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Abstract Fluorescence recovery after photobleaching (FRAP) is used to obtain quan-
titative information about molecular diffusion and binding kinetics at both cell and
tissue levels of organization. FRAP models have been proposed to estimate the diffu-
sion coefficients and binding kinetic parameters of species for a variety of biological
systems and experimental settings. However, it is not clear what the connection among
the diverse parameter estimates from different models of the same system is, whether
the assumptions made in the model are appropriate, and what the qualities of the esti-
mates are. Here we propose a new approach to investigate the discrepancies between
parameters estimated from different models. We use a theoretical model to simulate
the dynamics of a FRAP experiment and generate the data that are used in various
recovery models to estimate the corresponding parameters. By postulating a recovery
model identical to the theoretical model, we first establish that the appropriate choice
of observation time can significantly improve the quality of estimates, especially when
the diffusion and binding kinetics are not well balanced, in a sense made precise later.
Secondly, we find that changing the balance between diffusion and binding kinetics by
changing the size of the bleaching region, which gives rise to different FRAP curves,
provides a priori knowledge of diffusion and binding kinetics, which is important for
model formulation. We also show that the use of the spatial information in FRAP
provides better parameter estimation. By varying the recovery model from a fixed the-
oretical model, we show that a simplified recovery model can adequately describe the
FRAP process in some circumstances and establish the relationship between param-
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eters in the theoretical model and those in the recovery model. We then analyze an
example in which the data are generated with a model of intermediate complexity and
the parameters are estimated using models of greater or less complexity, and show
how sensitivity analysis can be used to improve FRAP model formulation. Lastly, we
show how sophisticated global sensitivity analysis can be used to detect over-fitting
when using a model that is too complex.

Keywords FRAP analysis · Parameter estimation · Sensitivity analysis · Wing disc

1 Introduction

Pattern formation in developmental biology is currently an active interdisciplinary area
between biologists and physical scientists because the interaction of experimentation
andmodelinghas produced significant new insights into a number ofmodel systems.At
the cell and tissue levels, pattern formation involves several distinct elements: a signal
of some sort, signal relay either via direct communication between cells or via a longer-
range transport process such as diffusion, and mechanisms for detecting that signal
and acting on it. Turing (1952) called the signals morphogens, and his seminal paper
and the later paper byWolpert (1969) provided a framework within which to formulate
hypotheses about pattern formation and differential gene expression. The availability
of experimental data for Bicoid (Driever and Nüsslein-Volhard 1988a, b) and other
morphogens (Lander 2007; Reeves et al. 2006) has led to a shift from predominantly
phenomenological models of pattern formation to mechanism-based models, the pur-
poses of which are not only to explain the existing observations within a mechanistic
framework, but also to serve as tools for discovery by experimentalists. Mathematical
models for Drosophila oogenesis, Bicoid patterning, BMP-mediated patterning, pla-
nar cell polarity, EGF patterning, and segment polarity have all led to experiments that
may not have been carried out otherwise and contributed greatly to our understanding
of those systems (Shvartsman et al. 2002; Amonlirdviman et al. 2005; Yakoby et al.
2005; Goentoro et al. 2006; Umulis et al. 2006; Perkins et al. 2006; Serpe et al. 2008).

An important and often difficult step in testing models against experimental obser-
vations is the determination of model parameters from limited data when details of
the mechanistic steps involved are not known. In particular, it is difficult to determine
whether the postulated model is too simple or too complex for the given data. Our
objective here is to show how using different combinations of spatial and temporal
data can improve parameter estimation in a postulated model, and how postprocessing
with sensitivity analysis can be used to address the complexity issue. An example
described later that arose from studies of the Drosophila wing disc (Kicheva et al.
2007; Zhou et al. 2012) illustrates this in detail, which is also the motivation of our
study in FRAP.

1.1 Background on FRAP and an Outline of the Paper

FRAP is awidely used technique for quantitativemeasurement ofmolecular dynamics.
The literature on FRAP analysis is large and can only be touched upon here, but a
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Fig. 1 A typical recovery curve for a FRAP experiment. After subtraction of the background fluorescence
and correction of the observed photobleaching, a FRAP recovery curve is normalized by the fluorescent
intensity before bleaching. See text for explanation of the symbols

recent review is given in Beaudouin et al. (2013). Some background information
relevant to our analysis is given in the Appendix, but the essential facts needed are
as follows. In a FRAP experiment, the fluorescence-tagged molecules in a region of
interest (ROI) are first photobleached, and then the recovery of fluorescence within
the ROI due to transport from the surrounding region is recorded (Braeckmans et al.
2003). By fitting the recovery data to a mathematical model, parameters that measure
transport due to diffusion, binding and chemical reactions can be estimated. The data
obtained are usually averaged over the ROI and are presented as a recovery curve
as shown in Fig. 1. The notation used in the figure is as follows. Let b = �ROI/�

denote the ratio of the area of the ROI to the area of the entire domain. Let a be the
ratio of the remaining fluorescent intensity after bleaching to the fluorescent intensity
before bleaching, assuming that bleaching is homogeneous and instantaneous, and let
c be the fraction of fluorescent molecules which are immobile on the timescale of the
experiment. The loss of fluorescence due to bleaching reflected in a recovery curve is
b(1 − a), and the immobile fraction outside the ROI is c(1 − b).

The FRAP recovery curve is usually normalized as

Fnorm(t) = F(t) − F(T0)

(1 − b)(1 − c) + ab
,

whereinF is the fluorescence intensity and t ≥ T0+T1 (Hinowet al. 2006;Braeckmans
et al. 2007). Later, we assume that bleaching is complete, i.e., a = 0, and that no
immobile fraction exists, i.e.,c = 0.

The parameter estimation step consists in fitting these data with a ‘suitable’ model,
but since the recovery portion typically can be fit with a sum of time-dependent expo-
nential terms (Mai et al. 2011), this leaveswide latitude as towhat underlying processes
are to be included, and once that is fixed, whatmeaning can be ascribed to those param-
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eters. Traditionally, FRAP experiments were used for cellular- or subcellular-level
processes that occur on short timescales, and by fitting parameters such as diffusion
coefficients and binding rates to the data, properties of cell- or subcellular-level pro-
cesses could be inferred. More recently, FRAP has been used for tissue-level studies
that occur on a long timescale, where the results may be influenced by the interactions
of production, transport, decay, and other processes (Kicheva et al. 2007; Zhou et al.
2012; Müller et al. 2012, 2013), and a major issue in the use of FRAP in this con-
text is what model should be used as the basis for parameter estimation. This latitude
can lead to wide discrepancies in the estimated parameters, since one recovery model
may omit a process included in another. Even if the recovery models are identical, the
parameter estimates may vary widely due to differences in the assumptions about the
parameters, as will be described in an example later. Therefore, to the extent possible,
a careful assessment of whether and how the transport and reaction processes couple
should be made before a FRAP model is formulated, because otherwise the results
may bear little relationship to the actual processes that determine the recovery curve.

To demonstrate the effect of different model assumptions and different ways of
utilizing the data from a FRAP experiment, we avoid the above difficulties of unknown
mechanisms and other factors by generating data computationally for a known model
with known parameters and then testing our recovery of parameters from the data. By
using a recovery model identical to the theoretical model, we show that the choice of
observation time can significantly affect the estimates. We also show that changing
the bleaching region to rebalance the diffusion and binding processes can significantly
improve the estimates. By varying the recovery model from the theoretical model,
we investigate whether the simplified recovery model can, in some circumstances,
appropriately describe the FRAP process, the relationship between parameters in the
theoretical model and those in the recovery model, and under what conditions some
processes can be neglected in the recovery model. Lastly, we introduce sensitivity
analysis as a technique to better understand FRAP data and to improve FRAP model
formulation.

In the following section, we begin with a simple example in which the parameters
of a complex model can be related to parameters in a simplified description. We then
develop and solve the evolution equation from which the parameters are estimated in
a standard experiment, and we describe the computational setup and the analysis of
the data. We provide a detailed analysis of simplified diffusion–reaction models of
FRAP and use these to show how the neglect of processes in FRAP leads to erroneous
estimation. For simplicity, we assume throughout that diffusion is the only spatial
transport process involved (internalization of receptor–ligand complexes is allowed,
as discussed later). We provide the solution for models with influx (or production)
and decay. We further restrict attention to geometrically one-dimensional systems,
but the method can easily be generalized to 2D or 3D and can be used to study
more complicated questions in FRAP, for example, when binding is nonlinear. We
believe our analysis advances our understanding of the limitations of the existing
FRAPexperiments andmodels, helps to reconcile the parameter estimates in biological
systems, and will direct the improvement of the FRAP technique.
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2 The Mathematical Framework for Parameter Estimation and Model
Testing

We begin the mathematical description of FRAP with a simplified geometric descrip-
tion of a wing disc for the purpose of (i) emphasizing the assumptions implicit,
but rarely discussed, in many FRAP analyses, and (ii) showing that coefficients
extracted for a simple description may reflect more complicated processes than the
usual interpretation of parameters would suggest. A general formulation of the linear
reaction–diffusion systems that govern FRAP analysis is given in Appendix 1.1. As
shown in Fig. 2, the geometry of the disc is complex, and morphogen transport in the
disc may involve several different mechanisms that are discussed later. This gives rise

Fig. 2 Patterning of epithelial cells in the Drosophila wing imaginal disc. The morphogen Dpp patterns
the anterior/posterior compartments of the Drosophila wing imaginal disc in a top view showing the pouch
and b slice (along dotted line in a) showing the geometry of the columnar cells. c, d Dpp establishes a non-
uniform distribution to pattern the anterior/posterior axis by transport and reaction. Numerous processes
may contribute to formation of the Dpp distribution, including diffusion around columnar cells (c) or
transcytosis through columnar cells (d). Dpp secreted in the basolateral space cannot enter the lumen and
vice versa due to the presence of septate junctions (SJ) in d. From Othmer et al. (2009) with permission
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Fig. 3 The geometry of a thin fluid layer over receptors embedded in a surface. Modified from Umulis
et al. (2008)

to challenges of model determination, parameter estimation, and interpretation when
using FRAP. However, a careful analysis with detailed model testing can provide
significant insights into the underlying mechanism.

For simplicity, we consider a thin fluid layer (Fig. 3), equivalent to the lumen in the
wing disc, and admit diffusion, binding to surface-bound receptor, and internalization
and re-expression of receptors to emphasize assumptions implicit in most analyses.
We assume that the surface reactions involve only binding to a receptor and decay of
the receptor–ligand complex, and to simplify the analysis, we suppose that whenever
a receptor–ligand complex is internalized it is replaced by a bare receptor (Umulis
et al. 2006). We measure receptor and receptor–ligand concentrations in molecules or
moles per unit area, and we assume that the steps by which an occupied receptor is
internalized and a free receptor is recycled to the surface reach a steady state rapidly
compared with other processes, which implies that the total amount of receptor is
constant at every point on the surface z = 0, i.e., R + RC = RT , where RT is a
constant. We further assume that the turnover is sufficiently rapid to balance the influx
at the boundary so that a steady state of the full system exists.

The surface z = 0 can be regarded as the outer cell boundary of a sheet of cells
covered by a thin layer of fluid, as in a simplified description of the Drosophila wing
disc. The lengths in the x, y, and z directions are Lx , Ly, and Lz , respectively, and
we let C be the concentration of a morphogen in the fluid and R the concentration of
receptor on the surface z = 0. Suppose there is a fixed influx of C on the boundary
x = 0 that is uniform in the y and z directions, and zero flux on the remaining faces
except z = 0. Then, the governing equations can be written as follows.

∂C

∂t
= D�C in � (1)

∂R

∂t
= −k+RC + (k− + ke)RC on z = 0 (2)

∂RC

∂t
= k+RC − (k− + ke)RC on z = 0 (3)

−D
∂C

∂z
= −k+RC + k−RC on z = 0 (4)

−D
∂C

∂x
= j on x = 0 (5)
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D
∂C

∂x
= 0 on x = Lx (6)

where k+ and k− are the binding and dissociation rates between ligand and receptor,
and ke is the decay rate of the receptor–ligand complex.

