The Mathematical Analysis of Biological
Aggregation and Dispersal: Progress,
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Hans G. Othmer and Chuan Xue

Abstract Motile organisms alter their movement in response to signals in their
environment for a variety of reasons, such as to find food or mates or to escape
danger. In populations of individuals this often this leads to large-scale pattern
formation in the form of coherent movement or localized aggregates of individuals,
and an important question is how the individual-level decisions are translated into
population-level behavior. Mathematical models are frequently developed for a
population-level description, and while these are often phenomenological, it is
important to understand how individual-level properties can be correctly embedded
in the population-level models. We discuss several classes of models that are used
to describe individual movement and indicate how they can be translated into
population-level models.

1 Introduction

The central topic of this chapter is the process of aggregation of biological
organisms, which occurs in systems that range in scale from single-celled organisms
such as the bacterium E. coli, to flocks of birds, schools of fish, and herds of
ungulates. Aggregation is a broad term, which we use to mean a self-induced spatial
localization of motile individuals that results from direct or indirect communication
between them and produces a local density of individuals higher than would
be observed under random motion. Depending on the organisms involved, more
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Fig. 1 The general steps involved in generating the response to an external signal

specific terms may be used: swarming in insects, flocking in birds, schooling in
fishes and herding in mammals—but all refer to the same underlying process. In
some aggregates there is large scale organization, such as alignment in fish schools,
which undoubtedly involves at least nearest-neighbor interactions, whereas in other
aggregates, such as the bacterial aggregates discussed later, there is no coherence
to the motion even though there may be indirect interaction between individuals via
the external medium. Whatever the scale or type of aggregation, locomotion—which
we define to be self-induced movement that results from active forces generated by
the individual—is an essential process in aggregation, but of course it also plays a
role in numerous other contexts, including searching for food, mates or shelter. For
example cell locomotion, either individually or collectively as tissues, is essential
for early development, angiogenesis, tissue regeneration, the immune response, and
wound healing in multicellular organisms, and plays a very deleterious role in cancer
metastasis in humans. Directed locomotion, as opposed to random wandering,
usually involves several steps (i) the detection and transduction of external signals,
be they visual, chemical, mechanical, or of other types, (ii) integration of the signals
into an internal signal, (iii) the control of the internal neural, biochemical and
mechanical responses that lead to force generation and directed movement, and
(iv) perhaps relay of the signal. A schematic of the sub-processes involved is shown
in Fig. 1.

A detailed description of locomotion of higher organisms such as birds or
fishes is extremely complex, and simpler descriptions are used for understanding
aggregation. A starting point is to treat individuals as points and attempt to
understand the collective behavior of an aggregate based on postulated interactions
between individuals or between individuals and an external field, either imposed
or generated by the population. In this framework the problem is mathematically
similar to the study of interacting molecular species, and techniques established in
that context can be carried over to biological problems. Because single cells are the
simplest systems capable of self-locomotion, the description of cellular motion can
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be more complete in models of aggregation, but the principles that emerge from
the analysis of cellular motion apply at higher levels as well. Thus several concrete
examples of cell-level aggregation will be described in detail later.

Many single-celled organisms use flagella or cilia to swim, and the best studied
example of this is E. coli. As we show later, much can be learned about ‘run-and-
tumble’ organisms such as E. coli without a detailed description of the mechanical
forces, but in eukaryotes forces play a more central role. There are two basic modes
of movement used by eukaryotic cells that lack cilia or flagella—mesenchymal
and amoeboid [10]. The former, which can be characterized as ‘crawling’ in
fibroblasts or ‘gliding’ in keratocytes, involves the extension of finger-like filopodia
or pseudopodia and/or broad flat lamellipodia, whose protrusion is driven by actin
polymerization at the leading edge. This mode dominates in cells such as fibroblasts
when moving on a 2D substrate. In the amoeboid mode, which does not rely on
strong adhesion, cells are more rounded and employ shape changes to move—in
effect ‘jostling through the crowd’ or ‘swimming’. Recent experiments have shown
that numerous eukaryotic cell types display enormous plasticity in locomotion
in that they sense the mechanical properties of their environment and adjust the
balance between the modes accordingly by altering the balance between parallel
signal transduction pathways [85]. Thus pure crawling and pure swimming are the
extremes on a continuum of locomotion strategies for eukaryotic cells, but many
cells can sense their environment and use the most efficient strategy in a given
context. Significant progress has been made in going beyond the point particle
description in such systems (cf. [90] and references therein).

Some basic questions that arise in studying aggregation, either from the experi-
mental or mathematical standpoint, are as follows.

e At what level of detail must individuals be described to explain the observed
phenomena?

* What is the coarsest or highest-level description of the forces involved that
suffices?

* What is the nature of the signal that is used to initiate aggregation? Is the signal
externally-imposed, as for example, when bacteria move up the gradient of a
desirable substance, is the signal relayed from individual to individual, and what
is the range of the signal?

* What determines the size of an aggregate and how does it depend on the nature
and range of the signal?

* When aggregates move coherently, by which we mean they locally adjust their
speed and direction to those of their neighbors, the latter perhaps weighted in
decreasing importance with distance, what is the time scale on which coherence
is achieved beginning from an incoherent state, and how does the type of signal
and its range affect this time.

There is a huge literature on the subject of aggregation, orientation and align-
ment, and other chapters in this volume will cover other aspects (see the chapters
by Hillen and Painter and by Franz and Erban). Recent papers that discuss some of
the topics treated herein are given in [6, 14,21, 67, 94, 95]. Classic texts related
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to the topics herein include [9, 69]. We have two main objectives here: (i) to
summarize some of the recent work on the derivation of macroscopic equations such
as the Patlak-Keller-Segel chemotaxis equations from individual-based descriptions,
and (ii) to illustrate the use of the macroscopic equations that result in cellular
aggregation.

The classical taxis problem began with phenomenological equations in which a
biased drift term was added to a diffusion equation to describe the movement of
individuals in response to an imposed or self-generated signal [52], although a more
fundamental approach along the lines described later was initiated earlier by Patlak
[80], and the resulting taxis equation is called the PKS equation. To describe it more
precisely, let £2 C R” be a compact domain with smooth boundary, let n be the
‘particle’ density, and let S be the ‘signal’ density. The first of the following pair
is the PKS equation, and the second describes the self-generated signal field, when
applicable.

ng,=V-(Vh—=nVe(S)) =V-(Vn—ny(S)VS), (1)
S; = DAS + f(n,S). 2)

The first rigorous derivation of the coupled equations beginning with an interacting
particle system is due to Stevens [89]. A review of the major developments from
1970 to about 2003 can be found in [45], and a ‘user’s guide’ to these and other
taxis equations can be found in [42]. The quantity y = @s(n, S, x,...) is called the
chemotactic sensitivity, and u, = y(S)VS is called the chemotactic velocity, and
the fundamental problem we address is how knowledge of the internal dynamics
governing signal transduction and response is reflected in these quantities. We
develop the machinery for addressing this and describe some success for simple
organisms such as E. coli, and partial success for eukaryotic cells.

2 An Overview of Population-Level Descriptions

2.1 A Summary of the Levels of Description

We begin by summarizing classical approaches to the transition from equations of
motion for individuals to population level distribution functions. The material in
this section is standard and widely-discussed, but it is useful to remind the reader of
some of the underlying assumptions. To understand the broad picture before delving
into the details, we regard the particles or individuals as structureless, but we admit
the possibility that they can exert forces and allow for external forces as well. We
first consider point particles, and thus describe their motion by Newton’s law. For
later purposes we include an evolution equation for the internal state of the particles,
but at present we do not include coupling of the latter to the movement. The general
case of forcing on both position and velocity leads to the differential equations
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dx; = v;dt + dX;, 3)
m;dv; = F;dt + dV;, 4

dy

-5 = G s ¥y 7t . 5

T (x.v.y.1) ®)

Here (x,v) € R",n = 1,2, 3 are the positions and velocities, and y € R* charac-
terizes the internal state. If the imposed forces X and V are deterministic forces
they can be written as dX; = X;dt, and similarly for dV, and (3) and (4) are the
standard Newton equations for particles. When X and V are random forces these
are stochastic differential equations, the integral forms of which are interpreted in
the Ito sense [4, 13].

The two major types of random forcing processes that are widely used are
Brownian motion and compound Poisson processes. Both Brownian motion and
the Poisson process are examples of a more general class of random processes
called Lévy processes [2,86], which are stochastic processes that have independent,
stationary increments, are stochastically continuous, i.e., for any € > 0, Pr{|X; 4+ —
X;| > €} > 0ast — 0, and have sample paths that are right-continuous and
have left limits. Brownian motion and Poisson processes differ in that the former
have continuous sample paths whereas Poisson processes have discontinuities at
the jump. Lévy processes with fat-tailed distributions will arise in Sect. 3.4 in the
context of anomalous diffusion.

The formal differentials that appear in (3) and (4) are assumed to be white noise,
which is a wide-sense stationary random process in which the component functions
dX; have zero mean and are uncorrelated, i.e.,

(dX; (1)) =0, (6)
(dX; (1), dXi (1)) = 028(11 — 1a). (7

Gaussian white noise is the generalized derivative of a single-variable Wiener
process, i.e., of Brownian motion [4, 36].

As used here, a Poisson forcing function is a compound Poisson process, which
can be thought of as a train of jumps distributed in time according to a Poisson law.

Thus
N(t)

Xi(t) =Y YeH(t — ), (8)
k=1

where the amplitudes Y; are independent random variables, H is the step function,
and N(¢) is a homogeneous Poisson counting process with parameter A that
counts the number of jumps in [0, f], assuming that N(0) = 0 with certainty.
A generalization of this allows coupling between the amplitudes of the impulses
and their temporal occurrence, and can be defined by a random measure M (dt,dY)
that gives the number of jumps in ((¢,¢ 4+ dt) x (y, y + dy)). The derivative of the
forcing, which is called Poisson white noise, is thus a train of impulses that arrive
at the jump times of the underlying Poisson process.
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N(t)

dX, (1) = ) Yid(r — 1r), ©)

k=1

Later we allow the Poisson parameter to depend on external fields or on the internal
state of individuals.

The simplest problem arises when there are no inter-particle interactions, and the
forces stem from interactions with the environment. One example is the original
Einstein model of a heavy particle in a bath that receives Gaussian-distributed
momentum impulses from the surrounding bath [27]. In Einstein’s formulation this
leads to the diffusion equation for the position of the particle, and the probability to
find a walker at x € R, having started at the origin at = 0, is

1
P(x,t) = m e—x2/4Dt’ (10)

for (x,¢) € R x R™. In the next section we discuss descriptions that account for
both velocity and position.

