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Ah&act-While the equilibrium point in an ideal closed reacting system is unique and globally stable, it is shown 
herein that nonideal systems can have multiple equilibria and that more than one of these can be stable. The simplest 
kind of nonideality, exemplified by strictly regular solutions, can lead to large jumps in the equilibrium concentrations 
with only small parameter changes, in analogy to behavior known for open systems. 

1. INTRODUCTION 

A deeper understanding of both the transient and 
equilibrium behavior of chemically-reacting systems is 
important in many disciplines, ranging from chemical 
reaction engineering to theoretical biology. Despite the 
numerous analyses devoted to either open or closed and 
uniform or nonuniform systems (see Refs. [l-S]), our 
knowledge of general reacting systems is still inadequate 
in many respects. The equilibrium behavior of closed, 
ideal systems has been most thoroughly studied, both 
with respect to existence and uniqueness of ther- 
modynamic equilibria and with respect to the relationship 
between kinetic and thermodynamic equilibria. Such 
systems have a unique thermodynamic equilibrium point 
and if the kinetics are modelled by mass action rate laws 
the kinetic and thermodynamic equilibrium points 
coincide[6-8]. However, ideal systems comprise a very 
limited class of solution behavior and as Eckert[9] has 
recently emphasized, chemical reactions in nonideal 
systems are important in many instances. Unfortunately 
the range of nonideal behavior is so wide and gives rise to 
such a diversity of descriptions that a general analysis is 
out of the question; case by case studies are required. Our 
purpose here is to study one special class of nonideal 
systems with a view toward discovering what may be 
expected in general. We shall focus primarily on the 
question of multiplicity of equilibria in these systems. 

When analyzing systems with many components and 
reactions for multiple equilibria, it is useful to describe the 
system from a more abstract point of view. In the 
following section we introduce the necessary concepts 
and terminology for a modern treatment of kinetics and 
equilibria, along with the basic definitions of stability. 
Section 3, which contains the majority of the new results, 
deals with the equilibria in binary and ternary reacting 
systems.? 

Although the emphasis throughout the third section is 
on equilibrium systems, it is important to determine 
whether the equilibrium solutions can in fact be obtained 
as the asymptotic limit as t -*m of an appropriate initial 

tAfter submitting this manuscript, we received a preprint of a 
paper by Caram H. and Striven L. I?, Gem. Engng SCI~ 197631163, 
which treats a binary reacting system using several different models 
of nonideality, among them the one used here. 

value problem. To answer this in complete generality is 
beyond the scope of this paper, but one aspect is 
discussed in the concluding section. 

2. PRELlMlNARIEs ON KlNETlCS, EQUlLlBRL4 
ANDPHAsEmABlLrlY 

(a) Kinetics and equilibria 
To provide a common framework for the analyses in 

the following section, it is necessary to adopt terminology 
and definitions that apply for any number of components 
and reactions. Our terminology will follow that in 
[6,10-121. For simplicity, we first restrict attention to 
closed, uniform systems at constant temperature and 
pressure. 

Suppose that in a single-phase system containing N 
chemical species 4 there are r I N - 1 independent 
reactions, written as 

~Vi&i=O j=l,...r. 

With each reaction is associated a rate function &(c) that 
relates the intrinsic rate of reaction to the composition 
vmables c,, . . . , c,,. The time evolution of the mixture’s 
composition is given by the solution of the kinetic 
equations 

$ = Vzg(c). 

Because 

V = V(n) = 2 Q(n)& 
i=t 

this equation can be written 

+q $ = @(II/ V(n)) = vR(n) (3) 

where R(n) is homogeneous of degree zero in n. 
Throughout we assume that the Jacobian aR/an has rank 
r everywhere in the nonnegative orthant RN+ of the 
N-dimensional composition space. Any physically- 
meaningful solution of (3) must also lie in RN+. 

993 
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Since there are only r independent reactions, the rank 
p(v) of the stoichiometric matrix v is r and the null space 
of V’ has dimension N - r. If {ai}, j = 1,. . . N - r, is a 
basis for the null space of yr, the N - r quantities (an,, n) 
are invariant under (3). The equations 

(@,,n-no)=0 j=l,...N-r (4) 

define an inhomogeneous linear manifold whose intersec- 
tion with RN+ will be called the reaction simplex CW’) 
through the point no. All points of a fixed simplex are 
equivalent by virtue of belonging to the same coset of the 
subspace defined by (@,n)=O, j = 1,. . . N - r. All 
possible simplices are generated by varying the initial 
composition no. Without loss of generality, the N-r 
vectors fl, that are normal to a simplex can be so chosen 
that each quantity (n, n) is nonnegative, and each 
represents either the total mass or one of the N - r - 1 
linear combinations of species that is conserved. 