This system can be simplified by defining the dimensionless variables u = C/C0,
v = R/RT , and w = RC/RT , the scaled coordinates ξ = x/Lx , η = y/Ly , and
ζ = z/LZ , and the dimensionless time τ = t/T . The system then becomes

∂u

∂τ
= DT

L2
x

(
∂2u

∂ξ2
+ L2

x

L2
y

∂2u

∂η2
+ L2

x

L2
z

∂2u

∂ζ 2

)
in � (7)

∂v

∂τ
= −T k+C0RT uv + T (k− + ke)(1 − v) at ζ = 0 (8)

−
(
DC0

Lz

)
∂u

∂ζ
= −k+RTC0uv + k−(1 − v) at ζ = 0 (9)

−∂u

∂ξ
= j Lx

DC0
at ξ = 0 (10)

∂u

∂ξ
= 0 at ξ = 1 (11)

In view of the boundary conditions, the solution must be constant in the η direction at
steady state, and we assume this for the transient problem as well. Furthermore, since
the fluid layer is thin Lz � Lx , Ly , and the equations can be averaged over ζ . In this
case, the equations reduce to

∂ ū

∂τ
=

(
DT

L2
x

)
∂2ū

∂ξ2
− T k+RT ūv̄ +

(
T k−RT

C0

)
(1 − v̄) in �

∂v̄

∂τ
= −T k+C0ūv̄ + T (k− + ke)(1 − v̄) at ζ = 0

(12)
−∂ ū

∂ξ
= j Lx

DC0
at ξ = 0

∂ ū

∂ξ
= 0 at ξ = 1

where ū and v̄ are the averages over ζ . At steady state, the system reduces to

d2u

dξ2
= γ 2 u

K + u
in �

−du

dξ
= J at ξ = 0 (13)

du

dξ
= 0 at ξ = 1
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where u now stands for the average over ζ , and

K = k− + ke
k+C0

γ 2 = keRT L2
x

DC0Lz
J = j Lx

DC0
.

If u � K , whichmeans that the dimensionless concentration is far from the saturation
level, this reduces to

d2u

dξ2
= δ2u in �

−du

dξ
= J at ξ = 0 (14)

du

dξ
= 0 at ξ = 1

where

δ2 = kek+

k− + ke

RT L2
x

DLz
≡ ks

RT L2
x

DLz
.

The dimensionless solution u is

u(ξ) = J

δ

[
eδ(1−ξ) + e−δ(1−ξ)

eδ − e−δ

]
= J

δ
φ(ξ). (15)

The stationary distribution is characterized by two dimensionless parameters: δ and
J . The first is the square root of the ratio of a diffusion timescale τD and a kinetic
timescale τK ≡ k−1, and the second is the ratio of the input flux j to a characteristic
velocity defined by the diffusion constant and the decay rate. The former enters in the
shape function φ via the exponential terms and determines how rapidly themorphogen
concentration decays in space: the larger the δ, the more rapidly the solution decays
from the value at the source. Thus, reducing the kinetic scale by reducing the half-life
of the morphogen, or increasing the diffusion timescale by decreasing the diffusion
constant, leads to sharper, more rapidly decreasing spatial profiles. It should also be
noted that the second term in both the numerator and denominator of (15) arises from
the finite length of the domain and can only be neglected if δ � 1.

While it is sometimes assumed that δ also controls the approach to the steady state,
the following shows that this is not correct. To illustrate this as simply as possible,
consider the transient version of (14), which reads

∂c

∂τ
= ∂2c

∂ξ2
− δ2c ξ ∈ (0, 1)

− ∂c

∂ξ
= J ξ = 0 (16)
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∂c

∂ξ
= 0 ξ = 1

c(ξ, 0) = 0. ξ ∈ (0, 1)

The approach to steady state is governed by the evolution of the differencew ≡ u−us ,
where us is the steady-state solution (15). This satisfies (16) with J = 0 andw(ξ, 0) =
−us(ξ), and the solution is

w(ξ, τ ) =
∞∑
n=1

ane
−λnτ cos nπξ, (17)

wherein the constants an are determined by the steady-state solution. The exponential
decay rates λn are given by

λn = (nπ)2 + δ2 n = 1, 2, . . . (18)

and the smallest of these, λ1, defines the relaxation time of the slowest decaying mode
cos(πξ) in the transient solution. The reciprocal of this is a dimensionless relaxation
time, and converting it to dimensional form, one finds that the relaxation time to the
steady state is given by

TR ≡ 1

Dπ2

L2 + k

= 1

π2

τD
+ 1

τK

. (19)

This shows that either morphogen diffusion or morphogen decay can dominate the
relaxation process, and their effect is additive. The relaxation time increases with
a decrease in D or an increase in L , while the effect of the morphogen decay is
independent of the space scale. In the context of the Drosophila wing disc, the half-
life of the morphogen Dpp has been estimated as 45min, and the diffusion coefficient
is estimated to be 0.1µm2/ s (Kicheva et al. 2007). For a disc of 50µm, the diffusion
factor in the denominator of (19) is 0.0204, while the second factor is 0.022, which
leads to a relaxation time of about 24 minutes. On the other hand, if the diffusion
coefficient is 20µm2/ s (Zhou et al. 2012), the relaxation time is reduced to∼0.25min.
While the disparity in this example arises from the different choices of the diffusion
coefficient, in general the relaxation to a steady state following a perturbation can be
used experimentally to gain additional information about the underlying processes.

In case the smaller value of D obtains, diffusion and decay are balanced on the
scale of the wing disc, but in other systems, the conclusion may be quite different. In
the context of Drosophila embryonic development, the half-life of the transcription
factor Bicoid has been estimated to range from ∼8 min (Spirov et al. 2009) to less
than ∼30 min (Grimm et al. 2010), and if we use 20 min as an intermediate estimate,
k = 0.05 min−1. Estimates of the diffusion coefficient range upward from 0.3µm2/ s
(Grimm et al. 2010), and thus for the lowest D and an embryo length of L = 500µm,
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Fig. 4 (Color figure online) Left A region of the wing disc that is scanned [from Kicheva et al. (2007) with
permission]. Green indicates GFP-labelled Dpp, the white box is the ROI, and the scale bar is 10µm, right
adapted from Hinow et al. (2006). (top) The computational approximation of the disc as an ellipse and the
rectangular ROI, (bottom) the initial data along a one-dimensional cross section of the region

the relaxation time of the slowest decaying mode is∼20 min and is determined almost
solely by the degradation rate.

Several assumptions are noteworthy. Firstly, u represents the average concentration
over the thickness of the fluid layer due to the averaging over ζ . This is an appropriate
description for most FRAP experiments, in which averaging over the ROI precedes
the parameter estimation, but it must be noted that receptor concentrations have to
be defined appropriately and that the interpretation of binding constants reflects this.
Secondly, though the steady-state problem with binding and internalization leads to
the simple problem at (14), the parameter δ comprises several parameters that describe
binding and internalization, and thus interpreting this as a simple decay constant is
generally not valid.

2.1 The Computational FRAP Setup

To investigate different approaches to the analysis of FRAP data, we use a computa-
tional model to generate the FRAP data, which facilitates evaluation of the effect of
experimental parameters such as the size of the ROI and the time of observation. In
our simulations, the FRAP data are generated by using equations of the form in (34),
except that real time is used, i.e., without scaling.

The geometry of the tissue can be described as an approximately rectangular com-
partment, and when the bleaching is done in a stripe as in Fig. 4 (Kicheva et al. 2007;
Zhou et al. 2012), the concentration of fluorescent molecules varies primarily in one
direction (x above). Variations are negligible in the y direction under no-flux boundary
conditions in that direction and are typically recorded as the maximum projection in
the z direction. Under these conditions, the data analysis can be reduced to a one-
dimensional problem. Accordingly, in this paper the mathematical formulation and all
simulations are done only in 1D. However, the conclusions and numerical procedure
in our 1D system can be applied and easily extended to 2D and 3D systems.

FRAP recovery data are the spatial average of the sum of free and bound fluores-
cence in the observation region, which may be smaller than the ROI, so suppose that
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Fig. 5 The computational algorithm used throughout the paper

u1 represents the free molecule and other species ui , i > 1, are bound species. Then
the fluorescence intensity as a function of time τ is described as

ui (τ ) = 1

lR − lL

∫ lR

lL
ui (ξ, τ )dξ FRAP(τ ) =

m∑
i=1

ui (τ ) (20)

where 1 > lR = LR
L > lL = LL

L > 0. Here L is the overall size of the system,1

and LL and LR define the observation region. The problem of parameter estimation
can be considered as an inverse problem or optimization process, and the algorithm
underlying our method is shown in Fig. 5, and the mathematical details are given in the
next section. In practice, the number of terms (M) that are retained in the eigenfunction
expansion is determined by setting a threshold for changes and increasing the number
of terms until the parameter estimates do not change within the threshold.

Another issue that arises in parameter estimation concerns the initial condition for
the recovery equation (Mueller et al. 2008). It is well known that during the bleaching
phase, bleached andunbleachedmolecules diffuse in andout of theROI, and this results
in a transition region with various levels of photobleaching between the bleached
and unbleached region. The size of the intermediate region depends on the molecular
diffusivity, size of the bleaching region, and the bleaching time. It may have substantial
effects on the estimation of molecular mobility and binding kinetics. In this paper, we

1 The computations that follow are based on a diffusion coefficient of 10µ2/s and L = 200µ, unless
otherwise noted.

123



Improving Parameter Inference from FRAP Data: an... 459

Table 1 Summary of the models for the following analysis and simulations

FRAP models for closed systems FRAP models with boundary
fluxes

One-component model Model B1 (4.2.1) Model B2 (4.2.3)
∂u1
∂τ

= D1	2u1
∂u1
∂τ

= D1	2u1 − kdu1

−D1
∂u1
∂ξ

|ξ=0 = 0 −D1
∂u1
∂ξ

|ξ=0 = J

−D1
∂u1
∂ξ

|ξ=1 = 0 −D1
∂u1
∂ξ

|ξ=1 = 0

Two-component model Model 1 (3.1.1, 4.1.1–4.1.5, 4.2.1,
4.2.2)

Model 3 (3.2.1, 4.1.6, 4.2.3)

∂u1
∂τ

= D1	2u1 − k+u1 + k−u2
∂u1
∂τ

= D1	2u1 − k+u1 + k−u2
∂u2
∂τ

= k+u1 − k−u2
∂u2
∂τ

= k+u1 − k−u2 − kdu2

−D1
∂u1
∂ξ

|ξ=0 = 0 −D1
∂u1
∂ξ

|ξ=0 = J

−D1
∂u1
∂ξ

|ξ=1 = 0 −D1
∂u1
∂ξ

|ξ=1 = 0

Three-component model Model 2 (3.1.2, 4.1.6, 4.2.2) Model 4 (3.2.2, 4.1.6, 4.2.3)
∂u1
∂τ

= D1	2u1−k+
1 u1+k−

1 u2−
k+
2 u1 + k−

2 u3

∂u1
∂τ

= D1	2u1 − k+u1 + k−u2

∂u2
∂τ

= k+
1 u1 − k−

1 u2
∂u2
∂τ

= k+u1 − k−u2 − ki u2
∂u3
∂τ

= k+
2 u1 − k−

2 u3
∂u3
∂τ

= ki u2 − kdu3

−D1
∂u1
∂ξ

|ξ=0 = 0 −D1
∂u1
∂ξ

|ξ=0 = J

−D1
∂u1
∂ξ

|ξ=1 = 0 −D1
∂u1
∂ξ

|ξ=1 = 0

Numbers in parentheses refer to the subsections in which the corresponding model is introduced (3.x.x)
and the computational results are given (4.x.x)

assume that the bleaching process is instantaneous and use piece-wise constant data
as shown in Fig. 4 as the initial data for simulations unless specified otherwise.

3 Theoretical Models for FRAP Data Generation

We examine two classes of theoretical models—which are summarized in Table1—
one in which the system is closed and a second one in which there is a specified flux
at the boundary. We briefly present the governing equations and some basic results in
this section to make it easier for the reader to compare the models. In the following
section, we use the models in computational studies to show how parameter estimates
depend on the model used and how they can be improved with different protocols.