When there are impulsive forces, rather than Gaussian forces on the position
in (3) we obtain the familiar random walk, in which there are instantaneous changes
in position at random times. These are called space-jump processes [73], and later
we show that the probability density for such a process satisfies the renewal equation

P(x,t|O):<13(t)8(x)+/0/an&(t—t)T(x,y)P(y,rlO)dydt. (11)

Here P(x,]0) is the conditional probability that a walker who begins at the origin
at time zero is in the interval (x, X + dx) at time t, ¢ (¢) is the density for the waiting
time distribution, @(t) is the complementary cumulative distribution function
associated with ¢ (¢), and T (x,y) is the redistribution kernel for the jump process.
In Sect.3.2 we show that this also leads to diffusion equations in certain limits,
which reflects the fact that under mild conditions on the distribution of jump sizes
the compound Poisson process approaches Brownian motion in the limit A — oo.

If we admit impulsive forces on the velocity in (4) then we arrive at the second
major type of jump-driven movement, which is called a velocity jump process [73].
As described in detail later, the motion consists of a sequence of “runs” separated by
re-orientations, during which a new velocity is chosen instantaneously. If we assume
that the velocity changes are the result of a Poisson process of intensity A, then in
the absence of other forces we show later that we obtain the evolution equation

0
a—l; +Vy-vp+V,-Fp=-Ap+ A/ Tv,V)p(x,v,t)dv. (12)

A similar equation to describe the random movement of bacteria was first derived
by Stroock [91].
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2.2 The Fokker-Planck and Smoluchowski Equations

A generalization of the Einstein description of Brownian motion involves both
velocity-dependent interaction of the particle with a fluid environment, and diffusion
in velocity space. This is based on (3) and (4), in which we assume that the forcing
on position is zero, the random forcing on velocity is Gaussian white noise, and
we allow velocity-dependent frictional forces. In the standard notation of statistical
physics, we write

dx; = v;dt, (13)
mdv = —movde + Fdt + 2emks TdW(1), (14)

where ¢ is the friction coefficient, kp is Boltzmann’s constant and T is the
temperature. This description is predicated on the assumption that the fluid particles
are much lighter than the Brownian particle, and as a result, that the fluid motion
relaxes on a much shorter time scale than the motion of the particle. Thus the
hydrodynamic forces appear both via the deterministic friction force and the random
forces, which are assumed to be Gaussian. If the assumption on the relaxation time
of the fluid variables is not applicable the process is no longer Markovian, and a
non-Markovian generalization of (14) has been derived [11].

The stochastic differential equations are equivalent, under the Gaussian assump-
tion, to a partial differential equation for the conditional probability density
p(x,v,t|x', v/, t'), namely,

0 F kgT
—p+Vx-Vp+Vv-((—§V+—)p)= ks
ot m m

Vy - Vyp. (15)

This is commonly called the Fokker-Planck-Kramers-Klein equation [100], or
simply the Fokker-Planck equation, although the latter is used for a much broader
class of equations [18, 36, 50]. This is a mixed-type equation that describes drift-
diffusion in the velocity component and drift in x due to the external force. If the
latter vanishes it reduces to pure drift-diffusion in velocity space. The equation has
also been formally generalized to describe the motion of multiple Brownian particles
by incorporating an integral operator on the right-hand side to account for particle-
particle interactions [63].

If the friction coefficient { is large, one may intuitively expect that the velocity
relaxes on a time scale &'(¢™"), and then (14) reduces to an algebraic equation that
can be used to replace the velocity in (13). The result is the Smoluchowski equation

d
on _ DVX'(Vxn—

oy Fn) (16)

kgT

for the number density n(x,t) = f pdv, where the diffusion coefficient is defined
by the Einstein relation
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_ ksT
¢

Clearly this has the form of the PKS equation (1) for a suitable choice of the force.
However, the reduction as described is formal, since the full equation is a singularly-
perturbed hyperbolic equation, and (16) only describes the outer solution [100].
Smoluchowski equations have been widely used in the studies of aggregation, but
the limitations are frequently not appreciated. Similar issues arise in the diffusion
approximation of velocity-jump processes described in Sect. 4, and we will return
to them there.

D

2.3 Interacting Particles, Liouville’s Equation
and Reduced Descriptions

Next we suppose that there are no external forces — only inter-particle forces.
Newton’s second law for the system reads

dx
— =V
dt
17
Mdv F(x) a7
_— = X
dt
where x = (X1,Xp, - ,Xy) is the vector of positions, v = (vi,---,vy), F =
(Fy,--- ,Fy), and M is the diagonal matrix with M;; = m;. Note that we assume

here that F; does not depend on the velocity of any particle, nor does it depend
explicitly on time. Velocity-dependence introduces dissipation and substantially
changes the BBGKY hierarchy developed later. Thus there is no built-in friction-like
force such as arises when an individual interacts with the background environment,
nor is there a force for alignment, with the result that it may be difficult to obtain
alignment of individuals for such models. This is in contrast to the force

Fi(r;) = Z¢(|rij|)(vi -v;), (18)
J

used in the Cucker-Smale model [22], where ¢(s) is a monotone decreasing
function. We assume hereafter that force between i and j depends only on their
separation, i.e.,

Fi(x;) =Fi(@x;)=F@....,r;i1, ii41,...Tin),

where r;; = |X; — X, |. Furthermore, we assume that the particles are identical, and
that the forces are conservative. Then there is a potential @ such that

Fi(rij) = —Vx @,
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and we assume that @ can be written as the sum of pairwise interaction potentials

N
@ = Z o(ri;).

i<j

While (17) can be solved locally for N (in fact global solutions exist when @
is the Newtonian potential and N > 2, as long as there are no collisions [97]), a
less detailed description of the system for large N can be gotten by finding the joint
probability Py (X1,X2,...XyN, Vi,...Vy,t) = Py(X,Vv,t) that particle i has posi-
tion x; and velocity v;. Denote the solution of (17) subject to x(0) = x,,v(0) = v,
as (x,v) = (x(Xo, Vo, 1), ¥ (Xy, Vo, 1)), which defines a unique curve in the
6N-dimension phase space for suitable F;, and implies that

PN(Xs Vvt) = Hij\;] 8 (Xi - Xi(XOsVOsZ)) HiN:I 8 (Vi - I/i(Xavvtht)) .

Thus if we specify an initial condition with certainty then the probability distribution
at any later time is concentrated at one point. Now suppose that we run the
‘experiment’ many times or that we consider a large number of copies of the system.
Given a distribution of initial conditions, P, is no longer concentrated at a point or a
finite number of points, but since there is no dissipation, the evolution of P, follows
from the Reynolds transport theorem [3]. Thus the N-particle distribution function
evolves according to

P F
TN v VePy +

—-VyPy =0, 19
o - N (19)

which is called Liouville’s equation. This is formally equivalent to Newton’s
equations and thus equally intractable for large numbers of particles, but one can
derive equations for reduced or marginal distribution functions, defined as

Pi(xi,...X,Vq,...V;,t) = / Py(x,v,0)dX;41...dXydvVis1...dvy.

Liouville’s equation can be written

0Py = YNoira 9 9 5
ot +k§ Vi Vi Py _; - [a_x,“/’(“f) e T a ) W} P, =0 (20)
ii<j

and more compactly as

P
B_IN + %yPy =0. 1)

By integrating over N — [ particles one obtains the evolution equation for the
[-particle distribution function [16]
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I
afi 0 Fil+1
—+ 4N Z—Z / Sir1(Xp, o Xpp 1, Vi Vi 1) A X 1 1d V4

av;

ot P m
(22)
where Do)
QLr;
F = —— Y
/ aX,'
is the force between particles i and j. These equations for/ = 1,--- , N are called

the BBGKY hierarchy. Clearly the system is not closed unless / = N, because for
any [ < N one must know P;4; to solve (22). Thus we seem once again to have
come full circle; the only self-contained equation is Liouville’s equation and it is
equivalent to Newton’s equations.

Of particular use in this context are the evolution equations for the one- and two-
particle number density functions.

P, ad Fia

— + 4P =—— —= Py(x1,X2, V1, V2)dXod Vs. (23)
ot avy m
oP 9 Z 9 7
_2_,_321)2:_/ =2 T T8 p)dxsdvy (24)
ot avy m avy m

As noted previously, when there are no collisions Liouville’s equation has a
smooth global solution for suitable potentials—it is the collisions that lead to
Boltzmann’s equation. When only binary interactions are involved, i.e., in the dilute
limit, the two-particle distribution function factors and the equation for the single-
particle distribution reduces to Boltzmann’s equation [12]. Convergence of solutions
of the BBGKY solution hierarchy to a smooth solution of a kinetic equation for
a single particle distribution function is still an unresolved problem for general
particle-particle interactions. A very accessible discussion of this, and in particular
of the Boltzmann-Grad continuum limit N — 0o, 02 — 0 No? = constant, is given
in Cercignani et al. [17]. More complete treatments of mathematical techniques for
kinetic equations are given in [16, 17,60, 83]. Application of the BBGKY hierarchy
to derive reduced descriptions for flocking problems is widely-used [15, 38], but
the use of idealized kinetic models frequently fails to capture some essential
characteristics of animal movement [47].

3 Simple and Reinforced Random Walks in Space

3.1 The Pearson Random Walk

Consider a random jump process on R" in which the walker executes a sequence of
jumps of negligible duration, driven by Poisson forcing x. This is called a random
walk, and the earliest analyses of these processes apparently dates to Bachelier
[5] around 1900, in the context of his analysis of financial time series. However
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Fig. 2 Three steps in a
Pearson walk of fixed
step-length

NIz

the term ‘random walk’ was apparently coined by Pearson [81], who proposed the
following problem.

A man starts from the point O and walks £ yards in a straight line; he then turns
through any angle whatever and walks another £ yards in a second straight line. He
repeats this process n times. I require the probability that after n stretches he is at a
distance between r and r + §r from his starting point O.

