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CURRENT PROBLEMS IN PATTERN FORMATION
H. G. Othmer

I. INTRODUCTION

One of the oldest and most intriguing problems in
theoretical bilology concerns the origin of spatial pattern
in developing systems. In wolpert'spformdlationh[l], the
problem is that of"assigning7specific states to an ensemble
of cells,_whose initial states are relatively similar, such
that the resulting ensemble of states forms a well-defined
spatial'pattern'. The first significant mathematical analysls
of thls problem was done by Turing‘[é], who originated what
is currently called the reaction-diffusion theory of pattern
formaticn. rr‘uring's theory is bullt around the remarkable
fact, which he first proved that a spatially uniform
statlonary state of a reacting mixture can be unstable to
spatlally nonuniform disturbances if reaction and diffusion
interact appropriately. The theory then envisions that as
certain. slowly—varying kinetic or transport coefficients
cross critical (tifurcation) values, the uniform state loses
stability and a/spatially nonuniform state emerges.
Depending on the nature of the‘instability, the resnlting
nonuniform state may be steady or time dependent. If one or
more of the chemlcals in this spatialiy nonuniform concentra-
tion pattern activates transcriptior of a gene that codes
for a key enzyme or structural protein, a nonuniform pattern
of cell differentiation will result. Such an interpretation
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has been used to explain the origin of insect bristle
patterns [3].

In the past decade there has been a renewal of interest
in the theoretical aspects of Turing's theory, stimulated in
part by Gmitro and Scriven's work [4], and in part by the
wide variety of spatio-temporal patterns observed in the
Belousov-Zhabotinskil reaction [5]. Linear stabillty analysis,
the first step in any analysis of pattern formation, has
been worked out in detail for two- and three-component
systems with arbitrary kinetic mechanisms and diffusion
matrices [6]. Such analysis is useful in studying the onset
of instabllity and for gaining insight into how the different
types of instability are produced by the interaction of
reaction and diffusion. However, to predict what spatial
pattern ultimately evolves from an instability requlres a
nonlinear analysis, and here one cannot expect results of the
scope available in the linear theory [7]. Certainly more
analysis of specific kinetic mechanisms, such as that done
in [8],1is needed before any general conclusions on the
evolution of systemé near their bifurcation points emerge.
When parameters are far from their bifurcatioh values, there
is usually no alternative to numerical solution of the
governing equations. An indication of the complexity of
patterns possible in reaction- diffusion systems is gilven by
the computational results of Gilerer and Melnhardt [a].

The outlines of a comprehensive nonlinear theory of
pattern formation from steady uniform states are emerging

from analyses such as the foregoing and those done in the
context of ecological problems [10]. Some important
problems that remain are the following.

(1) Linear stability analysis answers the questlon
of how reaction, diffusion and system geometry
or topology interact to produce instabllity.

A complete nonlinear theory should predict, for
example, how these factors govern the direction
and stability of the bifurcating solutions.

One general result will be given in a later -
section.
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(2) Closely related to the preceding point are the
problems of bifurcation from multiple eigenvalues

and of secondary bifurcation when there is a pair
of nearly-degenerate elgenvalues [11]. These in
turn are related to the problem of pattern ‘
selectlion when more than one type of pattern is
predlcted by linear analysis [12]. Results for
these problems will illustrate how a succession
of instabllities can be used to generate
'increasingly complex spatial patterns.

(3) In Turing's work and virtually all subsequent work,
the only mode of transport consildered is diffusion.
Furthermore, the model systems all deal with
structureless, tightly coupled cells or their
continuum analogs. Some future work should be:
directed toward (a) the analysis of other modes
of transport, (b) more realistic models of cell
and tlssue structure [13], and (c¢) networks of
cells that communicate only indirectly via the
external medium.

i While significant progress has been made toward
predicting the emergence of spatlal pattern from uniform
steady states, the theory is still in its infancy when the
underlying chemical dynamics are time-periodic. Even linear
analysis of the intéraction between reaction and transport
is difficult in such cases, because the equaﬁions are
non-autonomous and the periodic solution is rarely known in
analytical form. Nonetheless, the folloWing examples suggest
that the problem 1is of sufficient importance to warrant
detailled investigation.