3.1 FRAP Models for Closed Systems

3.1.1 Model 1: One Mobile Species and One Type of Binding Site

In the simplest model, there is one diffusible fluorescent species U1 that can bind to
an immobile receptor R to produce the complex U2 (Sprague et al. 2004), according
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to the reaction U1 + R
k+
−⇀↽−
k−

U2. As stated earlier and shown in Appendix 1.4, the

recovery process can be modeled as a linear process and this leads to a solution of the
form (38), where u1, u2 denote the concentration of unbound and bound fluorescent
molecules, resp.,2 and

K =
( −k+ k−
k+ − k−

)
D =

(
D1 0
0 0

)

and φn = cos(nπξ), and α2
n = (nπ)2. Both K and D are singular, the former due to

the conservation condition.3

We denote by I0 the total initial concentrations and show in Appendix 1.4 that the
initial fractions are

u10 = I0

1 + K−1
d

and u20 = I0
1 + Kd

.

where Kd ≡ k−/k+ is the dissociation constant. In addition, k+ = k+([RT ]−uts2 ) and
k− = k−, where RT , uts2 denote the total binding sites and the total concentration of
bound molecules, respectively. Note that these two quantities are constant throughout
the FRAP experiment. The initial conditions are

(
u1
u2

)
τ=0

=
∞∑
n=0

(
y1n
y2n

)
cos(nπξ) =

(
u10
u20

)
(21)

where u10, u20 are the initial concentrations of unbound and bound fluorescent
molecules after photobleaching, respectively. The coefficients y1n , y2n are given by

y10 =
∫ 1

0
u10(x)dx y1n = 2

∫ 1

0
u10(x) cos(nx)dx

and

y20 =
∫ 1

0
u20(x)dx y2n = 2

∫ 1

0
u20(x) cos(nx)dx .

The average fluorescence intensities of bound and unbound molecules across the ROI
during the recovery phase are given by

2 Since the total concentration of fluorescent molecules is constant, one can alternatively regard the ui as
fractions.
3 We remind the reader that τ represents real time, and thus, the diffusion coefficients and the kinetic
constants for linear steps have dimensions time −1.
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Fig. 6 Different regimes in the parameter space for a diffusion–binding model [adapted from Sprague et al.
(2004)]

(
u1
u2

)
= 1

δ−

∫ lR

lL

(
u1(τ, ξ)

u2(τ, ξ)

)
dξ

= eK τ y0 + 1

πδ−
∞∑
n=1

1

n
[sin(nπlR) − sin(nπlL)] e[K−D(nπ)2]τ yn (22)

= eK τ y0 + 1

πδ−
∞∑
n=1

1

n

[
sin

(nπδ−)

2
cos

(nπδ+)

2

]
e[K−D(nπ)2]τ yn (23)

where yn = (y1n, y2)T and δ± = lR ± lL . Finally, the average fluorescence intensity
in time, i.e., the FRAP data, is given by

FRAP(τ ) = u1(τ ) + u2(τ ). (24)

The parameter space for this two-component diffusion–binding model can be
divided into several regimes that reflect different balances between the component
processes.

There are three different characteristic timescales in the system: the diffusion time
τD = (δ−)2/D, where δ− is the width of the bleaching region, the binding time
τb = 1/k+, and the dissociation time τdis = 1/k−. In the initial stages of recovery,
the primary effect of diffusion is from a small region adjacent to the bleached region
into the bleached region, and therefore, we use a characteristic diffusion time based
on the width of the ROI. When binding is weak, i.e., τdis/τb � 1, and the diffusion
is not much faster than binding, i.e., above τD/τb � 1, the recovery process can
be described by pure diffusion, in which case the parameters are located in the pure
diffusion regime of Fig. 6. When binding is tighter, i.e., τdis/τb � 1, and much
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faster than diffusion, i.e., τD/τb � 1, the recovery process can be approximated as
a diffusion process but with an effective diffusion coefficient Deff = D/(1 + K−1

d ),
and the parameters are located in the effective diffusion regime. When the binding is
tighter, i.e., right τdis/τb ≥ 1, and diffusion ismuch faster than binding τD/τb � 1, the
recovery time is determined by the reaction process when the parameters are located
in reaction-dominant regime. Outside the three special regimes, the remainder of the
parameter space is called diffusion–reaction regime. For the upcoming discussion, it is
worth noticing that the diffusion characteristic time can be manipulated by the spatial
scale of the bleaching region, which could lead to a shift of the location of parameters
from one regime to another.

3.1.2 Model 2: One Mobile Species and Multiple Types of Binding Sites

To illustrate the different scales that arise with multiple binding sites, consider two
sites, for which K and D can be obtained from Appendix 1.2. When the binding
steps are much faster than diffusion, this is the case treated earlier, and the effective
diffusion coefficient given at (52) takes the form Deff = D1/(1 + K2 + K3), where
K2 = k+

1 /k−
1 , K3 = k+

2 /k−
2 .

Suppose, however, that binding to the second type reaches a quasi-steady state
rapidly compared to binding to the first and to diffusion. Then, local equilibrium gives
rise to u3 = K3u1, and by adding the governing equations, we have

∂

∂τ
(u1 + u3) = D	2u1 − k+

1 u1 + k−
1 u2

By dividing the equations for u1 and u2 by 1 + K3, one can reduce to a model with a
single binding site, which reads

∂u1
∂τ

= Drd	2u1 − k+u1 + k−u′
2 (25)

∂

∂τ
(u′

2) = k+u1 − k−u′
2 (26)

where

u′
2 = u2

1 + K3
, Drd = D1

1 + K3
, k+ = k21

1 + K3
, and k− = k12

1 + K3
.

These parameters are what are obtained in the parameter estimation when the two-
site model is reduced to amodel with a single binding site as above, and illustrate again
that the estimated parameters may be complex functions of the more fundamental
parameters.
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3.2 FRAP Models with Boundary Fluxes

3.2.1 Model 3: Influx, Diffusion, Binding, and Decay

The parameters measured from different time and space scales may reflect different
integration of biological processes such as production, internalization, and decay in
addition to diffusion and binding discussed above. In biological systems at tissue level
in the long run, the FRAP recovery is amalgamation of these processes. Our approach
for parameter estimation can be extended to the model with more than diffusion and
binding. Here we derive the analytical solution for these models and show that more
parameters such as internalization rate and decay rate can be estimated from FRAP in
addition to diffusion coefficients and binding/unbinding rates.

The time-dependent solution formula (38) can be used directly for Model 3 with
influx, diffusion, binding, and decay, wherein

K =
( −k+ k−
k+ − (k− + kd)

)
D =

(
D1 0
0 0

)

For the steady state of us1 , the solution formula (15) applies with δ = √
kd/D1

where kd = k+ − k+k−/(k− + kd), and us2(ξ) = k+/(k− + kd)us1(ξ).

3.2.2 Model 4: Influx, Diffusion, Binding, Internalization, and Decay

When the model contains more processes, as in Model 4, the solution form (38) and
(15) can be used. In those equations, ki is the internalization rate constant and kd is

the decay rate constant, δ =
√
k̃d/D1 where k̃d = k+ki/(k− + ki ), and

K =
⎛
⎝−k+ k− 0

k+ −(k− + ki ) 0
0 ki −kd

⎞
⎠ D =

⎛
⎝ D1 0 0

0 0 0
0 0 0

⎞
⎠ .

4 Recovery Models for Parameter Estimation

The parameter estimates are extracted from FRAP by fitting a specified model with
FRAPdata, using the algorithmdescribed earlier. However, even if a good data fitting is
achieved, little biological information can be inferred from the estimates of parameters
without careful examination and analysis. The potential problems behind a good fit
to the recovery curve can be explored from two distinct aspects. The first one is how
accurate the estimates are, assuming that an appropriate model has been used for data
fitting. To address this, we propose several methods used later, such as choosing the
appropriate observation time, reducing the bleaching size, and using spatial FRAP
to improve parameter estimation when the model used for estimation is identical to
the one used for FRAP data generation. The other problem in FRAP is how well the
model reflects the actual processes involved in a FRAP experiment. We will show
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Fig. 7 The Gibbs effect in representing the initial data. The sum is truncated at M terms left M = 100,
right M = 1000

the impact of the reduced model (model lack of certain process ) on estimates of
parameters and explain how to relate the complex steps in the realistic model to the
higher level description in the reduced model. In addition, we also show how reducing
the bleaching size could help to formulate an appropriate FRAP model. The models
used in our simulations are summarized in Table1.

4.1 Identical Recovery Model: Methods to Improve Parameter Estimation

In the six parts of this subsection, the model to estimate the parameters is the same as
that to generate FRAP data.With complete knowledge of the parameters, wewill show
that even though the recovery curve fit is good, the estimates may not be accurate.
Moreover, we will discuss the ways to improve parameter estimation via the simple
diffusion–bindingmodel (4.1.1–4.1.5) and show that thesemethods can be extended to
parameter estimation in other models which are common and widely used in studying
the mechanism of pattern formation (4.1.6). In the following simulations, we use
a piece-wise constant initial condition for FRAP recovery, which is widely used in
existing FRAP models and also valid in reality if there is little fluorescence recovery
in the bleaching region before observation. For the record, a wide range of initial
guesses including the true values of parameters have been used, and they result in
similar estimations, which provides a foundation for our conclusions.

4.1.1 The Observation Region Versus the Bleaching Region: Model 1

We find that taking a subdomain within the bleaching region (ROI) as the observation
region (OR) considerably improves the estimation, because of the Gibbs effect that
results from the piece-wise constant initial condition.4 Hereafter, we fix the number of
terms M = 1000 for minimization (Fig. 7), and we also fix the ROI at lR − lL = 0.07
and let d be the distance between the boundary of the ROI and that of the OR, as
shown in Fig. 8. The quality of estimates is good even though d is small (Table2).

4 Other basis functions that require fewer terms could be used, but the eigenfunction expansion is most
commonly used and we do so here.
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Fig. 8 The relationship between the observation region and the bleaching region

Table 2 The influence of the choices of the observation region within the bleaching region and the obser-
vation time on the estimates of parameters in the diffusion–binding model

Distance Time Estimates for M = 100 Estimates for M = 1000

d T D k+ k− D k+ k−

0 100 4.9848e−5 1.4840e−2 1.3079e−3 2.2217e−4 1.0431e−2 1.0140e−3

1000 2.4006e−4 1.8935e−2 1.0870e−3 2.3858e−4 1.0527e−2 1.0103e−3

0.01 100 2.8206e−4 9.7154e−3 9.8591e−4 2.5236e−4 1.0019e−2 1.0000e−3

1000 2.6560e−4 9.5765e−3 9.8642e−4 2.5092e−4 9.9987e−3 9.9964e−4

The centered observation region has a fixedwidth of 0.05, and the bleaching region is enlarged by increasing
d. The FRAP data are generated by the same model with parameters D = 2.5 × 10−4 s−1, k+ = 1 ×
10−2 s−1, k− = 1 × 10−3 s−1

On the other hand, good estimates can be obtained with a small number of terms by
using a smaller subdomain of the bleaching region as the observation region (results
not shown here), which makes the computation more efficient, especially in 2D or 3D
cases.

Because the initial condition is set as piece-wise constant in all the following sim-
ulations, the default observation region will always be set smaller than the bleaching
region—specifically, we set d = 0.2(lR − lL). Thus, the size of the bleaching region
is 1.4 times that of observation region, and the truncation is at M = 1000 terms in
order to eliminate the Gibbs effect on estimation.

4.1.2 Estimation of Parameters in Different Regimes: Model 1

To test our approach for parameter estimation, the diffusion coefficient, binding, and
unbinding rates have been estimated in different regimes shown in Fig. 6: pure diffu-
sion regime (diffusion and weak binding), effective diffusion regime (diffusion and
fast binding), reaction-dominant regime (fast diffusion and binding), and diffusion–
reaction regime. We can accurately estimate the diffusion coefficient and the binding
and release rates in both reaction-dominant regime and diffusion–reaction regime
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Table 3 In conventional FRAP, the estimates of parameters are accurate in the diffusion–reaction and the
reaction-dominant regimes, but not in the pure diffusion and effective diffusion regimes

Regime True values of parameters Estimates of parameters

D k+ k− D k+ k−

Diffusion–reaction 2.5e−4 1e−2 1e−3 2.5236e−4 1.0019e−2 1.0000e−3

Pure diffusion 2.5e−4 1e−3 1e−1 2.4999e−4 6.0222e−4 7.3957e−2

Effective diffusion 2.5e−5 1 1e−1 3.9024e−6 4.6544e−2 6.4715e−2

Reaction-dominant 1e−2 1e−5 1e−6 1.0005e−2 1.0008e−5 1.0051e−6

All the results are simulated by using the observation time of T = 1000 s. Default values are used for the
size of the bleaching and observation regions

(Table3).5 However, when the parameters are in either the pure diffusion regime or
effective diffusion regime, because it has been proven that the FRAP curve can be
well described by the diffusion only (Sprague et al. 2004), we find that it is difficult
to estimate all the three parameters accurately at the same time. How to improve the
parameter estimation in these regimes will be discussed later.