The solution to this problem had previously been obtained by Rayleigh [84] in a
study of the superposition of sound waves. Later we will see that this walk fits into
a more general framework that incorporates a waiting time distribution and a jump
size distribution, but for now we treat the simple 2D walk shown in Fig. 2. Let P, (r)
be the probability that a walker who begins at the origin is in the interval (r,r + dr)
at the nth step, and T'(p) be the probability of taking a step of length |p| in the direc-
tion p/|p|. If the steps are uncorrelated then P, (r) satisfies the renewal equation

Paae) = [ T)P = p)d. 5)
R
In the Pearson walk the angular distribution is uniform on the circle of radius £ and
thus 5ol —0)
p j—
T(p) = ————,
() 0l

and for this kernel the probability at the n + 1st step is simply the average of
the probabilities at the previous step over the circle of radius £ centered at r. The
solution of (25) is

P(r) = % /O ” T (k) Jo(kr)kdk, (26)

where r = |r| [7,55], and in the limit # — oo this reduces to

1 2 2
P,(r) ~ —¢ et (27)

The result sought by Pearson is just 277 times this, i.e.,

2r _o, 2
P"(r)Nn_ﬂe it
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which is Rayleigh’s result. In an historical coincidence, Einstein’s seminal paper
[27] on Brownian motion also appeared in 1905, and the parallel between (10)
and (27) for the discrete Pearson walk is evident. An isotropic diffusion equation
is also derived from the Pearson walk in the chapter by Hillen and Painter, using
different notation.

A variation of the 2D Pearson-Rayleigh random walk in which the steps are
random vectors of exponential length and uniform orientation was considered in
[33]. It is shown there that imposing a constraint of a fixed total length on a walk
leads to a number of interesting results. For instance, by taking exactly three steps
the probability distribution is uniform in the disc of radius /, while for fewer steps
the distribution is concentrated near the boundary and for more it is concentrated
near the origin.

3.2 The General Evolution Equation for Space-Jump
or Kangaroo Processes

We generalize the simple random walk as follows. Suppose that the waiting times
between successive jumps are independent and identically distributed. Let .7 be the
waiting time between jumps and let ¢ (¢) be the probability density function (PDF)
for the waiting time distribution (WTD). If a jump has occurred at = 0 then

¢(t) =Pr{t < 7 <t +dt}.

The cumulative distribution function for the waiting times is @(t) =
fot ¢(s)ds = Pr{.7 < t} and the complementary cumulative distribution function
is ¢3(Z) = Pr{J >t} = 1 — &(t). If the jumps are exponentially distributed then
&(t) = 1 —e ™, and ¢(t) = Ae™, and this is the only smooth distribution for
which the jump process is Markovian ([31], p. 458).

In general the jumps in space may depend on the waiting time, and conversely,
the WTD may depend on the size of the preceding jump, but to make the
analysis tractable, we assume that the spatial redistribution that occurs at jumps
is independent of the WTD. Let T'(x,y) be the PDF for a jump from y to X, i.e.,
given that a jump occurs at 7;,

T(x,y)dx = Prix < X(T;/") < x+dx |X(T)) =y}, (28)

where the superscripts £ denote limits from the right and left, respectively. If the
underlying medium is spatially non-homogeneous and anisotropic, the transition
probability depends on x and y separately, while in a homogeneous medium
T(x,y) = T(x—y), where T is the unconditional probability of a jump of length
|x — y|. In either case, T is a probability kernel if and only if [, T(x,y) dx = 1.
We further assume that 7 is a smooth function and that for any fixed y the first two



The Mathematical Analysis of Biological Aggregation and Dispersal: Progress, . . . 91

x- moments of 7' are finite, though they depend on y unless the system is spatially
homogeneous. Later we comment on the effect of infinite moments.

Let P(x,t]|0)dx be the probability that a jumper which begins at the origin at
t = 0is in the interval (x,x + dx) at time ¢. It was shown in [73] that P(x,]0)
satisfies the renewal equation

P(x,t|0):f13(t)8(x)+/0 /anﬁ(t—t)T(x,y)P(y,rlO)dydt. (29)

Many of the standard jump processes can be recovered from this general result
by particular choices of ¢ and T'. For instance, if ¢(¢z) = §(t — ty) then @(¢) =
H(ty —t), where H(-) is the Heaviside function, and (29) reduces to

P@.110) = Hito =030 + (1= H=0] [ T3Pt =10/0)dy.

This is the governing equation for a discrete time, continuous space process in which
jumps occur at intervals of #y. If in addition the support of 7" is concentrated on the
points of a lattice Z" C R”, then

P(X,‘,I|O) = H(Z()—I)Sio—f- [1 —H(Zo—l)]ZT}jP(Xj,l —lo|0).
J

where §;¢ is the Kronecker delta, and x; is a lattice point. This can be written in the
more conventional Chapman-Kolmogorov form as follows.

Pio(n+1) =3, T;j Pjo(n) n=1

If the WTD is exponential, one obtains the continuous time random walk
oP
E(x,th) = —AP(x,t|0) + A T(x,y)P(y,t|0)dy. (30)
RH
and if in addition the support of the kernel 7'(x,y) is a lattice then

oP
7 (0,110) = =AP(x;,110) + 2 3 | T P(x;,7[0). (31
i

One can cast the latter into the form of a master equation for a countable state
Markov process by applying the condition on 7 that guarantees conservation of
walkers to obtain

P
o (0,110) = =23 Ty P(xi,210) + 4 Y Ty P(x;,1[0). (32)
i J
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A generalization of this that allows for other non-exponential WTDs takes the form

JoP !
00 = [ a0 | =T P10 + Y7 Px;.10) | dr. 63
i J

and of course one can couple the jump probabilities with the WTD [53].

There is a large literature on the various special cases. For instance, the
continuous-time random walk (CTRW) dates at least back to Irwin [48] and has
been extensively developed for birth-death processes [40] and on lattices [54,66,98].
The general form (29) was first derived in [73].

3.3 The Evolution of Spatial Moments for General Kernels

To determine how the evolution of the spatial moments in time depends on the
waiting time distribution, we assume that the medium is one-dimensional and
spatially homogeneous—the generalization to n dimension is straightforward. Let

+o00
(x"(0)) = /_ x"P(x,t]0) dx

+oo pt ptoo
= / / / X"T(x —y)p(t — 1) P(y,7|0)dy dt dx. (34)
—00 0 J—oo

Denote by
+o00
my = / ka(x) dx

(o]

the k-th moment about zero of the jump length distribution—then as shown in [73]

(x"(1)) = [0 Z(Z)mm(z—r)(x"—k(r))da (35)
k=0

and thus the Laplace transform of the k-th moment is given by
n n—1
$(s) n mpy
X = m X — + 1.
n 1— ¢ (S) kzzjl k kAn—k s

In particular the first two moments are

_m QS(S)
Y0 ="77755
Xa(s) = (2m1X1 () + %) % (36)
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The two most widely-used waiting time distributions are the exponential distri-
bution and the gamma distribution. Suppose in either case that m; = 0, since a
non-zero first moment simply adds a drift. Then for the exponential WTD one finds
that ¢(s) = A/(s + A) and that (x2(t)) = maAt. If ¢ is a gamma WTD with
parameters (2, 1), then ¢ (1) = A%te™, ¢(s) = A2/(s + 1)?, and

! A2 A 1
(Xz(l» = m2/0 g—l (m) dt = mTZ {l — ﬁ(l —E_ZM) . (37)

In general the asymptotic behavior of the moments can be gotten by applying
limit theorems for Laplace transforms [99]. If we denote the kth moment of the
WTD as M} and suppose that m; = 0, then the leading terms in an asymptotic
expansion of X;(s) are

my M2—2M12 2
Xo= 2 4 (222000 ) 54 6y |
2 Mlsz[ +( o )T

Therefore, by (i) applying the limit result that lims—.¢ f(s) = lim, F(¢), and
(i) using the fact that

r
L@ = L) for p >0,
sP
one sees that if the mean waiting time M, is finite, then the mean-squared
displacement for large ¢ is given by

20)) ~ 2
(x=(1)) Mlt.

Thus so far as the mean-squared displacement is concerned, any jump process for
which the jump distribution has a finite variance and the WTD has a finite mean
behaves like a diffusion process with diffusion coefficient D = m,/(2M;) for
large t.

To make the connection with the PDE descriptions of motion more explicit,
consider first the case of an exponential WTD, and suppose that the jump kernel
is spatially homogeneous. If

_ b(x—yl-0)

T(x—y) i

’

where w, = 272 /I (3) is the surface measure of the unit sphere in R", one finds
that

P

= = AP L1 = P(x0)],
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where P is the average of P over the surface of a sphere of radius £ centered at x.
Expansion of P about x leads, in the diffusion limit A — oo, £ — 0, 102 /2n= D, to

P
— = DV*P, 38
o (38)
provided that all higher-order derivatives are bounded. The Pearson walk described
earlier falls into this class.

A similar conclusion holds for more general kernels, written in 1D for simplicity,
of the form

|x — |

~ 1
Tx—y)=-T ).
(=3 = ;T2 0
Then
2 2
8_P =X E/ To(r,£)rdr a—P—f-)L Z_/ To(r, O)r?dr 8_P+ o?). (39)
ot R ox 2 R 0x2

Therefore if the first moment of 7 is &'(€) for £ — 0, if the second moment of
Ty tends to a constant, and if all higher moments are bounded, then in the diffusion
limit we obtain a diffusion equation with drift. The diffusion coefficient is given by

02 2
D = A?}E)%/R To(r,O)r-dr (40)

and the drift coefficient is given by

62 . T()(r,e)
B = AE%E}})/R 7 rdr. 41

The latter vanishes if the kernel is symmetric.

3.4 The Effects of Long Waits or Large Jumps

The fact that any jump process with a WTD that has a finite first moment and a
jump distribution having a finite second moment evolves like a standard Brownian
motion for large ¢ is simply a reflection of the central limit theorem applied to the
sum of the IID steps taken in the walk [51]. When the large-time limit of the mean-
square displacement grows either sub- or super-linearly the process is said to exhibit
anomalous diffusion. For example, if

(x*(0)) ~ ytP
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for B # 1 and t — oo, it is called subdiffusion if B < 1 and superdiffusion if 8 > 1
[65]. Subdiffusion occurs when particles spread slowly, whether because they rest
or are trapped for a long time, and in particular, if the mean waiting time between
jumps is infinite. For example, if m; = 0, then from (36)

2 _ —1 <Z_5(5)
) =mz (29).

