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Summary 

A "'two-phase" cont inuum model of  a developing tissue is formulated and some limiting cases 
are analyzed. In this "raisin-pudding'" model, exchange occurs between cytoplasm and the immobilized 
cell organelles, and transport within the cytoplasm is via an active or directed mechanism as well as 
by diffusion. The limit of rapid interphase exchange leads to several distinct cases depending 
on the rate of  reaction in the organelles and the storage capacity of  the organdies.  For a certain 
class of  systems, marginally stable states are always oscillatory and small amplitude chemical waves 
can be propagated. Analysis of a one-component  system shows that several distinct types of  finite- 
amplitude waves can propagate unattenuated, each at a characteristic velocity. Thus  a very simple 
reaction-transport system can lead to a very flexible chemical transmission line. 

1. Introduction 

Intercellular communication undoubtedly plays an important role in the control 
of spatial differentiation in developing systems, and the simplest mode for such 
communication is exchange of cellular constituents. Diffusion can transmit local 
concentration changes over distances comparable to a cell diameter in a few 
seconds, but because the characteristic time for diffusion is proportional to the 
square of the distance, it takes 10 ~ times as long to transmit the same change over 
a distance of 103 cell diameters. Consequently, diffusive transport alone is inade- 
quate for rapid, long distance signal transmission; if diffusion is involved;it must 
be coupled with some spatially-distributed mechanism for regenerating the signal. 
Chemical reaction can function as this meachanism, for it is known that when 
reaction is properly coupled with diffusion, small-amplitude composition changes 
can propagate throughout a system as unattenuated travelling waves, often at 
speeds far greater than the rate of advance of a diffusion front (Gmitro and 
Scriven, 1966). Such travelling waves, the most dramatic examples of which 
arise in the Zhabotinskii-Belousov reaction (Zaiken and Zhabotinskii, 1970; 
Winfree, 1972), are potentially important as a mechanism for communication and 
control in developing systems. Indeed, Goodwin and Cohen (1969) have proposed 
an elaborate theoretical model for developmental control, in which the phase 
shifts in several propagating waves provide a global spatio-temporal reference 
frame for cellular events (Cohen, 1972). 

To discover the properties of coupled reaction and transport that lead to un- 
attenuated wave propagation, and thereby, to identify equivalence classes of 
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reaction-transport schemes that can function as chemical transmission lines, the 
dynamics of concrete models or classes of models must be analyzed. When the 
governing conservation equations of a reaction-diffusion system are linear or 
when nonlinear conservation equations are linearized, undamped travelling waves 
exist only in oscillatory, marginally-stable systems (Gmitro and Scriven, 1966, 
Othmer and Scriven, 1969; Ortoleva and Ross, 1972). Such systems are ~'struc- 
turally unstable" in the sense that small parameter changes lead to either growing 
or decaying waves, and further analysis is required to determine the fate of 
growing waves. KopeU and Howard (1973, 1974) have studied finite amplitude 
periodic waves and transition layers for a special class of kinetic mechanisms, 
while Ortoleva and Ross (1974) constructed such periodic waves by perturbation 
expansions valid in the small-amplitude, long-wavelength limit. Some numerical 
results have been reported by Herschkowitz-Kaufmann and Nicolis (1972) and 
Winfree (I 974). Here we begin a study of wave propagation in a broader class of 
continuum models, a class more relevant to developmental biology because other 
modes of transport are incorporated and some aspects of internal cell structure are 
included. 

A developing tissue consists of discrete cells, often directly-coupled by junctions 
of low resistance to diffusion of small molecules, separated from their external 
environment by high-resistance, non-junctional membrane (Caveney, 1974; 
Furshpan and Potter, 1968; Lowenstein, 1968). Within each cell there occur 
the complex networks of chemical reactions involved in respiration~ protein 
,synthesis, DNA replication~ etc. At the first level of description in a mathematical 
model, a tissue is regarded either as a collection of discrete, internally-uniform cells 
connected by zero capacity diffusion pathways (Othmer and Scriven, 1971, 1974) 
or as a homogeneous entity describable by spatially-averaged values of chemical 
concentrations and reaction and transport parameters (Turing, 1952). In either 
case, all internal cell structure is ignored and the choice of discrete or continuum 
model determined by the relative magnitude of internal transport resistance com- 
pared to junctional resistance. 

However, cell organelles such as ribosomes, nuclei and mitochondria are more 
than just dispersed catalysts or inert blobs. At the next level of complexity in a 
continuum model, these organelles are recognized as distinct from the cytoplasm 
and the possibility of finite relaxation times for the interactions between cyto- 
plasm and organelles is incorporated. When junctional resistances between cells 
are comparatively low, such a "two-phase" continuum model, for which we 
develop the governing equations in the following section, should provide the appro- 
priate level of description of a developing tissue. With such a model, both the 
effect of blocking reactions within the organelles and the role of transport 
between cytoplasm and organelles can be studied and conditions that lead to os- 
cillations, such as those observed in mitochondria (Hess and Boiteux, 1971), 
can be investigated. Moreover, simpler "single-phase" continuum descriptions 
can be recovered as limiting cases when exchange between organelles and cyto- 
plasm is rapid. However, the analysis done in Section 3 shows that different 
single-phase descriptions are needed, depending on the rates of the other proces- 
ses involviM. 
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The first step in analyzing the equations for a new model is a stability analysis of 
the steady states; this is done in Section 4. In certain special cases, it happens that 
marginally-stable states are always oscillatory when active or directed transport 
occurs. Under certain additional conditions, this result implies that an unstable, 
uniform steady state always evolves to a time-dependent state, never to another 
steady state. Therefore, steady finite-amplitude waves may exixt in such systems. 
Such waves are studied in Section 5 where, for reasons of mathematical simplicity, 
we restrict attention to one component systems. Even such simple systems are 
capable of supporting a wide variety of finite-amplitude waves for different values 
of the parameters in the governing equations. It remains to be determined which 
kinds of waves are excited in real systems and how their shape and velocity 
depend on the reaction and transport parameters. The results of analytical and 
numerical computations aimed at answering these questions will be reported in 
a sequel to this paper. 

2. Mathematical Formulation 

In the continuum description adopted here, a one-dimensional array of cells is re- 
garded as a two-phase mixture consisting of an immobile phase that comprises 
such cell organelles as the nucleus, ribosomes and mitochondria, uniformly 
dispersed throughout the mobile cytoplasm or fluid phase. The mixture is bounded 
laterally by a membrane outside of which is a uniform constant-composition bath. 
The thickness of the system is much smaller than its length, and fluid phase 
concentrations are considered uniform at any cross section. Chemical reaction 
occurs within both the fluid and dispersed phases, there is mass transfer between 
the fluid and dispersed phases, and transport in the fluid phase by diffusion, 
electrical migration, convection or other active processes occur along one dimension 
only. Concentration gradients within the dispersed phase are assumed to be 
negligible, i.e., the effectiveness factor for the dispersed phase is set equal to one 
(Weisz, 1973). 

Let c denote the concentration vector (ci . . . . .  c,), let J and R represent n-com- 
ponent flux and reaction vectors, respectively, and let ~ be the volume fraction of 
fluid phase. Further, denote by a i (a ~ the interracial area per unit volume 
between fluid and immobile phase (fluid and bath), let t and z be the time and 
space variables, and let superscripts f, i and o denote quantities in the fluid phase, 
the immobile phase, and the bath, respectively. The time-dependent conservation 
equations for chemical species in the two phases are 

0 c f ~ J f  a ~ a i 

. . . . .  ~ - - -  J~o + - -  J{ + R: (c:) 
3 t  Oz co co 

Oc i - d  (1) 
t 1 - oJ J {  + R~ (c~)" 

Here J f  is the flux within the fluid phase while Jo f and J[  represent interphase 
fluxes. It is postulated that the latter fluxes are given by the constitutive 
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relations 1 

dl o = H ~ (c ~  cY) 

J{ = H i (d - c*), (2) 

where H ~ and H i are n x n matrices of mass transfer coefficients. The vector c* 
is the immobile phase concentration in equilibrium with the local fluid phase 
concentration when Ri(d)~o .  The relation between these concentrations at 
equilibrium will be written c*=F(c:); this could, for example, represent a 
Langmuir adsorption isotherm. 