If we require that 

~~i~j(n,,...~,...n,)zO i=l,...N (5) 

then the composition vector of any closed uniform system 
is confined to the simplex in which it begins. By the law of 
definite proportions[l3], the composition change in the jth 
reaction can be characterized by an extent 6 and the set 
&b j = 1,. . . r can serve as a set of coordinates in 0. All 
composition changes are then expressible in the form 

n(t) -no = $(t). (6) 

A composition &RN+ at which yR(n’) = 0 is called a 
steady state composition or a point of kinetic equilibrium. 
Because p(v)= r, kinetic equilibrium requires that 
R,(n”)=O, j=l,... r. By virtue of the assumption that 
p(aR/an) = r, the implicit function theorem implies that 
the system of equations R = 0 defines an N - r dimens- 
tional submanifold of R,+[14]. We call this manifold the 
kinetic equilibrium manifold KE. At a fixed no, the kinetic 
equilibrium points lie in the intersection of KE and n(n”) 
and thus are given by 

{n”&+~n%KE n a(#)} 

or alternatively, by 

(7) 

{n’&+~n”=nO+*“;~j(~‘,no)=O, j=l,...r}. 

(In the latter description R,(& no)iR,(n))Un’) is the 
restriction of R,(n) to a@‘).) It is well known[lS] that 
these sets are nonempty provided the R, are Lipschit- 
zian. Whether or not they contain more than one point is 
the subject of the following section. 

According to the classical definition, a thermodynamic 
equilibrium point in a single phase reacting system is a 
point at which the atRnity 

A,=-$fl,r j=l,...r (8) 

of each of the reactions vanishes[l3]. In view of the 
definition pi = (aGl&t,),,,, the condition for equilibrium 
can be written 

‘If aGlan is resolved into components orthogonal and 
parallel to a, then (9) can be written 

yT($g’+ f($y= 0. (10) 

Since tT annihilates vectors orthogonal to a, this reduces 
to 

‘co (11) 

and therefore equilibrium points coincide with the critical 
points of G]fi for any no. 

In any open set of RN+ in which the Jacobian a A/an has 
rank s s r, the equations A = 0 define an N-s dimen- 
sional submanifold TE, called the thermodynamic equilib- 
rium manifold. For any fixed no, the set of points 

{n*d&+ln*cTE rl a@“)} (12) 

are the thermodynamic equilibrium points compatible 
with no. The following argument shows that this set is 
nonempty. 

Any equilibrium point n* = no + $* must satisfy 

$(r*, n”) 3 $ (G(a(no))l,. = 0. (13) 

The simplex fi(n”) is closed and bounded and G is a 
smooth function throughout l&to); therefore it achieves 
its maximum and minimum on n(n”). The chemical 
potential pi can always be written [ 131 

aG 
/Li = pF( T, P) + RT In ‘yi (n)x, = - 

ah 
(14) 

where ‘y,(n) + constant > 0 as rri + 0. Accordingly, 
aG/ani + --oo as n, +O and G(an’) has no critical points 
on the boundary. This implies that there exists at least one 
thermodynamic equilibrium point in the interior of ll(n”) 
and that this point is at a local minimum of G]fl(no). 
Moreover, there is only one such point if the Jacobian 

aA a(A]fi(n’)) y,E a2G -_3 
at an --- anan”=-= (15) 

is positive definite throughout n(n”). Clearly p(a&af) is 
independent of no, but because the activity coefficients yi 
depend on molecular parameters that characterize the 
interactions between species, p(ab/a&) will indirectly 
depend on these parameters. Several specific systems are 
studied in the following section. 

Thus far we have distinguished between kinetic and 
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themdynamic equilibria. However, if the class of 
admissible dynamical processes is restricted a @on’ to 
those for which dG/dt ~0, with equality only at kinetic 
equilibria, then all interior kinetic equilibria for which 
p(aR/~Yn) = r are also thermodynamic 
equilibria[S, 10,111. We have assumed p(aR/&) = r 
throughout RN+ and therefore every interior point of 
kinetic equilibrium is a point of thermodynamic equilib- 
rium. This precludes the occurrence of any so-called false 
equilibria, at which R = 0 but A # 0, in the interior of fl(n”) 
but does not prevent their occurrence on the boundary of 
the simplex. If the latter occur they are inaccessible from 
the interior of the simplex. 

In addition to providing a relationship between the two 
kinds of equilibria, the postulate that dG/dt ~0 places 
restrictions on the constitutive relations for the aflinity 
and reaction rate. Since 

g=$(p,n)=-V(n)(A,R)rO, (16) 

it‘is necessary that (A, R) 2r 0 for all n reachable from an 
initial composition II”. It will be evident that the 
constitutive relations used in the following section satisfy 
this restriction. 