Therefore, if ¢(s) ~1/s? for p€ (0,1) and s — 0, then (x2(t)) ~ mst?
for t — oo, i.e., movement is asymptotically subdiffusive. As another example,
consider

1

H=—.
o) (141)?
which is a well-defined distribution, but for which M), = oo for all k > 1. The
transform of ¢ is

P(s) = (% - Si(s)) coss + Ci(s)sins

where Si and Ci are the sine and cosine integral functions [20]. From the asymptotic
expansion of the integrals one finds that

(x*(1)) ~ logt,

and thus the process is subdiffusive.

The superdiffusive case arises when the walk is highly persistent in time, for
example, if the walker never changes direction, or for walks having a fat-tailed
jump distribution. The simplest example of the first case arises when the walker
never turns, which leads to a wave equation for which the mean square displacement
scales as ¢2. More generally this arises if ¢(s) ~ I'(3)/(s> + I'(3)) for s — 0. An
application to bacteria that exhibit long runs is discussed in [64].

The latter case arises when the variance of the jump distribution diverges and
the central limit theorem does not apply. The motion corresponds to a Lévy flight,
which leads to alternate localized meandering punctuated by occasional long steps.
A comparison of a Lévy flight for the jump distribution

- o
Tx)=A,—————
0= Ay
for u = 1.5 with Brownian motion is shown in Fig. 3. The applicability of Lévy
flights as a description of animal movement is discussed in [26].
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Fig. 3 An example of
Brownian motion (lower left)
in the X-Y plane, and a Lévy
walk (upper right)

(From [65])

3.5 Biased Jumps Dependent on Gradients or
Internal Dynamics

Several generalizations of the preceding examples are possible. The WTD for the
jump process can depend on time or on the density of individuals, the redistribution
kernel may depend on the local density or a local average of the density, and of
course the WTD and jump distributions need not be independent. Examples of the
latter case include introduction of a resting phase in which the resting time depends
on the preceding jump length, or alternatively, the WTD distribution may depend
directly on the jump length. It is known that a resting phase with Poisson driven
entry and exits simply rescales the diffusion coefficient in simple random walks
[46,98].
If the waiting time distribution depends on the number density » and ¢, then

t
G(n.1) = An(x,1),1)e” Jornoxods,
and the renewal equation for the number density is now the nonlinear equation
H(X, Z) — e—f(i A(n(x,s).s)ds F(X)

t "l —T
+ / / An(x,t — 1)t —1)e Jo AN T vyn(y, 1) dydr.
0 R

For suitable choices of the dependence on the density this can describe either
aggregation or dispersal. Dispersal at high densities would obtain if A(n,-) is an
increasing function of n, in which case the mean waiting time between jumps is a
decreasing function n. On the other hand, density-dependent aggregation could be
modeled using a A that decreases with n, in which case the waiting time between
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jumps increases with the density. A different approach in which the parameters
depend on internal state variables will be discussed later.

The kernel 7" may also depend on external fields such as the concentration of an
attractant and on the internal state of the organism, and one expects this dependence
to be reflected in the resulting limit equations. This will be discussed in greater detail
in the context of velocity-jump processes, but here we briefly illustrate the issue for
space-jump processes.

Letx = x& andy = y», where & and 5 are the directions of x of y. For a fixed y,
the average x after a jump is defined as

i:/T(x,y)xdx:/T(x,y)Sx” dx dw,.

The angle between & and 5 measures the tendency for the next jump to remain
aligned with 5. Therefore we define an index of directional persistence as

wd = (57 77)? (4‘2)

and clearly ¥4 € [—1, +1]. If the step lengths are fixed at A, as in the Pearson walk,
and if the turning probability depends only on the cone angle

O(x,y) = cos™' ({£.1))

between y and x, then 7'(x,y) has the form

§(x—yl—4)

T(x,y) = o n(Oxy)

for any n > 2 and a normalized distribution /.
To illustrate how external fields can be incorporated we write

T(Xv y) = 7:0(-)C - y) + Tl(xs y),

and we suppose that the drift in T, vanishes, that the bias kernel 7} has compact
support and vanishing first moment, and that

/ Ti(x,y) P(y)dy = / (y—x)-F(S(y)P(y)dy.
R" Bs(x)

Here S is a specified field, F is a vector-valued function of S, and Bs(x) is a ball
of radius 8, the sensing radius, centered at x. For example, let F = —yV .S, define
y — X = p, and expand around x; then one finds that
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/Rn Ti(x,y) P(y)dy = =y [VSX)VP(x) + P(x)VVS(x)]: » )ppdp (43)

= —yV,8* [VS(X)VP(x) + P(X)VVS(x)]: 8 (44)

where n
Vi = Jﬂ/r(z +1)

is the volume of B; in n dimensions, and § is the unit second rank isotropic tensor
[71]. Thus the n-dimensional extension of the drift-free version of (39) to include
the bias given above reads

oP
57 = DAP —x(VS-VP + PV-V5), (45)

which is a form of the chemotaxis equation discussed later.

3.6 Aggregation in Reinforced Random Walks

The rigorous analysis of random walks is more complicated when particle inter-
actions, either direct or indirect, are taken into account (cf. [68, 88, 89]). As will
be discussed later, E. coli releases a diffusible attractant, whereas myxobacteria
gliding on a slime trail react to their own contribution to these trails and to the
contributions of the other bacteria [101]. There is a growing mathematical literature
on what are called reinforced random walks that began with the work of Davis [24];
arecentreview can be found in [82]. Here we sketch the approach developed in [72],
where the particle motion is governed by a jump process and the walkers modify the
transition probabilities on intervals for subsequent transitions of an interval.

Davis [24] considered a reinforced random walk for a single particle in one
dimension. Initially there is a weight w’, on each interval (i,i + 1), i € Z which
is equal to wY.! If at time n an interval has been crossed by the particle exactly k
times, its weight will be

k
i _ .0 '
wn—wn-i-g aj,
—

where a; > 0, j = 1,..., k. Furthermore, the transition probabilities are given by
Wi
P(xit1 =n+1lx; =n) = —"———.
wh +w,

'In this section the weight w may be equivalent to the signal S used earlier, or some function of it.
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Davis’ main theorem asserts that localization of the particle will occur if the weight
on the intervals grows rapidly enough with each crossing, as summarized in the
following. Let x; be the particle position at the i th step, let X = {x;,i > 0}, and let

s} n -1
and q&(a)zZ(l—f—Zai) .

n=1 i=1

Theorem 1.  Suppose that w0 = 1. Then

(i) If p(a) = oo then X is recurrent.
(ii) If ¢(a) < oo then X has finite range and there are random integers n and 1
suchthatx; € m,n+1) if i > 1.

Here recurrent means that every integer is visited infinitely often a.s., i.e., the walker
does not become trapped. From this it follows that if a; = constant, for instance,
which corresponds to linear growth of the weight, then X is recurrent almost surely,
whereas if the growth is superlinear then the particle oscillates between two random
integers almost surely after some random elapsed time. Since the result deals with
a single particle it does not directly address the aggregation problem, but it does
suggest that if the particles interact only through the modification of the transition
probability there may be aggregation if this modification is strong enough.

This theorem motivated the following development, in which we begin with a
master equation for a continuous-time, discrete-space random walk. and postulate
a generalized form of (31) in which the transition rates depend on the density of a
control or modulator species that modulates the transition rates [72]. We restrict
attention to one-step jumps, although it is easy, using the framework given earlier,
to apply this to general graphs, but one may not obtain diffusion equations in the
continuum limit.

Suppose that the conditional probability p,(¢) that a walker is at n € Z at time ¢,
conditioned on the fact that it begins at n = 0 at ¥ = 0, evolves according to the
continuous time master equation

apy
ot

= T W) puai + T s(W) Pt — (W) + (W) pa. (46)

Here 9;* () are the transition probabilities per unit time for a one-step jump to
n+ 1, and (I (W) + F-(W))~! is the mean waiting time at the nth site. We
assume throughout that these are nonnegative and suitably smooth functions of their
arguments. The vector W is given by

W= (W12, W s W 172,00 s Wo, Wij2, 0 0). (47)
Note that the density of the control species w is defined on the embedded lattice

of half the step size. The evolution of w will be considered later; for now we
assume that the distribution of w is given. Clearly a time- and p-independent spatial
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distribution of w can model a heterogeneous environment, but this static situation is
not treated here.

As (46) is written, the transition probabilities can depend on the entire state and
on the entire distribution of the control species. Since there is no explicit dependence
on the previous state the jump process may appear to be Markovian, but if the
evolution of w, depends on p,, then there is an implicit history dependence, and
the space jump process by itself is not Markovian. However, if one enlarges the
state space by appending w one obtains a Markov process in this new state space.

Three distinct types of models are developed and analyzed in [72], which differ
in the dependence of the transition rates on w; (i) strictly local models, (ii) barrier
models, and (iii) gradient models. In the first of these the transition rates are based
on local information, so that 9 = 7 (wy), and to s1mp11fy the analysis we
assume that the jumps are symmetric, i.e., that J+ =9~ = 7. 1In this case (46)
reduces to

0pn
ot

= c9,\.(prl—lsWn—l)pn—l + é(pn+lvwn+l)pn+l —zvé(Pn,Wn)Pn-

If we assume that there is a scaling of the transition rates such that T =27 , and
that the formal diffusion limit

lim Ah? = constant = D
h—0
A—>00

exists, we obtain the nonlinear diffusion equation

2

) 9
P _ D5 (T (w)p). (48)

At

The second type is one called a barrier model, for which there are two sub-cases,
depending on whether or not the transition rates are re-normalized. In the first case
one assumes that Zi(W) = 7 (Wu+1/2), Which leads to the equation

ap
— =DV -(ZVp).
I (ZVp)

If one re-normalizes the transition rates so that
MIFW) + T (W) = constant = A,

then after some analysis one finds that in the diffusion limit this leads to

bp D[ D p
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Table 1 Dependence of the response on the sensing mechanism

Type of Taxis Chemotactic Type of
sensing velocity sensitivity taxis
1. Local —DVZ7 —DJ’(w) Negative

it 7/(w) >0

2. Barrier without 0 0 None
re-normalization

3. Barrier with DVing D (InZ (w))’ Positive
re-normalization if 7/(w) >0
4. Nearest neighbor with 2DVinT 2D (Ing (w))’ Positive
re-normalization it 7/(w) >0
5. Gradient without 2DBVzt 2DB7’ (w) Positive
re-normalization if B’ (w) >0
6. Gradient with D 4 Vz D b ' (w) Positive
o o

re-normalization if Bz’ (w) >0

For later comparison with velocity jump processes we define the chemotactic
velocity and sensitivity as

9 9
y=D(nT), u=-D>1Inp+D(InTw) . (50)
dx ox

Thus the taxis is positive if 7’(w) > 0. The simplest form of w-dependence is to
assume that 7 (w) = o + Bw, and we use this form later in examples.

