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1. Introduction

Intercellular communication serves a variety of purposes in metazoan systems,
including, (i) the recruitment of individual cells into multicellular aggregates,
as in the transition from vegetative growth to the slug stage in the slime mold
Dictyostelium discoideum (Dd hereafter), (ii) the initiation and/or cynchronization
of collective activities such as the repetitive contraction in ths myocardium,
(i11) the initiation and coordination of spatial differentiation in developing
systems, and (iv} the guidance of cell movement during morphogenesis. It is conve-
fent to classify the different modes of intercellular communication that have
evolved for these purposes as either Tong-range or short-range, according as the
distances involved are greater or less than about 0.25 mm, this being the distance
for which the relaxation time for diffusion is of the order of one minute. Long-
range signal transmission can occur via convective transport, as in hormonal inter-
actions via a circulatory system, or it may involve diffusion coupled with a
spatially-distributed mechanism for regenerating and relaying the signal, such as
occurs in nerve impulse conduction and in the aggregation phase of Dd.

At Teast three distinct modes of short-range communication between cells have
been identified: (i) direct exchange of diffusible substances such as ions, cyclic
nucleotides, small metabolites, and neurctransmitters via gap junctions and synapses,
(i1) indirect interactions by uptake of nutrients or other essential substances from
a common pool or by release of substances that activate or inhibit celiular functions
into the pool, and (1i1) surface interactions that result from mechanical stresses
or that occur via receptor molecules that are embedded in the cell membrane. Direct
exchange occurs frequently in developing systems and plays a central role in reaction
-diffusion models of pattern formation [1]. For instance, it has been found that
the jonic permeability of gap junctions in developing insect epidermis is hormonally
controiled and varies with the developmental stage [2]. Furthermore, it has been
demonstrated that cell-to-cell communication via gap junctions is responsible for
the synchronization of activities in the myocardium and in smooth muscle [3].
Indirect interaction occurs in suspensions of Dd, which releases CAMP into the
external medium via vesicles {4], and in suspensions of the yeast cell S. carlsbergensis
[5]. It is also used as an alternative to the conventional mode of synaptic trans-
mission in certain types of neurons in the marine mollusk Aplysia [6].

In many other cases the mode of interaction between cells is not known because
several modes may be possible and the molecular species involved has not yet been
identified. Since it is to be expected that different modes lead to different
dynamical behavior in a cellular aggregate, it may be helpful in identifying the
mode used to contrast the dynamical behavior for the various modes, and this is done
here for directly- and indirectly-coupled systems. The following section deals with
the question of global synchronization and gives conditions under which all cells
relax to the same instantaneous state, irrespective of whether that state is time-
invariant, time-periodic, or shows some more complicated temporal behavior. These
conditions prove to be very stringent and one can ask whether weaker conditions will
ensure that a synchronized system remains synchronized in the presence of small
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disturbances. This question is dealt with in the third section. The fourth section
is devoted to a detailed analysis of the simplest example of direct and indirect
coupling, namely, a system of two cells with two active species in each cel]. The
range of dynamical behavior exhibited in this simple system i1lustrates the diffi-
culty inherent in determining the complete structure of the solution set for more
complicated systems.

2. __Global Synchronization

For many purposes an aggregate of cells coupled by gap junctions can be regarded as
a reacting continuum and this viewpoint is adopted here. Let Q be a bounded region
of Rp {p = 1,2 or 3) with outward normal n. We assume that the flux of species i
is given by Ji = -Divci where the Di are positive constants, and that the boundary
is impermeable. The governing equations are

.?E: D2 R T .
5t - OVC+R(C) in ¢

Ve =0 on 0 M

C(r,0)

T Co(f) in @

Where C = (Cy,...,C )74 R(C) is the reaction rate vector, r is the space coordinate
in 2, and D is the Qiagona] diffusion matrix. For the purpose of casting these
equations into a dimensionjess form! let L be a measure of 2, Tet T; be a reference
concentration for species i, let k- be a time scale characteristic of the kinetics,

and Tet 6 = max D;. Set
I/l ekt o= G/Ty, 05 = By/6 and v o= Lo,
Then (1) becomes

B—C:' 2 i
37 - LDVie + R{c) in g
Ve =0 on ap {2)
e(z,0) = co(z)  in @
- 212 =D (P 7 7
where &4 = ¢/kL? and Ri(c) Ri(C]c],...,Cncn)/KCi.
When R(c) = 0, the initial distribution relaxes to a spatially uniform one

exponentially in time and the Fourier series solution of (2) in that case shows that
the rate is controlled by the smallest (in magnitude) nonzero efgenvalue of the
Laplacian on Q. The same should be true when R(c) # 0, provided that the appropriate
relaxation time for diffusion is short compared to that for reaction. To make this
precise, we must assume that solutions of (2) are bounded for all 7, pointwise in

. Letfl|lg and|]-]| [, be the Euclidean and L, norms, respectively, set
m{Q) = J‘Q d¢, and let

() = 5%57 fQ c(g,1)dz.