(b) Conditions for phase stability 
The question of uniqueness of thermodynamic or 

kinetic equilibria goes hand in hand with the question of 
phase stability. A homogeneous phase can persist only if 
all random, non-uniform concentration disturbances 
decay in time and this is certainly impossible if there 
exists more than one equilibrium point. At constant T and 
P, an equilibrium state is thermodynamically stable if 

(L-g+0 (17) 

for all l compatible with the constraints, with the 
exception of the neutral displacement 5 = An, A > 0[16]. 
In a nonreacting system, the necessary and sufficient 
condition for stability at all compositions is that the 
Hessian ~PG/&tan be positive semidefinite and of rank 
N - 1 throughout RN+. Under these conditions, it follows 
from (15) that the thermodynamic equilibrium point is 
unique, and according to a theorem of Duhem and 
Jouguet [13], it is necessarily stable. This is the case, for 
example, in ideal systems. 

In the general case, a necessary but not sufficient 
condition for multiple thermodynamic equilibria is that 
the phase be unstable with respect to diffusion at some 
compositions. This in turn requires that a*G/anan have 
one or more negative eigenvalues in some region of 
composition space. A mixture brought into an unstable 
region by manipulating the compositions or external 
parameters can restore stability either by changing the 
composition via reaction or by separating into two more 
phases, provided the latter is allowed by the phase rule. 
When m phases are possible, minimization of the total 
free energy subject to the constraint that the total mole 

vector 

p=-Jnf 
1-l 

satisfies (6) leads to the equilibrium conditions 

p/=p22=...pim i=l,... N (18) 

&=-zp/vip q=l,...r. 

For fixed m, the uniqueness and stability of equilibrium 
points is governed by the Jacobian of the equations at 
(18). One can show that the m-phase system has a unique, 
stable equilibrium point provided that each of the m 
phases is stable to disturbances that lie parallel to the 
reaction simplex. Unfortunately one cannot determine m 
a priori; when the Hessian of the free energy has one or 
more negative eigenvalues in some region of composition 
space each value of m consistent with the phase rule must 
be checked for existence of a solution. 

3. MULTIPLE l@UlLlBlUA IN NONIDEAL SYM 

(a) Free energy in a binary regular solution 
Analysis of nonideal systems is complicated by the fact 

that the dependence of the activity coefficients on 
composition must be known. Here we consider the 
simplest class of nonideal systems, those described by the 
so-called strictly regular solution model[l7]. These are 
characterized by the fact that the components have equal 
molar volumes but the intermolecular forces are no longer 
equal, as in ideal solutions. To a tist approximation, the 
excess (or nonideal) entropy of mixing is zero and the 
internal energy change due to mixing is equal to the free 
energy change. If one writes 

G = Gme,,_ + G,,ss = 4 + GE (19) 

then, by a straightforward extension of Lewis and 
Randall’4181 derivation for the binary case, one finds that 

=py. 

Here l i, is the interaction energy between i and i 
(assumed negative) and x is a parameter that depends on 
the model used for the liquid state. It involves Avagadro’s 
number and either the coordination number of the lattice 
or the radial distribution function. The constants 

ou ‘X(24 -(e +e”)). (21) 

provide a measure of the nonideality of the solution. 
Generally it happens that q > 0 since l ii is less negative 

than (c + e~)/2[181. 
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The composition dependence of the activity coefficients 
x(n) is obtained from (20) by noting that 

RTlny,(n)=~=Cq[~~,++,~xi-xix,l. (22) 
isj 

From this one finds that in binary systems, which we 
study first, the chemical potentials are given by 

~1=~~(T,P)+RTlnx1+RTo(l-x1)2 

~Z=~~(T,P)+RTln(l-x,)+RTwxl (23) 

where o = &RT. The total free energy is 

G = 2 nipi = hcLI0 + wP) 

tRT(nllnx,tnlIn(l-xl))tR7’onxl(l-xl) (24) 

and therefore the Hessian of G is 

(25) 

This Hessian is singular for all x1 and has rank zero along 
the spinodal curve[l3] 

1 
@ = 2x,(1 -x,)’ (26) 

Since the maximum of x1(1 -x1) for xle[O, 1] is 4, the 
minimum 0 on the spinodal is 0 = 2; for 0 < 2, the 
Hessian has rank 1 for all x,c[O, 1] and the binary system 
is stable with respect to diffusion. It follows that the 
equilibrium point in any closed binary reacting mixture is 
unique if 0 < 2. 