It 1s widely recognlzed that biological systems are
periodic 'at viftually every level of organlzation from the
sub-cellular to the organismic level. The most caréfully
studied bilochemical oscillations are the glycolytic
oscillations in yeast cells [14], observable in single cells,
in intact cell suspensions where cells communicate
indirectly, and inbéell—free éxtraét. There'is‘as yet no
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direct evidence that links glycolytic oscillations with any
morphogenetically significant process, but many have speculated
that similar oscillations may be importent.in circadian
rhythms [15]. Populations of interacting oscillators have
been studied in this context [16].

The second class. of examples in which the dynamics are
time~periodic comprises multinucleate‘cellsfobtained by
fusion [17], the true slime molds such as Physarum
polycephalum [18], and the colonial fungi [19,20]. In
multinucleate cells and in Physarum, the underlying periodicity
is that of the mitotic cycle,while fungi undergo a more
complicated life cycle that involves differentiation. It

has been observed that in Physarum the contents of fused

plasmodia are mixed by a combinatlon of diffusion and
cytoplasmic streaming and that nuclel in a fused plasmodium
divide synchronously provided the dlameter is less than
about 15 cm-[21]. 1In larger plasmodia, propagating waves of
mitosis can occur. As the paper by Kauffman in this volume
shows, this system 1s an ideaf one for testing hypotheses
about the basis for the periodicity in the mitotle cycle.
More complicated spatial patterns are often observed 1in
various fungl. These inolude concentric rings and spirals
[20] very similar to those observed in the Belousov- .
Zhabotinskii reaction. In the ascomycete Chaetomium robustum,
the alternating light and dark zones seen in a growing colony
are transparent zones of scantily branched hyphae alternating
with dense zones of intense ramification. In relatively
small colonies these dense zones are veryvuniform around the
circumference, which indicates a high degree of synchrony
between adjacent hyphae, at least in the latter stage of the
life cycle. The mode of communication between hyphae is not
yet known, but a plausible hypothesis 1s that synchronlzation
is maintained by transport of some 'messenger' molecule.
The conjecture that trensport is by diffusion is supported
by the fact that the dense zones become increasingly'
irregular as the colony expands [20]. Moreover, 1t has not
been established that the life cycle is controlled by a
biochemical oscillator but it could well be. Granting this,
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the observed patterns are amenable to analysls uslng a
reaction-transport model. A highly-simplified model, which
nonetheless gives rise to spatial patterns simllar to those
observed, 1s due to Pavlidis [22].

In addition to the experimental examples, there are
numerous theoretical models in which interaction between cells
with périodic dynamics plays a role. Waddington [23]
suggested that entrainment of non-oscillatory cells by:
oscillatory cells could constitute a mechanlsm of tissue
induction in embryology. Goodwin and Cohen [24] have
constructed a model of development in which oscillatory cells
in a developing tissue are entrairied to the frequency of
localized pacemakers by periodically-propagating waves:

The local phase difference between.a fast wave and a slow
wave provides positional information and thereby governs
local differentilation. ‘

Burton and Canham [25] have recently proposed a model .
for contact inhibition of cell division based on biochemical
oscillators coupled by diffusidn. This model stems from the
observations by Lowenstein and Kanno [26] that intercellular
communication in certain tumor cells 1s very slight compared
with communication in thelr normal counterparts. "The main
hypotheses of the Burton-Canham model are that there is a
key substance involved in contact inhibition that diffuses
between cells and whose concentration within each cell
oscillates harmonically in time, with a period that varies
from cell to cell. They propose that contact inhibitlon
results when cells communicate freely and the level of the
key substance remains below a threshold for initiation of
the mitotic cycle. Their major result is that the amplltude
of the oscillation can be suppressed by virtue of coupling
between nelghboring cells. Desplte 1ts apparent success,
several criticisms of the model can be raised. Filrstly,
cellular communication has no affect on the dynamics of the
oscillator but merely provides for leakage of the key
substance between neighboring cells. This forces the authors
to assume that all cells have different frequencles so as to
preclude~synchronization. Secondly, it is generally true
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that only small-amplitude oscillations are satisfactorily
approximated by sinusoids and as a result, the control

system proposed 1s very sensltlve to small concentration
changes. Both of these criticisms can be vitiated by
postulating that the transported speciles is directly Involved
in the dynamlcs of the underlying osclllator, as Kauffman

and Wille [27] assume in their model of mitosis. Nonetheless
the fundamental idea of Burton and Canham 1s attractive and
warrants further investigation.