The axial flux in the fluid phase consists of a random diffusive component 
proportional to the local concentration gradient and a directed component that 
is assumed to be proportional to the local concentration. Accordingly, the total 
flux is 

O d +  
J d = - - ~  ~ A(c  "r) c: (3) 

where @ is an n x n matrix of binary diffusitivities and A (c) is an n x n matrix of 
generalized !'velocities". The directed component of the total flux can represent 
the convective portion due to protoplasmic streaming, the drift flux that arises from 
an externally-imposed or internally-generated electrical field, or the flux resulting 
from active transport. 

If convection is the only mechanism for directed transport, then A (c) has the 
form A = v I where v is the convective velocity and I the identity matrix. When 
two or more of the chemical species are ions, an electric field can be generated if 
the two species diffuse at different rates or if one species is actively transported. 
In this case, or the similar case where the field is externally-imposed, the compo- 
nents ofA (c) are (Plonsey, 1969) 

o iCj 
zj (4) AiJ-- -u) ~ E i=j  

where uj is the mobility of, and zj the charge on, the j-th ion, and E is the axial 
component of the electric field. In the absence of net space charges, E is a 
constant, but any of the mobilities may be a function of concentration. Finally, if 
active transport proceeds via a carrier-mediated mechanism that involves formation 
of a complex between carrier and transported species, it is reasonable to assume 
that the flux can be expressed in the form A (c)c. At low concentrations of the 
transported species, the flux should increase with increasing concentration and 
hence A (c) should be non-decreasing in c for small c. At high concentrations such 
a mechanism would saturate and therefore A (c) should vary as 1/c when c is 
large. More specific information on A (c) is not required here. 

With these constitutive relations, the conservation equations can be written 

By delinition, the bath has infinite capacity whereas the immobile phase may saturate and 
equilibrate with the fluid. This accounts for the form chosen for the two constitutive relations. 
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~ c:~ t = c~ zO ( ~ ~_zO C: ) , ~ z  c~ ( A ( cY) c:) + a~ H~ ( c" - cf  

a i 

+ - -  H i (c i - c*) + R y (c:) (5) 
co 

0 C i - -  a i 
(d-- C*)+ R ~ (ci). 

Ot 1 - c o  

These equations are difficult to analyze when the reaction rates are nonlinear 
or when the transport coefficients are concentration dependent, but they simplify 
somewhat when exchange between the fluid and immobile phases is rapid 
compared with diffusive transport in the fluid phase. For the purpose of 
deriving the simplification, we assume that there is only one reactive species of 
interest in each phase and that 9 ,  H ~ and H i are concentration independent. 
This simplifies the notation; the final results are readily translated to the general 
multi-component case. As usual, analysis of the equations hinges on the appro- 
priate non-dimensionalization of all variables. 

Let L be a characteristic length, for example, the cross-sectional thickness of the 
system. Define the dimensionless variables 

z @t 
~=Z ~= L2 

c :  d (6) 

c ~ F (c ~ 

and the dimensionless parameters and functions 

(1 -co) e= ai H'  L-' ~.= (1 -co) R i (F (c~ 
a i H i F (c ~ 

( ~ _ _ ) F ( : ~  A(c~ L 

a o H o L z L 2 R / (c ~ 
12 z = _ _  f2 3 = 

co ~ c ~ 

Yi ( u ) =  A (c ~ u) 
A (cO------~ P (U)=FF(c!;~ u) 

R :  (c ~ u) - .  R i (F (C ~ V) 
~ I  (u)= R:  (c ~ R' (v)= R' (F (c~ " (7) 

The conservation equations can now be written in the dimensionless form 

0 /,l 0 02 II 
~'T "J- Q1 ~ ('4 (U)/l) = ~ "l'- ~2 (l --/1) -1- #~ (U -- P (U)) -'1- ~r~ 3 /~f (l,) 

Ov 
~ = - (v - ~ (u~) + ~. ~' (.). 

I0" 
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When interphase exchange is rapid, ~ << 1, and physical intuition suggests that the 
immobile phase concentrations rapidly equilibrate with fluid phase concentrations. 
However, the exact nature of this equilibration and its effect on the time 
evolution of the fluid phase concentrations depends on the relative magnitudes 
of the other parameters. Because we are primarily interested in determining 
how the presence of the immobile phase affects the dynamics in the fluid phase, 
we consider only cases for which f2~,s z and s ,-- (9 (1). The different limiting 
cases then depend on the relative magnitudes of ~, # and p. 

3. Cases of Rapid Interphase Exchange 

When s<< 1, one or both concentrations vary rapidly during the time interval 
o < z < r  6:) and more slowly thereafter. Using standard techniques of singular 
perturbation theory (Cole, 1968), two asymptotic expansions of the solution of 
(8), each valid in one of these regimes, can be constructed and the "long-time" 
(T >> 5) effect of the immobile phase can be determined. The "inner" expansions, 
valid for o< z < (9  (0, are written in terms of the rescaled variable T=T/e as 
follows: 

oO 

u(~,eT, 0 = U ( ~ ,  T, 0 ~ ~ U,(~, T)~ k 
k=o (9) 

v(~,~L~)=v(~, ~,0~ Y. G(~, T~ ~. 
k=O 

The "outer" expansions, valid when the solution varies on an (9 (1) time scale, 
are written 

k=o (10) 

v (~, ~, ~) ~ ~ v~ (~, ~) c ~ 
r  

k=O 

and the inner and outer expansions are matched by requiring that 

lim U {~, Z e) = lim u (~, ~, e) 
r . . . . .  ( I 1 )  

l im V(~:, T, 0 = lim v ((, "r, O. 
T ~  oo r  

There are three cases of interest, depending on the relative magnitude of ~, 2 
and/~.2 

z The results that follow apply to either the interior of the unit interval [0, 1] with u or the flux specified 
at the end points or the infinite interval with the condition that u be bounded at 4-.~. On the 
finite interval, the inner solution cannot satisfy the boundary conditions unless compatibility 
conditions on the initial data are specifie& In general, a boundary-layer analysis near the 
end points is also required. 



Nonlinear  Wave Propagation in Reacting Systems 139 

(a) Slow Immobile Phase Reaction and Low Saturation Concentration: 
;~~ r (~), ~ ~ 6 (~) 

By substituting the series (10) and (lt) into (8) and comparing coefficients of 
like powers of f., the zero order terms are found to satisfy 

CO Uo = 0  
COT 

(12) 

CO V~ = - ( V  o -  F (Uo)) 
COT 

a u o +f21 COy (A (Uo) CO2 Uo bz ~ u~ y-+f2z(1-u~176 

vo = F (uo). 

Therefore Uo (~, / )=constant;  the initial distribution in the fluid phase, whereas 

Vo(~, T)=e - r  Vo(~ ,O)+F(Uo)[ l - e - r ] .  
and (13) 

lim Vo(~, T)=F(Uo). 

It follows from (12) and (13) that, within terms of (9 (~), the immobile phase has 
no effect on the fluid phase concentration. 

(b) Moderate Reaction Rate in the Immobile Phase and Low Saturation 
Concentration 3 ).,--d) ( 1 ) , / ~  �9 (e) 

The zero order terms satisfy 

0 Uo 
= 0  

OT 
(14) 

o Vo = -(Vo-F (Uo))+,~ R' (Vo) aT 

CO u~ ~ (A " CO:" u~ -uo)+-  ~- 
CO ~ +Q, CO~ (uo) U o I = - - ~ + a  2 (1 (,o-F (Uo))+~3 (Uo) R.C 

(,p 

0 =  - ( v o - F  (Uo))+ 2 R' (vo). 