(b) First-order reaction in a binary system 
Consider a binary mixture of d and 48) that react 

according to the first-order mechanism 

JB & 3’. (27) 
k, 

We assume that the kinetics can be derived from 
transition state theory[l9,20] and therefore the rate is 
given by 

R = R, - R, = k, e-(pt-@,~/RTy,x, 

- k, e-@C-ti~~nry,x2, (28) 

where p * is the internal portion of the chemical potential 
of the activated complex. Here and hereafter species JX? is 
denoted by “1” and species 48 by “2”. Since the volume 
and total moles remain constant, the mass balance 
equation for JB is 

&L-R 
dt * (29) 

By using (22) and resealing time, this can be written 

dx1 - 5!fe-crp-P,VRr ew(l-x,)“x, + e”,‘( 1 - xl)* 
dt_S 

(30) 

Kinetic equilibrium obtains when 

whereas thermodynamic equilibrium exists when 

-A = ~1~- tcl = 0 = (~20 - CL,? + RT In (y2x2/yIxI) 

or 

Consequently, the two are equivalent if and only if 

(31) 

(32) 

$1, (33) I 

i.e. microscopic reversibility must hold. We assume 
hereafter that it does, and define the equilibrium constant 
for the reaction as 

K = e-(#z~-r,?JIRT (34) 

Equation (31) can be rearranged to yield 

1 
x1 = 1+ R e+2x,) = fW. (35) 

The qualitative behavior of f is sketched in Fig. 1 for a 
case in which three roots exist. A double root exists 
whenever x1 = f(x,) and p(x,) = 1, and from these 
equations one gets a relation between o and x, 

1 

@=2x1(1 

This locus coincides with the locus along which the 
Hessian of G has rank zero (see 26), as it must for any 
binary system. 

If we use (36) to eliminate x1 from (35), the result is a 
relation between K and o that must hold on the locus of 

Fig. 1. Graph of the equilibrium function defined by eqn (35). 
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two equilibrium points: 

K = e*uq/(l-2,r) ( 1 T x41 - 2h) 
1 1 +d(1-2/0) * (37) 

Because both K and o contain the temperature, we 
rewrite the foregoing equation in terms of 

1nK ~1o-c~2o_.h~ -=-=- 

This ratio contains only parameters that characterize J.$ $3 
and their interactions, namely, the free energies of the 
pure components and the interaction energy. From (37) 
one finds that 

AP- 0,-k v(1-2/w)+lln 
I ( 

2 
0 o(1 +d(l-2/0))2 >I * 

(39) 

Some elementary analysis of this equation shows that the 
region of three solutions in the w vs A~/o,~ plane is 
confined to the strip [A~/o,~[ < 1; this region is shown in 
Fig. 2. One concludes that three equilibria are possible 
only if the s4 - B interactions are sufficiently strong 
compared to the difference in pure component free 
energies and then only at a sufficiently low temperature. 

In the symmetric case Ap = 0, three solutions exist for 
all o 2 2, that is, for all temperatures below the consolute 
temperature. Thus instability with respect to diffusion is 
necessary and sujicient for multiple equilibria in this 
case. However, when 1.b~ I> 0, the condition o 2 2 is no 
longer sufficient to have three solutions. This can be seen 
from Fig. 2 but is more graphic if we plot the equilibrium 
mole fractions x1 computed from (35) vs CC’, as in Fig. 3. 
Here the symmetric solid curve is the spinodal curve; 
below this curve a nonreacting binary mixture is unstable. 
The curves on which the reaction equilibria lie are shown 
for several values of Ap. When Ap = 0 the locus consists 
of the vertical line x, = l/2 and the symmetric parabolic 
dashed line tangent to the spinodal at 0-l = l/2. The latter 
corresponds to the usual coexistence curve for a 
nonreacting mixture, so that when Ap = 0 there are two 
equilibria that are stable to all disturbances. 

As Ap increases from 0 the symmetric locus splits into 
two disjoint branches at (l/2, l/2) and one equilibrium 
point lies outside the coexistence curve, one lies between 
the spinodal and the coexistence curves, and one ties 
within the spinodal region. The curve for A~/o,~ = l/4 is 

-‘.o 
w 

Fig. 2. The o - Ap 10,~ plane for the reaction ~4 S 98. 

0.6 

5 

Fii. 3. The x, - 0-l plane for several values of Ap&. Solid line: 
spinodal, dashed line ----: As =O, broken line -----: 

A/Jo,2 = l/4. 

shown in Fig. 3; the corresponding curve for A~/o,~ = 
-l/4 is the mirror image across x, = l/2 of this curve. The 
fact that the locus of equilibria consists of two branches 
has an interesting consequence for the behavior of the 
system as T is varied. Suppose that Ap/oII = l/4 and that 
initially one can prepare a mixture whose equilibrium 
composition lies on the curve between the spinodal and 
coexistence curves. If fluctuations are small or diffusion 
very slow, the system can be held on this curve as T is 
increased, until the two equilibria with largest x, coalesce 
on the spinodal. At this temperature a sharp jump in 
concentration to the other branch would occur and 
thereafter the system would progress along the branch 
that lies outside the coexistence. Such hard bifurcations 
are analogous to those that exist in open systems that 
have multiple steady states[4]. What is different here is 
the fact that the transition from high x, to low x, is 
irreversible; the system can never return to the high x, 
branch as the temperature is lowered. 