The common features of most of the foregolng
experimental examples and theoretical models are (1) the
dynamics of individual 'units' :aare periodic or capable of
being entrained by a periodic signal and (11) the units are
coupled; either directly via diffusion or active transport
across cell membranes, tight Junctlons or within a
plasmodium, or indirectly, by transport of a chemical species
through an external medium in contact with all cells. In
all ‘the examples one can ask (i) under what conditions do the
coupled units synchronize»intd a single collective mode and
(11) what properties of the internal (biochemical) dynamics
and of the coupling produce nonuniform spatio~temporal
patterns? These questions are addressed in the following
sections. - . '

"The outline for the remainder of the paper 1is as
follows. Section II describes the general hypotheses on the -
chemical kinetics.:  Because the analysis and exposition 1s
simplest when there are only two chemical specles, we
restrict attention to this case. Most of the results are
extendable to systems involving more specles. at the expense
of added algebralc detall. In Section III we use a
continuum model of coupled cells to derive conditions on
kinetic and transport parameters that provide the answer to
the first question of the preceding paragraph. The conditions
are stringent and will generally be met only in small
systems. Weaker conditions will suffice to guarantee that
a system 1n a spatially-uniform periodic state remains there
in the face of small random concentration disturbances.
These are derived in Section IV. A partial answer to the
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second question posed is given in Sectlon V and several
possible topics for further investigation are suggested In

the concluding section.

\

II. THE CHEMICAL KINETICS

No specific kinetic mechanism involving the two active
species will be postulated here; instead we simply assume
that the kinetics are describedvby a smooth nonlinear
funqtion R(c,p) and that the equatlon of change for a

uniform system is

de -~ R(c,p). (1)

c R, (cy,C,,P)
_(1 _f F1tC1eC2o
¢ (‘32) R(c,p) <R2(clscgsp)

and p 1s a positive scalar parameter. This parameter
might, for instance, be the concentration of a slowly-varylng
substrate. Throughout we assume that R 1s such that the
solution of (1) for positive initial values remains non-
negative and bounded for all t>0. In addition to these
standard assumptions, we make the following hypotheses about
R.

Here

(H1) For every 'p>0 there 1s a unique solution
c*¥ of R(e,p)=0.

(H2) Let K be the matrix of the linearization of
(1) around c¥*, viz.

=K€

Qalcu
ooy

C = c_c* K = EE;‘_
B 1 ~ '()c‘j °j=cj*

There are two parameter values Po and Py O<po<p1,
such that both eilgenvalues of K have non-negative
real parts for Pp<PLp, - The eligenvalues are complex
conjugates, azif, 1in some neighborhood of Py

and in some neighborhood of Pq- At Py
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= da
alpg) =0, g5 (pg) >0

while at Pq

a(py) = 0, %% (py) < 0,

(H3) For any pe(po,pl) there exlsts a unique
periodic solution that is globally asymptotically
stable, but for the steady state c¥%,. There
are no periodic solutions for any other
value of p.

It follows from (H2), (H3) and the Hopf theorem [28] that a
stable periodic solution emerges at Py -and disappears at
p, as p increases through these values. It can happen
that py==.

The matrix K will have a pair of complex conjugate
elgenvalues with non-negative real part if and only if

tr K = kyq + Kyp 2 0

and )
2 - 2

The first condition requires that at least one of the specles
be self-activating since at least one kii must be posltive.
We shall speclfy that species 1 is self-inhlbiting for all

p and so kll is always negative. Therefore species 2

must be self-activating near Py and Py and in fact, it
follows from (H2) that k22 must be positive for all p in
an interval [po,pl] that contains [po,pl] We can allow
p0=0 and pl-w To satisfy the second condition it is
necessary that k12k21<0. This means that the mutual
interaction of 1 and 2 near Po and Py must elther be

that 1 actlvates 2 and 2 inhibits 1 or, that 1 inhlblts 2 and
2 actlvates 1. One model reaction mechanism that fulfills
all the above hypotheses 1s the mechanism proposed by
Zhabotinskii, et. al. [29] for the Belousov-Zhabotinskii
reaction. This model is analyzed in [30]. A somewhat
simpler scheme that also has these properties arises from
models for glycolytie oscillations [31].
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ITII. GLOBAL STABILITY OF UNIFORM SOLUTIONS

'Now suppose that we have N 1dentical cells, in each
of which the kinetics for the two species of interest are
as just described. Further, suppose that the cells are
submerged in a bath and that both specles can be exchanged
between cells. This exchange can occur in one of two ways.
In the first, communication between cells 1s indirect in that
each cell exchanges material only with the extracellular
milieu. This mode 1s used in yeast cell suspensions and
presumably in many other similar situations. We shall not
pursue an analysis of indirect communication here; suffice
it to say that when individual cells are oscillatory,
(pe[po,pl]), the oscillations can be suppressed in vivo
by making the volume of the extracellular compartment large
enough. Such a density effect is observed in glycolytic
oscillations [32].