Further, let
,aR“
ac £

and let —af be the smallest nonzero eigenvaiue of the problem

k = sup
C

V% = -a%¢ in g
(3)
v =0 on Q.
Then it can be shown [1,7]) that if

102 ) ,



mod(min D) > k {4)
i
then

”C(E,T)-E(T)IILZ + 0

exponentially in 1. Thus the appropriate relaxation times for reaction and diffusion
are 1p = (k»<3/”1 and tp = L%/of(min D;), respectively, and (4) is equivalent to the
condition 1p < TR. Typically tg ~ 1& seconds but for some metabolic processes it

may be up to 9 hours [8}. In a one dimensional system of length L, o? = 72 and if
min Dy ~ 1077 cm®/sec, then the lengths for which (4) is satisfied fob the foregoing
Tg are ~0.03 mm and 1.8 mm, respectively. A typical cell diameter is ~10p and so

One can expect synchrony over at least 3¢'s if all species in question pass through
the gap functions.

A different mathematical description is required when diffusible substances can
pass between cells only via the extracellular medium. While it is possible to
formulate the governing partial differential equations for a random suspension of
cells, it is difficult to extract information from them and a different approach is
taken here. Imagine that the cells form a monolayer at the bottom of a petri dish
and that the cells are covered by a thin layer of culture medium. Suppose that
reactions occur only in the cells, that the composition within a cell is uniform,
and that there is no direct communication between cells. Further, suppose that the
overlying fluid layer is very thin compared to the dish diameter so that vertical
nonuniformity decays rapidly compared to horizontal nohuniformity. If the flux
between fluid and cells is linear in the concentration difference, then the governing
equations, written in dimensionless form, are

qu _

3 Alwzu + ehd H(v-u) (5)
9

5¥-= -AH(v-u) + R(v).

Here u is the vertical average concentration in the fluid, v is the composition in
the cells, € is the ratio of total cell_volume to fluid volume, and H is a constant
diagonal matrix whose entries are hi = Ry/(max hj). The Ry are the dimensional
transfer coefficients, A, = (max ﬁjga/ » and a is the interfacial area per unit cell
volume. These equations provide an exact description in the limit as the cell dia-
meter tends to zero and otherwise are adequate whenever the scale of concentration
variation in the fluid is greater than a cell diameter.

Since there is no direct exchange between cells, the conditions under which
both phases relax to a uniform state will necessarily involve the hi's as well as
the diffusion coefficients. To formulate these, let V¢ and Vf denote the cell and
fluid volume, respectively, let V = VC + VT, set h =min h;, and let

1
i = § [utge o) = g [ vlende. (6)
v v

Here u and v are defined to be zero in V° and Vf, respectively. Then it can be shown
[9] that if
h > 2k/A, (7)
and
) > eA2(1-h?) + 2eAqk (8)
Agh-2k

A,af(min D,
then
l|u(§,r)-i(1)l\_2 and Hv(g,f)-V(T)lle
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tend to zero exponentially in t.

= 21
If we define a relaxation time for interphase transport as tr = [{min hs)a]
and use the previous definitions of 1g and tp, then (7) and (8) can be written as

T < J2~ TR (9)
and )
htr | tp-21
LA R7TT
Th < . 10
D € [TR(]'E‘J.)""ZHTT] ( )
As h -+ 1, in which case all hy's are equal, {10) reduces to
TR—ZTT
< . 1
< an

Furthermore, if h = 1 and h, + =, 17 = 0 and so (9) is always satisfied, while (11)
reduces to tp < TR/2e. Thid is to be compared with the inequality tp < TR that
ensures synchronization for the directly-coupled case. It should be noted that if
h=0o0rifhe (0,1) and min hy » =, the right-hand side of (10) reduces to zero.
Thus the synchronization conditions cannot be satisfied unless all hy > 0 and if

min ﬁi +», all h; must be equal as well. A later example will show that the uniform
state can in fact be unstable when h = 0,

3. Destabilization of a Synchronized State

The conditions that guarantee global asymptotic stability of the set of all uniform
solutions provide estimates of the region in parameter space in which no spatial
differentiation between cells can persist in time. OQutside that region it may happen
that a spatially-uniform solution is unstable to certain small-amplitude nonuniform
disturbances and the problem is to determine conditions on the kinetic mechanism

and the transport coefficients under which this is possible. We first consider the
destabilization of uniform steady states in directly-coupled systems.

