that the model predicts robustness with
respect to certain parameters such as the diffusion coef-
ficient (when small enough), the degradation rate of the
ligand-free receptor and several parameters in the feed-
back function. As the stochastic analysis also predicts
the variance in the underlying distribution, one can
predict the variations in the location of the boundary
between cell types. One important conclusion not
obtained from the deterministic analysis is that the
shape of the profile of E(Qi) is critical for the precision
of determining the boundary between cell types, as
E(Qi) determines Var(Qi) in our approach.

As an example of the stochastic effects in boundary
determination, segment determination in Drosophila,
which is governed by the expression of the pair-rule
and segment polarity genes, is a quasi-one-dimensional
process, in that it varies in the anterior–posterior direc-
tion. The network governing expression of the segment
polarity genes is reasonably well understood and pre-
dicts robust boundary placement given the correct
initial conditions [51,52]. Nonetheless, the location of
the boundary of parasegments in adjacent lines of
cells can vary at an earlier stage in which the
pair-rule genes are expressed (figure 17), but detailed
statistics of this variation have not been reported. The
approach developed here could be used to predict the
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Figure 17. Boundary formation owing to expression of pair-rule genes in Drosophila at an (a) early and (b) later stage. Blue, fushi
tarazu; pink, even-skipped; and purple dots, engrailed. Reproduced with permission from Wolpert et al. [53].
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variations from the known network of pair-rule genes
and those predictions compared with reported obser-
vations. Of course, the one- or two-step processes
studied here (reading of either the morphogen directly
or passing the signal through an interpretation func-
tion) will not be correct for these variations in
boundary position, and further downstream mechan-
isms are needed. A second step may refine the initial
location by interactions between adjacent rows of
cells, either via cell sorting based on the expression of
surface markers, or by subsequent changes in gene
expression triggered by feedback circuits.

This publication was based on work supported in part by
NIH grant no. GM29123 and in part by award no. KUK-C1-
013-04, made by the King Abdullah University of Science and
Technology (KAUST), and by the Mathematical Biosciences
Institute.
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