Again, Uo (~, T) = constant, but now lim V o ((, 7) depends on the nature of R i (Vo). 
T~oo 

Suppose that for all positive u 

F (u) + R i (0) > 0 
and that the equation (15) 

v -  F (u) = ~. R i (v) 

3 Here and in the following case moderate reaction rate means that the magnitude of the reference 
rate R ~ (F (c~ is ~ I. Moderate saturat ion concentrat ion means that F (c~  ~ We do not  consider 
cases for which ~, or # are 0 (l/p,). 
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has a single positive root for fixed u. Call this root V~o (Uo)[v* (uo)] when 
(Uo, Vo) [(uo, vo)] is substituted for (u, v)in (15); then 

lim Vo(~, T)= V* (Uo)=vo(~, O). (16) 
T ~  

Furthermore, 

r o ~ ' ( 2 1 ~  . 02u ~ 
"Oz c~ (A(uo)uJ=-~-U-+Q2(1-Uo)+f23Rf (uo)+2# (17) 

and so the zero order effect of the immobile phase is simply to modify the 
homogeneous reaction rate. Equation (17) is usually assumed a priori as the 
equation for the exact solution in such cases as those involving a dispersed 

catalyst. The reaction term f2 3 R -c (uo)+ 2# R i (v* (uo)) is then called the pseudo- 
z 

homogeneous rate. However, neglecting the inner solution entirely and computing 
only the outer solution is not generally valid; it is appropriate only when 
v* (Uo) is unique. 

When (15) has more than one positive, asymptotically stable root for fixed u, 
the nature of the outer solution depends critically on the initial distribution of u 
and v. If the initial values lie in the domain of attraction of the same root for 
every value of if, the problem is similar to the single root case, with the exception 
that different initial distributions can lead to different roots v* and hence different 
equations for the outer solution u. However, if the initial conditions lie within 
the region of multiple roots in u - v  space for some values of ~, a discontinuity 
in v can develop. 

t 

) 

U T U m U 7 
U 

Fig. 1. Relaxation of the initial distribution when (15) has multiple roots 

Suppose, for example, that the graph of the solution of (15) is as shown in Fig. 1 
and that the initial values lie along the dotted curve, with ~ varying monotonically 
on that curve. Clearly the immobile phase concentration relaxes to different 
values at different points in space (cf. Fig. 1), but these values vary slowly with 
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except at ~*, the point at which the initial values are (u*, v*). At this point in 
space, the immobile phase concentration switches from one branch of the curve 
to the other and the resulting initial condition Vo (~, o) for the outer solution is 
discontinuous. However, Uo (~, o) varys smoothly with ~ and so there is no shock 
layer in the fluid phase. Moreover, if the outer solution in the fluid phase is 
such that the concentration never falls below U t nor rises above U2 at all points 
in a neighborhood of the discontinuity, the discontinuity persists in time. In a 
sense, it is dynamically imprinted. Such a mechanism, whereby a smoothly varying 
distribution in one phase can generate a sharp discontinuity in the other, may be 
useful for spatial differentiation in developing systems. 

(c) Moderate Immobile Phase Reaction Rate and Moderate Saturation Concentration: 
i ~ ~  (e), ~ ~ ~  (1) 

The zero order terms satisfy 

0 U o 
8 T =I' t(V~176 

avo 
0 r = -~(Vo-r(Vo)) 

Vo = F (uo) (18) 

�9 0 2 U o 

+2U R'(F(uo) ). 
8 

The first pair of equations imply that 

go(~, 73+ Vo(~, T)=C 1 = G ~  V~ 

where U ~ and V ~ are the initial values, and therefore 

O Uo 0--~-=# [CI- Uo-F (Uo)  ] . . (19)  

Since F (u) >_ 0 for u_> 0, lim Uo > 0. If, in addition, F' (u) > - 1 for u > 0, the 
T~oo 

limit is independent of the starting point on the line Uo+ I 'o=Ct,  and is given 
by the single positive root Uo ~ of 

Ct - Uo = F (Uo). (20) 

Corresponding to this is the limiting value of Vo: 

lim Vo= V~ =F(Uo~), (21) 
T ~  

and therefore the initial values for the outer solution are 

Uo (~, o)= u2 (~) 
(22)  

vo (~, o)= v~ (~). 
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Under most circumstances F' (u)>0, i.e., the saturation concentration increases 
with increasing external concentration, so the above covers all cases likely to 
be of physical interest~ 

It is significant that under the conditions on reaction rate and saturation 
concentration applicable here, the presence of the immobile phase is reflected 
both in the pseudo-homogeneous rate and in the capacity term # F' (Uo). If 
F' (uo) is a constant, the effect is to simply modify the time scale in the fluid 
phase, for by defining ~* = ~/(1 + It F' (Uo)), the factor 1 + It F' (uo) can be absorbed. 
When F (Uo) is nonlinear, the capacity varies with uo and in effect, the time 
scale is different for each concentration. If F' (Uo) is monotone increasing, high 
concentrations vary on a longer time scale than low concentrations and vice- 
versa if F' (uo) is monotone decreasing. In a spatially-homogeneous system, 
where u is independent of (, this difference in time scales plays no essential role 
for any monotone increasing F, because the capacity term can be absorbed by 
defining a cumulative time 

d t  "C* (23) 
J 1 + F' (u o (t))" 0 

However, such a simple rescaling cannot be done in a nonuniform system and 
the nonlinearity of F has interesting~consequences. 

Suppose for example, that diffusion is very small and that the space and time 
variables in the conservation equations are scaled to reflect this. If A (Uo)= Ao, 
a constant, then a rescated version of (17) reads 

c3 u o Q1 Ao O u o Oz (1 - Uo) s 3 R I (uo) 

Oz l+F ' (uo )  O~ l+F' (Uo)  l+F ' (uo )  
(24) 

It g i (F (Uol) + 
1 + F' (Uo) 

If F' (u) is decreasing ( F " <  0), the concentration-dependent "velocity" Ao/(1 + F' 
(Uo)) increases with Uo and an initially-smooth distribution of uo can give rise to 
sharp" transition regions or shock layers that propagate through the system. 
Indeed, such concentration dependence of the velocity is the basis for chromato- 
graphic separations, .and equations like (24) with [22, f23 and # equal to zero 
have been thoroughly studied in that context (Aris and Amundson, 1973; Rhee 
and Amundson, 1974). The more general case with non-zero reaction has been 
touched upon by Murray (1970). 

Analysis of multicomponent systems governed by equation (5) is complicated by 
the fact that there are n relaxation times in a n-component system and by the 
possibility that the kinetics in the immobile phase may by oscillatory. However, 
with suitable restrictions on the reaction rate functions and the initial conditions, 
equations for the outer solution can be derived. To this end, assume that the 
matrices @, H i and H ~ are constant and define 

c~ = max [ Aij ~c~ fl = max [ F~ (c~ y = max c~ 
i . j  j j 
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6( i - co )  z 
6 = m a x  1~i~1, e=  LZOiai , (=-~-, 

i,j 

o p; ( 1 - < n )  
0 ~  ),= a~0ifl , 

i,j 
Oi= max L HI: I, 

i,j 

g = \ / ~  --~, = max l R :  (c~ 1, max I 
J J 

i c o 6 t ~ cj Uj = ~ ,  -- �9 ~ - - - ~ ,  ~ l ) j - - -~ ,  W j = - ~  

,~ij = Aij ~ i j =  ~ i j  ff~=_~2, ~ i _ HIJ ~o _ Hi~ ~ Rfj 
--c~ ' 6 ' Hi j -  0~ , H u -  OO , R ~ - p:  , 

~. R ~ a L  a ~ 0 ~ L 2 p f  L z 
' - - ~  ~2 = O 3 -  R -  , Q~= 6 ' ~ 6  ' y 6  

The dimensionless form of(5) is 

: u ~ 0 2 u t~ ~ ( w -  u) TU+o2 
+_~g/~i (v - P (u))+ (23/~: (u) (25) 

8 

Ov 
c = ~ =  - H i  ( v - F  (u))+ 2/~' (v). 

By virtue of the definitions of the scale factors, the entries in ,4, ~ , / ~ ,  R: and/~i 
are C9 (I) quantities, and the relative importance of any term in these equations is 
determined by the corresponding dimensionless group. As in the preceding 
analysis, t2 I, (22 and (23 are assumed to be (~ (I). 