Suppose that ¢ is such that R(c) = 0 and set x = ¢-C; then x satisfies

x .

== A D + Kx + F{x) in @

oT 1 ax (]2)
-3-n'= 0 on 3R

where K is the Jacobian of R at ¢ and ||[F(x)][g ~ 0(lix||g) as |jx||g > 0. If asymptotic
stabjlity of € is defined in terms of either the L, or Le norm, 1t can be shown

that in noncritical cases stability is governed by the linear terms in (12). The
1inear equation gotten by dropping F(x) has the solution

@  {K-u D)t
x(gor) = § e "y e (z), (13)
2 nZo 2

where pu_ = aéA , and therefore asymptotic stability is governed by the spectrum of
the set”{K-unvj. For any given smooth domain @ there are only a countable number
of matrices to test, but to arrive at results valid for any domain, we replace uj
with a continuous parameter p e [0,=). Furthermore, we assume that the steady state
is asymptotically stable as a solution of the kinetic equations dc/dt = R(c), in
which case the spectrum of K lies in the left-half plane. A number of special cases
that are asymptotically stable at all wavelengths p are known, including the case
of symmetric K and the case where the diffusion coefficients do not differ too much
from each other. Since we are interested in determining when instabilities can
arise, we are primarily concerned with establishing necessary conditions for asymp-
totic stability at all wavelengths.
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Let o(K) denote the spectrum of K, let LHP (LHP) denote the open (closed) left-
half complex plane, and let K[iy,...,i,] denote a p = p principal submatrix of K
formed from rows and columns iy,...,ip for 1 <p < n-1.

Theorem 1 Let D be diagonal with Di > 0. In order that o(K-uD)e LHP for all such
D and all p e [O,=), it is necessary that

(1) o(K)e LHP
(i1) o(K[iys...,1_1) e THP for all pth—order submatrices of K, where 1 < p < n-1,
1 P =" -

We shall not give the proof here but will merely indicate how an instability arises
when -one of the conditions is violated. Suppose that there is a p x p principal
submatrix of K whose spectrum intersects the open right-half plane. Without loss
of generality we may assume that it lies in the first p rows and columns, and we
partition K as follows

K = 2 (14)

Here K, is p x p, Ky is (n-p) x (n-p), etc. Since K, has at least one eigenvalue
with .a positive real part, choose D so that the first p Di's are zero and the remain-
ing n-p Di's are one. Then it can be shown that for u - = the asymptotic expansions
of the eigenvalues have the form

K -L./p
AJ = AJ] +0(U J ) J=T1s..p
}\j = -p + 0(1) J=ptlsesn

where 25 < p. Thus K-uD will have at Teast one eigenvalue with a positive real part
if p islarge enough. We have not required that K be the smallest submatrix that
has an eigenvalue with a positive real part and as a result, it can happen that for
n > 2 either stationary or oscillatory instabilities arise, depending on the choice
of p and D,

The physi%al interpretation of these instabilities is as follows. The amplitude
Yk = (y]k,ka) of a small disturbance evolves according to the equation

al ik | /D Ky Y1k

dt
Yok Ks Kg=up |1 Yok

and for k = 0, yjg{t) grows exponentially if YZO(T) z 0. Of course this is not
possible in an isolated uniform system and the instability in the kinetic subsystem
whose matrix is K, is suppressed through stabilizing interactions with the remainder
of the network. #or the earlier choice of D, namely, P, = 0 and D, = I, di ffusion
has no direct effect on the evolution of the amplitudes of the components yjy. How-
ever there is an indirect effect, because for large yy, an asymptotic analysis shows
that ypy decays rapidly and remains small and thus the stabilizing effect of the
remainder of the network is lost. This analysis predicts that the largest wave
numbers are fastest growing, which is due to the fact that D, = 0, but if D, = el
where ¢ << 1, an upper cut-off in u exists and the preceding argument still goes
through. CROSS [10] has given a proof of Theorem 1 based on Rouche's Theorem,

but his proof does not show that the unstable modes arise from K, for large u and

so the preceding interpretation cannot be made. SEGEL and JACKSON [20] have
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discussed the origin of such instabilities in two-cowporent systems.