The last type of sensing leads to the gradient-based, or look-ahead model, for
which T, = & + B(z(wy) — Twa—1) and Ty = & + B(x(wa) — T(was1),
a > 0, and again there are two cases, depending on whether or not the rates
are re-normalized. The chemotactic velocities and sensitivities for these and the
preceding cases are summarized in Table 1.

Of course we also have to specify the local dynamics for the evolution of w, and
here we use the general form

aw pw
_ = + yr
ot 1+ Aw K+p

—uw = R(p,w) (51)

in the examples shown in Fig. 4. For all cases we set D = 0.36, and in the first panel
we show the solution of (49) and (51) fora =y, = u =0and 8 = 1,1 = 107,
The second panel is as in the first, but with A = 0, and in the third panel a more
complicated transition rate is used (cf. [72]). One sees in that figure that both the
dependence of the transition rates on the local modulator w, and the dynamics of w
itself, play an important role in the dynamics of the system. In the first panel the
solution stabilizes at some smooth distribution, in the second panel the solution
blows up in finite time (around t = 9.3—this assertion is supported by analysis of
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Fig. 4 The density profiles from three examples of the local dynamics. Reproduced from [72],
copyright 1997 Society for Industrial and Applied Mathematics

the Fourier components—see [72]) and in the third panel the solution ultimately
collapses, in a very interesting step-wise fashion that is not understood at present.

The analysis of reinforced random walks presented in [72] can be generalized in
many directions. For example, consider the re-normalized transition rates

5 Wnt1/2
TEw) = —2=1= 52
") Wint1/2 + Wn—1/2 ©2)

These can be regarded as the discrete version of the continuous forms
L w(s)ds
Toa [ pxth

FA wds]

1 prx
Fp) = sl w(s)ds'
) %fx_tlh w(s)ds

X

f“'(w
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The continuous version implies that the walker averages over the interval (x, x + /)
or (x — h, x) to determine the transition rate. Of course one can incorporate a more
general kernel. For example, one might use

[ 22 = x)2e O™ w(y) dy

.\ _
) = S (e T () dy

which assigns the maximum weight to x £ 1/A. More generally, we may simply
assume that

[ K(y —x,h) w(y) dy
[ K(y—x.h)yw(y)dy + [ K(x —y. hyw(y) dy

oo K(x =y, h) w(y) dy
[E Ky —x.myw(y) dy + [* K(x — y.hyw(y) dy

T (w(x)) =

T~ (w(x)) =

for a suitable kernel K. To recover (52) we choose

h
K(y—x.n)=58(p—-x—7).

4 Velocity Jump Processes and Taxis Equations

As described in Sect.2, the velocity-jump (VIJ) process is predicated on the
assumption that particles make instantaneous jumps in velocity space, rather than in
physical space [73]. By comparing the underlying basis of the FPKK equation with
that of the Smoluchowski equation, one should expect that the VJ process gives rise
to evolution equations that depend jointly on physical- and velocity-space operators.
Just as the FPKK equation leads to the Smoluchowski equation in certain regimes, it
is known that the long-time asymptotics of VJ processes lead to diffusion processes
in space under suitable scalings of space and time [1,41,77]. In this section we define
the general VJ process and summarize results on diffusion limits of this process. In
the last subsections we describe the application of this process to two classes of
biological organisms—swimming bacteria and crawling cells.

4.1 The General Velocity-Jump Process

We shall work directly with the differential equation form of the conservation
equation for a phase space density function that depends only on the position,
velocity, time and some intracellular variables. In essence the resulting equation
is the analog of the Liouville equation (19) with an additional term to account for
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the gain or loss of particles at a point in phase space due to the underlying jump
process. Throughout we focus on the evolution of a smooth density function, and
do not address the question of how to connect this to limiting forms of the empirical
density for an N -particle system.

Let p(x,Vv,y,t) be the density function for individuals in a 2n + m-dimensional
phase space with coordinates (X, v, y), where x € R" is the position of an individual,
v € R”" is its velocity, and y is the set of intracellular state variables involved in cell
movement. The evolution of p is governed by the equation

O Ve () + Yy (Bp) + V- (Gp) = 7, (53)

where F denotes an external, velocity-independent force acting on the individuals,
f is the rate of change of the internal variable y, and % is the rate of change of p
due to birth/death processes, a jump process that generates random changes of
velocity, etc. Normally cell proliferation is independent of the velocity, and the rate
of proliferation can be approximated by r (n) p, where r (n) is the density-dependent
growth rate, but here we only include random velocity changes. In addition
we assume that cells are sufficiently separated and neglect cell-cell mechanical
interactions.

The jump process for velocity changes is the direct analog of the stochastic
process underlying space jumps. Initially we suppose that the waiting time between
jumps and the changes in velocity are independent, and that the WTD is exponential.
As aresult, the turning can be described by two quantities, the turning rate A, and the
turning kernel 7'(v, v'), which defines the probability of a change in velocity from
v to v, given that a reorientation occurs. 7' (v, v') is non-negative and normalized so
that [ T'(v,v')dv = 1, and at present we assume that it is independent of time and
space. In light of the foregoing assumptions, (53) becomes

)
a—l;+Vx-(vp)+Vv-(Fp)+Vy-(fp) =-Ap +A/T(V,V’)p(x,v’,t)dv’, (54)

and the underlying stochastic process is called a velocity jump process. For most
purposes one does not need the distribution p, but only its first few velocity
moments. The first three are the observable density of individuals n(x,t), the
momentum, and the momentum flux.

n(x,t) = /p(x,v,y,t)dvdy, jx. 1) = /p(x,v,y, t)vdvdy

P= /p(x,v,y,t)vvdvdy.

The momentum j defines the average velocity u = j/n. Integration of (54) over

(v,y) leads to

9
3—':+vx-nu=0. (55)
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When A is independent of y, multiplication of (54) by v and integration over (v, y)
yields

B(SIU) +V-P—Fn=-Anu+ A / T(v, V/)Vp(X, V/,y, ) dV’dde, (56)

These are not closed, except in a special case noted later, due to the presence of the
momentum flux tensor P and the integral term on the right. Until stated otherwise,
we assume that F = 0.

It is observed experimentally that the movement of cells often exhibits directional
persistence, and as a result, the turning kernel depends on the angle 6 between the
previous velocity v/ and the new direction v [8, 39, 59, 62]. Let s denote the cell
speed, and e, denote the direction of the velocity, then, v = se,. For a fixed v/, the
average velocity v after reorientation is defined as

V:/T(V,v’)vdv:/T(V,v’)s”evdsdw,,

and the average speed is

EE/T(V,V’) v dv= /T(V,V’)s" ds dw,.
As in the space-jump framework, we characterize persistence via an index of
directional persistence, defined as

e /

Vo= e[-1,+1], (57)
Ss

which measures the tendency of the motion to persist in a given direction e,. Of
particular interest is the case in which the speed does not change with reorientation
and the turning probability depends only on 6. Then T (v, v') has the form

T(v,V)=h(0(v.V)) (58)
for any n > 2. For such T, V4 is independent of v/ and
vV =1yav, (59)

where

_ 2 /5 h(B)cosb db forn =2
| 27 f;" h(0) cosOsin6 db forn = 3.
Observations of the movement of Dictyostelium discoideum (Dd) amoeba yield

Ya =~ 0.7 [39], whereas the three-dimensional bacterial random walk data in [8]
show ¥, ~ 0.33.

Va (60)
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External signals enter either through a direct effect on the turning rate A and the
turning kernel 7', or indirectly via internal variables y that reflect the external signal
and in turn influence A and/or T'. The first case arises when experimental results are
used to directly estimate parameters in the equation [32], but the latter approach is
more fundamental. The reduction of (54) to the macroscopic chemotaxis equations
for the first case is done in [41, 70], and second case is done in [28-30, 104, 105].
In [104], external forces are also included. We summarize some of the important
aspects of the reduction in the following sections.

4.2 The Telegraph Process

A simple example will illustrate both the reduction of the jump process to a diffusion
process, and how the parameters of the jump process have to be controlled so as to
produce aggregation. Suppose that the walkers are confined to the real line R, that
the speeds s* to the right and left may depend on position, and that direction is
reversed at random instants governed by Poisson processes of intensity A*. Let p*
denote the density of walkers moving to the right and left, respectively. Then the
conservation equations for these densities are”

ot dtph)

— —A+ + A~ -,
o1 ox oA
(61)
ap~ s p7) + o+ - =
PP gt
o1 x P P

Letn = pT + p~ be the macroscopic density and note that the flux j is (s*p* —
s~ p7); then (61) can be written in the alternative form

on n aj 0
a o ox
(62)
9 . Lo6stpt)y o _d(sTp)
o T ox T dx B

(sJr + s_)(—/XerJr +A7p).

To illustrate the essence of aggregation and taxis in this simple context, we ask how
the walkers should modify their behavior so as to produce a nonuniform distribution
in space at steady-state, and we consider three cases.

2These equations are the restriction of (54) to one-space dimension only when the speeds sT are
constant, and in that case the moment equations close at the second level for constant A [73]. We
consider the more general case for illustrative purposes.
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Case I: Constant and equal turning rates and speeds, A\* = 1~ = A, and
sT(x) =57 (x) = 50

By combining the two equations at (62) we obtain the classical telegrapher’s
equation
9’n on 9’n
— 4 2h o = 52—,
9z T T a2
and by formally taking the limit Ay — 00,5 — oo with s2/A¢ = 2D constant
in (63), one obtains the diffusion equation. However the limiting procedure can be
made more precise by considering the exact solution of (63), which is

(63)

e—)»ot

A A
n(x.t) = { — ( (x —s1) + 8(x + st) + TO [IO(A) + 70t11(/1)i|) + no |x| < st,

no |x| > st.

Here Iy and I; are modified Bessel functions of the first kind. By applying the
asymptotic expansions

et 1 et 1
Iy(z) = +0|-), Ii(z) = +0\-), as z — oo,
0@ V2mz (z) 1@ 21z (Z)
one finds that

xZ

n(x,r) = ,6_4_Dt +ng+eMOE),  § = (x/s0)

T

From this one sees that the telegraph process reduces to a diffusion process on space
scales that are small compared with the ballistic scale s¢. This fact was known to
Einstein and this process has since been studied by many [34,37,49,73,92].