The alternate mode of chemical communicatlon, which we
assume prevalls, 1s via intercglluiar Junctions that can be
formed upon cell-to-cell contact. These tight junctlons can
pass molecules‘of -;103 MW [33] and therefore, metabolites
and other substances that may exert control over cellular
activities can readily diffuse from cell to cell. Individual
cells in an aggregate can be connected to one or more other
cells and different cells can have a different number of
connections. This leads to a rich variety of topologically
and dynamically distinguishable networks [34], but for
simplicity we regard the entire‘aggregate as a continuum
contained in a two-dimensional region Q. When pe[po,pl],
one has a continuum of chemical oscillators, linearly
coupled by diffusion.

The governing equatlon for the system is

3% = DAc + R(e)

in 0 (2)
c(r,0) = cy(r)’

n;Vc = 0 on at. -
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The diffusivities are positive constants and D 1is diagonal.
A 1s the Laplacian for the domain O and n is the unit
outward normal. The fact that D 1s positive definite,
combined with the hypotheses on the kinetics, ensures that
the solution of (2) is componentwise nonnegative for all
time. We assume that 1t is smooth and bounded pointwise in
space as well, without elaborating thé conditions that
guarantee this. : ‘ ‘

Were R(c)EO, ~diffusion would always smooth out
initial nonuniformities in concentration and this is the
case in a reacting system as well, provided the diffusivities
are sufficlently large. The following result formalizes
this gontention by glving conditions under which the system
always evolves to a uniform state.

THEOREM. Let

K

m

8R
max | |3 |
C aca

' and let ‘“1 be the smallest non-zero eigenvalue of the
scalar problem ' ‘

‘ Au + pu = 0 in @

ﬂ g-Vu =0 on dfl.

4 If |

!!

l min (Dyduy > k, (3},

] then all spatlial nonuniformitles decay exponentially in
time. '

To derive this result, write the solution of (2) as

c(t) + ¢(r,t)

| e(r,t)
|
' Pe(r,t) + Qe(r,t)

l where J ¢4 da =0.
Q
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The operators P and Q=I-P are projections in the
appropriate Hilbert space. Equation (2) can then be written

—ﬁégiil = DA(C+¢) + R(c+¢)

and by operating on this with P and Q it follows that

%% = PDA¢ + PR(G+4)
%% = QDAG + QR(G+4).

The obJject is to show that

ol = (| 11e112 an¥ = (| <o,0> am)*
Q Q

tends to zero as t-+» when (3) holds. ﬁere,and hereafter
||+]] and <,> denote the. Euclidean norm and inner product,
respectively. '

Analysis of the various terms in the ¢ equation leads
to the inequality

1612 < A 1812 + x|e)?

where
A E min J <Vu,DVu> d4.
; |ul=1 b
I udf=0
Q

Therefore, if X;>k, |¢I2+0 exponentially in t. The
constant Al is the smallest non-zero elgenvalue of the
vector equatlon
DAV + Av = 0
n-vu = 0
and so
A = min (Dyuy
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where ¥y is the smallest non-zero eigenvalue of the scalar
equation

Au + pu = 0
(4)

'Q-Vu_= 0.

This proves the result.
The parameter k 1s a global measure of the senslitivity

of the reactlon rate to concentration changés. Its reciprocal
is the shortest kinetic relaxation time in the system. For
some kinetic mechanisms, such as the control mecganisms for
inducible or repressible enzymes, estimates of k are

readily made without knowing a priori bounds on the
concentrations. The quantity [min (Di)ulj_l is the longest

relaxation time for diffusion, and if this is less than the
shortest kinetic relaxation time, all spatial nonuniformities
decay to zero. As a result, (3) 1s sufficlent to ensure

that there are no nonuniform steady states. Furthermore,
even though these conclusions are derived for zero-flux
boundary conditions, they hold for other boundary conditions
whenever the eigenvalue problem corresponding to (4) has a
zero eigenvalue¥,

It should be noted that nothing has been said concerning
the nature of the uniform solution. If p 1s 1n the range
for which (1) has a globaily stable stéady state, then
solutions of (2) always relax to this steady state when (3)
holds. When pe[po,plj, (1) has a globally attracting
periodic solution, and the solution of (2) ultimately
approaches this solution.  The latter case 1s of interest
here because then (3) provides a sufficient condition for
a globally-synchronized oscillation, regardless of the initilal
conditions. A criterion such as this should be of intérest
in any problem dealing with populations of coupled
oscillators. Different modes of coupling will naturally

¥The dimensionless number k/{(min Di)u1 is a Thiele modulus

in chemical engineering terminology. For an interesting
discussion of the role played by transport limitations in

. .cellular processes see [35].
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require a somewhat different analysis and lead to different
criteria for synchronization.