4.1.3 Appropriate Observation Time: Model 1

One of our most intriguing discoveries is the importance of the choice of observation
time in parameter estimation, especially when the parameters are located in the regime
where effective diffusion applies. When the binding process is relatively faster than
diffusion process, it is more difficult to estimate all three parameters, because FRAP
data can be well interpreted by effective diffusion. We find that using FRAP data
collected in an appropriate observation time period gives rise to quality estimates
(Table4). Moreover, the appropriate time is determined by the characteristic time of
the dissociation process.

Mathematically, the effective diffusion is based on the assumption that the binding
and dissociation processes are much faster and equilibrate before diffusion plays a
significant role. Physically, the fluorescence recovery in FRAP is essentially produced
by the unbound fluorescent molecules diffusing into the bleaching region and binding,
which cannot happen until the bound bleached molecules in the bleached region are
dissociated from the binding sites. Therefore, if the observation time is shorter than
the characteristic time of the dissociation process, i.e., the recovery data are obtained
before dissociation ensues, the binding and dissociation processes have not reached
equilibrium, and only diffusion and binding contribute to the dynamics of recovery
data, which is distinguished from the effective diffusion process. After that, the process
of recovery is reduced to an effective diffusion process, inwhich case it ismore difficult
to estimate all the three parameters from the standard recovery curve. In real FRAP
experiments, the time interval for data collection might not be small enough as it is in

5 Here and hereafter, we use an error tolerance of 10−10, but larger tolerances produce very similar results.
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Table 4 Choosing an appropriate observation time results in better estimation in the effective diffusion
regime

True values of parameters Observation time Estimates of parameters

D k+ k− T (s) D k+ k−

2.5e−4 1 0.1 100 1.9132e−4 0.7542 0.1013

10 2.5689e−4 0.9684 0.09649

5 2.6533e−4 1.0010 0.09653

2.5e−4 1 1 100 2.0315e−4 0.5236 0.8367

10 2.1076e−4 0.5543 0.8183

5 2.3477e−4 0.7100 0.8379

2.5e−4 0.1 1 100 2.3841e−4 0.02947 0.6054

10 2.4728e−4 0.04320 0.5689

5 2.5934e−4 0.08219 0.6980

The FRAP data are generated with the default sizes of the bleaching and observation regions

simulation. The data also contain noise at some level. Thus, the appropriate observation
time might be different from what it is in theory.

4.1.4 Size of the Bleaching Region: Model 1

In reality, because the parameters such as the dissociation rate are unknown, it is
difficult to determine a priori what the appropriate observation time is for parameter
estimation. However, the timescale of diffusion is determined by the spatial scale
of the bleaching region. Therefore, by changing the size of bleaching region, we can
change the balance of diffusion and binding processes, i.e., we can change the relative
location of parameters in parameter space. Since binding and dissociation are local
activities that are independent of spatial scale, we expect reducing the size of the
bleaching region will make the characteristic diffusion time smaller than the binding
time. That is, relocating the parameters from the effective diffusion regime to the
reaction–diffusion regime in Fig. 6 can improve the estimates when binding is faster
than diffusion with the default bleaching size, and this is validated by our simulation
results in Table5. The estimates of parameters are more accurate and do not depend
on the length of observation time when the size of the bleaching region is reduced.6

Moreover, our approach to improve estimates is also applied to the case where the
binding isweak. Becauseweak bindingmakes little contribution to the FRAP recovery,
the diffusion–binding model can be approximated by pure diffusion when the binding
is very weak, which makes it very difficult to estimate the association and dissociation
rates for weak binding. However, our results suggest that by reducing the bleaching
region to make the diffusion time smaller than the binding time, we can achieve good
estimates of binding/unbinding rates as well as the diffusion coefficient (Table6). In

6 The values 0.007 (0.005) for the bleaching (observation) regions are used hereafter whenever the size is
reduced, unless stated otherwise.
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Table 5 The estimates are improved by reducing the size of the bleaching region so as to change the
timescale of diffusion relative to that of binding

True values of
parameters

Bleaching
region

Observation T Estimates of parameters

D k+ k− BR T (s) D k+ k−

2.5e−4 1 0.1 Default 100 1.9132e−4 0.7542 0.1013

10 2.5689e−4 0.9684 0.09649

Reduced
size

100 2.4228e−4 0.9666 0.09999

10 2.4364e−4 0.9666 0.09990

2.5e−4 1 1 Default 100 2.0315e−4 0.5236 0.8367

10 2.1076e−4 0.5543 0.8183

Reduced
size

100 2.4891e−4 0.9912 0.9997

10 2.4888e−4 0.9916 0.9999

2.5e−4 0.1 1 Default 100 2.3841e−4 0.02947 0.6054

10 2.4728e−4 0.04320 0.5689

Reduced
size

100 2.4987e−4 0.09936 0.9995

10 2.4988e−4 0.09935 0.9994

Table 6 Estimates are better when the size of the bleaching region is smaller or the diffusion coefficient is
larger

True values of parameters Bleaching size Observation T Estimates of parameters

D k+ k− BR T (s) D k+ k−

2.5e−4 1e−3 1e−1 Default 1000 2.4999e−4 6.0222e−4 7.3957e−2

100 2.5098e−4 6.5301e−4 6.9036e−2

10 2.5844e−4 3.9193e−3 1.5256e−1

Reduced
size

1000 2.5003e−4 9.9063e−4 9.9615e−2

100 2.5007e−4 9.9101e−4 9.9574e−2

10 2.5049e−4 1.0051e−3 9.9828e−2

1e−2
(increased)

1e−3 1e−1 Default 1000 1.0006e−2 1.0045e−3 1.0021e−1

100 1.0006e−2 1.0045e−3 1.0021e−1

10 1.0013e−2 1.0176e−3 1.0085e−1

addition, the way of reducing the size of the bleaching region affects the estimation
in the same way as increasing the diffusion coefficient as their characteristic time of
diffusion is similar (Table6).

To further explore how either reducing the size of the bleaching region or increasing
the diffusion coefficient improves parameter estimation, first the recovery of unbound
and bound fluorescent molecules is observed separately (Fig. 9) and compared when
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Fig. 9 The effect of reducing the size of the bleaching region on the recovery of bound and unbound
molecules. a, b The recovery curves are generated with D = 2.5× 10−4 s−1, k+ = 1 s−1, k− = 0.1 s−1;
c, d The recovery curves are generated with D = 2.5 × 10−4 s−1, k+ = 1 s−1, k− = 1 s−1; a, c with
default sizes of the bleaching and observation regions; b, d with the reduced sizes of the bleaching and
observation regions

the size of the bleaching region is reduced. We find that reducing the size of the
bleaching region speeds up the recovery of unbound fluorescence more than that
of bound fluorescence, as shown by comparing (b) to (a) and (d) to (c) in Fig. 9,
which makes the recovery of unbound fluorescence relatively quicker in the bleaching
region in comparisonwith boundfluorescence.Therefore, the recovery is dominated by
diffusion initially, and by the binding process later in time, whichmakes the estimation
of three parameters more feasible.

Similarly, the FRAP recovery in the bleaching region is more uniformwhen the dif-
fusion coefficient is increased since the spatial non-uniformity relaxes rapidly (results
not shown here), which suggests that averaging the data over the bleaching region has
less impact on estimation for fast diffusion than slow diffusion.

4.1.5 Exploiting Spatial Information in FRAP: Model 1

The effect of either reducing the size of the bleaching region or increasing the diffusion
coefficient on parameter estimation in FRAP suggests that the standard way to average
data across the whole bleaching region to get FRAP data loses information (Sprague
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Table 7 Spatial FRAP improves parameter estimation as much as reducing the size of the bleaching region
does

True values of parameters Bleaching size Observation T Estimates of parameters

D k+ k− Method T (s) D k+ k−

2.5e−4 1 0.1 Default 1000 1.8661e−4 0.7167 9.9335e−2

100 1.9132e−4 0.7542 0.1013

10 2.5689e−4 0.9684 0.09649

Reduced
size

100 2.4228e−4 0.9666 0.09999

10 2.4364e−4 0.9666 0.09990

Spatial
FRAP

1000 2.5411e−4 1.0176 9.9956e−2

100 2.5397e−4 1.0169 0.09995

10 2.5093e−4 1.004 0.09992

and McNally 2005; Seiffert et al. 2005; Orlova et al. 2011), which is more prominent
when the bleaching region is large or the diffusion coefficient is small. Therefore,
instead of averaging the data, first we try to use the FRAP data in space for parameter
estimation, which turns out to greatly improve the estimates as reducing the size of
the bleaching region does as shown in Fig. 7. The error function when using FRAP
data in space is given by

E ≡ 1

MN

N−1∑
i=0

M−1∑
j=0

(Cexp(ti , x j ) − Csim(ti , x j ))
2.

In conventional FRAP, the recovery data are obtained by averaging the fluorescence
across the entire observation region. Our results suggest the spatial information of
FRAPdata,which is lost in the average process, can contribute to parameter estimation.
In reality, the spatial data might contain noise and cannot be used directly. If it is the
case, local average across several pixels instead of average across the entire observation
region can be used to retain part of the spatial information which still help improve
parameter estimation (Table 7).

4.1.6 Applications to Models 2, 3, and 4

The conclusions about how to improve parameter estimation via reducing the size of
the bleaching region and/or using spatial FRAP data that are obtained above from
the diffusion–binding model can also be applied to other models. For the simulations
of the models that involve both influx and decay, the initial condition is equal to
the fluorescence profile at the steady state of the corresponding system outside the
bleaching region and is equal to zero in the bleaching region. In addition, the estimation
results are all obtained for a fixed influx. The following results, which are obtainedwith
different models, i.e., a model with multi-binding sites (Table8), a model with influx,
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Table 8 Reducing the size of the bleaching region and/or using spatial FRAP improves the estimates when
there are multiple binding sites (Model 2)

Method D k+
1 k−

1 k+
2 k−

2

Default 1.9784e−4 7.7553e−2 9.9400e−2 4.8572e−1 8.1734e−1

Reduced size 2.4809e−4 9.8993e−2 9.9982e−2 9.8786e−1 1.0003

Spatial 2.5259e−4 1.0124e−1 1.0008e−1 1.0251 1.0055

Spatial and reduced size 2.5091e−4 1.0041e−1 9.9992e−2 1.0060 9.9934e−1

All the results are based on D = 2.5 × 10−4 s−1, k+ = k− = 0.1 s−1, k+
2 = k−

2 = 1 s−1 and an
observation time of 100 s

Table 9 Reducing the size of the bleaching region and/or spatial FRAP improves estimates when there are
influx, diffusion, binding, and decay (Model 3)

True values of parameters Method Estimates of parameters

D k+ k− kd D k+ k− kd

2.5e−4 1 1 1e−2 Default 2.3349
e−4

8.7891e−1 1.0087 1.0705e−2

Reduced
size

2.4806e−4 9.7373e−1 9.8147e−1 1.0014e−2

Spatial 2.5048e−4 1.0189 1.0126 9.9287e−3

Spatial and
reduced
size

2.5019e−4 1.0150 1.0043 9.9329e−3

2.5e−5 1 0. 1 1e−3 Default 3.3815e−6 1.0022e−1 1.9562e−1 3.5639e−3

Reduced
size

3.0862e−5 1.4288 1.0568e−1 1.0226e−3

Spatial 2.8780e−5 1.1685 1.0003e−1 9.7550e−4

Spatial and
reduced
size

2.6132e−5 1.0459 9.9101e−2 9.6777e−4

The observation time is 100 s, and the influx J is given for parameter estimation

binding, diffusion, and decay (Table9), and a model with influx, diffusion, binding,
internalization, and decay (Table10), will show that both reducing the size of the
bleaching region and using spatial FRAP data can improve the parameter estimation
and that they have synergistic effect on improvements.