When 2 ~  (.9 (i) and # ~  ~ (e), the initial values for the outer solution depend on 
the asymptotic behaviour, as T ~  ~ ,  of the solution of 

O Uo =0 
aT 

(26) 
0 V o . . . .  H i ( V o _ P ( U o ) ) + 2 g , ( V o ) "  
O T  

where here and hereafter tildas are dropped. If the vector equation 

H' ( V o -  P ( Uo)) = 2 R' ( Vo) (27) 

has a unique, positive, asymptotically-stable solution for fixed Uo, then the first 
term of the outer solution satisfies an equation analogous to (17), 

(~ uo ~ 62 uo 
c3z ~-~1 og ( a ( u ~ 1 7 6  + o 2  H ~  R:  (u~ 

(28) 
' ~  R i + (v: (uo)) 

c 
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with smooth initial conditions. If (27) has more than one stable root, initial 
conditions determine the asympotic behaviour of Vo~ and discontinuous profiles 
are possible when initial conditions lie within the region of multiple roots. It 
can also happen that (27) has no stable solutions and that (26) has a stable 
periodic solution, but this case requires a more detailed analysis and will not be 
treated here. 

Case (c), in which 2 ~ r (e) and #,-, (9 (1), goes through essentially without change 
for a multicomponent system. As before, Uo + Vo = constant, and the first term of 
the outer solution satisfies the vector analog of 18 (d). However, even if the equili- 
brium relation P (u) is linear for each species, the capacity term cannot be absorbed 
by defining a new time scale unless the Jacobian F' (u) is proportional to the identity 
matrix. 

In either of the single- or multi-component cases, the equation for the zero- 
order outer solution can rarely be solved explicitly, but some information about 
the dynamics can be gotten by studying the stability of stationar)' states. This is done 
in the following section. 

4. Stability Analysis of Steady States 

The steady state concentrations, which we denote by (fi, ~), are positive solutions 
of the equations 

7 g ~ - -  a 1 0 2  fi ~ (A (fi) f i )+a  2 H~ (w- f i )+&e/4 '  ( ~ - F  @ ) + ~  3 R: ( f i )=0  

H / ( ~ - F  (fi))=2 R' (~) (29) 

(fi, 0) bounded on - m < ( < or. 

We assume hereafter that at least one such solution exists, and investigate the 
temporal evolution of sfiaall disturbances of this steady state. For this purpose, 
define ({, r/) by 

u if, ~) = ~ (~) + ~ (~, ~), (30) 
v (~, ~) = ~ (~) + , 1  (~, ~), 

substitute these into (26), and retain only first order terms in the small quantities 
(~, q). The result is the linear vector equation 

a 0  
= ~ 4 J ,  

0z (31) 
(-t- oo, ~) bounded, 

4, (~, o)  = r (~), 

\ , ' t /  
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I7 
2 ~ # H i OA t # H i 

- 7 - ~ - i  At  + K y - -  F' + 

J ~ =  
H i F' 2 K i H i ' 

s 8 g 

the quantities A 1, F', K and K i are given by 

OAiklw=.f f j '~t~ 1 ,  (A~),j=f2t [A, i ( f i )+~  ~ u--- 7 

(F'),; ~_ ~ u  F~ (Ki) i j=2 c~Ri  , (32) 
j " uj = ~j ~ l)j vj = ~j 

o ~ R [  , 
(KI)~ j -  - ~22 H~ + Q3 8 uj I ~, =~ 

and @, H ~, and H ~ are assumed to be independent of concentration. 

Since ~ is time-independent, solutions of (31) have the form 0 = e~ ~, where t~ 
and s are related through the eigenvalue problem 

( ~ - s )  i f = 0  (33) 

( _  co, s) bounded. 

If the largest real part of the eigenvalues s is zero, the solution (fi, ~) is marginally 
stable; stationary when the dominant eigenvalue is real and simple, and oscillatory 
when the dominant eigenvalues are a simple pair of complex conjugates*. If ~ has 
any eigenvalues with a positive real part, disturbances grow with time and the 
steady state (fi, f) is said to be unstable. As some parameter, such as a kinetic 
coefficient or a permeability, in 2 '  varies, the dominant eigenvalue may cross the 
locus of marginal stability in parameter space and become positive. Another 
solution of the equations may bifurcate at the critical parameter value; whether 
it is stable or unstable requires a detailed analysis 5. Furthermore, whether the . 
bifurcating so!ution is steady or periodic in time is dictated by whether the 
dominant eigenvalue is real or complex, respectively. In any case, the first step 
is to study the character of the eigenvalues of 2" to determine the critical loci in 
parameter space. 

When the steady state is uniform, 2" has constant coefficients and (33) has solutions 
of the form 

~1 ---- e ik( 4 , 

where k is a real constant. The determinantal 
non-trivial r gives the dispersion relation 

condition 

(34) 

for existence of a 

* By which is meant that (31) has only two periodic solutions ~O L =e~*~  and ~bz=t} t when Res=0 
(Joseph and Sattinger, 1972). 

5 For precise statements of some results applicable here see e.g. Aris (1971), Chafee and Infante 
(1973J, Kopell and Howard (1972), Joseph and Sattinger (1972), or Marsdcn (1973). 
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- k 2 - i k A ,  + K f - g-- H i F ' - s  I 
8 

H i F' 

or the alternate form, valid when - -  
,~ K i H i 

s g 

]2 Hi 

= 0  
;t K i H i 

s l  

s ! is non-singular, 

(35) 

det [K - k 2 ~ - i k A 1 - s I] = 0 (40) 

and this is indistinguishable from the equation for a single phase system described 
by a kinetic-exchange matrix K. 

In the other case of interest, namely 2--. (9 (e),/~--. (9 (1), it follows from (35) that the 
zero order term for ~ solves the equation 

det [Hi+g I] =0.  (41) 

(38) can be written 

det [ K / - k  2 @ - i k  Al -~--- H' F ' - s  I -l"t H i ( ) . K i -HI -~s l ) - IH ' F ' J= O.  (36) 
L 8 / 

The single-phase version (K i=Hi=0)  with A1 =0  has been studied elsewhere 
(Othmer and Scriven, 1969). The general case of (35) is too unwieldy too analyze, 
even if there are only two components in each phase, so we restrict attention 
to two of tile cases treated in the preceding section. 

When e<< 1, and when the uniform steady state (fi~ ~) is such that ~ is an 
asymptotically-stable solution of 26 (b) for fixed fi, the linear equations at (31) 
comprise n "fast" modes that relax to interphase equilibrium within a time inter- 
val of order e, and n "slow" modes that grow or decay on a longer time scale. 
To find the eigenvalues for these modes, suppose first that ,~~(9(1), #.-.(.9 (e), 
and set #=#/e.  The eigenvalues for the n fast modes are gotten by setting 
s=g/e in (35) and expanding the determinant; the result, to first order in e, 
is that ~ satisfies 

det (2 K ~- H i - g  I )=0.  (37) 

In order that ~ be an asymptotically stable root, 2 K i -  H i must have eigen- 
values all of whose real parts are negative. 

The zero order term for the eigenvalues of the slow modes are gotten from 
(36) by replacing #/~ by/~ and setting z = 0; they satisfy 

det [ K l - k 2 ~ - i k A x - ~ ( I + n i ( 2 K i - H i ) - l ) H i F ' - s I ] = O .  (38) 

The first three terms pertain solely to the fluid phase while the term multiplied by 
/~ reflects the interaction between the two phases. Evidently, if/~, H i or F' is 
zero, the interaction vanishes. That (38) can alternatively be derived by linearizing 
the equations for the first term in the outer solution may be verified directly from 
(27) and (28). Moreover, by defining a pseudo-homogeneous reaction-exchange 
matrix 

K = K I - ~ t  ( I + H  i ()L K ~ - H ' ) -  l) Hi F', (39) 
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Consequently, for f to be asymptotically stable, it is necessary and sufficient that 
H i have eigenvalues all with positive real part. In order to obtain the zero order 
term in the eigenvalues of the slow modes, the resolvent (~. K ~- H i -  e s l)- t in 
(36) must be expanded in powers of e, 

(2 K ~ - H ~ - ~ s  l ) - t =  _(Hi)- t  ~ : [~K~_I)(H~)-~],,, (42) 
n = o  

where 9t-X/e, 9t .--(9 (I). The series is convergent when a< [[(~Ki-s  I)(Hi)-t[[ 
(Kato, 1966). After inserting (42) into (36) and collecting terms, one finds that 
the zero order term satisfies 

det [ K : - k  z ~ - i  k A t + ~l.Z K ~ F ' - s  ( I + #  F')] =0.  (43) 

A pseudo-homogeneous rate K can now be defined by 

K = K :  + ~ #  K i F' (44) 

and (43) written 

det [ K -  k 2 @ - i k A t - s (1+ F')] = 0. (45) 

Evidently this equation differs from (30) in the appearance of the capacity term 
I + F '  and in the different definition of the pseudo-homogeneous reaction- 
exchange matrix K. Both differences stem from the dLfferent order of magnitude 
of 2 and # in the two cases. 