If we define 1 = €2t and & = ex, where € is a small parameter, then (63)
reduces to
%n on %n
2 2
o T T e ©4)

In these coordinates x/(st) = €£/(st) and the diffusion regime only requires that
&/(st) < 0(1). In the limit € — O the exact solution can be used to show that (64)
again reduces to the diffusion equation, both formally and rigorously (for # bounded
away from zero). However this shows that the approximation of the telegraph
process by a diffusion process hinges on the appropriate relation between the space
and time scales, not necessarily on the limit of speed and turning rate tending to
infinity. In any case, it is clear that the spatial distribution of n is asymptotically
constant, and thus there is no localization of walkers. Imposing no-flux boundary
conditions on a finite interval does not change this conclusion.
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Case II: Constant and equal turning rate AT = A~ = M, distinct speed

sT(x) # 57 ()

By assuming that the flux j at infinity vanishes, and solving for the steady state
solutions of (61), one finds that

LSt —sT
T
sT—s~
pe = [FOEO]
s (x

where the constant p*(0) is the cell density moving to the right at x = 0, which
is determined from the conservation of total particle number. From this we see that,
(a) aggregation can occur when the speed of the cell depends on the spatial location,
i.e., sT are not constants, (b) the distributions for the right-moving cells and the
left-moving cells differ if s*(x) # s7(x), and (c) if sT = s, both left- and
right-moving cells aggregate at points of low speed. This is somewhat similar to
the scenario of traffic flow—when the road becomes narrower, cars slow down, and
traffic jams may form.

Case III: Distinct turning rates A*(x) # A~ (x), constant and equal speeds
sT=s5"=1s

We write N N
A AT AT —AT
aE=A T — Aot A,
2 2
then the density-flux form (62) becomes
on  dj
— 4+ 2L =0,
ot Ox
(65)
i ,0n
- — = —2Agj — 2sAn.
or T ax 0] = 2shan
When A is constant this reduces to
9%n on 0% 0
— — =5"— —2s—(An). 66
g TG =5 g T e () (66)

We call this a hyperbolic aggregation or taxis equation, and we will see later how
this emerges in general. The difference of the turning rate produces a drift in the
dynamical evolution equal to u, = sA;/A¢. This is similar to what is observed in a
1D space-jump process when the probability of right and left jumps differ.
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The steady-state solution of (65) is

n(x) = noexp{—f /Oxxl(s)ds} ,

and again there may be a non-constant solution, which is a result of the difference
in turning of cells.

We see from the simple 1D process that non-uniform cell distributions can arise
when either the cell speeds are different or the turning rates are different, and these
two cases correspond to what are called chemotaxis and chemokinesis, resp.
In particular, in case 4.2 cells aggregate where their speed is lowest, which is the case
when amoeboid cells reach the peak of a potential attractant, while in case 4.2 cells
aggregate most strongly when the turning rate deviation A; returns to zero, which
happens when run-and-tumble cells adapt to the signal gradient.

4.3 Reduction of the VJ Process to a Diffusion Process

In general, in higher space dimensions equations (55) and (56) do not specify
n and u as they stand, for they involve the second v moment of p and the as yet
unspecified kernel T'(v, v'). We call the process unbiased when the turning rate and
kernel depend only on v and v/, and biased when external fields or internal state
variables are included. Note that an unbiased kernel does not mean that reorientation
is isotropic. We assume hereafter that A is independent of the velocity, and we
write (54) for the unbiased process as

0
gp(x, v.t)+v-Vpx,v,t) = —Ap(x,v,1) + )L/ To(v,V)p(x, V., 0)dV = Lpx,v,1).
v
(67)
We consider the spatial domain £2 = R”, and we suppose that the velocities lie in a
compact set V' C R” that is symmetric with respect to the origin.
To state some of the results from [41], we let J#~ denote the cone of nonnegative

functions in L2(V'), and for fixed (x, ¢) define an integral operator .7 and its adjoint
T* by

fp:/T(v,v/)p(x,v/,t)dv’, ﬂ*p:/ TV, v)px,v,0)dv. (68)
v v

We impose the following conditions on the kernel and the integral operator:

(TH TW.v)=0, [, T(v.V)dv=1, and [, [, T*(v,v)dVvdv < co.
(T2) There are functions ug, ¢, and ¥ € H withup # 0 and ¢, ¥ # 0 a.e. such
that for all (v,v') € V xV

u(MP(V) = TV, v) < u(MY (). (69)
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(T3) [Ty < 1, where (1)* is the orthogonal complement in L?(V) of the
span of 1.
(T4) [, T(v.v)dv = 1.

Then the turning operator .4 p(x, v, t) acts in L?(V'), and has the following spectral
properties [41].

Theorem 2. Assume (T1)—(T4), then the following hold.

1. 0is a simple eigenvalue of £, and the corresponding eigenfunction is ¢ (v) = 1.
2. There is a decomposition L*>(V) = (1) @ (1)%, and, for all € (1)+,

/V VLAY <~V sy where = A(1— | Tye).  (T0)

3. All nonzero eigenvalues [ satisfy —2A < Re u < —u, < 0, and to within scalar
multiples there is no other positive eigenfunction.

4. Ll =< 24

5. % restricted to (1)* € L*(V) has an inverse F with norm

1
- Iy yn < o (71)

If for example the turning kernel 7' (v, v’) is symmetric, then the constant
given in (70) is the negative of the second eigenvalue of the turning operator .%5.
This defines a time scale for relaxation of the reorientation process, and in particular,
if 1 is not a simple eigenvalue of .7, the streaming character of the transport process
dominates, and we can no longer expect to obtain a diffusion limit.

Under the preceding assumptions the parabolic scaling T = €%t and £ = ex,
where € is a small dimensionless parameter, leads to a diffusion approximation of
the transport equation [41]. In these variables we have

a
eza—p—i-ev'VEp:—/\p—i—A/ T(v,V)p&, v, 1)dV. (72)
T v

where the subscript on V, which we drop hereafter, indicates differentiation with
respect to the scaled space variable. The right-hand side of (72) is &'(1) compared
with the left-hand side, whatever the magnitude of p, and this leads to a diffusion
equation for the lowest order term pg of an outer expansion, which we write as

k
pE.v,1) =) pi€,v, 1) + i, v.7). (73)
i=0

An approximation result for any order in € that provides a bound on the difference
between the solution of the transport equation and an expansion derived from the
solution of the associated parabolic diffusion equation has also been proven.
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Theorem 3. [41] Assume (T1)—(T4) and the Hilbert expansion (73), where pg
solves the parabolic limit equation

0
PV DVp) =0 p60 = [ pEvoav. a9
v
with diffusion tensor
1
D = ——/ v.Fvdv. (75)
w Jy

In addition, the higher order corrections are given by
p1 = ZF(v-Vpy), p2 = F(pox +V-VFv-Vp),

where ¥ is the pseudoinverse defined in Theorem 2 and v = |V|. Then, for each
© > 0, there exists a constant C > 0 such that for each ¥/e* <t < oo and each
x € R"

[p(x,..1) — ga(ex, -,€2t)||L2(V) <Cé.?

and the constant C depends on ,,V, D, and 9.

In general, the approximate solution depends only on the solution of the limiting
parabolic equation, and, therefore, it cannot be uniformly valid in time (cf. [41]).
When the speed is constant and the outgoing directions are uniformly distributed on
Sl #F = -2~ and

One can prove in general that the diffusion tensor is positive definite, and one can
also derive necessary and sufficient conditions for it to be a scalar multiple of 1.
Since the reduction depends critically on the existence of the parabolic scaling,
we give an example of how it is determined. Let L be a characteristic scale
associated with the macroscopic evolution, for instance, the size of the domain on
which an experiment is done. Define the dimensionless velocity, space and time

variables
A X
u= - 8 = — T=—,
s L o

where s is a characteristic speed and o is as yet undetermined. Then
1dp s
|

oot Z) u-V'p=—ip+ /\/ T, u)pE v, 1)du,

3In [41] this estimate appears with the L2-norm squared, but it is clear from the proof that there
should be no square.
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We estimate a diffusion coefficient as the product of the characteristic speed times
the average distance traveled between velocity jumps, which gives D ~ &(s?/1),
and a characteristic drift time
L?>  L°A L
‘E”/\/—:_, T T = —,

DIFF D SZ DRIFT s
A characteristic speed for bacteria such as E. coli is 10-20 /s, and A~' ~ &(1)s.
On a length scale of 1 mm tpg;er ~ 50-100s and 7 ~ 2,500 — 10*s. Therefore,
in this example we have tz,y ~ (1) on the dimensional scale, and

TpriFT ™~ 0(1/6)7 Tpirr ™~ 0(1/62)
where € ~ ¢(1072). Then
Trun = A KL Torirr K Tpirr

and the scaled equation results for 0 = 7.

When biases are introduced their magnitude relative to the base turning rate is
critical. We write the kernel with bias as T'(v,V/, p(-)), and if, for example, we
assume the bias is linear in a signal gradient, then

T(v.V.p() =To(v.V) + k(v-Vp)(v'- Vp).

One finds that
2 2 2 -1
D¢.7) = > (I + ﬂKVpr (I — g/(Vpr) ) ,
Aon n n

and as expected, there is no drift or taxis in this case.
On the other hand, if the perturbation is &'(¢), and linear in the gradient, then one

finds that

3
—;O — V- (DVpo— o),
T

where the drift or chemotactic velocity is given by

A
u. = ——OffvfoTl(V,V/)dV/dV-
w

Here Fy denotes the pseudo inverse defined by the kernel 7p. If O has the particular
form
Q1 = kl(V/, S)V

then
2

1(p) = k(p)=—.
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The unbiased process The biased process

F I

Fig. 5 The movement of a particle driven by a VJ process, in the absence (leff) and presence
(right) of an external bias

and the lowest-order approximation is the solution of

9 5?
Z=v (—Vpo - PoX(P)VP) :
T n

4.4 The Role of Internal Dynamics

The most widely-studied examples of organisms whose motion can be described as
a velocity jump process are the flagellated bacteria, the most-studied of which is
E. coli. E. coli generates the force needed for swimming by rotating flagella
embedded in the cell membrane, and thus the swimming speed is fixed by the
hydrodynamic loading, and can be taken to be essentially constant in a specified
medium. To search for food or escape an unfavorable environment, E. coli alternates
two basic behavioral modes, swimming in a more or less straight line called a run,
and a highly erratic motion called tumbling, the purpose of which is to reorient
the cell. Run times are typically much longer than the time spent tumbling, and
when bacteria move in a favorable direction (i.e., either in the direction of foodstuffs
or away from harmful substances) the run times are increased further. Conversely,
when bacteria move in an unfavorable direction the run length decreases and the
relative frequency of tumbling increases. The distribution of new directions is not
uniform on the unit sphere, but has a bias in the direction of the preceding run. The
effect of alternating these two modes of behavior, and in particular, of increasing
the run length when moving in a favorable direction, is that a bacterium executes
a three-dimensional random walk with drift in a favorable direction when observed
on a sufficiently long time scale [9, 56] (cf. Fig.5).