Let us single out a particular parameter in (12) and label it p, and suppose
that when p increases through Pp @ real eigenvaiue of K-ukv crosses from the left-
half to the right-half plane for some k. Write (12) as

L )
a7 - L(p)x + Flx.p) } (15)
and for [p-ppl ~ 0{e), € << 1, write
o(L) = 0,(L)U oz (L)
where
oi{L)

g2(L) = {x e o(L)|Re A < -y}

n

e ofL)] [Re ] < v}

and v is a small positive constant. Such a separation is possible because L{p} has
a compact inverse on L2(R). Let P, and P, = I-P, be the projections associated with
this decomposition of the spectrum and write u = Pyu + Pou = £(v+w); then v and w
satisfy the equations

av . -
TS Lyv+ eFl(V,w,p,e) (6)
g¥'= LW + eF,{v,w,p,e),

which are gotten by applying the projections to (15). Under the standing assumption

that Jlull {, ~ 0(e) for all t > 0, it can be shown that flwll , ~ o(e) for t >0 if
liw(r.0)f||, ~ 0{e) and y is large enough. We assume that thit is true and write
W = ew; then

v

= = Lyv + eF (v,ew,p,e)

vl
Fo = La¥ P (vieew,pae)
1T F(x,p) is Ck, k > 3, for (x,p) near (0,pg), F, and F, have the expansions
1 1 3
eF (View,p,e) = an(v,v,p) + 52{2Q (vsw,p) + C {v,v,vsp)} + 0(c7)
2
(

Foview,phe) = Q (vovsp) + €420°(vau,p) + C*(v,v,vap)} + 0(c")

- where Qi and ¢l are homogeneous of degree two and three respectively. Therefore,

to 0(e?) v evolves independently of w while to 0(c), w is 'forced' by v through the
term Q*(v,v,p). This partial separation of the unstable or nearly unstable modes
from the rapidly decaying forced modes is in effect a first step toward the complete
separation that can be obtained formally by invoking the Center Manifold Theorem
for flows generated by partial differential equations [11].

Since the eigenvalue that crosses zero at p = pg is simple, bifurcation is
known to occur and the bifurcating selution can be constructed as an expansion in
the amplitude parameter € = <y*,u {12]. If p,(e) is defined by setting
P-py = €p,(e), then one finds that *

<y*’Q(y’y’p )>
p1(0) = ‘————3?————£l- f $3da. (18)
<y*,-3—p‘- y> Q '
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If this is nonvanishing then a nontrivial solution exists on both sides of p = pp
and an exchange of stability occurs at pg. Evidently pl(O) will vanish for purely
geometric reasons if f¢*de = 0, which happens in one dimension because ¢ = cos nwx/L.
In such cases higher-order terms must be examined. When the other factor in the
numerator vanishes the kinetics have a degeneracy in the quadratic terms in the
direction of y*, and again the properties of the bifurcating solution are governed
by higher order terms. AUCHMUTY and NICOLIS [13] and others have constructed the
bifurcating solutions for the trimolecular reaction scheme.

Bifurcation is certain to occur at an eigenvalue of odd multiplicity but if
the multipiicity is greater than one, the number of bifurcating branches cannot be
determined a priori. In this case and the case of even multiplicity one has to
examine the bifurcation equations to determine the number of solutions. One source
of eigenvalue degeneracy is symmetry of the domain Q and an example of this is given
in [12]. For other results on bifurcation in the presence of symmetry see [14] and
the references therein,

Next let us suppose that the kinetic equations have an orbitally asymptotically
stable (OAS hereafter) periodic solution ¢(t) of least period T. Under Neumann
boundary conditions ®(t) is also a solution of (2), and we can write

c{g,t) = o(r) + g Y (e z). (19)
For small disturbances the amplitudes satisfy the linear equation

d_yk

< (K(T)'ka)yk (20)

where K(t+T) = K(t). It can be shown that if the D;'s are not too different or if
all of them are large enough, then &(t) is an OAS solution of the partial differ-
ential equation as well [1], but we are again nore interested in necessary conditions
for stability, and a result that parallels Theorem 1 can be obtained as follows.
Partition K(z) as in (14) and choose D as before, replace py by a continuous variable

pe [0,), and let € = 1 *. Then (20) becomes

dy,
Fra KI(T).Yl + Ko (t)y2

dy2 {21)
e " eKa{t)y1 + (eKulT)-1)y2

and associated with this is the degenerate system

dy: )
rral Ki(1)y:

(22)
512(1) =0

obtained_by setting e = 0. For initial conditions such that yi(0) = ¥,{0) and
y,(0) = §¥,(0) = 0, it can be shown, using results in [15], that for any 1 in a
closed subinterval of RY,

llyi(t)=-y1(0) ]| € Me)

ly2(0) ]l < Me)

)
)
Here A(e) is a continuous nonnegative function that vanishes at zero. It follows
that if K,(t) has one or more characteristic exponents with a positive real part,

(23)
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the uniform periodic solution is unstable to disturbances of sufficiently short wave-
length. This conclusion leads to the following set of necessary conditions for
stability.