(c) Ternary systems 
At constant T and P, ternary systems in which two 

independent reactions occur can only exist in one phase. 
While their analysis is more difficult in view of the wide 
range of ternary behavior possible, nothing essentially 
different from the binary case arises. However, when 
there is a single reaction, there is one degree of freedom 
and new possibilities arise. If one species is nonreacting, 
the analysis is very similar to that already done, even 
when the inert species interacts differently with each of 
the reacting species. Therefore, we restrict our attention 
to a reversible, bimolecular reaction that involves the 
three species d, W and %. We again assume that the 
regular solution model describes the mixture and from 
(22) find that 

RT In y1 = o12x~ + ol,x: + (aI2 - wu + w13)x2x3 

RT In y2 = 0,2x,2 + 02,x? + (ml2 + wZ3 - w~~)x,x~ 

RT In 7, = ~ls~t* + 023~2*+ (013 + 023 - ~12h~2. (0 

where the subscripts 1,2 and 3 denote the species s& $?I 
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and %, respectively. Any kinetic or equilibrium equation 
that results from using these general expressions is 
dithcult to analyze in any generality, so we consider the 
special case in which I - Q and 9 - 0 interactions are 
ideal but ~4 - 9 interactions are nonideal. In this case 
o,*#O, ou=ou= 0, and (40) reduces to 

and to determine when multiple solutions of these 
equations can exist, we must fist find the reaction simplex 
a(n”) for each case. In either case n(n”) is the straight line 
that lies at the intersection of the planes 

In y, = 0x2(x2 + xj) = 0x2( 1 - x1) 

In y2 = 0x,(x1 +x,) = 0x,(1 - XZ) 

In y, = - 0x1x2 (41) 

where 

o = o,JRT. 

Given these limitations on the interactions between &, 
93 and V, there are essentially only two distinct types of 
bimolecular reactions that involve all three species, viz. 

I: 

and 

1+S3&“2V (42) 
k, 

II: s4+%&2c%lt 
kl 

For I we suppose that 

da, --=-~=~~=~,~~x,x*-L(nx,)’ (43) 
dt 

and for II 

dn, --=- dns _ 1 ch 
dt dt 2 dt 

= QY,YSX,XS - kr(*/zx*Y. 

Kinetic equilibria for these reactions satisfy 

and these are identical with the thermodynamic equilibria 
provided 

In K = 
(P:+P:-2p:)/RT: I 
(CL: + pjo - 2p2”)/RT : II 

(45) 

In view of (41), (44) can be rewritten 

h2 e-ar(x,+x3 _. 1 

XIX2 

K= 
e=c+‘3 XZZ 

(6) 
-. u 
XIX3 

tAreactionofthetypestB=OtPcanberegardedasfirst 
order in all kinetic and equilibrium considerations simply by 
redefining the time scale. The simpler case in which only the 
forward reaction is bimolecular is not treated here. 

(&It-nO)=O 

(fk,,n-nO)=O. (47) 

The stoichiometric matrix in each case is 

VT = t-1, -1, 2): I 
_ I f-1, 2, -1): II 

and it follows that in both cases 

w 

fh = (1,191) 

a2 = of*, M2, Ml. (49) 

However, it is necessary that hf, = f(M, t MJ in case I 
whereas M2 = f(M, t Ma) in case II. From (47) and (49) 
one finds that 

We are now in a position to analyze (46) in detail. 
Consider case I lirst and define 

u=x,tx*, uE[O,ll 

v =x,-x*, v E [-I, 11. (51) 

It follows that equilibria must satisfy 

K(u’- v’) = 4(1- u)‘eFU (52) 

where v is fixed by the initial composition. A sketch of the 
left- and right-hand sides of (52) shows that when o > 0 
there exists exactly one root I( E [O, 11 whenever v E 
[- 1, l] and K > 0. Therefore the equilibrium point is 
unique in such cases. However, if o < 0 and sufficiently 
large in magnitude, there can exist three roots for a range 
of K values. 

The loci of equilibrium points found from (52) for a 
lixed o < 0 and several values of K are shown in Fig. 4(a). 
It is evident from this figure that whether or not multiple 
equilibria exist depends on both K and no (or v). The 
boundary of the region in the o - K plane in which there 
are three solutions is found as follows. A multiple root 
exists whenever the reaction simplex v = constant is 
tangent to the equilibrium locus; this requires that 
dv/du = 0. On the boundary of the three solution region 
the curvature must also vanish at the point of tangency 
and thus the boundary can be found by solving 

4 r2=~2--(l-u)2e-ru zff(u) 
K 

$=2ut(u2-f(u))(a,t&)=O 

$=2+2M t&2($+)=0. (53) 



Fig. 4(a). The equilibrium loci (l-4) and a reaction simplex (5) for the reaction sl t 48 = 2%. (1) K = 325, (2) 
K = 490, (3) K = 870, (4) K = 1250, o = - 10 throughout. 