To illustrate the main points involved in the inclusion of internal dynamics in
macroscopic equations, we begin with a simple example based on E. coli, and
assume that there is no interaction between cells. This is a reasonable assumption,
since typical bacterial densities are of the order of 10%/ml and individual bacteria
have a volume per cell of order wum3—thus the volume fraction is &'(107%).
Therefore we can consider either the probability of a single walker being at a given
position with a given velocity at time 7, or the density of walkers, and we choose the
latter here.
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New technology has led to extensive experimental data at the cell and molecular
level, and as a result, more complete descriptions of inter- and intracellular signal
transduction are possible for use in population-level models of E. coli. Detailed
models of the full signal transduction network exist [87,102], but simplified cartoon
models that capture the essential dynamics involved in aggregation and patterning
have been used in recent studies [28, 29, 104]. By neglecting body forces and cell
growth, the transport equation for the cell density becomes

Ip

o TV (vp)+ V- (fp) = —A(y)p + / ATV, V., y)p(x,V.,y, t)dv, (76)
v

where y = (1, y2)7. The vector ys encodes the excitation and adaptation response

of cells to external signals, and A(y) describes the motor response. The vector y

evolves according to

dyi _ G(Sx.1) — (1 +)2)

dt t, D
dy  G(S(x,0)) —»
dr ta ’ (78)

where G(S) models signal detection via surface receptors and #, and #, specify
the excitation and adaptation time scales, with 7, << #,. A complete quantitative
understanding of how different parameters at the cell level influence the population
dynamics involves the incorporation the entire signal transduction of bacteria, but
the cartoon description can predict biological aggregations and traveling bands
of bacteria (cf. Fig.6). Other intracellular variables, such as the metabolic state,
can also be included in the transport equation, and this allows for a description
of nutrient dependent cell growth. The existence of traveling wave solutions in
the transport equations when coupled with the signal evolution equations was
established in [106]. Further analysis on the comparison of the traveling waves
obtained from the classical Keller-Segel equations are presented in the chapter by
Frantz and Erban.

Macroscopic equations can be derived from the above multiscale models using
perturbation methods and moment closure techniques, and this has been carried out
successfully for the cartoon description above. The macroscopic equation

on 52 bs*t

2 _y. Vn — G'(S(x.t a VS|, 79

ot [Nko " (Ge.0) NAo(1 + Aoty)(1 + Aote)n } 7
with b = —%| yi=0 and N as the space dimension was derived in 1D first in

[29], and extended to 3D in [28]. The major assumption used there and in earlier
papers is that the signal gradient is shallow: G'(S)VS - v ~ O(€) sec™! and
t,A0 ~ O(1), which results in a clear separation of the microscopic time scales
from the macroscopic transport and diffusion time scales. Other assumptions include
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a b
Cell Distribution at t =6min Cell Distribution at t =12min

C 0 © 0o @ n

Fig. 6 Simulated E. coli patterns by a cell-based model. (a) Network formation from an uniform
cell lawn; (b) Aggregate formation from the network; (c¢) Traveling wave formation from a single
inoculum in the center. Adapted from [74] with permission

time-independent signals S = S(x), a linear turning rate A = Ao — by; and no
directional persistence. From this equation one sees that if cells adapt instantly,
i.e.,if z, = 0, then the taxis term vanishes and the population simply diffuses. In this
case no aggregates will form, which is consistent with experimental observations.

New moment closure methods were developed in [104] to account for time
dependent signals S = S(x,?) and nonlinear dependence of the turning rate on
internal variables via A = Ao — by; + az y12 — ---. In the general case considered
there, the shallow gradient assumption becomes /{’—OG/ S)VS-v+ %—f) ~ O(e)s™h.
As before, the implication of this assumption is the separability of microscopic and
macroscopic time scales. The same equation (79) results from the derivation, with
the directional persistence appearing as a scaling of the turning rates by a factor of
1/(1—=14). The method also applies for any finite system of internal dynamics f(y)
in polynomial form.

Chemotaxis equations in the presence of multiple signals and external forces
were also derived in [104] in the context of bacterial chemotaxis. In general cells
have multiple receptor types and thus can respond to many different signals. How
a cell integrates these different signals and responds properly depends on the cell
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Model Experiment

-3

Fig. 7 Streams in a growing Proteus mirabilis colony. Reproduced from [107] with permission

type and is not known in general. However in bacteria different signaling pathways
share the same network downstream of the receptors, and therefore different signals
are integrated at the signal processing step. In this case, the function G is generally
a function of all signals, G = G(S1, S2,- -+, Sm), and the macroscopic equation for
cell density becomes

on G G
— =V.|D,Vn— Vv vk —VS ),
P |: n— yon (851 Si+---+ 3s.. S, )] (80)
where
§2
Dy = —7——,
NAo(1 —va)
and
bs?t,
Xo

N2o(1 + Ao(1 = Yra)ta) (1 + Ao(1 — Ya)te)

Other systems may involve separate transduction pathways for different signals,
which will lead to different chemotactic sensitivities for different signals. Examples
of how this affects pattern formation are given in [75].

When there are external forces that act on cells, then F # 0 in 53, and additional
terms appear in the chemotaxis equations. For example, when E. coli swims
the flagella rotate counterclockwise when viewed from behind, and under typical
conditions the Reynolds number is very small. As a result, the motion is both force
and torque free, and thus the cell body must rotate clockwise. When cells swim
close to a surface there is an imbalance in the viscous force between the top and
bottom of the cell, which produces a clockwise swimming bias when viewed from
above [25]. When this bias is incorporated into a cell-based model of aggregation,
it leads to spiral density patterns as shown in Fig.7 [107]. This was treated as
a velocity-dependent force in a continuum description derived from the transport
equations (54), and this led to the macroscopic chemotaxis equation
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Fig. 8 (a) The positions of 10 randomly chosen cells from Fig. 7, each position recorded every
30s by a blue dot. (b) the macroscopic drift given by (79) yields a qualitative explanation of the
spirals. Reproduced from [107] with permission

?)_’Z =V (D,Vn—G'(S)n (xoVS + Bo(VS)1)) (81)

in two space dimensions [104]. Here (VS)* = (3,,S5, —0,,5)7 is a vector orthogo-
nal to VS, and the diffusion coefficient and the chemotactic sensitivities, assuming
fast excitation, are as follows:

SZ
Dn = 203 ’
20(1 = ya) + W—O%i)
b= Y5 ol = Ya) Ro(1 = Ya) + 1) — @] .
B =y + P + DR =) + )|
i wob(1 = Ya)s*(2Ao(1 = Ya) + 1)
0

T 2((o(1— ) + D2+ )R — Y + )

The parameter wy measures the swimming bias, while v is the index of directional
persistence. Notice that the swimming bias decreases the diffusion coefficient and
the chemotactic sensitivity yo, and introduces a drift or a second taxis-like term
in the direction orthogonal to the signal gradient. Since the force is not velocity-
independent here, the moment analysis had to be modified accordingly. The method
developed in [104] can be used to incorporate the effect of more general imposed
forces as well.

Equation (81) leads to an heuristic explanation of the handedness of the spirals
shown in Fig. 7. This is illustrated in Fig. 8, where the traces of 10 cells are shown in
(a), and the path of an individual cell is shown in (b). At # = t; the blue cell detects a
signal gradient (red arrow) roughly in the 1 o’clock direction, but according to (81)
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its average drift is in the direction of the blue arrow, due to the combined effects
of the attractant gradient and the swimming bias. This balance is repeated at each
successive time point, with the result that the cell approaches the signal source (the
red dot) along an inward-spiraling, counterclockwise path as shown in (a).

As remarked earlier, (79) was derived for shallow signal gradients, i.e., H =
f—OG/(S)(VS v+ %) ~ O(e) s with e = 5/(LAg) ~ 1072, It remains to be
determined whether the chemotaxis equation or its variant forms gives an accurate
representation of the population dynamics for bacterial chemotaxis under large
spatial or temporal signal gradients. This hinges on how the macroscopic quantities
relate to microscopic parameters, and, if the PKS equation fails under certain
conditions, what macroscopic equation can be derived. For an ultra-small signal
gradient, H < 0(g?) s™!, the chemotactic response of the population provides a
small perturbation, via higher order terms, of the cell density, which evolves accord-
ing to a diffusion process with D,, = s2/(N Ao) [103]. For large signal gradients
(H > 0(1)s™") the macroscopic equation should include the nonlinear effects of
the gradients in the macroscopic drift, for otherwise the linear approximation may
predict a chemotactic velocity that exceeds the cell speed, which is unrealistic
since there are no cell-cell or hydrodynamic interactions in the model. In this case
the microscopic time scale and macroscopic time scales may overlap, and new
techniques are needed to derive macroscopic equations.

In any case, the dependence of the diffusion coefficient D and the chemotactic
velocity u, on H can be obtained by stochastic simulations. Given different levels
of H, 10* stochastic simulations are performed with the same initial conditions.
The turning rate is given by A = A¢(1 — 4f"‘yl‘). The positions of the cell are
recorded every half minute, and the data was analyzed to obtain the diffusion rate
and the macroscopic drift. Figure 9 compares the diffusion rate and the macroscopic
drift inferred from the stochastic simulations of the 2D cell-based model with the
predictions from the macroscopic equation (79). It is shown that the macroscopic
description gives a good approximation for H ~ ¢'(¢€)s™!, but the nonlinearity in
the cell-based model for H ~ ¢(1)s™! can not be captured by the macroscopic
equation with its linear dependence of H. More specificly, from the stochastic
simulations, we see that the cell-based model reveals saturation in the macroscopic
velocity, and gradient-dependent diffusion rates.