Theorem 2. Suppose that ¢(t) is an OAS periodic solution of the kinetic equations
and that D is diagonal with D; > 0. Then ¢(t) is an OAS periodic solution of (2)
(in the L, norm) only if all the characteristic exponents of every pth-order sub-
matrix K[i],...,ip](r) of K(t) have nonpositive real parts for 1 < p < n-1.

The similarity between the foregoing conditions and those in Theorem 1 is apparent;
in each case the presence of a subsystem that would be unstable if it were isolated
from the remainder of the kinetic network is sufficient for instability, given the

proper choice of diffusion coefficients. OF course the criterion for stability of

the subsystems is different in the two cases because the underlying basic solutions
are different.

Theorem 2 enables us to delineate a large class of kinetic systems for which
the uniform periodic solution can be destabilized by diffusion. Suppose that the
OAS periodic solution &(t) of the kinetic equations bifurcates from the steady state
cs(pg by a Hopf bifurcation as p increases through pg, and that there is at least
one species for which kjj > 0 in a neighborhood of c5{pg). Then the uniform periodic
solution of (2) can be %estabi]ized by diffusion if p-pg is sufficiently small and
positive. Said otherwise, if there is autocatalysis present in the linearized
kinetics at c¢S{pg), then all small amplitude solutions can be destabilized. If
there are only two species present, a Hopf bifurcation can onfy occur if there is
autocatalysis in the linearized kinetics and d(trace K)/dp > 0, and therefore a
unigform OAS periodic soluticn ¢f a Awo-species system can always be des tabilized
when the kinetic parameters are sufficiently close o the values zthat yield a Hopf
bifuncation. An example of such an instability is given in the following section.

The type of solution that exists beyond the critical parameter value p. at
which &(t) loses stability to nonhomogeneous disturbances depends on how the multi-
pliers mi cross the unit circle. In two-species systems they can only cross at =1,
and the bifurcating solution is necessarily periodic [1]. In general, if T {pc) # 15
n=1,2,3,4, an invariant torus bifurcates from the periodic solution [16,1}], and
the bifurcating solution is quasi-perfodic. There may still be a periodic solution
in this case, or in some cases where the above non-resonance conditions aren't met,
but in any event one must generally determine the parametric behavior of the multi-
pliers numerically.

Finally, we consider the stability properties of uniform steady states of (5).
We assume that h; > 0 for all i and therefore these steady states are given by
uS = v§ = R"'(0). The differences x = u-uS and y = v-v5 satisfy

X 01DV2x + edH{y-x)
(24)

£
- aHly-x) + Ky Fly),

and the matrix of the linear system is

-pnAI‘D—EAzH EAzH
{ =
AZH K'AzH .
Now suppose that D = H = I and o(K) < LHP. By Lyapunov's theorem there exists

a positive definite W such that WK + KTW is negative definite, and if we set
A = diag {I,/El} and B = diag {W,W}, then it follows that

- B(ALATT) + (ALA™T)TB
is negative definite. Thus a kinetically-stable steady state can be destabilized
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in the present case only if the diffusion roefficients and the mass transfer coef-
fients are sufficiently different, This is analogous to the requirement for
direc§1y~coup1ed systems and there are other parailels. The characteristic equation

of L is

det {K(unA10+eAgH)—unAIAZHD—A((1+E)A2H+unAJD-K)-AZI} =0 (25)
and the potential bifurcation loci for steady states are subsets of the Joci along
which

det {K(NnAlv"'EAzH)-IJnAlAZHD} = 0, (26)

We have assumed that hy > 0 for all 1 and therefore the multiplier of K is invertible
for e >0 and 4, > 0. Thus (26) can be written

det (k-T(M }det ( n,prens} = 0 (27)
where T(n) is a diagonal matrix whose elements are

] 1 £

—_— = + . (28)

T.i Azhi HnA 1D.i

This form stems from the fact that the transport steps are in series and either step
can control the rate. Indeed, as A, + = oy Hn > 0, Ti » uptaD5/e and di Ffusion
controls, while interphase transport controls for Targe n ?short wavelengths) or as

Ay > o,

When it is expanded, det {K-T(n)} is a polynomial in the Ty and hence a rational
function in the hy and Dy, and one can prove [9] that it is nonvanishing under the
following conditions.