To estimate when condition (3) is met, consider a
one-dimensional system of length L. The smallest non-zero
elgenvalue 1s u1=w2/4L2 and a typlcal value for ﬂ, the
pseudo first-order kinetlc constant, 1is 1071 sec7l.
Therefore, (3) is satlsfied if min (Di)>~nONL2. If L 1is
104 (a typical cell diameter), then the smallest D, must
be larger than ~4.OXI0_8 cmz/sec. This is well within the
range of diffusivities for small molecules In vitro. If the
kinetically active speciles can freely pass through the
junctions, it 1s to be expected that two cells coupled out
of phase will ultimately synchronize. However, when 10 cellé
are Jolned in a llne, min Di must be greater than

~14.0><10_6 cmg/sec and this 1s already near the upper I}mit
of diffusivities in vitro. Of course, the cholce of k 1is
crucial in these estimates and 1f the kinetlc relaxatlon
time 1s much longer, as 1t probably would be in the case of
a biochemical oscillation that controls mitosis, the
diffusivities can be correspondingly smaller or the lengths
correspondingly greater.

IV. LOCAL STABILITY OF PERIODIC SOLUTIONS

The condition that guarantees ultimate synchronization
starting from arbitrary initial condltions is a stringent
one and can only be met in small systems or when reaction
rates are low. At the other extreme in initial conditilons,
it 1s clear that a system initially in a uniform periodic
state would remain there, but for the inevitable small
concentration disturbances. The objJect here is to find
conditions under which these small disturbances decay. The
results will partially answer the question of when an
artifically-synchronized aggregate of cells will maintain
its synchrony. Such questions arise naturally in studies
of circadian rhythms.

Let ¢&(t) be the periodic solution of (1) and let T
be its perilod. Write
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c(r,t) = &(t) + é Yy (B)u, ()

where yk(t) is the amplitude vector for the kEh

eigenfunction ‘uk(g) of the laplacian. For small-amplitude
disturbances of &, (2) can be linearized in ¥y and the
result 1s the set of amplitude equations

v,

EE— = (K(t)-UkD)yk- (5)
Here the matrix K(t) is T-periodic: K(t+T)=K(t). The
solution for Yy can be written

T(8) = 0 (63, (0).

The matrix ek(t) 1s that fundamental matrix of (5) for
which 6, (0)=I [36]. Evidently the 0,(t) govern the
evolution of the amplitude in the initial disturbance. If
k=0 corfesponds to the zero eigenvalue of the Laplacian,
then 1t follows from the hypothéSes on the kinetics that .
eO(T) has one éigenvalue equal to one and one eigenvalue
less than 1. i

The periodic solution ¢&(t) will be an orbitally
asymptotically stable .solution of (2) if both eigenvalues
of Gk(T) are less than one 1n modulus, or equivalently,
if the spectral radius p(@k(T)) is less than 1, for all
k>1. Since p(0,(T)) < ||, (T)||, [37], it suffices to make
llek(T)ll <1 for k>1. '

Define

6 = max Di D¥ = D-¢I
i

and write the equation for ek(t) as
d@k .
EE— = (K(t)—UkD)@k = (K(t)—ukél_ukD )ek'
Let Qk(t) be defined by

-ukdt

ek(t) = e eo(t)gk(t)
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and Qk willl satisfy

4%y -1
T = -y (05T (£)D*eo(£))n, .

By converting this to an integral equation and applying
Gronwall's inequality [36] to the equation for the norm,
it is found that

N o~L(t)p*o.(7)]|]a
llﬂk(T)ll < euk Oll 0 T 0 T |l T

Therefore, ||0 (T)|] < 1 for k»1 if

T a-1
8T > I ||eo (T)D*GO(T)lldT

0
and this in turn is satisfiled if
l[D*l] < 1
8 max -1 )
 geto,m (Heg X1 Tlogte) |3
(6)

Since no use was made in deriving this of the facts that
there are only two species and that D 1s a dlagonal matrix,
the result is true in general. It is noteworthy that this
condition is independent of the eigenvalue My and
therefore of geometric factors, in contrast to the condition
at (3) for global stability. This is because only ratios
of diffusivities enter here. On the other hand, the kilnetlcs
enter in a more complicated manner than previously.