Fig. 4(b). The equilibrium loci (l-5) and a reaction simplex (6) for the reaction Sp + Q S 29. (1) K = IO-‘, (2) 
K = 100, (3) K = 102, (4) K = l(r, (5) K = 106, o = 10 throughout. 

After rearrangement and simplification these reduce to curves. The dashed line through the region of three 
solutions delineates these cases: above this line the 

u* = f(u) equilibrium locus is the single “bishop-shaped” curve 

u*= l+wu(l-u)* 
while below it the locus consists of an ellipse and a 
parabolic curve that runs between x1 = 1 and x2 = 1. 

o%‘- (202 + 30)uZ t (02 + 2o)u + (0 t 2) = 0. A similar analysis can be done for case II. Now one 
(54) defines 

It is necessary that uz 2 0 and from the second and third 
equations of (54) one finds that there are no solutions for u =x1+x, 

any K>O if o>-8. At o=-8, u=1/2 and logK= D =x1-x3 (55) 
2.347; this point marks the cusp of the boundary of the 
three solution region shown in Fig. 5. For o < - 8 one can so the equilibrium relation can be written 
compute the roots u E (0,l) of the third equation, check 
whether u* 2 0 in the second equation, and calculate the 
corresponding K from the first equation. Within the 

K = -4(l - ‘)’ euor+0-l) 
2-U= 

(56) 

region of three solutions one can distinguish between 
cases where the equilibrium locus is a single continuous If o 10 there exists a unique root for any K > 0. 
curve and those for which it consists of two disjoint When K = 0 the unique solution is u = 1, i.e. x1 = 0, and 
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log K 
7- 

b-- 

5.- 
\ 

\ 
\ 

i 

\ 
A.- 

\ 

‘1 3-- 

2-- 

l-- 

, : : , 
-lb -12 -8 w A 8 12 

Fig. 5. The o-log K plane for both S! + B e 21 and ~4 t 1 c= 28. Multiple solutions for the former lie to the left of 
o = -8 in the wedge-shaped region. Multiple solutions for the latter lie to the right of o = 4. 

by continuity the solution is unique for all w whenever K 
is sufficiently small. Moreover, if o is sufficiently small 
the solution is unique for all K 2 0. Finally, when K is 
sufficiently large the solution is also unique for all CU. Only 
within a restricted range of K and o are there three 
equilibrium points. The graphs of the equilibrium loci for 
a fixed w within the three-solution region are shown in Fig. 

4(b). 
The boundary of the three solution region again 

corresponds to points at which the equilibrium curve is 
tangent to the reaction simplex and has zero curvature 
there. This leads to the three equations 

fb, u) = 0 

f&t))=0 

fu.(4~)=0 (57) 

for the boundary and after rearrangement and simplilica- 
tion these read 

K - 4(1 - u)2c~(2~+‘-” 
/AZ- D2 

u-d 

u4+(22.4-3u~-1)u2+2U3-U*=0. (58) 

These are solved as follows. For a fixed u E (0, l), the last 
equation can be solved for u2 and the results checked to 
ensure that -1 I u 5 1. For such u’s, the first two 
equations give the o and K values on the boundary of the 
three-solution region. The result is the curve shown in Fig. 
5. The solution is unique outside the solid curve in the 
right-half plane. 

According to earlier discussion, three equilibrium 
points can exist only if ~(PG/&I&I)< N- 1 for some 
compositions in f@“). In this ternary system the spinodal 
is the curve along which the Hessian of G has rank one; 
from (41) one finds that this curve satisfies the equation 

02XIX2XI = 20x,x* - 1 = 0. (59) 

After eliminating xZ and solving one gets 

x, = 

02x,(l -x1)-220x, ~~[(2wx,+02x*(1 -x~))2--4C02x,] 
2&x, 

(60) 

and from this it follows that there are no solutions for 
which all xi’s are between zero and one, and conse- 
quently, no spinodal, when - 8 < o < 2. Outside this range 
a spinodal always exists and the locus is a closed curve for 
w < -8 and a parabolic curve through x1 = 0 for o > 2. A 
representative of each case is shown in Fig. 6(a) and 6(b) 
respectively, along with some equilibrium curves and a 
reaction simplex. 