4.2 The Effect of a Reduced Recovery Model

In addition to inaccurate parameter estimation, which is difficult to ascertain when a
visually good curve fit for recovery is obtained, another issue concerns the appropri-
ateness of the model in terms of whether it reflects the biological processes involved in
the system.We will show that the estimates of parameters in the reduced model can be
dramatically different from those from the theoretical model for data generation, and
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Table 10 Reducing the size of the bleaching region and/or spatial FRAP improves estimates when there
are influx, diffusion, binding, internalization, and decay (Model 4)

Method D k+ k− kin kd

Default 5.5847e−5 3.2081e−1 1.5657e−1 3.3183e−3 1.3302e−2

Reduced
size

2.6681e−4 1.0845 9.9709e−2 2.5652e−3 1.0016e−2

Spatial 2.4723e−4 9.8682e−1 9.9630e−2 2.5437e−3 9.9927e−3

Spatial and
reduced
size

2.4897e−4 1.0011 9.9895e−2 2.5461e−3 9.9722e−3

The true parameter values are D = 2.5×10−4 s−1, k+ = 1 s−1, k− = 0.1 s−1, kin = 2.5641×10−3 s−1,
kd = 1×10−2 s−1, J = 1×10−2 s−1. The observation time is 100 s, and the influx J is fixed for parameter
estimation

thus lead to distinct conclusions about the transport and kinetic processes involved in
FRAP. We will also show that the method of reducing the bleaching size can help to
evaluate the appropriateness of the model used for estimation.

4.2.1 Reduction from Model 1 to Model B1

As it has been discussed above, the diffusion and binding model could be described by
a diffusion-only model when the parameters are in the effective diffusion regime. By
reducing the bleaching size, the parameters can be moved to the reaction–diffusion or
reaction-dominant regime, where all the three parameters can be estimated accurately.
Therefore, the method of reducing the size of the bleaching region could be used to
determinewhether binding should be included in FRAPmodeling given by experimen-
tal data. In reality, the experimentalist has to specify the model before data fitting in
FRAP, but as was discussed earlier, it can be difficult to distinguish a diffusion–binding
scenario and an effective diffusion regime. Moreover, if the binding is tight, orders of
magnitude difference in the estimate of diffusion coefficient might be produced due
to an inappropriate model.

Therefore, we suggest that reducing the bleaching region can help to distinguish the
diffusion–binding case from the effective diffusion case. When the bleaching region
is large, it is possible to obtain very good data fitting by using a diffusion model, while
in reality, there is also a binding process involved (Fig. 10, left). However, when the
bleaching region is reduced, the diffusion process will equilibrate more quickly, which
makes the binding process more dominant in the experiment. Thus, it is less likely
to fit data by a diffusion model when in reality there is an additional binding process
(Fig. 10, right).

4.2.2 Reduction from Model 2 to Model 1

In the case of multiple binding sites (Model 3), without loss of generality, the second
binding process is assumed to the faster one between two binding processes, i.e.,τb1 =
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Fig. 10 (Color figure online) Reducing the size of the bleaching region helps to identify the appropriate
model. The FRAP data are generated using D = 2.5 × 10−4 s−1, k+ = 1 s−1, k− = 0.1 s−1. The blue
curve lies under the green curve in both panels

1/k+
1 � 1/k+

2 = τb2. As long as τD > τb2, the curve fitting is good even though
the model for parameter estimation is the single-binding-site model reduced from the
theoretical one. Theoretically, the reducedmodel gives rise to the estimates of diffusion
coefficient and binding/unbinding rates as follows. Drd = D/(1 + k+

2 /k−
2 ), k+ =

k+
1 /(1+ k+

2 /k−
2 ), k− = k−

1 . Practically, the simulation results with normal bleaching
size also support the conclusion. Moreover, the longer time the data collected for
parameter estimation, the closer the simulation results are to the theoretical conclusions
(Table 11).

From both the analytical and simulation results, we can see that when one of the
binding process is fast and tight, it will not only lead to underestimation of the diffusion
in orders of magnitude, but also to underestimation of the binding rate in the same
order that may change the conclusion about binding affinity fundamentally, i.e., the
tight binding may be misinterpreted as loose binding.

In addition, when τD � τb2, it is difficult to get good curve fitting if the model
is reduced from the theoretical one. Reducing the size of the bleaching region that
decreases the characteristic time of diffusion will help to distinguish the multi-
binding-site model from the single-binding-site model and thus help to formulate
the appropriate model for FRAP in order to get meanful estimates of transport and
kinetic parameters.

4.2.3 Reduction of Model 4 to Model 3 and Model B2

In the case of FRAP with influx, the data are generated by Model 4 with influx,
diffusion, binding, internalization, and decay. The first reduced model is Model 2,
i.e., it neglects the internalization process. The second reduced model is Model B2,
i.e., it neglects all the intermediate processes and only includes influx, diffusion, and
decay (Table 12).

Although themodels used for parameter estimation are reduced from the theoretical
model by which the FRAP data are generated, the estimates of parameters in these
reduced model can still give rise to good curve fittings (results not shown). However,
in reduced model 2, in addition to the diffusion coefficient that is underestimated in
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Table 12 Parameter estimation in reduced models when there is diffusion, binding, internalization, decay,
and influx in the theoretical model

Theoretical model Reduced model (Model 3) Reduced model (Model B2)

D 2.5e−4 4.54e−5 1.51e−5

k+ 1 3.38e−2

k− 0.1 2.28e−2

ki 2.6e−3

kd 0.01 3.19e−3 1.85e−3

The data are generated using Model 4 with parameters D = 2.5 × 10−4 s−1, k+ = 1 s−1, k− = 0.1 s−1,
ki = 2.6 × 10−3 s−1, kd = 1 × 10−2 s−1. The flux J is fixed during parameter estimation

an order of magnitude due to tight binding, the slow internalization rate could lead
to the estimate of the decay rate much smaller when the intermediate processes are
missing in the reduced model. In addition, in reducedmodel 1, the slow internalization
process that is missed also has an impact on the estimates of binding and unbinding
rates. Therefore, the estimates of parameters in a FRAP model only through curve
fitting provide little, evenwrong, information about the actual processes ormechanism
involved in biological system.

5 Application of Sensitivity Analysis

In the preceding sections, we have analyzed the consequences of various hypotheses
about the model and the effect they have on the accuracy of parameter determination.
The analysis showed, among other things, that different time intervals of observation
could significantly affect the parameter estimation. Of course, one usually has experi-
mental data rather than computer-generated data, and the question arises as to how one
can identify and quantify sensitivity of estimated parameters, other than by the mini-
mization techniques used earlier. The following example illustrates the limitations of
the minimization and how sensitivity analysis can give further insights.

Example 1 Consider a two-parameter system, and suppose that the graph of the error
function E to be minimized has either the form of a paraboloid (Fig. 11a) or a parabolic
cylinder (Fig. 11b).

Clearly, the paraboloid has a well-defined minimum and the slope of the function is
the same along all directions in the p1 − p2 plane. By bending the parabolic cylinder
slightly upward along the p2 axes, one can guarantee that the minimum is at zero,
as for the paraboloid, but clearly, the sensitivity of the error function with respect to
variations in the two parameters is very different. In the remainder of this section, we
show how scatterplots and sensitivity analysis can be used to detect such differences.
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Fig. 11 Two minimization functions that may give the same minimum, but very different parameter sen-
sitivities. a A paraboloid and b a parabolic cylinder
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Fig. 12 Scatterplots of the errors between the model output and the FRAP data versus the diffusion
coefficient for different time intervals. The FRAP data are generated by the pure diffusion model with
D = 2.25×10−5 s−1 to match the data in previous simulations by using the effective diffusion coefficient.
The scatterplots are calculated with parameters uniformly distributed on a logarithmic scale D ∈ [1 ×
10−6, 1 × 10−3] s−1. N = 1000 is the number of sample points

5.1 The Use of Scatterplots

In this approach, one postulates a model, computes the solutions for a wide range
of the parameters, and then compares the difference between the predictions and the
experimental results. We first illustrate this with an example of pure diffusion (Model
B1) so as to demonstrate the utility as clearly as possible.

The structure of the scatterplots shown in Fig. 12 can be understood as follows.
When the time interval is short [0,10], the recovery is small and the error is very
small for small diffusion coefficients since the error as defined in Fig. 5 is the dis-
tance between the actual and predicted recovery curves (cf. Fig. 13, right). When the
diffusion coefficient is significantly larger than the true value, the predicted recovery
curve rises much faster than the true recovery curve and the error increases with the
diffusion rate. In an intermediate interval [0,100], the error is significant for both too
small and too large diffusion coefficient. When the observation time period is long
[0,1000], the error for larger diffusion coefficients is less significant than for smaller
ones because the predicted recovery curve lies close to the true curve at large times,
where the error is small (cf. Fig. 13, left). These results indicate that the intermediate
time interval [0,100] is optimal for this problem, since the true diffusion coefficient is
most clearly defined at the minimum of the graph of the error.
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Fig. 13 FRAP recovery data are generated by the pure diffusion model with D = 2.25 × 10−5 s−1. The
largeD and smallD refer to the upper and lower limits of the diffusion coefficients used for the scatterplots,
respectively. The figure on the left is plotted on a linear scale, and the one on the right is plotted on a
logarithmic scale

Scatterplots can also give insight into more complicated models such as the
diffusion–binding models (Model 1 and Model 2) . The top row in Fig. 14 shows
that the addition of binding to the diffusion-only model in Fig. 13 has little effect on
the error for a short time interval and small diffusion coefficients, and that the error
is dominated by diffusion even for large diffusion coefficients. However, the effect of
variations in the binding parameters is more pronounced for longer time intervals, but
in all cases, the role of diffusion remains as shown in Fig. 13.

The center row of Fig. 14 displays the scatterplots as a function of the binding
affinity k+/k−, for which the true value is 10. For the short time interval T = [0, 10],
the recovery is small and the effect of diffusion on the error is negligible for large
affinities because the fluorescent molecules are tightly bound in the unbleached region
and the flux into the bleached region is small. When the binding affinity is small, the
influx is larger and diffusion plays a larger role, which leads to larger errors. As
the observation time period increases, the difference between these two upper limits
diminishes. When the observation time period is long enough, e.g., T ∈ [0, 1000],
the situation is reversed. Therefore, using a scatterplot for variable observation times
T will suggest what the true affinity is when a T that produces the pattern of errors
similar to that in the first figure in the middle panel is found.

These two rows suggest that the scatterplots of errors against diffusion coefficient
with different observation time periods identify whether the parameters are located in
effective diffusion regime and if so, what the effective diffusion coefficient is. If in
effective diffusion regime, by combining the scatterplots against binding affinity and
diffusion coefficient, the binding affinity and the effective diffusion coefficient, and
thereby the true diffusion coefficient can be obtained.

The bottom row in Fig. 14 shows scatterplots of the errors for a one-site recovery
model when the true model has two binding sites. These scatterplots with different
observation time periods not only can provide the experimentalists with the binding
affinities but also can suggest how many different types of binding sites are involved
when they have different binding affinities. A binding process with affinity equal to
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Fig. 14 Scatterplots of the errors between themodel output and the FRAP data versus diffusion coefficients
and binding affinities for different time intervals . Top andmiddle panels FRAP data are generated with D =
2.5×10−4 s−1, k+ = 1 s−1, k− = 0.1 s−1. In this and the panels below, the parameters are log-uniformly
distributed—using D =∈ [1×10−6, 1×10−3] s−1, k+ ∈ [1×10−2, 10 s−1], k− ∈ [1×10−2, 10] s−1.
Bottom panel: The FRAP data are generated by the model with diffusion and two binding processes with
different rates and affinities D = 2.5 × 10−4 s−1, k+

1 = 5 s−1, k−
1 = 0.5 s−1, k+

2 = 0.1 s−1, k−
2 =

5 × 10−3 s−1. The parameters are log-uniformly distributed: D ∈ [1 × 10−6, 1 × 10−3] s−1, k+ ∈
[5 × 10−3, 5] s−1, k− ∈ [5 × 10−3, 5] s−1. N = 1000 is the number of sample points for all

∼ 10 appears at the scatterplot with the observation time period T ∈ [0, 10]. And
the other one with affinity equal to ∼20 appears at the scatterplot with T ∈ [0, 100].
Although in reality, it may be hard to tell the exact values of binding affinities, the
scatterplots with different observation time periods at least help indicate the possibility
of multiple binding sites. They only suggest how many types of binding sites with
significantly different rates and affinities are involved.