The Euclidean norm of the two by two matrix D¥ is
|D2—Dl| and consequently the preceding can be rearranged to

read
x=1 . P2 x ()
X Dl x-1
where .
x = max__ [llegh|l-]]eg(t) 1.

elL0,
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X 1s never less than 1. The analog of (7) for an
n-component system is

min D -
_—J_ s X =4
max DJ X

In any event; the conclusion is that the uniform perlodic
solutlon is stable with respect to small disturbances if the
diffuslvities are not too different.

That the diffusivities are not too different is also a
sufficient condition for the absence of !'synergistic' or
'diffusive' instabilitles of the uniform steady state [6].

A more precise relation between stability of the steady state
and stability of the periodic solution ;s established by the
followlng result.

THEQOREM. Suppose that for k>1, ‘the matrix K-ukD,
corresponding to linearization around the uniform steady
state, has only elgenvalues with negative real parts. Then
uniform periodic solutions of sufficiently small amplitude
are orbitally asymptotically stable.

To prove this, consider the amplitude equations for
k>1:

dyk
= = (K(&)-u D)y,

(K-p, DYy +  (K(£)-K)yy,

and write the solution as
(K-u, D)t t (K~-u, D) (t-1)
7 (t)=e 7, (0) + J e (K(T)-K)y, (t)dr.
0
By hypothesis, K—ukD has only elgenvalues with negative
real parts so we can find positive constants Yi and Qk
such that

Ie(K"ukD)t —'th

1A

L]
ws

1)

It follows that

(Q, 1=y, )T
Hy (DI e 57 1y (0]
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where

1 = max_ |]K(t)-K]|]|.
[0,T]

>

The conclusion follows provided

Yk
T < min (ﬁ—)
kwl Tk

and, because T+0 with the amplitude of the periodic
solution, this will be satisfied if the amplitude is
sufficlently small. This is certainly true sufficiently near
the bifurcation points Pg and Py«

The correspondence between stability of the steady state
and stability of the periodic solution, both with respect to
nonuniform disturbances, naturally breaks down for large
solutions. Nonetheless, one can sometimes still check
stability of the periodic solution without computing the
Floquet multipliers, as the following result shows.

THEOREM. Let T be an annular neighborhood of the periodilc
solution and suppose that the matrix ZE%(K+KT)-ukD has only
negative elgenvalues for cel'. Then o(t) 1is orbitally
asymptotically stable.

This follows directly from the estimate [37]
t .2
[y ()] ¢ [y (0) ]| exp{ IO Moy 4T}, To apply it, one

needs an estimate of the location of ¢(t). This is
sometimes easy to obtain, particularly for relaxation
osclllations.

V. SECONDARY BIFURCATIONS OF NONUNIFORM PERIODIC SOLUTIONS
Aslde from the special case 1in which the diffusivities
are equal and diffusion can never lead to destabilization of
a uniform periodic solution, 1t 1s impossible to analyze
destabllization of periodic solutions in the generallty
possible for steady states., However, one result of the
preceding section 1s that stabllity of small-amplitude
periodic solutions goes hand in hand with stabllity of the




74 _ H. G. OTHMER

steady state with respect to nonuniform dlsturbances, and
therefore the latter question should be addressed when o]
1s near a bifurcation point. This requires analysls of the
elgenvalues of the pencil of matrices K—ukD, k>1. When
K and D are 2x2 these eigenvalues are '

Ay = % (TrK—ukTrD + /A?uk))

where the discriminant A 1s given by ‘

A )=(Dy=Dy )2uil + 2(kyy-kpp) (Dp=Dy Dy + (kyy-kpp)® + by kg -
For the present we take p near Pp ©or pp and therefore
can assume that the constant term in A 1s negative. It .
follows that the eigenvalues are always complex for small

My and real for large My If both diffusivities are
strictly positive the eigenvalues are negative for large My
and there 1s at most a finite number of uis for which
either eigenvalue has a positive real part.