Theorem %. Let €, A3, and A, be positive and let up be nonnegative, Then
det {K-T n)} # 0 for all Dj 20 and hy >0 if and only if

(i) (-1)" det K> 0

(i1) (-1)P det K[i1s...1p] > O for all pth-order submatrices of K,
where 1 < p <'n-1,

Under these conditions there can be no bifurcation of steady states from the uniform
steady state (uS,vS). . An analogous result, in which the conditions on the kinetics
are identical, can be stated for directly-coupled systems.

Despite the foregoing similarities, there can be substantial differences between ‘
the dynamical behavior of directly- and indirectly-coupled systems. Some of these .
differences are illustrated in the example that follows,

4. A Comparison for a Model Reaction

The simplest system that wil) illustrate the differences is one with only two active
chemical species and two cells. A number of back-activation mechanisms of the type
used to model glycolytic reactions can produce oscillations for suitable parameter

vg}ues, and the simplest of these gives rise to the following kinetic equations [1s,

= §-kx=-xy? = F(x,y) (29)

dx _
dt
g% = kX + xyZ-y = G(x,y).

This system has the unique steady state (x5,y5) = (8/c+62,8) and when x < 1/8 it
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has a periodic solution for 6 e (6_,6,), where

§ = ]_‘2!( & -8k \ (30)

* 2

Now suppose that these reactions occur in each of two identical cells that are
separated by extracellular medium in which no reaction occurs. Let the volume of
the cells and the medium be V¢ and Vo, respectively, let e = 2V./Vy, and let 'O’
denote concentrations in the extracellular medium.” The governifg equations are

dxi

- 0
I = Flxyeyy) 420 (X -x;)

dyi , i=1,2
T = Gxpoyy) +20 (y -yy) ]
3

dXD =2 D (X]+X2 . XO) ( )
dr EVx\ T2

(o]
dy” _ Yitye 0
g - 2ely(m -y

Here D, and D, represent the diffusion coefficients across a double membrane, which
accounts for Yhe factor of two. When Vg = 0 (e = =) the cells are in direct contact
and (31) reduces to

dxi

T 7 FOyayg) # 0xxy)

dyi / i#] (32)
e = G(X.i :.Yi) + Dy(.yJ".V-i)-

If gap junctions or other low-resistance pathways form when the cells come into
contact, the diffusion coefficients may increase substantially.

It follows from (31) that the steady state solution S = (21,y],§2,y2,;°,9°)
is independent of e and is given by

§ = (1420
;(]2=__(__¥_2)
CT ke (82r)
- (33)
Ne=dte
X = (%)¥%,)/2 7 = 547,002,

where ¢ is a solution of

2
cle+2(x-6240, )z + KX get (K-20)] = g[g*+2brtc] = 0
X ]+20y .

The first four components of S give the steady state solutions of (32). When ¢ = O
the uniform steady state (USS) is recovered while ¢ # O gives a nonuniform steady :
state (NUSS). The number of NUSSes is given by the following proposition [19], and I
the regions in (i1) and (i1i) are shown in Fig. 1.
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Proposition Llet

]-K/DX—>(K/DX)2 + ZK/DX

it

~oj—

D*
Yy
]+K/DX + K/Dx + ZK/DX

Then 1 =
(i) if Uy > max (33 y) there are no NUSSes for any & > 0,

(11) if 0% > 1/6 and D, € (1/6,0%) there exists a region in the D,~§% plane in
which”there is a pair of NUSSes. There is never more than one pair.

(iii) if Py € [0,1/6) there is one region in which there are two pairs of NUSSes
and a contiguous region in which there is one pair.

8 § (b
(a) (o] I':b2-c = 0 det (K-2D)=0

det (K-27) = 0

j}
/
S -
!
$
D

=D "X

Fig. 1 The regions of multiple steady states: (a) case (ii); (b) case (iii).
WA one pair of NUSSes, xo& two pairs of NUSSes, elsewhere; no NUSSes.