In Fig. 6(a) it is noteworthy that whenever three 
solutions exist, two are always stable with respect to small 
amplitude nonuniform disturbances while the inter- 
mediate solution always lies within the spinodal and 
consequently is unstable. This happens for all the (0, K) 
values that were examined but we have not proven that 
the two extreme solutions are always stable. Moreover, it 
also appears that the points at which a multiple solution 
exist always lie on the spinodal but again this has not been 
proven. Recall that this was the case for the binary system 
treated in the preceding. 

In contrast to the foregoing, when the non-ideal 
interactions are between a reactant and a product it can 
happen that for certain initial conditions only one of 
three equilibrium points lies outside the spinodal and 
hence is stable with respect to diffusion (Fig. 6b). For 
either case I or case II, the equilibrium point is unique 
(and necessarily stable) whenever the entire reaction 
simplex lies outside the spinodal region. This is a 
sufficient, but not necessary, condition for uniqueness, as 
one can see from the fact that some simplexes pass 
through the spinodal but yet the equilibrium point is 
unique. 

Because the ternary systems studied here can have up 
to three equilibrium points, bifurcation or branching of 
these equilibria can occur as parameters that characterize 
the system are varied. For instance, in case I one obtains 
the bifurcation diagram shown in Fig. 7(a) when o and K 
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Fig. 6(a). The equilibrium curve (l), the spinodal curve (2) and a reaction simplex (3) for the reaction Sp + 48 = 2% at 
o=-lO,K=870. 

Fig. 6(b). The coexistance curve (l), the spinodal curve (2), a reaction simplex (3), and the equilibrium curve (4) for 
99t%=29ato=lO,K=l. 

Fig. 7. The bifurcation curves showing the equilibrium mole fraction of x, vs (a) the difference in initial mole fraction 
between SB and 9, and(b) the equilibrium constant K. 

lie in the three-solution region and the difference xt - x: xl0 - x2” is near 1 the equilibrium point is again unique. 
in the initial mole fractions of d and $3 is regarded as the One could as well regard K as the bifurcation parameter 
bifurcation parameter. When XT - x2’ is near - 1, there is for appropriate o and one would get a bifurcation diagram 
only one equilibrium point, at intermediate values of like that shown in Fig. 7(b). In either case it is clear that 
x,0 - x2’ there are three equilibrium points, and when there exists more than one branch of equilibrium points 
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within some range of the bifurcation parameter, just as in 
the binary system treated earlier. 

There is however one difference between binary 
systems and ternary systems with one reaction of type I 
or II. According to a thermodynamic analysis, spatially 
nonuniform solutions corresponding to a phase separation 
are impossible in a binary system. By contrast, a ternary 
system can undergo a phase separation for appropriate K 
and o values. To see this, note that the concentrations in a 
multiphase system must satisfy (18). The last of these 
three equations gives the equilibrium locus already 
computed for both case I and case II. Since at most two 
phases can coexist, the second set of equations at (18) 
reduces to 

b/=p: i=l,2,3 (61) 

and these give the coexistance locus. These have been 
solved for o = 10 and the result is shown as the dashed 
curve in Fig. 6(b). One finds that the tie lines connecting 
phases in equilibrium are horizontal lines x3 = constant. 

Any multiphase equilibrium must satisfy all these 
equations and therefore is possible only if the equilibrium 
locus intersects the coexistance curve at opposite ends of 
a tie line and the reaction simplex determined by the first 
equation of (18) intersects the tie line. This is not the case 
for the (K,o) values of (1,lO) shown in Fig. 6(b). 
However, as K increases above 1 the intersection of the 
equilibrium and coexistance curves near xZ = 1 moves 
slowly toward xt = 1 while the corresponding intersection 
near the line x2 = 0 moves rapidly toward xl = 1. One can 
show that at any fixed o, there is a K such that the 
intersections lie at opposite ends of a tie line and if the 
initial conditions are properly chosen a phase separation 
results. Thus there is a curve through the three-solution 
region of the o - K plane on which the thermodynamic 
analysis predicts a two-phase equilibrium. 

4. DISCUSSION 

That even the very simplest form of nonideality readily 
leads to multiple equilibria in closed reacting systems 
suggests that their occurrence may be widespread, 
particularly under the high temperatures and pressure of 
many batch reactions. Accordingly, the possibility of their 
existence should be checked in any computation of 
equilibria[21]. The branching of equilibrium solutions as 
parameters of the system are varied points up the fact that 
slight changes in some parameters can often lead to 
abrupt changes in the equilibrium concentrations. These 
bifurcation diagrams for equilibtium points are com- 
pletely analogous to those found for the nonequilibrium 
steady states of some open reacting systems (see, e.g. [4]), 
and in this respect, closed systems are no different than 
open systems. The major difference lies in the fact that 
time-periodic solutions are impossible in closed systems, 
by virtue of the postulate that dG/dt 50 for any 
spontaneous process that occurs at constant temperature 
and pressure. Another difference arises from the fact that 
spatially non-uniform solutions are static; they require no 
expenditure of free energy for their maintenance, in 

contrast to the dynamic nonuniform solutions that can 
occur away from equilibrium. 