The following discussion will be simplified if we
restrict attention to a system in which there are only two
Fourier modes. Therefore we drop the continuum description
temporarily and focus on a system of Just two coupled cells.
In this case one mode is uniform and the other is
nonuniform; these have elgenvalue 0 and 2, respectively [34].
Moreover, we shall assume that A(2)>0, as the other case
1s uninteresting. As a result, there are only five distinct
types of X vs My diagrams in which at least_one'eigenvalue
has a zero real part, as shown in Figure 1.

Which one of these obtains depends on the relationéhip
between the parameters p, Dl and D2. Qertainly” P=p,
or p=p, in (b), (¢) and (e) because bifurcation of
uniform periodic solutions is independent of D, and D,.

The loci along which there is a zero real elgenvalue
at wu,=2 are given by ‘ '

J

m

det (K-2D) = UD1D2—2(k11D2+k22D1) + det K = p.

The zero eigenvalue is simple, and therefore, in.every case
except possibly (e), a nonuniform steady state bifurcates
from the uniform steady state when parameters cross the



CURRENT PROBLEMS IN PATTERN FORMATION 75

(a) (b)
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=
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=
=

(e) A (d)

(e)

—

Figure 1. Eigenvalue vs Uk dlagrams when one eigenvalue
has a zero real part. ————: Real part of a complex
eigenvalue, real elgenvalue. Only the values at
k=0 and 2 have meaning in the present context.

locus J=0. At any fixed p the kinetic coefflcients are
fixed and this locus is a hyperbola in the Dl—D2 plane, as
shown in Figure 2. In the continuum case there is a countable
number of such curves, the kEE having Dl-intercept

det K/ukk22 and horizontal asymptote k22/“k' How these
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2
4 STABILITY WITH
RESPECT TO
NONUNIFORM

DISTURBANCES

J=0

DIFFUSIVE
INSTABILITIES

J"Dl

Figure 2

curves vary with p depends on det K and k22; if for
instance det K/uk 52 has a single turning point for
pe[po,pl] then we have the following plcture for a fixed

non-zero When there are a finite or.countable number

!
of positivek By there 1s a second family of loeci,
parameterized by My e The ZZKK mechanism [29] for the
Zhabotinskli-Belousov reaction leads to a diagram like that
shown.

A Hopf bifurcation of a uniform periodic solution always
occurs upon crossing the lines P=pj and P=Pq> and by
hypothesis the periodic solution exists only for pe[po,pl]
and 1s stable with respect to uniform disturbances.

Diffusion does not affect these bifurcations when zero-flux
boundary conditions are imposed. Now suppose that D9 is
fixed and let D1 be the intersection of the corresponding
J=0 locus with the line P=p, (Pigure 3). If D1>D1,

then as p increases, the uniform steady state loses
stabilityAwith respect to'the nonuniforn disturbance at some
5<p0. At this p-value‘the applicable A-uk dlagram is
Figure 1(a) and a nonuniform steady state bifurcates from
the uniform steady state. One can show that with zero-flux

(or periodic) boundary conditions the bifurcating solution
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p
1 } J=0

——

Py
D2 increasing
P |
| x_
p

o

S D

Figure 3. The loci J=0 for variable Do, The lines —po
and p=py are the loci kop=0; pp=0 and pl—w are allowed.

exlsts on only one slde of the bifurcation point. Let us
suppose that for (Dl,P) near (Dl,po) the bifurcation is
supercritical; then the bifurcating solution is stable. At
P=Pq the periodic solution emerges and at this point the
appropriate A-u) diagram is Figure 1(e). Note that the
periodic solutlion is unstable for p near Po>» because the
nonuniform mode grows in time.

If Dl—D1 is small and positive, the amplitude of the
nonuniform solution is small when p is near Po and the
linearization of the nonlinear equations along the
bifurcating branch has a pair of complex conjugate eigen-
values near those of K. By making D1 D1 sufficiently
small, one can ensure that there 1s a point p* near Py

at whiech this complex pair of eilgenvalues has a zero real
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[

part. At this polnt a secondary bifurcation occurs and a
stable nonuniform periodic solution bifurcates supercritically.
If it happens that p*>p0, the amplitude vs p diagram is

as shown in Figure 4. Some computational results that
correspond to this case are given in [38].

u Amplitude

A /

D

- Figure 4. The amplitude vs p-.diagram when the uniform
solution first becomes unstable to nonuniform disturbances
So0lid lines: stable solutionsj;dashed lines: unstatle
solutions. The mirror image steady state, in which the
cells are interchanged, is omitted. :

Let us summarize the preceding. When g—p is small and
positive, thellinearizétion around the uniform solution has
two real negative eigenvalues and a complex conjugate pair
with negative real part. As p crosses 5, one real
elgenvalue crosses the imaginary axis and a nonuniform
solution emerges, while at "pépo, the real part of the

complex palr crosses the imaginary axis and a uniform
periodic solution emerges. At 5, a nonuniform periodic
solution emerges from the nonuniform steady state. A
gqualltative understanding of the corresponding changes in the
phase portralt can be gotten from the following three-
dimensional section of the four-dimensional phase space.