If the conditions on K i and H i given after (37) and (41) are satisfied in the 
respective cases, the fast modes decay, and to first order in e, stability of the 
steady state is governed by the real parts of the roots of (40) or (45). A multiplicity 
of cases arise, depending on the properties of ~ ,  A t, F' and K, but in the following 
we restrict attention to those features of the stability behaviour that arise from 
non-zero active or directed transport. We first consider the characteristic equation 
(40). 

Complete information on stability can be derived directly from the properties of 
the two matrices K - k : N  and A t when these matrices are simultaneously trian- 
gutarizable, for then the eigenvalues sj of K = k 2 ~ - i k  A t have the simple form 
s ~ . - k ~ - i k s ]  ' for the appropriate pairing of sy -k~w and sj'A', the eigenvalues 
of K - k Z ~  and A t, respectively (Othmer and Scriven, 1969). In particular, this 
simple form pertains if K -  k 2 ~ and A t commute or if A t is diagonal; At =az I. 
Since it is always true that 

f ~ K - k 2 ~ - i k A l  )~ f ~ K - k 2 ~  (oj  I (s,)j = Re toj ~ = Re t~ ~ + k Im leAf t 
(46) 

(S~)i= Im {s~ -k~9-'kA'} = I m  {s~ -~e} +k  Re {s~'}, 

it follows that whenever A t has only real eigenvalues, stability is determined 
solely by the reaction-diffusion matrix. If in addition, K - k 2 ~  has only real 
eigenvalues and A t is non-singular, the growth or decay of all slow modes is 
oscillatory with frequency proportional to the eigenvalues of A t. 

In the general case, we require the following 
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l.emma: Let (2=O,+ i f2~ be a complex n x n matrix with eigenvalue s = s , +  i s~; 
Qr, f2~, S~, St real. Let )~t <22 < ..o <).,, #~ <~2 < ... <# ,  be the eigenvalues of the 

f2, + O r 
+4-- (O~ - o r )  and B= O,-s '2f (O~-fff)  respectively 

2 z 2i ~ 2 ' 
matrices A = - -  

Then 

and ~ < s , < 2 .  (47) 

#1 <si-</zn. 

Proof: Let x be an eigenvector of I2 and x* the Hermitian transpose of x. Then 

Q Y," = .S .'C 

x *  ~"2 x 
s . ~ _ - -  

x *  x 

and 

Similarly 

x* (f2, + i f2i) x}  
s, = Re x* x 

X* X 

x* A x  

X* X 

(48) 

x* B x  
Si ~ X* X 

The result follows by first noting that A and B are Hermitian, and then using the 
fact that for any Hermitian matrix A and vector x, the Rayleigh quotient 
x* A x / x * x  lies between the smallest and largest eigenvalues of A (Barnett and 
Storey, 1970). 

The lemma implies that the real part sr and the imaginary part st of s r-k2~-ika'  
lie between the largest and smallest eigenvalues of 

K -  k 2 ~ + (K - k 2 @)r i k  
2 2 ( A t - A r ~ )  

and (49) 
K _ k  2 ~ _ ( K _ k  2 ~ ) T  k AI + A t  

2i 2 

respectively. When both K-k2C~@ and A t are symmetric, these bounds reduce to 

min (s~- k2~,) < s, < max (s~ '~- k2~) 
(50) 

- -  S i 
min (s;') < T < max (s;'). 

Therefore if K - k  2 ~ has only negative eigenvalues, K - k :  ~ - i  k A 1 has eigen- 
values, all of whose real parts are negative, and the system is stal~le. Consequently, 



Nonlinear Wave Propagation in Reacting Systems 149 

if K - k  2 ~ and A 1 are symmetric, active or directed transport can never destabilize 
a system that is stable in its absence. I f  A 1 is definite, a marginally stable state 
is always oscillatory. 

If only A t is symmetric, the bounds on the growth or decay rate depend only on 
the reaction and diffusion matrices. When K - k 2 ~ + (K - k 2 ~ ) r  has only negative 
eigenvalues, the s r are all negative and the system is stable. However, it is not 
sufficient for this that K - k  2 ~ have only eigenvalues with negative real parts; 
this can be seen from a two-component system that has complex conjugate eigen- 
values. Conversely. even if K - k 2 ~  has an eigenvalue with a positive real part, 
it cannot be concluded that any of the sr is positive. Thus the only cases in which 
any conclusive statements on stability can be made are those for which K -  k: @ 
and A 1 are symmetric; in other cases the eigenvalues must simply be computed. 
For example, Jorne (1974) has shown that in two-component systems, oscillatory 
instabilities can exist in a botinded k interval that does not include 0. Such 
synergistic oscillatory instabilities are impossible with two components in the 
absence of some form of directed transport; at least three components are necessary 
when A 1 = 0 (Othmer and Scriven, 1969). 

Next consider the characteristic equation (45). If F' is symmetric and has all 
eigenvalues greater than - 1 / # ,  then I + # F '  is positive definite and i48) is 
replaced with 

x* A x  
S ' - x * ( I + # F ' ) x  

and (51) 
x * B x  

sl = x* (I + # F') x" 

Let 031 >032 > ... >-03, be the eigenvalues of I + #  F'. Then it follows from'(51) that 

21 2, 
"<St< _ -  

031 ('On 
(52) 

# 1  - -  si /~,, 

091 k 03,, " 

If both K - k z ~ and A t are symmetric and K - k 2 ~ has only negative eigenvalues, 
it follows as before that neither directed transport nor a non-zero capacity can 
destabilize a system that is stable when A t = F ' =  0. Moreover, when At is definite 
a marginally stable state is always oscillatory. Again as before, other cases must be 
considered individually to determine their stability. 

It is noteworthy that either with or without the capacity term, there is an important 
class of systems for which the marginally stable state is always oscillatory and 
undamped waves can be propagated through the system. If the dominant eigen- 
value crosses the locus of marginal stability and a bifurcating solution exists, it 
is always periodic, never stationary. This is one of the major consequences of 
non-zero directed transport; another will be seen in the following section. 

Heretofore we have assumed that the steady state (/i, gt is uniform. If it is nonuni- 
form, the coefficients of ~ are space dependent and the dispersion relation (35) 
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no longer obtains. It can happen in such cases that instabilities develop in 
localized regions of space and that the bifurcating solution is also highly 
localized. Herschkowitz-Kaufman and Nicotis (1972) give a very pretty example 
of this. When the nonuniform solution is slowly varying in space, the linear analysis 
can be done by deriving asymptotic dispersion relations valid when the wavelength 
of a disturbance is much smaller than the scale of the nonuniform solution. 
However, this aspect is not pursued here. Instead, we determine the kinds of 
finite amplitude propagating waves that can arise in one component systems. 

5. Finite Amplitude Waves 

Consider a single-component system, described by (8), on the infinite interval 
- c c < ~ , : . : c .  Suppose that 2--.r #/e=/~-,,~(1) and that the steady state 
equation tor the immobile phase concentration, 

v -  F (u) = 3. R i (v), (53) 

has a single positive, asymptotically-stable root v=v* (u) for every positive u. 
Hereafter we set c = 0  and then can write 

3u  c~u 32u 
O z §  O~ = ~ - Y + g  (u) (54) 

where 
f(u)=-Q1 (A (u)+ A' (u) u) 

g (u)=O 2 (1 - u ) + O  3 R: (u)+2/~ R i (v* (u)). 

We assume that f and 9 are smooth functions and that R:(O)=Ri(v * (0))=0; 
then g (0) > 0. 