Suppose that & is fixed and Dy is regarded as the bifurcation parameter. In (a) a
pair of NUSSes bifurcates supercritically as Dy increases across det (K-2D) = 0, and
whether they or not they are stable depends on'§: if § £ [6.,84] they are unstable
near the bifurcation point. In (b) the bifurcation along det (K-2D) = 0 is sub-
critical and unstablefor & > & and these branches connect to a pair of stable
branches along I'. At the intersection of § = 8; and det (K-2D) = 0, the linear
system derived from (32) has a zero real eigenvalue and a pair of complex conjugate
eigenvalues with zero real part, and such systems exist only on a submanifold of
codimension 2 in the space of all 4 x 4 real matrices. By perturbing such a system
one may find sojutions other than those that bifurcate along & = &, or along

det (K-20) = 0, and an analysis of the case € = « has been done [19]. One finds,
using a multiple-time-scale analysis, that there are two other bifurcation curves
that emanate from the crossover point and on which a nonuniform periodic solution
(NUPS) bifurcates. These curves, whose behavior near the crossover point is found
analytically, can be continued numerically and the results are shown in Fig. 2(a).
The curve H3 = 0 corresponds to bifurcation of a NUPS from the NUSS. On the broken
curve, whose Tocation is schematic because only the solid points were computed, a
NUPS bifurcates from the UPS, At the computed points the bifurcation is super-
critical and the NUPS is stable, and we conjecture that this is true all along the
broken curve. The results illustrate the earlier assertion that a UPS of a two-
species system can be destabilized by diffusion sufficiently near the bifurcation
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point of such solutions. Fig. 2(b) shows the global struciuve of the solution set
for a fixed value of 8. The amplitudes shown are only schematic. For further
details and other bifurcation diagrams see {19]1.

8 (a) AMP (b)
UPS

NUPS NUPS
—ROSS

e

7
//
Uss
0l [ p—
D Dy

Fig. 2 .(a) Fig. 1(a) with the addition of the curves of secondary bifurcation.
Amplitude (shown schematically) of the various solutions for & = 8§* in (a).

When € is large but finite, (32) can be regarded as a singular perturbation
of (31) and the structure of the solution set for (31) is similar to that already
given. However, differences may arise as e decreases, and since the steady states
are independent of £, these differences must pertain to the stability of the steady
states and the existence of periodic solutions. It is easiest to describe the
results for Dy = 0 and we restrict ourselves to that case. In the base case ¢ = =
the bifurcation loci are as shown in Fig. 3(a) and a selected bifurcation diagram
js shown in Fig. 3(b).

As before, the.linearigation of the four-dimensional system around a NUSS has a pair
of complex conjugate eigenvalues with zero real part on the curve Jabelled H3 = O.
On the broken portion of the curve the NUPS bifurcates from the intermediate

s (a) b2-¢=0 det (k-20)=0 A% (b)
84 UPS
\*UPS NUPS
/ -
-
* -
7
$ /
{
\quss
0 ____\A_.._. _ b
6—
0, 0,

Fig. 3 (a) The bifurcation Joci for Dy = 0, € = =. (b) A schematic of the
amplitude of the various solutions at & = &%,
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{unstable) branch of NUSSes, while the solid portien corresponds to bifurcation
from the upper branch of NUSSes.

“Now iet € be finite and consider what happens to the synchronized periodic
solution. This solution persists for large € (apply a perturbation argument) but
if e is sufficiently small the steady state can be stabilized for a range of Dy and
the periodic solution appears to be quenched, To be precise, the uniform steady
state is asymptotically stable for (Dyse) € (%TK,Dy) x (0,€) where Dy is the positive
solution of det (K-20) = 0 and € is the positive solution of

1203782 & D, (20 TKITK + 2Dykgp]-det (k-20)(TK-20,) = 0. (34)

Here TX = trace K and & is fixed in the interval (5.,84). Numerical computations
show that the trajectories beginning in a finite neighborhood of the USS converge
to this steady state, but we have not proven that the periodic solution disappears.
Nonetheless, it is certain that there are no small amplitude oscillations, and a

degree of quenching exists.

Another effect of finite € arises when § > &+, in which case the kinetics have
no periodic solution and the directly-coupled system has no uni form periodic solution.
Equation (34) gives the locus on which the linearization of (31) has a pair of
complex conjugate eigenvalues with zero real part and an analysis of this equation
shows that when .

82 < 82< 1=k + VT-E¢ (35)

the bifurcation locus is as shown in Fig. 4. Numerical computations show that the
periodic solution exists between the two branches of this locus and is stable when
Dy < Dy. Thus the cells can oscillate in synchrony if the volume of the intervening
dead space is adjusted properiy, and these oscillations are stable to both uniform
and nonuniform disturbances. It has been suggested [18] that this model can account
for the observed effect of cell density in yeast cell suspensions [s] and a some-
what more complicated model can be used for describing Dd suspensions.