This cross—section omits the difectionAcorresponding to the
real eigenvalue that always remains negative. Distance

along the vertical axis corresponds to the amplitude of the
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nonunliform mode.

p<p 5<p<p0

/[ /)
/S /S

Figure 5. A three-dimensional sectlon of phase space.
The mirror image steady state 1is omitted.

The order in which the bifurcations occur is reversed
from the preceding when Dl—D; 1s small and negative. The
uniform periodic solution i1s now stable and the bifurcating
nonuniform steady state 1s unstable. It is to be expected
that if Dl—D; is small enough there will be a point on the
branch of uniform periodic solutions at which an eigenvalue
of Ol(T) crosses the unit circle. It can be shown by
using Abel's formula [36] that in a two-component reacting
system with a stable periodic solution, the eigenvalues of
ek(T), k>1l, can only cross the unit circle at =1.
Therefore, when bifurcation of a new periodic solution occurs,
it must have perlod close to T or 2T near the
bifurcation point. Now the amplitude vs p dlagram is as
shown in Figure 6.

This picture has been confirmed by numerical integration
of the equations for the ZZKK mechanism; the details will

be reported elsewhere.
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Amplitude

Po

Figure 6. The analog of Figure 4 when bifurcation of the
periodic solutlon precedes bifurcation of the nonuniform

steady .state.

As Dl varies In a neighborhood of D*, a curve is
generated in the D;p-plane along which the nonuniform
perlodic solutlons emerge. As D2 ~varies, this curve
generates a bifurcation surface. As a result, the non-
uniform solutlons exist in some open set of parameter values.
In the continuum case there 1s the further possibility that
the nonunlform perlodic solutlons become unstable and a
tertiary branching of another periodic solution occurs.

The complete picture has not been worked out for even the
simplest case of one nonuniform mode, but 1t should be
evident by now that the kind of destabillization of a uniform
periodic solution that we have described 1s a robust
phenomenon that must be considered whenever the self-
actlvating species 1s also the slower diffusing species.

VI. CONCLUSION

It 1s interesting, in light of the experimental evidence
linking the absence of intercellular communication with
abnormal growth [26], that the asynchronous states found
here exist only when the diffusivities are sufficiently
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different. As Intercellular exchange of the self-activating
species increases, the spatially nonunlform solutions
disappear, leaving only the synchronous osclllation. One

is tempted to identify the 'resting' state of the cellular
network with this uniform state and mitotic activity with

a nonuniform state, in direct contrast to Burton and Canham's
interpretation. In this veln, 1t 1s noteworthy that the
uniform periodic solution only exlsts when there 1s no flux
across the boundary of the network or when the network is
one unit is a repeated pattern. Interruption of inter-
cellular communication, for example by wounding, destroys
the uniform state and might thereby stimulate cell division.

The nonuniform periodic solutions we have described
represent standing oscillations, in contrast to the
propagating waves that are found in infinite domains [39].
In the two-cell case studied here, the cells are 180° out of
phase in the nonuniform mode, but more complicated spatial
patterns of phase relationships can arise when more cells
are present. These patterns provide the time-dependent
analog of the stationary morphogentic 'maps' discussed in
the Introduction. How nonuniform patterns of phase can be
translated into a spatlio-temporal framework for gene
actlvation is discussed elsewhere [40].

It has been assumed throughout that all parameters in
the chemical kinetics are spatlally uniform and as a result,
the period of oscillation is uniform throughout the system.
Because of cell-to-cell variations in enzyme and substrate
concentrations, this will not be true in reality. Nonethe-
less, i1f the spatial variation in the period is small one
may still expect to find a spatially-synchronlzed
oscillation under conditions similar to those given here.
This has been established for a two-cell system [41] but
apparently not for a continuum description of a multicellular
system. Recent experiments using the Belousov-Zhabotinskii
reaction 1n coupled stirred reactors illustrate
synchronization at a common frequency for small frequency
differences and subharmonic synchronization for large
frequency differences [42].
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