5.2 Variance-Based Sensitivity Analysis

The scatterplot-based procedure in the preceding section gives qualitative information
about parameters, but more precise tests to determine where the parameter sensitiv-
ity lies can be applied after parameter estimation using other methods of sensitivity
analysis. The objective of this analysis is to obtain insight as to how the E varies
with parameter variation in a neighborhood of the computed minimum. The non-local
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analysis described below is more informative than simply computing the derivatives
of E at the minimum because parameters can be varied over large intervals around the
minimum. Here, we use a form of variance-based sensitivity for models given in the
form Y = f (X1, X2, . . . , Xk), where Y is a model output and X1, X2, . . . , Xk are
factors with respect to which the sensitivity of the output is to be determined (Saltelli
et al. 2008, 2010). In applying the general technique to the FRAP problem, we define
Y = E , the error between the observed and predicted recovery as defined earlier, and
the factors X are the parameters that are estimated from the data. Thus, the model
equation is rewritten as

E = f (p1, p2, . . . , pk) = f (P), (27)

where P = (p1, p2, . . . , pk). For the purpose of the sensitivity analysis that follows,
we assume that parameters are distributed uniformly.

The first measure of sensitivity is called the first-order sensitivity index of pi on E
and is obtained as follows. The law of total variance states that

V (E) = Vpi (EP∼i (E | pi )) + Epi (VP∼i (E | pi )), (28)

where V (·) is the variance and P∼i indicates that the expectation of the variance is
taken with respect to all but the i th parameter. Thus, EP∼i (E | pi )) is the expected
value of E that results from averaging over all but pi . To remove the dependency on
the fixed value of pi , we take the variance with respect to pi and, after re-arrangement,
obtain

Si = Vpi (EP∼i (E | pi ))
V (E)

= 1 − Epi (VP∼i (E | pi ))
V (E)

. (29)

This measures the contribution of parameter pi to the total variance, and since it
is normalized, it lies in [0, 1]. A large Si indicates that the parameter pi contributes a
large fraction of the total variance and thus can be regarded as an important parameter
in setting the error. For an additive model,

∑k
i=1 Si = 1, while for a non-additive

model, the first-order terms do not add up to one, and higher-order interactions among
the parameters account for some of the variance. For example, if we describe the
parabolic cylinder as p21 + p22, then there is no interaction between the parameters and∑

Si = 1. This is not the case in the typical FRAP recovery problem, for while the
kinetic parameters are independent in the governing evolution equations, their effects
on the recovery data are not, since they become conflated in the eigenvalues that
determine the time course of recovery. Thus, the first-order sensitivities will generally
sum to less than one.

A second measure of sensitivity is obtained as follows (Saltelli et al. 2008). The
total variance can also be written

V (E) = Vpi (EP∼i (E | pi )) + VP∼i (Epi (E | P∼i )) + Vpi ,P∼i

wherein the last term accounts for the variance due to the interactions. If the parameter
pi contributes little to the total variance, then the sum of the first and last terms is
approximately zero, which means that
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Fig. 15 FRAP data are generated with the intermediate (theoretical) model (Model 2 in Table1) with the
unbalanced processes (left) and the balanced processes (center and right). The true values of the parameters
for the unbalanced processes are D = 2.5 × 10−4 s−1, k+ = 1 × 10−1 s−1, k− = 5 × 10−2 s−1, kd =
2 × 10−3 s−1, and the parameters for the balanced processes are D = 2.5 × 10−4 s−1, k+ = 1 ×
10−2 s−1, k− = 5×10−3 s−1, kd = 2×10−3 s−1. Parameters are estimated by using the simple (recovery)
model [Model B2 in Table1, which is also the same as that in Kicheva et al. (2007)] for the left and center
panels, and using the complex (recovery) model (Model 62 in Appendix) in the right panel. The estimates
are (left) D = 7.8322 × 10−6 s−1, kd = 1.2698 × 10−3 s−1; (center) D = 7.0290 × 10−6 s−1, kd =
9.9313× 10−4 s−1; (right) D = 4.4680× 10−4 s−1, k+ = 1.7633 s−1, k− = 1.1396× 10−1 s−1, ki =
1.1131 × 10−2, ko = 6.0198 × 10−3 s−1, kt = 1.7574 × 10−7 s−1, kd1 = 2.1856 × 10−3 s−1, kd2 =
1.1563 × 10−3 s−1

V (E) ∼ VP∼i (Epi (E | P∼i ))

Thus, an alternate measure of a parameter’s effect is the total-order sensitivity index
of pi on E , which is defined as

ST i = 1 − VP∼i (Epi (E | P∼i)))

V (E)
= EP∼i (Vpi (E | P∼i ))

V (E)

From the first equality, one sees that ST i is the expected variance due to the first-
and higher-order effects of pi on E . For the following simulations, the first- and total-
order indices are calculated by using the method of Sobal, which costs (k + 2)N
model runs, where k is the number of parameters and N is the number of sample
points in parameter space. N = 1000 is used for all our simulations. The detailed
implementation is described in Appendix 1.6.

As we shown previously, the FRAP recovery data generated by a theoretical model
can be fit very well with a reduced model in some circumstances. For instance, data
generated by a diffusion–binding model can be described with a pure diffusion model
when the binding process is much faster than diffusion as shown in the left panel
of Fig. 15. We proposed that changing the balance between different processes by
changing the size of the bleaching region gives rise to a different recovery curve and
helps to detect missing processes and to formulate a more appropriate model.When all
the processes in the model that generates FRAP data are balanced, i.e., they all occur
on comparable timescales, it is unlikely to fit the data with a reduced simple model,
as shown in the center panel of Fig. 15.

However, when a complex model that includes more processes that are important is
used to fit the data, it may be difficult to detect this from the fit of the recovery curve. As
shown in the right panel of Fig. 15, even though all the processes in the intermediate
model that generates the data are well balanced, we can still fit the data very well
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Fig. 16 FRAP data are generated with the intermediate model (Model 2 in Table1) with parameters
D = 2.5× 10−4 s−1, k+ = 1× 10−2 s−1, k− = 5× 10−3 s−1, kd = 2× 10−3 s−1. a, b The first-order
and total-order sensitivity indices are calculated by using the same intermediate model with parameters with
uniform linear distribution D ∈ [0.5× 10−5, 4.5× 10−5] s−1, k+ ∈ [0.2× 10−2, 1.8× 10−2] s−1, k− ∈
[1×10−3, 9×10−3] s−1, kd ∈ [0.4×10−3, 3.6×10−3] s−1. c, d The first-order and total-order sensitiv-
ity indices are calculated by using the complex model 62 with parameters with uniform linear distribution
around the estimates ([0.2×Estimate, 1.8×Estimate] ) D ∈ [0.8510× 10−4, 7.6594× 10−4] s−1, k+ ∈
[0.3526, 3.1739] s−1, k− ∈ [0.2849 × 10−1, 2.5641 × 10−1] s−1, ki ∈ [0.2226 × 10−2, 2.0036 ×
10−2] s−1, ko ∈ [1 × 10−3, 9 × 10−3] s−1, kt ∈ [0.3515 × 10−7, 3.1633 × 10−7] s−1, kd1 ∈
[0.3868 × 10−3, 3.4816 × 10−3] s −1, kd2 ∈ [0.2313 × 10−3, 2.0813 × 10−3] s−1

with a complex model, and this is where the sensitivity analysis can be useful. In this
case, when the sensitivity analysis is implemented using the intermediate (theoretical)
model, the sensitivity indices of all the parameters are comparable, and none of the total
indices is very small. However, when the sensitivity analysis is applied to the complex
model, the total-order indices of some parameters, such as kt and kd2, are shown in
(c) and (d) in Fig. 16. This suggests the possibility of over-parameterization, i.e., the
more detailed model might include non-influential processes that are not detectable
using the available data.

It isworth noting thatwhen parameters are estimated using either the reduced simple
model (Kicheva et al. 2007) or the complex model (Zhou et al. 2012) with the same
FRAP data generated by the intermediate model, estimates of diffusion coefficients
in both recovery models (4.26 × 10−4 vs. 1.41 × 10−6 s−1) differ by a factor of 60,
which is similar to the large difference in the measurement of the diffusion coefficient
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of Dpp in Kicheva et al. (2007) and Zhou et al. (2012). However, in our simulations,
neither of the estimates are close to the true value for data generation even though two
models can fit the steady-state (results not shown here) and recovery data.

6 Discussion

In an experimental context, the standard approach to use the FRAP technique is to
measure the experimental data and then fit a model to the recovery curve. While
informative, it is difficult to analyze the model and evaluate the quality of estimates
because the parameters underlying physical processes in reality are unknown. Our
aim here was to approach this problem by using a theoretical model to generate FRAP
data and postulating a recovery model to estimate the parameters, and knowing both
a priori enabled us to quantitatively assess the quality of estimates and find ways to
improve them. Firstly, by using a recovery model identical to the theoretical model,
we showed that good fitting of the data may be misleading in some circumstances, in
that it does not always indicate high-quality estimates. We identified factors that lead
to poor parameter estimation from FRAP data and suggested three new, feasible ways
in which the estimation can be improved—using the FRAP data in an appropriate
observation time period, changing the size of the bleaching region to rebalance the
diffusion and kinetic processes, and using the spatial information of FRAP data. Then,
by varying the recoverymodel from the theoretical model, we showed that a simplified
recovery model can adequately describe the FRAP processes in some circumstances,
and established the relationship between parameters in the theoretical model and those
in the recoverymodel. Finally,we introduced variance-based parameter sensitivity into
FRAP analysis and suggested that the important kinetic processes might be detected
by sensitivity analysis before estimation, and the over-parameterization problem in a
FRAP model can be perceived by doing sensitivity analysis after estimation.

In using FRAP, it is important to determine which processes should be included
in the recovery model. For example, ignoring binding processes that are present in
the system may lead to underestimation of the diffusion coefficient by an order of
magnitude. Given FRAP data, we proposed two different ways that can facilitate iden-
tification of the appropriate model. We found that changing the size of the bleaching
region gives rise to different FRAP recovery curves and can provide insight into the
relative effects of diffusion and binding kinetics. In particular, reducing the size of the
bleaching region to speed up the diffusion process relative to the kinetic processes can
help uncover a hidden binding process in the recovery curve, whichmight be neglected
when the bleaching region is large. In addition, we showed that preliminary sensitivity
analysis using scatterplots with physically reasonable ranges of parameters may also
help detect multiple binding processes. Using the two methods will reduce the chance
of neglecting important processes in the model. In addition, sensitivity analysis after
estimation using the first- and total-order indices can suggest over-parameterization
problem in a FRAP model, i.e., the model contains non-influential processes. If some
of the parameters have very low total-order indices, the model is more complex than is
justified by the data available and has to be reduced by eliminating the non-influential
processes. This step can be repeated until none of the parameters in the model have
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Fig. 17 A suggested procedure for improving model identification and parameter estimation

extremely low total-order indices. The ideal scenario is that the corresponding sensi-
tivity index around the estimate of each parameter in the model is comparable, which
indicates all the processes are well balanced. Incorporating these methods into the
FRAP analysis can greatly increase the probability of formulating appropriate models
and thereby also increase the accuracy of parameter estimation.

Although we showed that reducing the size of the bleaching region can help to
formulate a more appropriate model and improve parameter estimation in some cir-
cumstances, it is difficult to decide what the size of the bleaching region should be at
the outset of a FRAP experiment. However, the knowledge of the effect of a reduction
can be used in the following way. After the estimates of parameters are obtained from
a first FRAP experiment, one can calculate the characteristic timescales of diffusion
and kinetic processes, and depending on the results, the experiment can be re-done
with a bleaching region that leads to a better balance of the processes. Similar remarks
apply to the use of spatial information in FRAP data. Averaging spatial FRAP data
over the whole bleaching region looses some information which might be useful for
parameter estimation. However, for a realistic FRAP experiment, the spatial FRAP
data always contain noise which is greatly tenuated by averaging FRAP data. We sug-
gest that it is possible to benefit from spatial FRAP data if local averaging rather than
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global averaging is implemented. In addition to the quality of parameter estimation,
the advantage of using spatial FRAP data may be explored in many other aspects of
model identification, such as estimation of more parameters in FRAP models.