Heretofore the analysis has been strictly ther- 
modynamic and for many purposes this is adequate, but 
whenever more than one equilibrium points exists one is 
led to ask what the domain of attraction of each of the 
uniform solutions is and whether or not spatially 
nonuniform solutions other than those predicted by 
thermodynamics are possible. To answer either of these 
questions one must formulate the appropriate initial value 
problem for the continuity equation for each species and 
postulate constitutive relations for the diffusion fluxes. 
When near equilibrium and when gradients are small, one 
usually assumes that the flux is proportional to the 
gradient of the chemical potential; 

j = LVP = 420, = e-/$Vc. _ (62) 

After eliminating the linear dependence between both 
the fluxes ji and the gradients Vpi one can write 

$=v-F)VCf&) (63) 

where all vectors now have R - 1 components. In ideal 
solutions D has only real positive eigenvalues 1221 and any 
equilibrium point is asymptotically stable as a solution to 
(63). If one assumes that the constitutive relation (62) is 
valid arbitrarily far from equilibrium then for 
monomolecular reactions in an ideal system, the equilib- 
rium point is globally asymptotically stable. Thus 
nonuniform steady states are impossible in ideal systems. 
Even when the mixture is nonideal and the reaction 
simplex passes through the two-phase region, one can still 
prove, using (62) in (63), that any equilibrium point that 
lies outside the spiuodal is asymptotically stable. This is 
consistent with the thermodynamic analysis. 

Inside the spinodal d’G/acac has one or more negative 
eigenvalues and the simple linear relation given by (62) is 
inadequate. For any compositions inside the spinodal the 
free energy decreases when the components separate and 
as a result, diffusion steepens the concentration gradients 
rather than smoothing them out. Were (62) used in (63), 
one would predict that the gradients become arbitrarily 
steep; this is physically impossible and accordingly, the 
constitutive relation for the diffusion flux must be 
modified. One approach that has been used successfully in 
binary nonreacting systems is due to Cahn and 
Hilliard[23] and Cahn[24]. In this approach one recog- 
nizes that the strictly local formulation for the free energy 
applies only in a spatially uniform system. When gradients 
are large, the strictly local formulation accounts for only a 
part of the total free energy and additional terms 
proportional to the local nonuniformity of the concentra- 
tion field become important. Consideration of these terms 
leads to the following relation between concentration 
gradients and the flux in a binary system[23] 

j = - L,$Vc + 2L2W2c. 
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This relation retains only the first order term of an 
expansion of G about the uniform state; higher order terms 
that lead to nonlinear diffusion equations are neglected a 

priori. Using this constitutive equation, Cahn has been able 
to predict some of the structural features observed in 
glasses that decompose by a spinodal mechanism. 

As a first step toward studying the dynamical behavior 
of reacting systems in which the initial concentration 
distribution passes through the spinodal region, one could 
extend the Cahn-Hilliard approach to ternary systems 
and study the solutions of the resulting pair of coupled 
equations. This in itself is a formidable task. Moreover, if 
the constitutive equations for the free energy include 
non-local contributions, the strictly local formulation of 
reaction rates no longer applies and non-local terms 
appear in the rate expressions. This calls for a complete 
reformulation of all constitutive equations. 
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NOTATION 

chemical species 
affinity of the jth reaction; j = 1,. . . r 
(A I,. . . A,Y 
molar concentration of jth species; j = 1,. . . N 

(c I,. * * CNY 
matrix of diffusion coefficients 
equilibrium function for the binary reaction 
equilibrium function for the ternary reaction 

Gibbs free energy 
restriction of G to the reaction simplex 
equilibrium constant 
kinetic constants 
number of chemical species 

total number of moles 
( i> 

= 2 4 

moles of species i 
(n 1, * * * %-IT 
initial composition 
steady state (kinetic equilibrium point) 
thermodynamic equilibrium point 
pressure 
gas constant 
reaction rate vector in molar concentration units 
reaction rate vector 
positive orthant of N dimensional Euclidean 

space 0 
restriction of R(n) to fi(n”) 
absolute temperature 

t time 
Ui molar volume Of itb species 
V volume of mixture 
xi mole fraction of ith species 

Greek symbols 
activity coefficient of ith species 
Kronecker delta 
interaction energy between i and j 
displacement from equilibrium 
chemical potential of ith species 

(P I,. . f CLN)T 
matrix of stoichiometric coefficients 
extent of jth reaction 
(2,. * * * 6,) 
rank of y 
parameter in eqn (20) 
basis vector for the null space of y’ 
reaction simplex through no 
parameter defined by (21) 
o,zlRT 
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