Permanent wave solutions of (54) are bounded functions u (~, z) = U (~ -  0 z) that 
depend on space and time only through the variable q~ = ( - 0  z, - o o  < q~ < Go. 
The nonnegative parameter 0 is the wave velocity; it is to be determined. By 
substitution into (54), one finds that a permanent wave U (~b) is a nonconstant 
solution of the ordinary differential equation 

d2U d U  
ddpZ §  (U)) - - ~ - + g t U ) = 0 .  (55) 

This equation is equivalent to the two-dimensional system 

d U  
- - ~ - W  
d 4~ (56) 
d V  
d dp = - g  ( U ) + ( f  (U)-O) V. 

The critical points (U,, 0)=(g-1 (0), 0) of this system are the identically constant 
solutions. When permanent wave solutions exist, they are one of the three types: 

(i) periodic waves: U (q~ + T)= U (q~), T the period 
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(ii) solitary waves: U(_+:c)=U 1 U'(+_:,o)=O,U(cb)~U1 and 

(iii) transition waves: U ( - m ) = U I ,  U(+co)=U>U'(___m)=0.  

Any of the constant solutions U~ is a uniform steady state solution of the partial 
differential equation (54). As such, it is stable by linear analysis if g' (Uk)< 0, and 
unstable to long-wavelength disturbances if g' (Uk)> 0. 

Various special cases of (54) have been studied previously. Firstly, when f(U)=-O, 
g (U)= U (1 - U), the equation reduces to that studied by Kolmogorov, Petrovskii, 
and Piskunov (1937) as a model for the spread of an advantageous gene. The only 
non-constant sqlutions are a one-parameter family of transition waves for which 
U ( - c o ) = 0  and U ( + z o ) = l .  Secondly, iff(U)=U and g(U)-O, the result is 
Burger's equation, which has the explicit solution (Jeffrey and Kakutani, 1972) 

(57) 

U=�89 (-~ (+~)]-�89 (-cc)-U(+co)]tanh[ U(--~)-Lt ~- ~j  

This is a two-parameter family of transition waves, parameterized by the velocity 
�89 [U ( -  co)+ U (+ co)] and the amplitude �89 [U ( -  co) -  U (+ co)]. Lastly, when 
f(U)=-O and 9(U)= U ( 1 - U ) ( U - a ) ,  0 < a <  1/2, a limiting form of Nagumo's 
equation results (McKean, 1970). At fixed a, this equation has a propagating 
transition wave solution, a nonpropagating solitary wave solution, and a one- 
parameter family of non-propagating periodic waves (McKean, 1970). It will be 
shown in the following that for certain f (U)~0 and "cubic" g (U), solutions that 
represent propagating solitary and periodic waves also exist. 

The nature of a critical point and the qualitative behaviour of trajectories near 
the critical point are governed by the eigenvalues of the linearized version of (57). 
Set { = U -  Uk, 17 = V; then the linear equations are 

d 0 i 

STABLE NODES 
/ 

T~ 
O, 

/ 

/ 

~ CENTERS 

/ 
Foe J / /  

UNSTABLE NODES 

f(U 2) 

Fig. 2. Character of the critical point (U 2, 01 as a function off{U_,) and 0 

Journ. Math. Biol. 2/2 I1 
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The eigenvalues of this matrix are 

f (Uk)--O + V(  f (Uk)--O )2--g' (Uk) (59) 
s •  2 -- 2 

and so are real when the discriminant ( f (~)-~O)2-g' (Us)>O and complex 

conjugates otherwise. Ifg' (Us)< 0, the eigenvalues have opposite signs and the cri- 
tical point is a saddle point. When g'(Us)>0, (Us, 0) is a node or focus, 
according as the discriminant is positive or negative, and is stable or unstable 
according as 0 - f (U~)  is positive or negative. On the boundary between the stable 
and unstable foci, f(Us)= 0 and the critical point (Us, 0) is a center of the linearized 
system. These conclusions are summarized in Fig. 2. 

Since 9 (0)>0 by hypothesis, 9' (U) is always negative at the first positive zero 
of 9 and the corresponding critical point is always a saddle point. Moreover, the cri- 
tical points are always in the sequence saddle point; node, focus or center; saddle 
point, etc. Therefore, when 9 = 0  has only one root, the critical point is a saddle 
point and analysis of the phase plane shows that there are no nonconstant 
bounded solutions, and hence no travelling waves. Any g that has two positive zeroes 
leads to travelling waves, but they are contained in the case where g has three 
zeroes. Accordingly, we consider only smooth functions 9 (U) whose qualitative 
behaviour is similar to that shown in Fig. 3o An example of such U dependence 
arises in substrate-inhibited enzyme kinetics wherein U represents the substrate 
concentration (Haldane, 1965). Hereafter 9 will be regarded as fixed; bifurcation 
of steady state solutions will not be considered. For reasons that will be apparent 
shortly, we assume that the zeroes U 1, U 2 and U 3 are spaced so that 

U2 U u3 S g(U)d < ~ g(U)dU. (60) 
U~ U2 

g(u} l 

U 

Fig. 3. Qualitative behaviour of the reaction and exchange function g (UJ 

The direction of the separatrices of either of the saddle points U t or U 3 are 
determined by the eigenvectors of the matrix in (58). These eigenvectors are 

z+ = , z_ = (6l) 
S+ S_ 
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and therefore the separatrices are arranged as shown in Fig. 4. The local analysis 
will be complete after we determine the phase portrait near U2 when tJ ' (U2)-01 
is small. 

Fig. 4. The phase portrait of(56) near the critical point 

It follows from (59) that when U 2 is a focus, 

3 Re 
O 0 {s+} = - 1/2, (62) 

and therefore the real part of the eigenvalues decreases monotonically as 0 crosses 
the line O=f(Uz). The real part is zero on this line and consequently the Hopf 
bifurcation theorem (Ruelle and Takens, 1971) guarantees that a periodic solution 
bifurcates at O=f(U2). However, further analysis is required to determine the 
direction of bifurcation and the stability of the bifurcating solution. 

To determine these properties, expand f(U) and g(U) in (56) around U= U2, 
and retain third order terms in the differences (4, ~/)- The result is the system 

a{ 

d q9 = r/ (63) 

9" 9"' f "  (z drl=--g'X'+(f--O)rl--TCa+f'r162 .- r/+d0 (r + ~ * ) 
dq~ 

where f (U), g (U) and all their derivatives are evaluated at U = U 2. The direction of 
bifurcation and the stability of the periodic solution are governed by the sign of 
3 Re {s• and the sign of the third focal value a 3 (Andronov, Leontovich, 
Gordon and Maier, 1971). For (63), the focal value is given by 

aa = ~  [ 'f" 9 ' - f '  9"]- (64) 

Since the partial derivative in (62) is always negative, there are only two possibili- 
ties for the direction and stability (Andronov, et al. 1971): 

(i) aa >0:  an unstable periodic solution appears as 0 increases across O=f(Uz), 
and, 

(ii) a 3 <0: a stable periodic solution disappears as 0 increases across O=f(U2). 

The first and second derivatives o f f  and 9 determine which of these cases obtain. 
In the following, we assume that f (U)=fo+f t  U, ./'1>0, and that g"(U2)>O; 

[I" 
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the assumption on f(U) means that A (u)=Jo + f t  U/2. The physical significance 
of the assumption that 9" >0 is not clear. 6 Since a nonzero Jo can always be 
incorporated into 0, we can set Jo = 0 without loss of generality. Then the second 
case obtains, and for 0 - f t  Uz small and negative, the local features of the phase 
portrait are as shown in Fig. 4. 

This choice for f (U) implies that f t  and 0 are the only variable parameters in (56) 
because the kinetic and exchange function g (U) is held fixed. The phase portrait 
of (56) changes qualitatively only when parameter values cross bifurcation loci in 
parameter space; once these loci are known, the complete phase portraits can be 
sketched for any values off~ and 0. The phase portraits then show directly the kinds 
of travelling waves that are possible. One such locus is already known, namely 
0 =f~ U2; to find the remainder we begin with (f~, 0)= (0, 0). 