In summary, we suggest the procedure shown in Fig. 17 to better use FRAP data
in the process of model formulation and parameter estimation. This method can be
used for general FRAP modeling and analysis not discussed here. For instance, the
assumptions used here, such as an instantaneous and homogeneous bleaching process,
maynot be valid in somecircumstances, and itwould be interesting to apply ourmethod
to model the whole FRAP processes as described in Appendix 1.3, and to study how
different assumptions affect the estimates quantitatively.

The establishment of the morphogen profiles in the wing disc is a very complex
process that may involve several distinct morphogen transport processes, endo- and
exocytosis of the morphogen, and intracellular sequestration of it. As a result, param-
eter estimates derived from fitting of FRAP recovery curves are not likely to bear a
close relationship with true parameter values, since the FRAP data are inadequate to
extract the true parameters in a complex model. Thus, such tissue-level applications of
FRAP must be supplemented with other techniques in order to identify the processes
and the attendant parameters. This remains as a significant challenge in the context of
developmental biology.

Acknowledgements We acknowledge discussion with Zhan Chen in early stages of this research, which
was supported in part by NIH Grant GM29123.

Appendix 1

Appendix 1.1: The General Framework

The general form of the system of reaction–diffusion equations that we shall use
hereafter has the following form.

∂c

∂t
= Dc∇2c + R̄(c, p̄) in � (30)

n · Dc∇c = J̄ on ∂� (31)

c(r, 0) = c0(r), (32)

Here the vector c = (c1, c2, . . . , cm) is the vector of chemical concentrations, Dc

is assumed to be a constant diagonal matrix, and J is a prescribed flux on∂�. � is
a bounded region in �q , q = 1, 2 with a smooth boundary and outward normal n.
The functions R̄i give the net rate of production of the i th species, and they are herein
always linear or quadratic polynomials in the ci ’s. The vector p̄ is a parameter vector,
which can include the kinetic constants and perhaps species that appear in the kinetic
mechanism but do not change significantly on the timescale of interest. As described
in the preceding example, we can regard these equations as appropriate for a thin
fluid layer over a 1D or 2D domain. In applications to the wing disc, the geometry
of the hexagonal packing of cells is more complex than the description above and
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a mathematical description that accounts for the geometric complexity is far more
complex. A 2D model of the disc that incorporates this complexity is given in Umulis
and Othmer (2015).

This system can be non-dimensionalized as follows. Let L be a measure of the size
of the system, Ci be a reference concentration for species i , and ω−1 be a timescale
characteristic of the reactions.7 Define the dimensionless quantities ui = ci/Ci , τ =
ωt , Di = Dci/ωL2, and ξ = r/L , where r ≡ (x1, . . . , xq). The dimensionless
governing equations are

∂u

∂τ
= D∇2u + R(u, p) in �

n · D∇u = J on ∂�

u(ξ, 0) = u0(ξ),

(33)

where D = diag{D1, D2, . . . , Dm}, Ji = J̄i/(ωCi ), R(u, p) is the dimensionless
form of R̄(c, p̄), and � is scaled. If the species that do not diffuse the corresponding
Di and Ji are zero, and unless stated otherwise, we assume that all boundary fluxes
are zero, i.e.,we impose homogeneous Neumann boundary conditions.

We show later that in many FRAP experiments, the kinetics can be linearized, and
therefore, in the majority of what follows we focus on linear kinetic models, and we
write the system (33) as

∂u

∂τ
= D∇2u + Ku

n · ∇u = 0, on ∂�

u(ξ, 0) = u0(ξ) (34)

This system has solutions of the form

u(ξ, τ ) =
∞∑
n=0

yn(τ )φn (35)

where φn is a solution of the scalar eigenvalue problem

∇2φn = −α2
nφn

n · ∇φn = 0
(36)

and yn is given by

yn(τ ) = e(K−α2
n D)τ yn(0). (37)

For a reasonable boundary, the eigenfunctions φn form a complete orthonormal set
under the standard L2 inner product [u, v] = ∫

u(ξ)v(ξ)dξ , and the solution of (34)
can be written as (Othmer and Scriven 1969)

7 In the simulations done later, we set ω = 1 since the timescales of diffusion and kinetic processes are
unknown beforehand. Thus, the units of Di are time−1 and similarly for the rate constants of linear reactions.
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u(ξ, τ ) =
∞∑
n=0

e(K−α2
n D)τ yn(0)φn(ξ.) (38)

The initial condition can be written

u0(ξ) =
∞∑
n=0

yn(0)φn(ξ) (39)

and therefore, yn(0) = 〈u0(ξ), φn〉, where here and hereafter 〈·, ·〉 denotes the real or
complex, as appropriate, Euclidean inner product, taken component-wise when one
argument is a vector and the other a scalar.

Remark 2 If the influx is nonzero, i.e., J �= 0, we let w = u − us where us is the
steady-state solution. Then, w satisfies

∂w

∂τ
= D	2w + Kw (40)

with zero Neumann boundary conditions. The solution w has the representation given
at (38), and u is obtained from this. In particular, when m = 1, we obtain the solution
given at (17).

The difficulty in FRAP analysis of multi-component systems, even when they are
linear, stems from the structure of (38). To simplify the analysis, suppose that the family
of matrices {K −α2

n D} is semisimple—which means that they can be diagonalized—
for all n. Then, the matrix exponential has the representation

e(K−α2
n D)τ =

m∑
j=1

eλ jnτ Pjn (41)

where the projections Pjn are associated with a given λ jn (Kato 1966). Since we
assume that the {K − α2

n D} are semisimple, they have the representation

Pjn = � jn ∗ �∗
jn (42)

wherein � jn is an eigenvector of K − α2
n D associated with λ jn and �∗

jn is the corre-
sponding adjoint eigenvector. The action of any P on a vector u is defined by

Pu = 〈�∗
jn, u〉� jn .

The eigenvector � jn = (�1 jn, �2 jn, . . . , �mjn)
T ∈ �m is a solution of the algebraic

eigenvalue problem

(K − α2
n D − λ jn I )� jn = 0, j = 1, 2, . . . ,m, n = 0, 1, . . . . (43)
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and the eigenvalues λ jn are solutions of the characteristic equation

det (K − α2
n D − λI ) = 0. (44)

The problem simplifies significantly when K and D commute, for then the eigenvalues
of K − α2

n D are simply λ jn = λK
j − α2

nλ
D
j .

The characteristic equation is an mth degree polynomial for an m-component sys-
tem. Thus, while the representation at (41) has the apparently simple form of a sum of
exponentials, the eigenvalues λ jn and the eigenfunctions � jn are complicated func-
tions of the kinetic rate parameters and the diffusion constants. The case m = 1 is
as done previously, and only if m = 2 or 3 can one make analytical progress toward
understanding how the eigenvalues and eigenfunctions depend on the rate parameters
(Othmer and Scriven 1969), and only in these cases can one hope to gain analytical
insights into the problem of extracting rate parameters from FRAP data. We turn to
these cases in the following sections.

If R(u, p) = Ku + F(u, ξ , τ ), the general solution of (33) can be written as

u(ξ, τ ) =
∫

�

G(ξ −ξ ′, τ )u0(ξ
′)dξ ′+

∫ t

0

∫
�

G(ξ, ξ ′, τ −τ ′)F(u, ξ, τ ′)dξ ′dτ ′ (45)

where G(ξ, ξ ′, t) is the Green’s function for the linear operator L = D∇2 + K . This
has the representation

G(ξ − ξ ′, τ − τ ′) =
∞∑
n=0

m∑
j=1

eλ jn(τ−τ ′)Pjnφn(ξ)φn(ξ
′) (46)

This form (45) can be used when diffusion during bleaching and waiting periods is
incorporated in the analysis.

Appendix 1.2: A Special Case: Diffusion and Binding only

The general framework allows for first-order reactions of any type [of which there
are four—cf.Gadgil et al. (2005)], but when the only processes are diffusion of the
fluorescent species and binding to one or more independent immobile sites more can
be said about the solutions. Suppose there are m − 1 independent types of binding
sites, as shown in Fig. 18. In Appendix 1.4, we re-derive the known fact (Sprague
et al. 2004) that for a single binding site, the recovery process can be modeled as a
linear process, even though the binding step is nonlinear, and point out that the on-
and off-rates in the resulting equations are composites of parameters in the original
equations (Sprague et al. 2004). The analysis given there can be applied to the case of
m−1 independent types of binding sites, although the amount of unbound fluorescent
molecules is the solution of a higher-order polynomial when there is more than one
type of site. This leads to the linear system
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Fig. 18 The notation for m − 1
binding sites

ss s n32

s1

.......

∂u1
∂τ

= D∇2u1 −
m∑

k=2

Bk(u1, uk, τ ) for ξ ∈ (0, 1)

duk
dτ

= Bk(u1, uk, τ ) ≡ kk1u1 − k1kuk k = 2, . . . ,m

u(ξ, 0) = u0(ξ) (47)

Thus, the matrices K and D in (34) take the following form.

K =

⎡
⎢⎢⎢⎣

−∑m
j=2 k j1 k12 k13 . . . k1m
k21 −k12 0 . . . 0
...

km1 0 0 . . . −k1m

⎤
⎥⎥⎥⎦ (48)

and D = diag(D1, 0, 0, . . . , 0). The columns of the matrix K sum to zero, and there-
fore, K is singular, and if the ki j are all nonzero, it is irreducible and an application
of the Perron–Frobenius theorem shows that the zero eigenvalue is simple. The fact
that the kinetic steps are mass preserving implies that the left eigenvector of K corre-
sponding to the zero eigenvalue is (1, 1, 1, . . . , 1)T , and therefore,

∂

∂τ
(u1 + u2 + · · · + um) = D1∇2u1, (49)

which reflects the fact that the total local concentration only changes due to diffusion.
The matrix K can be symmetrized, and therefore, the eigenvalues are all real and

non-positive. The kinetic interactions involved in binding are restricted to the reaction
simplex defined by the relation

∑m
i=1 ui (t) = ∑m

i=1 ui (0). The foregoing properties
of K also imply that there is a unique steady state of the equation

du

dτ
= Ku

on the simplex defined by the initial condition. Equation (49) shows how the simplices
vary in space due to diffusion, but two useful extreme cases arise when either diffusion
is slow relative to the binding or it is rapid relative to binding. The first case arises
when either the on-rate or the off-rate of every binding step is large relative to τ−1

D =
D1/L2. Then, a singular-perturbation analysis shows that to leading order in the small
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parameter ε ≡ τR/τD , the kinetics reach the steady state on the reaction simplex
defined by the initial data at every point in space, and these simplices then evolve
slowly on the diffusion timescale.

In this limit, the free and bound forms are related by

ui = ki1
k1i

u1 ≡ Kiu1, i = 2, . . . ,m. (50)

to within correction terms proportional to ε.8 As a result, (49) becomes

∂

∂τ

(
1 +

m∑
i=2

Ki

)
u1 = D1∇2u1 (51)

which leads to a diffusion equation for u1 with the effective diffusion coefficient

D1,eff = D1

1 + ∑m
i=2 Ki

(52)

This reduction of the diffusion coefficient in the presence of rapid binding was appar-
ently first observed by Crank (1975).

When τD � τR , i.e., D1/L2 is much larger than the largest kinetic rate constant,
one can show that to lowest order the spatial distribution of fluorescent molecules
relaxes to a uniform state given by

u1(ξ, t) ∼ u1(0) −
m∑

k=2

∫ t

0
Bk(u1, uk, τ )dτ (53)

where the overbar denotes the spatial average and Bk(u1, uk, τ ) ≡ k+
i u1 −k−

i ui . This
solution can then be used in the binding equations to obtain an explicit expression
for the ūk(τ ), k = 2, . . . ,m. Thus, the evolution on the slow timescale is simply
the readjustment of the fractions of bound fluorescent molecules. Since the diffusion
timescale depends on the length scale of the domain, the balance between diffusion
and binding can be controlled by altering the size of the bleaching region.

Appendix 1.3: A Summary of the FRAP Protocol

The setup and the sequence of steps in a typical FRAP experiment that uses a confocal
laser scanning microscope (CLSM) are as follows, and assuming that diffusion is the
only transport process, the steps are modeled as shown below which also explains
Fig. 1. We describe them in generality here, and detailed descriptions of the models
used for parameter estimation are given later. Both bleaching and scanning steps are
done pixel by pixel and line by line.