4.5 Macroscopic Descriptions of Eukaryotic Cell Movement

Many single-celled organisms such as E. coli use flagella or cilia to swim, but
eukaryotic cells that lack such structures use one of two basic modes of movement—
mesenchymal and amoeboid [10]. The former can be characterized as ‘crawling’
and involves the extension of structures whose protrusion is driven by actin
polymerization at the leading edge. This mode dominates in cells such as fibroblasts
when moving on a 2D substrate. In the amoeboid mode cells are more rounded
and employ shape changes to move—in effect ‘jostling through the crowd’ or
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Fig. 9 A comparison of the cell-based and the macroscopic predictions of the chemotactic velocity
and the diffusion coefficients in 2D. Here D, and D, are the diffusion coefficients perpendicular
to and parallel to the signal gradient, resp., and Dy, is the cross diffusion coefficient. The left
column is obtained with no swimming bias, and the right column is obtained with ¢, = 0.04rx.

Reproduced from [107] with permission
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‘swimming’. Leukocytes use this mode for movement through the extracellular
matrix in the absence of adhesion sites [57]. Moreover, it has been shown that
numerous cell types can sense the mechanical properties of their environment and
adjust the balance between the modes appropriately [85]. Thus pure crawling and
pure swimming are the extremes on a continuum of locomotion strategies, but many
cells can choose the most effective strategy in a given context.

While ‘run-and-tumble’ organisms such as E. coli use temporal sensing to
modulate their motile behavior, the motile program of eukaryotic cells such as Dd
or leukocytes is more complicated. These cells are large enough to detect gradients
in extracellular chemical and mechanical signals over the length of the cell, and
can amplify small differences in the extracellular signal over the cell into large end-
to-end intracellular differences that control the motile machinery [19, 78]. Given
that these cells use spatial sensing, an individual-based model that incorporates
direction sensing and movement cannot treat cells as points, but must allow for
spatial variations in the finite cell volume (or area in 2D). Recent experiments
show that cells in a steady gradient can polarize in the direction of the gradient
without extending pseudopods [78], and thus must rely entirely on differences in
the signal across the cell body for orientation. Analysis of a model for the cAMP
relay pathway in Dd shows that a cell experiences a significant difference in the
front-to-back ratio of cAMP when a neighboring cell begins to signal [23], which
demonstrates that sufficient end-to-end differences for reliable orientation can be
generated for typical extracellular signals; everything needed is that the direction-
sensing pathways respond at least as fast as the cAMP pathway.

In addition to the fact that eukaryotes use spatial differences to measure
signals, another major difference with ‘run-and-tumble’ swimmers lies in the force-
generation machinery that drives the motion of eukaryotic cells. In the ‘run-and-
tumble’ description of bacterial motion we assumed that jumps were instantaneous,
which led to the velocity jump process. Furthermore, the reduction to a diffusion
process can still be carried through if there is a finite lifetime in the tumble state,
as long as the transitions are generated by a Poisson process [70]. In contrast, the
directional changes in eukaryotic cells are much slower and depend directly on the
signal location, and thus this has to be included in the model. This has been done
at the single cell level, using a model for intracellular cAMP dynamics, and treating
the cells as deformable viscoelastic ellipsoids that exert forces on the substrate and
one another. This more complex model also produces realistic aggregation patterns
[76], but there is a large gap between realistic, single-cell models and continuum
descriptions. Thus far only relatively simple cell-based models have been used for
the derivation of macroscopic descriptions.

One approach is to start with a Smoluchowski equation, and to postulate a
relationship between the force and the chemotactic gradient. If one assumes that the
motive force exerted by a cell is a function of the attractant concentration, one can
compute the difference between the force at the leading and trailing edges, and then
by a mean-value argument obtain a linear relation between this difference and the
chemotactic gradient [79]. In this approach the chemotactic sensitivity is related to
the rate of change of the force with attractant concentration. Support for this comes
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from experiments which show that as many pseudopods are produced down-gradient
as up, but those up-gradient are more successful in generating cell movement [93].
However, Dd and perhaps other cells, adapt to the signal, and simplified models
cannot capture this effectively [43]. Thus a different approach that incorporates
signal transduction and internal dynamics is needed.

In [23,30], a cell is described as a disk (n = 2) oraball (n = 3) B, = {§ €
R"| || & ||< o}, and the model is formulated in terms of the position of its center
x € R%, its velocity v € R”, its internal state functionsy : B, — R% and its
membrane state functions z : 9B, — R%2. Denote by y = (y,z) € Y the combined
internal and membrane state, where Y is, in general, an infinite-dimensional Banach
space.

The internal state and the acceleration are assumed to evolve according to

dy _

Y _ua.s). 83
” y.5) (83)
d

d—: — Z(x,V,5), (84)

where 4 : Y x S — Y is a mapping between Banach spaces and .% : R" x R" x
Y — R” is the force per unit mass on the centroid. Thus the acceleration depends
on the internal state. In this formulation the combined internal state y includes
quantities that depend on the spatial location in the cell or on the membrane, and
which may, for example, satisfy a reaction-diffusion equation such as

9
a—f = DAy +1(y). in B,, (85)
B(y,z) =0, in 0B,. (86)

Thus the boundary condition for y depends on the membrane state functions z,
perhaps to reflect binding or other processes such as scaffold formation. The
boundary variables in turn evolve according to the equation

% =g(z,5), in 0B, &7
ot

where S is the external signal, and this could also incorporate diffusion on the
boundary by suitably altering the equation.

Given the complexity of the single cell description, it is a formidable task
to derive macroscopic equations for populations of eukaryotic cells. A simple
model of the form (83-84) for a single cell was analyzed in [30]. This model
captures the essential features of cell movement in response to traveling waves
of chemoattractant. Moreover, in that context there is a mapping & : Y — RF,
k < oo, satisfying .7 (x,v,¥) = F(x,v, Z(y)) where F : R” xR” x R¥ — R" such
that a closed evolution equation for the variable Z = Z?(y) can be derived. Then the
cellular random walk written in terms of (X, v, ¥) can be equivalently formulated
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in terms of the finite-dimensional state variables (X, v, Z). In particular, one can
formulate an equation for the probability distribution p(x, v, Z) (cf. (76) written for
p(X,v,y) in the bacterial case). Asymptotic analysis of this transport equation leads
to a system of macroscopic hyperbolic equations that accurately reflect the dynamics
of the full system, but it is not known if that system can in turn be reduced to a PKS
equation [30]. Other approaches have been used, e.g., generalized PKS equations
have been derived beginning with a cellular Potts model [61], but the internal state
plays no role in these formulations.

5 Discussion

How cells or organisms move about in space in response to signals, and how they
coordinate their movement and form stationary or dynamic patterns is an important
question in many biological processes, including embryonic development, cancer
progression, wound healing and biofilm formation. These phenomena have been
modeled in two ways in the literature. Firstly, there are continuum models based
on phenomenological descriptions that lead to convection-diffusion equations such
as the chemotaxis equation [42] for the evolution of the macroscopic cell density
n = n(x,t). However, new experimental technology has advanced our knowledge
on how cells detect, transduce, respond to, and propagate external stimuli, and this
has led to the second approach, in which detailed cell-based models of collective cell
movement towards chemical or mechanical signals [23,90,96,107] are incorporated.
However, due to the complexity of intracellular dynamics and the large number
of cells that are often involved, cell-based models are computationally expensive,
and new techniques are needed to embed cell-level knowledge into macroscopic
equations. This is a difficult problem, comparable to deriving the macroscopic
rheological properties of a complex fluid such as the cytosol from knowledge of
the molecular interactions, and thus not surprisingly, progress has been slow.

Here we have reviewed recent progress on deriving chemotaxis equations from
space jump processes and velocity jump processes. When swimming bacteria such
as E. coli move independently towards chemical signals, their movement can be
described as independent velocity jump processes. When cells are well separated
and the signal gradient is sufficiently small, chemotaxis equations are derived from
the moment equations of the transport equation that describes the evolution of the
cell in phase space [28-30, 41, 70, 104]. When the signal gradient is large, 1D
stochastic simulations of a cell-based model show that the movement of cells is more
persistent and cells run up the gradient with very little turning. Therefore statistically
the diffusion rate decreases to zero, and the macroscopic velocity increases to
the maximum cell speed, as the signal gradient increases. This shows that under
extremely large signal gradients, the macroscopic equations for cells movement are
more of a hyperbolic type, and also reflects the fact that the low-order moments
in the internal dynamics cannot capture the strongly nonlinear dependence of the
turning rate on the signal. This is similar to what is observed in eukaryotic cells,
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which suppress random movement in the presence of strong chemotactic signals.
However in 2D stochastic simulations, bacteria moving roughly orthogonal to the
signal gradient still run and tumble, and this leads to diffusion coefficients that do
not approach zero, in contrast with the 1D case.

There are many open problems in this area, a few of which are listed below.

* A more complete analysis of the time scales and how they depend on the external
signal and the internal dynamics is needed. For example, the second eigenvalue of
the turning operator controls the rate at which the diffusion regime is approached,
but little has been done to obtain better estimates of the second eigenvalue based
on properties of the turning kernel.

e The formulation of VJ processes herein is based on the assumption that the
velocity jumps are generated by a Poisson process, but there is some evidence
mentioned earlier [64] that bacteria show abnormally long run lengths that are
inconsistent with this assumption. In general the non-streaming component of
the transport equation (54) is simply the time derivative of the stochastic process
generating the jumps, which may change depending on the signal strength, and
the use of other waiting time distributions in the VJ process should be explored.

* To date most derivations of macroscopic equations from a microscopic model
have ignored density effects, but these are important in examples of bacterial
movement and related problems. Most analyses of density effects begin with
continuum descriptions and add forces due to active motile particles [44,58], but
a more fundamental approach is needed.

* In many situations, cell-cell contact and contact-induced signaling is important
for collective movement. To describe this one must include cell-cell mechanical
interaction terms in F, and cell-cell contact signaling terms in the internal dynam-
ics. A suitable starting point for this may be to add the evolution of internal
dynamics to the (X, v) evolution described by the Fokker-Planck-Kramers-Klein
equation (15).

e As an adjunct to this, continuum-level descriptions of tissue movement based
on microscopic models, should be formulated [35], but there are many difficult
homogenization issues that arise here.

* The derivation of macroscopic equations for systems when the finite-dimensional
reduction &2 : Y — RF is not possible is an open problem. In fact the entire
formulation as a transport equation breaks down, and a new approach is needed.
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