When (Ji, 0) = (0, 0), (56) is a Hamiltonian system with Hamilton function 

V2 
H (V, 1'3 =--~-+ j" 9 (V) d U. (65) 

The level curves are H (U, V)= constant, and along the curve through (U t, 0) 
~2 U 

- - +  J' g(U)d U=O. 
2 v~ 

By hypothesis, ~ 9 (U) d U < ~ g (U) d U and consequently, 
Ut Uz 

U* 

(66) 

there exists a 

U* e(U2, U3) for which 5 g(U) d U=0.This curve cuts the Uaxis at U =  U* and 
Uj 

since H (U, V) is even in V, it forms a closed saddle-to-saddle loop that beginsand 
ends at (U 1, 0). For any point (•',0), 0 e(U1, U2), there exists a point (U, 0), 

e (U 2, U*), such that ~ g(U)dU=O: thus there is a one parameter family of 
0 

closed orbits contained within the saddle-to-saddle loop. Moreover, it is easy to 
see that these are the only closed orbits that lie in the right half plane. These 
standing periodic and solitary waves are analogous to those that arise in Nagumo's 
equation (McKean, 1970). 

The slope of the trajectories in the U - V plane is 
d V g(U) 
d U =(J t  U-O)-----V-- (67) 

and w h e n f l = 0 = 0 ,  

d V _  g(U) (68) 
dU V 

dV 
Whenever U> U3 ~-U--><0 according as V><0 and therefore one outgoing se- 

paratrix tcnd~ to infinity as /_,'--++ ,~ and one incoming scparatrix originates 

~' 11; for example, g{U)=(U-Ut)(U-U2)(U3-U), then g" (Uz)>0  provided U t + U 3 > 2  C' z. 
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at infinity. If g (U)>0  for U<0,  the other separatrices must also begin or 
terminate at infinity, v Consequently, the complete phase portrait for J t  = 0 = 0  
is as shown in Fig. 5. 8 

The first step in the analysis for f t  and 0 nonzero is to show that when 
periodic solutions exist, they necessarily lie within the vertical strip defined by 

{(U, V)I UI<U<U3,  - o o <  V < ~ } .  (69) 

By differentiating (67) with respect to 0 and f t ,  one gets 

d V  d V  0 {_~_U_}=u. (70) 

V 

U 

I 
Fig. 5. The phase portrait of 156) v, hen j'~ = 0  =0,  The loop S 1 S 2 corresponds to the standing pulse: 

the closed orbits to the standing periodic waves 

Therefore, as 0 increases the slope decreases and the vector field of (56) rotates 
clockwise. Similarly asf~ increases the slope increases and the field rotates counter- 
clockwise. Iff~ >0  and 0>0, the field alongthe vertical lines U =  U t and U =  U 3 
is rotated from that shown in Fig. 5, but always by less than + re/2 radians. Since 
a closed orbit must have index + 1, it can never encircle all three critical points. 
At most, it can encircle (U2, 0) and leave the strip by crossing one of the lines 
U = U 1 or U = U~,. Now if a closed orbit crosses one of the four half lines 

L,={(U, z)l u=u,  v>o} 

L2={(U, V) I U=U, ,  V_<O} 

L 3 = {(U,  V) I U =  U 3 V~__O} 

L,={(U,  V) I U = U  3 V~O} 

(71) 

The details of the behaviour "'at infinity" depend on the particular choice o fg  (U) but this behaviour 
is of no interest here. 

U) 
s Had we chosen ,q(U) such that j y(U)d U = 0 ,  two stationary transition waves between 6' 1 and 

tTt 
U2 i3 

[,'3 would have resulted. [f ~" y (UJd U > y(U)d U, the solitary pub,c ~ould begin and end 
at U 3 . t~ u~ 
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once, it must cross it again, but this is impossible because the field never 
reverses direction on a half-line. Thus, when periodic solutions exist, they are con- 
fined to the vertical strip (69). 

This result can be used to rule out the existence of periodic solutions in a large 
portion of the f t -  0 plane. Bendixson's theorem asserts that if the divergence of 
the vector field is of one sign in a region of the U - V plane, there are no periodic 
solutions completely contained in that region (Andronov, Leontovich, Gordon 
and Maier, 1973). The divergence of (56) is f~ U - P ,  which is negative in the 
strip given by (69) when 0 > f t  U 3 and positive there when 0 < f t  U~. Consequently, 
periodic solutions can be ruled out for parameters in the regions of Fig. 6, bounded 
by the P-axis and line 'a' and by the fl-axis and line 'f'~ 

e, a , , b  

t /  ,,/ 

| 
e~ 

e2 I f 

~, i, f' 
Fig. 6. The bifurcation diagram for (56) when J'(U)=J" I U. a) 0=fx U3; bl Locus of U3 Ut transitions; 

c) O=fl U2; d) Locus of solitary waves; e) Locus of U t U 3 transitions; f) O=fi UI. 

Now suppose that 0 is held at zero and f l  is increased. The vector field rotates 
counterclockwise and the point at which the separatrix S 1 (Fig~ 5) crosses U = U 2 
moves monotonically upward while the corresponding point for $3 moves mono- 
tonically downward. Thus there exists an f l  at which St and $3 coincide; this 
orbit corresponds to a non-propagating transition wave between Ut and U 3. 
Because 0 andf t  rotate the field in opposite directions, it is clear that ifft  is increased 
beyond J~t, 0 must be increased to maintain the saddle-to-saddle orbit. An analytic 
relation between 0 and f t  on this locus of saddle-to-saddle orbits is derived as 
follows. 

If U is any solution for which U ' ( +  ~x~)=0, integration of (55) between - c c  and 
+ co gives 

2 U ( + ~ ) - U ( - m , )  _ y l U ) , l ( ~  . (72) 
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From the first equation of{56) 
dU 

d r = - - - -  (73) g 

and if V(U) is that solution of(67) for which V(U ( -  ~ ) ) =  0, then 

~ v(+~) (U)d U ~(ula#)= j o 
- ~  v(-oo) ~'(U) =G(J'I'  0). (74) 

The locus of transition waves is now given implicitly by 

0=  [U (+ ~o)+ U ( -  cc)] G(fl ,  O ) 
2 f l  g ( + w ) - g ( - ~ )  (75) 

Since 0 and f l  rotate the field in opposite directions, 0 is monotone in f t  and 
(75) is in principle, .solvable for 0 = O  (f~). However, the solution of (56) must be 
known to do so. 

The same procedure can be repeated starting with f t  =0 and allowing 0 to 
increase. It can be seen that there is a 0 at which a transition wave between U 3 
and U 1 for f l  =0  and that 0 increases monotonically with ]'t along the locus 
emanating from this point. Hence at fixed f~ > f l ,  there are two distinct transition 
waves of different speeds; a slow one from U~ to U 3 and a fast one from U s to 
U v When f t  < f t ,  only the fast wave exists. The two curves along which these 
bifurcations occur are denoted by b and e in Fig. 6. Inasmuch as 0 increases" 
monotoni.cally with f~ on either curve, increasing the rate of active transport will 
increase the speed of both transition waves. 

To complete the bifurcation analysis, it must be determined whether a saddle- 
to-saddle loop exists for (f~, 0)>(0,0) and whether there are loci other than 
O=f~ U, along which periodic solution bifurcate. Such a loop exists at 
(fl ,  0)=(0, 0) (cf. Fig. 5) and by analyzing the rotation of the field as f l  and 0 
vary near (0, 0), it is easy to see that there is a curve d through the origin along 
which the loop exists. In general, it cannot be determined a priori whether d lies 
above or below the line 0 = f t  U2. However, if we assume that periodic solutions 
only bifurcate from a multiple focus or from a saddle-to-saddle loop, the location of 
d is fixed by the following lemma (Andronov et al., 1971). 

Let (x~, y~) be a saddle point of 

k = P (x, y) 
(76) 

5,=Q (x, y) 

and suppose that a separatrix forms a saddle-to-saddle loop. Then if 
0.1 = P., (x~, y~)+ Qx (x~, Yl) is positive (negative) the loop is unstable (stable). 