8 This can be obtained directly only if the on- and off-rates are comparable, and otherwise some additional
scaling steps of the free or bound forms may be needed.
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Step 1: Prebleaching Use a low-intensity laser to scan the fluorescence density in
the entire domain � which includes the ROI. The evolution of the concentrations of
fluorescent molecules during the prebleaching time [0, T0] (cf.Fig. 1) is governed by

∂c

∂t
= D	2c + R(c) − Ipc

where R(c) represents the reaction processes and Ip is the prebleaching function. The
prebleaching process is usually modeled as a first-order process as above, and in a 2D
domain, the intensity is given by

Ip(t, x, y) = Ip0 exp

(
−2[(x − X (t))2 + (y − Y (t))2]

r20

)
,

wherein x = X (t), y = Y (t), and x, y ∈ � describes the prebleaching path of the
laser.
Step 2: Bleaching Use a high-intensity beam to bleach the ROI for an interval of
length T1. In this phase,

∂c

∂t
= D	2c + R(c) − I c

with initial conditions obtained from the end of the prebleaching period. The differ-
ences between prebleaching and bleaching are the laser intensity and pixel dwell time
for scanning, as well as the scanning domain.
Step 3: Postbleaching This usually comprises a waiting time T2 between the end
of bleaching and the beginning of observation. During the observation time, use a
low-intensity beam to image the fluorescence recovery process. During the waiting
time,

∂c

∂t
= D	2c + R(c)

with initial conditions obtained from the end of Step 2.
During the observation period T3,

∂c

∂t
= D	2c + R(c) − Ipc

with initial conditions obtained from the end of the waiting period.
The inconsistencies in FRAP are partly from different assumptions for models. One

of the disparate assumptions lies in that of initial conditions for recovery phase, the
obtainment of which can be divided into two categories among existing FRAPmodels.
The first one is modeling all the previous processes before recovery phase to get the
initial conditions (Kang et al. 2009; Braeckmans et al. 2007, 2003;Mazza et al. 2008).
By modeling the prebleaching, bleaching, and recovery phase, the analytical solution
representing FRAP data can be derived in some special occasions and with certain
assumptions (Braeckmans et al. 2003). It provides us insights into how the bleaching
process and others affect the FRAP recovery; however, it requires prior knowledge of
some parameters to model activities of the laser beam. Another way which is more
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popular to estimate parameters is to only model the recovery phase with assumptions
about the initial conditions which can be obtained by the first postbleach image of
fluorescence. In this category, there are three different kinds of assumptions which
all neglect the bleaching effect with imaging process in recovery phase. One natu-
ral assumption is the piece-wise constant initial conditions from direct measurement
of the size of the photobleaching spot (Sprague et al. 2004). This is validated when
the bleaching is homogeneous, and the bleaching time is negligible. Another one is
also the piece-wise constant initial conditions, but is deduced from the final recov-
ery concentration and the conservation of fluorescence (Hinow et al. 2006). It is an
improvement from the first one, but still is limited to the cases where the boundaries
of the bleached region are relatively sharp and the observational photobleaching is
negligible. When the boundaries of the bleached region are smoothed by diffusion
before observation, the piece-wise constant is not able to capture the characteristics of
the initial condition, which may cause large errors in parameter estimation (Mueller
et al. 2008). Thus, for the third kind, some Gaussian or Gaussian-edge function fitted
by the initial data, which results from the Gaussian assumption of the laser profile, is
used for the initial condition (Mueller et al. 2008). It has been shown that using the
Gaussian expression of the initial postbleach profile alters the estimates of parameters
in comparison with the first or second utilization of initial condition; however, the uti-
lization of Gaussian function needs to be carefully justified. It is not convincing that
the utilization of Gaussian function as the initial condition produces better estimations,
because in real biological system, the true values of binding/unbinding rates as well
as the diffusion coefficient are unknown. In our simulations, we only simulate the data
without with homogenous and instantaneous bleaching process, and thus, we estimate
parameters by only modeling the recovery with piece-wise constant initial conditions.

Appendix 1.4: Justification of the Assumption of Linear Kinetics in FRAP
Modeling

Suppose that there is one diffusing species that can bind to an immobile receptor,
and let (u1, v1) and (u2, v2) be the free and bound concentrations of fluorescent and
bleached molecules, respectively. These satisfy the following equations.

∂u1
∂τ

= D1	2u1 − k+u1[R] + k−u2
∂u2
∂τ

= k+u1[R] − k−u2 (54)

∂v1

∂τ
= D1	2v1 − k+v1[R] + k−v2

∂v2

∂τ
= k+v1[R] − k−v2 (55)

where [R] is the concentration of free binding sites.
The sums w1 = u1 + v1 and w2 = u2 + v2 satisfy

∂w1

∂τ
= D1	2w1 − k+w1 (56)
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∂w2

∂τ
= k+w1[R] − k−w2. (57)

If adequate time has elapsed before bleaching begins, one can assume that the
system is at steady state prior to bleaching, and further assume that bleaching does
not perturb the binding reactions, it merely substitutes a bleached for a fluorescent
molecule. Then, throughout the bleaching process w1 = ws

1, the steady-state value of
the free concentration, and the total free concentration of binding sites is given by

R = RT
K̂

K̂ + ws
1

, (58)

where RT = R + w2 is the total concentration (free and occupied) of binding sites
and K̂ = k−/k+. Similarly, the concentration of bound sites is

ws
2 = RT

ws
1

K̂ + ws
1

.

Let W = w1 + w2 be the total concentration of all forms of the molecules, which
here is assumed constant point-wise in space and time. Then, it follows that ws

1 is the
solution of a quadratic equation whose coefficients involve K , W , and RT , and the
solution of this quadratic then leads to the free site concentration (58), and (54) can
be written as

∂u1
∂τ

= D1	2u1 − k+u1 + k−u2
∂u2
∂τ

= k+u1 − k−u2 (59)

where k+ = k+([RT ]−ws
2) and k

− = k−. This is the linear systemwidely used in this
context. However, the constant k+ is a composite constant that involves three separate
constants in an experiment, and two other independent measurements are needed to
determine the three independent constants.

To define the initial conditions, let I0(ξ) = u10(ξ) + u20(ξ) be the initial concen-
tration of the fluorescent molecules in space at the onset of the recovery phase of an
experiment, which is usually measured directly from the first postbleaching image.
If we assume that bleaching in the ROI is instantaneous (i.e.,T1 = 0), then the initial
condition for equation (59) is

u10 = I0(ξ)

1 + K−1
d

and u20 = I0(ξ)

1 + Kd
.

where Kd ≡ k−/k+ is the dissociation constant. In the simulations described in the
text, these are piece-wise constant functions. If bleaching is not instantaneous, then
diffusion alters the initial condition, and the initial conditions for the recovery period
must be computed using the equations applicable to the interval [T0, T0 + T1] given
in Sect. 1.
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Appendix 1.5: Analysis of the Eigenvalues and Eigenvector for a
Two-Component System

In the following, we use eigenvalues/eigenvectors to analyze how FRAP data are
determined by the parameters in the model.

Let

Q = K − α2
n D =

(−k+ − α2
n D1 k−

k+ − k−
)

and

γ = k+ − k− + α2
n D1

Then, the eigenvalues of the matrix Q are:

λ1n = −1

2

(
k+ + k− + α2

n D1

)
+

√
γ 2 + 4k+k−)

λ2n = −1

2

(
k+ + k− + α2

n D1

)
−

√
γ 2 + 4k+k−)

λ10 = −(k+ + k−), λ20 = 0.

The averaged fluorescent intensity can be written as

u1+u2 ≡ (u10+u20)+
∞∑
n=1

g(n)(u1n+u2n) = y10+y20+
∞∑
n=1

g(n)(d1ne
λ1n t+d2ne

λ2n t )

(60)
where

u10 = k+y10 − k−y20
k+ + k− eλ10t + k−y10 + k−y20

k+ + k−

u20 = k−y20 − k+y10
k+ + k− eλ10t + k+y10 + k+y20

k+ + k−

(thus, u0 + u20 = y10 + y20)

g(n) = 1

n(lR − lL)π
[sin(nπlR) − sin(nπlL)].

Note that

λ1nλ2n = α2
n D1k

−

d1n = y1n + y2n
2

− α2
n D1(y2n − y1n)

2
√

γ 2 + 4k+k− − (k+ + k−)(y1n + y2n)

2
√

γ 2 + 4k+k−

d2n = y1n + y2n
2

+ α2
n D1(y2n − y1n)

2
√

γ 2 + 4k+k− + (k+ + k−)(y1n + y2n)

2
√

γ 2 + 4k+k−
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since

y10 + y20 = 1

N

N∑
k=1

I0(k)

y1n + y2n = 1

N

N∑
k=1

I0(k)
(
cos

nπ

N
(k − 1) + cos

nπ

N
k
)

Note that it is positive and independent of the parameters

y2n − y1n = k+ − k−
k+ + k−

1

N

N∑
k=1

I0(k)
(
cos

nπ

N
(k − 1) + cos

nπ

N
k
)

= k+ − k−
k+ + k− (y1n + y2n)

If we define

f (n) = g(n)
y1n + y2n

2

we have

u1 + u2 = 1

N

N∑
k=1

I0(k) +
∞∑
n=1

f (n)(c1ne
λ1n t + c2ne

λ2n t ) (61)

where

c1n = 1 − α2
n D1

k+−k−
k++k−√

γ 2 + 4k+k− − k+ + k−√
γ 2 + 4k+k−

c2n = 1 + α2
n D1

k+−k−
k++k−√

γ 2 + 4k+k− + k+ + k−√
γ 2 + 4k+k−

Note that c1n, c2n > 0, λ1n, λ2n < 0 .
As n increases, c1n increases, c2n decreases, both λ1n and λ2n decrease (alge-

braically).
Moreover, as n → ∞, λ1n → −α2

n D1 , λ2n → −k−, and if k+ > k−,

c1n → 2
k−

k+ + k− , c2n → 2
k+

k+ + k−

if k+ < k−,

c1n → 2
k+

k+ + k− , c2n → 2
k−

k+ + k−

and if k+ = k−,

c1n → 1, c2n → 1.
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One may first estimate the eigenvalues and corresponding eigenvectors from FRAP
data based on equation (61). Then by the relationship between unknown parameters
and eigenvalues and eigenvectors, targeted diffusion coefficient and kinetic parameters
may be eventually estimated. Moreover, the quantitative analysis of eigenvalues may
lead to some more insights into parameter estimation. These aspects can be explored
in the future.

Appendix 1.6: Implementation of Sensitivity Analysis

The indices of variance-based sensitivity measures are usually done by the Monte
Carlo method. In practice, instead of generating pseudo-randomly distributed points
in the parameter space in traditional Monte Carlo method, the low discrepancy quasi-
random number generator is used to improve the efficiency of the estimators. This is
known as the quasi-Monte Carlo method. It is implemented as follows [taken from
Saltelli et al. (2010)].

1. ‘Generate an N × 2k sample matrix with respect to the probability distributions
of the input variables—the parameters. N is the number of sample points. k is the
dimension of parameter space, i.e., the number of parameters.

2. Use the first k columns of the matrix as matrix A, and the remaining k columns
as matrix B, which generates two independent samples of N points in the k-
dimensional parameter space.

3. Build k further N × k matrices Ai
B for i = 1, 2, . . . , k, such that the i th column

of Ai
B is equal to the i th column of B, and the remaining columns are from A.

4. The A, B, and the k Ai
B matrices specify N × (k+2) points in the parameter space

(one for each row). Run the model at each point, giving a total of N × (k + 2)
model evaluations, i.e., the corresponding f (A), f (B) and f (Ai

B) values.
5. Calculate the sensitivity indices using the estimators discussed below.’

There are a number of Monte Carlo estimators for both indices. Two that are cur-
rently widely used are according to the rule proposed by Saltelli et al. (2010).

Vpi (EP∼i (E | pi ) ≈ 1

N

N∑
j=1

f (B) j ( f (A
i
b) j − f (A) j )

EX∼i (Vpi (E | p∼i ) ≈ 1

2N

N∑
j=1

( f (Ai
b) j − f (A) j )

2

They are used for the estimation of Si and ST i , respectively.

Appendix 1.7: The Complex Model used in Sect. 5.2

∂u1
∂τ

= D1	2u1 − k+u1 + k−u2
∂u2
∂τ

= k+u1 − k−u2 − kiu2 + kou3
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∂u3
∂τ

= −kiu2 − kou3 − ktu3 − kd1u3

∂u4
∂τ

= −ktu3 − kd2u4 (62)
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