In addition to the synchronized oscillations, there are several branches of
asynchronous periodic solutions shown in Fig. 4. The bifurcating solutions are

7 (e AP (b) 8 ups @~
~
s
7
/
Nupsi/
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\\
ups \\_QOONUPS
Ol——>> ._..._U_SS___
] D
X rpx X

Fig. 4 (a) Bifurcation Joci for fixed & satisfying (35): =——: bifurcation locus
For UPS; ~==={..ees ) Tocus for bifurcation of NUPS from upper (intermediate) NUSS.
(b} A schematic of the amplitudes for e = €.
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unstable along curves marked 'US' and stable on those marked 'S'. When its amplitude
is small, the solution that bifurcates from the intermediate steady state is stable
in a four-dimensional submanifold of the five-dimensional space, but it is not known
whether it becomes stable at larger amplitudes. Similarly, it is not known whether
any ‘of the other unstable solutions become stable by a tertiary bifurcation. While
some of the local features of the bifurcation diagrams are known (cf. Fig. 4(b)),

the global structure has not been determined on any cross-section with ¢ > 84, and
there are several singularities of codimension greater than one that must be analyzed.
Moreover, it remains to patch together the bifurcation loci in the three-dimensional
parameter space. This is easily done for those that correspond to the synchronous
oscillations, using results in [18] and those given here,

5. Conclusions

The results given here illustrate how the dynamical behavior of subsystems at one
jevel of organization can influence the dynamical behavior at a higher level of
organization. Given a network of intracellular reactions that contains an unstable
subnetwork, the diffusive coupling between cells can be chosen so as to destabilize
the synchronized steady or time-periodic state of an aggregate of cells. Thus a
variety of spatial and spatio-temporal patterns can be generated simply by varying
the degree of communication between cells, and TURING first suggested that such
patterns could serve as prepatterns for controlling cellular differentiation. The
variety of behavior possible with only two cells and two active chemical species
points up the fact that relatively tight control of the trajectory in parameter
space will be needed to achieve a desired sequence of patterns in more complicated
systems, but such close control can probably be achieved by turning communication
on and off at the appropriate developmental stages. By readjusting internal kinetic
parameters during periods in which the cells are uncoupled, quantum steps in the
dynamical behavior can be achieved without passing through undesirable types of
behavior, and the final destination in parameter space can be reached by a series
of zig-zag steps.

References

H.G. Othmer: Lectures on Mathematics in the Life Sciences (S.A. Levin, ed.
American Mathematical Society, Providence, 1977) pp. 57-85

—

2. S. Caveney: Science 199, 192-195 (1978)

3.  N.B. Gilula: Cell Interactions in Differentiation, ed. by M. Karkinen-
Jaaskelainen, L. Saxen, L. Weiss (Academic Press, New York 1877) pp. 325-338

4. G. Gerisch, D. Malchow: Adv. Cyclic Nucl. Res. 7, 49-65 (1976)

5. J. Aldridge, E.K. Pye: Nature 259, 670-671 (1976)

6. W.D. Branton, E. Mayeri, P, Brownell, S. Simon: Nature 274, 70-72 (1978)

7. E. Conway, D. Hoff, J. Smoller: SIAM Jour. on Applied Math. 35, 1-16 (1978)

8. R. Heinrich, S.M. Rapoport, T.A. Rapoport: Prog. Biophys. Molec. Biol. 32,
1-82 (1977)

9. H.G. Othmer: unpublished notes (1978)

10. G.W. Cross: Lin. Alg. and Its Applies. 20, 253-263 (1978)

11. J.E. Marsden, M. McCracken: The Hopf Bifurcation and Its Applications

Springer-Verlag, New York, 1976)

.G. Othmer: Ann. N.Y. Acad. Sci. 316, 64-77 (1979)

.F.G. Auchmuty, G. Nicolis: Bull. Math. Biol. 37, 323-365 (1975)
. Sattinger: SIAM J, Math. Anal. 8, 179-201 (1977)

W. Chang, W.A. Coppel: Arch. Rat. Mech. Anal. 32, 268-280 (1969)
. Sacker: New York Univ. IMM-NYU, 333 (1964)

. Fenichel: J. Diff. Egns. 17, 308-328 (1975)

.G. Othmer, J. Aldridge: J. Math. Biol. 5, 169-200 (1978)

. Ashkenazi, H.G. Othmer: J. Math. Biol. 5, 305-350 (1978)

.A. Segel, J.L. Jackson: J. Theor. Biol. 37, 545-559 (1972)

DD b st bt f et e
QWO W
FETITIZ0oOX0 G I~

g