For (56), 0" 1 = f l  UI-O<O for 0 e ( f t  Ul, f l  U3] and therefore all trajectories 
that originate near the loop on the interior side tend to the loop as 4)~ ~ .  If the curve 
d lies above O=J" 1 U2, the critical point (U2,0) is a stable focus or node and 
consequently there must be an unstable cycle in the interior of the loop. This is 
ruled out by our assumption and hence the curve d lies below the line O=J'~ U 2, 
as shown in Fig. 6. 
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The origin of the periodic solution that disappears at 0 =J't Uz is now determined 
by the following 

Theorem ~Andronov, et al., 1971): If a separatrix of (76) forms a saddle-to-saddle 
loop, and if ~r 1 4:0, there exist systems close to (76) that have exactly one limit 
cycle of the same stability as the loop. 

From this it follows that a periodic solution bifurcates from the saddle-to-saddle 
loop as d is crossed in the upward direction. As 0 increases, the amplitude of 
this periodic solution decreases monotonically until, at 0 = f l  U2, it coalesces with 
the unstable focus and a stable focus emerges. By assumption, this is the only 
periodic solution that exists and thus the bifurcation diagram (Fig. 6) is complete. 
The assumption made leads to the simplest possible bifurcation diagram; if it is 
relaxed one or more pairs of periodic solutions can arise for 0 lying between the 
curves d and c. There is no way to test the assumption in general; specific systems 
must be examined case by case. With Fig. 6 at hand, all the types of qualitatively 
different phase portraits can be determined and all possible kinds of travelling 
waves can be found. 

Suppose that f t  is held fixed at f r  At (fl, 00, two distinct transition waves of 
equal velocity exist; one corresponds to a downward transition from U z to Ut 
while the other is an upward transition from U2 to U 3 (Fig. 7 a). The upward 
transition wave is analogous to the transition waves found in the K P P  equation 
while both waves exist in Nagumo's equation (Nagumo, Yoshizawa and Armito, 
1965). As 0 increases, the field rotates clockwise, (U2, 0) changes into a focus, and 
at 0=02 the separatrices S 1 and $3 merge. At this point a transition wave 
from U1 to U3 bifurcates (Fig. 7 b). When 0 lies between 01 and 04, theonly bounded, 
nonconstant solution unwinds from the unstable focus and tends to U1 as 4~---,oe. 
This gives rise to a "transition-like" wave that has an oscillatory tail. 

As 0 increases further, the points at which the separatrices St and Sz cross the 
U axis approach each other and at 0=04 a saddle-to-saddle loop exists. In 
the q~ - U plane, this loop corresponds to a single pulse that travels at a velocity 04 
(Fig. 7 d). If (U, 0) represents the point at which the loop crosses the U axis, 
the amplitude of the pulse is 0 - U 1 .  By integrating (55) and rearranging, 
one finds that 

_ ~ g(U)dU 
0 -  U 1 = v~ V(U) (77) 

f l [O+Ut]  - 0 2  

which shows how the amplitude is related to Jt 0 and g (U). However, this cannot 
be solved explicitly, even for relatively simple g (U); to find the amplitude one 
must integrate (56) numerically. 

As 0 crosses 04 a periodic solution bifurcates from the saddle-to-saddle loop. 
Each periodic solution corresponds to a travelling periodic wave and since the 
periodic solution exists for all 0 ~ (04,ft U2), there is a one-parameter family of 
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Fig. 7. The phase portrait (left) and the q~ - U plane (right) for the 0-values indicated in Fig. 6 
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such waves, parameterized either by their velocity or amplitude. The amplitude 
ranges between U -  U~ at 0=0,~ and 0 at 0=J '  t U z. 

The remaining distinct types of phase portraits, given in Fig. 7 f, g, and k, can be 
obtained by reversing the direction of transition in 7 c, b, and a respectively. 
However, the corresponding pairs of waves travel at entirely different velocities. 

It is evident from the foregoing that in the presence of any form of directed 
transport for which the "mobility" A (u) increases with concentration, a simple 
one-component system can propagate a number of permanent waves of different 
velocity and waveform. Moreover, most of these waves persist, no matter how 
small f~. Indeed, only the transition waves shown in Figs. 7 a and 7 b are pre- 
cluded when 0 < f~ < J~. Furthermore, the existence of this variety of waves is not 
peculiar to the chosen form of f .  A case that may be of greater biological 
significance is the following. 

Suppose that active transport occurs via a mechanism that saturates at high 
concentration, i.e., the flux approaches a constant. A function A (u) that reflects 
such saturation is 

f, A ( U ) = - -  (78) 
K ~ + U  

where K L is a fixed positive constant and J t  is the bifurcation parameter. 
Corresponding to this A (U) is 

J l  K1 (79) 
f ( U ) =  (K~+ U) 2 

To get a bifurcation diagram analogous to Fig. 6, it is necessary that a 3 < 0  and 
this requires that 

i t  ! 

g " < - ~ < 0  (80) 

at (Uz, 0). 

By repeating the analysis that led to (75), one finds that 

0 = U ( _ o o ) _ / j ( + o o )  f l K ~  +G(J't,O) (81) 

and that there are two monotone increasing loci 0=  O (ft) of transition wave 
bifurcati~ms. Analysis of the vector field rotation near (ft,  0)=(0, 0) shows that 
the bifurcation loci for pulses and periodic waves are analogous to those shown 
in Fig. 6. Thus the same kinds of waves as shown in Fig. 7 exist for the monotone 
decreasing A (U) given by (78). 

6. Conclusion 

That active transport may be important in developmental processes is suggested 
by several experimental observations. For example, it has recently been reported 
that certain eggs maintain an ionic current through themselves, presumbably by 
actively pumping ions out of the cell {Robinson and Jaffc. 1975). Such currents 
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produce electric fields that could set up gradients of morphogens by electro- 
phoretically segregating cellular material. At the multicellular level, ionic gradients 
are known to exist in the plasmodium of Dictyostelivm discoideum (Maeda and 
Maeda, 1973) and gradients of an inhibitory agent have often been invoked in 
explanations of Hydra development (Shostak, 1973). Active transport is one 
mechanism for maintaining such gradients in the face of diffusion (Cohen, 
1972). 

The results reported here show that active or directed transport, occurring in con- 
junction with diffusion and reaction, leads to a chemical transmission line capable 
of transmitting a variety of"messages" encoded by their waveform. Different wave- 
forms can be used to initiate different cellular events at a location far from the origin 
of the signal. A transition wave can function as a travelling metabolic switch 
that activates a chain of reactions by switching the concentration of some control 
substance from a low to a high steady state. Since either high to low or low to high 
transition waves can propagate, the switching is reversible. A pulse, by contrast, 
provides a transitory signal that can be used to nudge a poised system down a parti- 
cular developmental pathway by momentarily activating or inhibiting some cellu- 
lar process. In all cases, the desired wave can be initiated by providing the proper 
input to the end cell or line of cells in a one- or two-dimensional array. In this 
way, events throughout an entire tissue can be brought under external control 
of the humoral system, simply by signalling the end cells. In a sense, our 
reaction-transport system can function as a distributed analog of the homogeneous 
chemical automata studied by R~Sssler (1974). 

A number of questions remain unresolved. From a mathematical standpoint one 
would like to know for which of the travelling waves small disturbances in the 
waveform decay in time and what kinds of initial conditions produce travelling 
waves. Furthermore, the questions of whether any of these travelling waves 
persist for s ~ 0  is open. In the biological signalling problem, a more relevant 
question is to ask whether disturbances of the travelling waves grow or decay in 
space. As Rinzel (1975) has found, the results for the latter question on spatial 
stability are not necessarily identical with those for the question of temporal 
stability. More generally, one would like to know how close to the desired wave 
the signal at the boundary must be in shape and speed in order to stimulate this 
wave. In a few cases where exact solutions are available, this question can be 
answered analytically (Montroll and West, 1973). However, in general it requires 
numerical computations of the sort done by Scribner, Segel and Rogers (1974) 
in a somewhat similar context. 

Having proved that a certain class of differential equations which model chemical 
reactions coupled with active and diffusive transport can support permanent- 
form travelling waves, it is necessary to connect these results with a realistic 
biological system. Analysis of a class of enzyme-catalyzed reactions that can show 
some of the behaviour reported here is in progress; the results will be reported in a 
future communication. 
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