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Abstract: The machinery for transduction of chemotactic stimuli ia tracteriunk. coli

is one of the most completely characterized signal trartsmtusystems, and because of
its relative simplicity, quantitative analysis of this s is possible. Here we discuss
models which reproduce many of the important behaviors efsystem. The important
characteristics of the signal transduction system ardatian and adaptation, and the latter
implies that the transduction system can function as avegvie sensor” with respect to the
ligand concentration in that the DC component of a signaltisately ignored if it is not
too large. This temporal sensing mechanism provides theebam with a memory of its
passage through spatially- or temporally-varying sigreddif, and adaptation is essential for
successful chemotaxis. We also discuss some of the spatiatps observed in populations
and indicate how cell-level behavior can be embedded in latipn-level descriptions.
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1. Introduction

Most organisms have developed signal detection systentsettteact information from their
environment to enable them to find food and mates, initiateld@mental changes, avoid harmful
environments or execute any of the multitude of actions atthbiors in their repertoire. Since most
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organisms maintain a clear distinction between inside arntside, many primary environmental signals
do not penetrate the organism very far, and therefore mérarior transducing an external signal into
an internal signal, and where appropriate, an internaloresp are needed. For example, at the cellular
level extracellular hydrophiliirst messengesignals elicit a response via receptors in the cell membrane
that transduce the signal into an intracellldacond messengsignal. Similarly, in the sensory systems
of higher organisms light or mechanical stimuli are trarcgdlinto an electrical signal that is processed
at a higher level. The overall process from signal to respamg&. coli, the model system described in
detail later, can be summarized as follows.

Signal Signal — Motor — Population

Detection Transduction

The response at the individual level to changes in the sigralves changes in the bias of the flagellar
motor, and this can also lead to a response in the form ofadjpatitern formation at the population level.

Figure 1. Two examples of the response of an adapting system to chamgfes stimulus
level. We show the predicted cyclic AMP (cCAMP) relay respmnas measured by the
secreted cAMP, to extracellular cAMP stimuli in the celluime mold Dictyostelium
discoideum Left: A step change in extracellular cAMP frotnto 10~8 M elicits a single
pulse of secreted cAMP. Right: The system responds and e sequence of step
increases ranging froid =% M to 10~¢ M, but at the highest stimulus the transduction system
saturates. (Fromi], with permission.)
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Signal transduction systems often filter the signal as welte not all features of a signal are equally
important. Often the important information in a signal is 8hort-term change in amplitude, rather than
the absolute amplitude itself, and many systems have evdtvégnore constant background signals,
yet remain responsive to changes in the signal. In suchmgste step change in the signal from
one constant level to another may elicit a transient changme or more components of the internal
state and some behavior of the organism, followed by a rdtuan basal level of that component or
behavior. The process that leads to termination of the respa the face of a constant stimulus is
called desensitization, habituation, or adaptation, ddjpg on the context, but here we use adaptation
when the stimulus does not provoke any gross rearrangeroemtserations in the signal-processing
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machinery, whereas desensitization may involve strukctinanges such as the degradation of receptors.
The visual system and mechanoreceptors in the dermis of naégsyprovide examples of adaptation to
certain stimuli, but this capability is very common in seryssystems. In general adaptation also involves
maintenance of sensitivity to further changes in the sigarad here we define an adapting sensory system
as one that responds transiently to a transient change sighal, returns to a basal activity level in the
presence of a prolonged constant stimulus, and retainstisgyngo further changes in the stimulus.
These characteristics are shown schematically for anatikrdar model system in Figurg detailed
models of adaptation i&. coli will be discussed later. Clearly adaptation representsra & memory,
since having it in a signal transduction system enables tgy@nism to avoid responding to a constant
signal when such a response is not advantageous. In addiyoadapting to background levels of
a signal (or equivalently, changing the sensitivity to tingpéitude of signals) the sensory system can
process a far greater range of amplitudes. In fact the rahgigmmal amplitudes that can be tolerated is
enormous. For example, the visual system in certain amgustcan detect and respond to light stimuli
whose amplitude ranges over five or more orders of magnijde [

2. Signal Transduction inE. coli

At the cellular level and higher, the response to envirortalesignals frequently involvetaxis,
which is directed movement toward or away from an externatwgus. If it is toward the stimulus
the taxis is positive, and otherwise it is negative. Manyedént types of taxis are known, including
aerotaxis, chemotaxis, geotaxis, haptotaxis, and othEng. purposes of taxis range from movement
toward food and avoidance of noxious substances to larde aggregation for the purpose of survival.
The process by which a cell alters its speed or frequency roirtg in response to an extracellular
chemical signal is also frequently called chemotaxis,calgh it is more accurate to describe it as
chemokinesis. Chemotaxis in this broader sense has bednthmosughly studied in the peritrichous
bacteriaEscherichia coliand Salmonella Typhimuriumparticularly inE. coli. In this section, we
first discuss the chemotactic behaviortf coli, then describe the biochemical aspects of the signal
transduction system. Later we discuss mathematical madelsnalysis of the system.

2.1. Cell Movement and Taxis

E. coli cells move by rotating rigid flagella in a corkscrew-like man [3]. Each cell contains
6-8 flagella distributed uniformly over the cell surfacedamhen rotated counterclockwise (CCW),
the flagella coalesce into a propulsive bundle, resulting iialatively straight “run” 4]. When rotated
clockwise (CW) they fly apart, resulting in a “tumble” whicharients the cell but causes no significant
change of location. The cell thus alternates between ruddwanbles. In the absence of stimuli, the
probability of a tumble is essentially independent of whas last tumble occurred]. The mean run
interval is about 1 s in the absence of chemotaxis; the meahléuinterval is about 0.1 $]. Both are
distributed exponentially, with shorter intervals morelpable. The mean run length is 35 [6], and
the speed may range from 20 to fth s ![5]. Because of rotational Brownian movement, runs are not
perfectly straight, and cells can veer off course by as mg¢ldain 10 s [6]. The angles between two
successive runs appear to be gamma distributgdifith a mean of68° in a medium of low viscosity
and103° in one of medium viscosity7,8]. In the absence of chemotaxis, the diffusion constant ié ce
in liquid culture is around.8 — 5.2 x 10~%cm?s~! [6,9].
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A chemoeffector alters the probabilities that the flagelil motate in a given direction, thereby
changing the frequencies of runs and tumbles, and thesalpities change in response temporal
changes in the chemoeffector concentrations detected &ycéfi. A transient increase in the
concentration of an attractant or a decrease in that of dleepéeads, after a 0.2 s. latency period,
to an increase in the probability of counterclockwise liota{p(C'C'WW)) above the baseline probability
of 0.64 H{]. For modest steps(CCW) reaches a maximum at 0.4 s, crosses below the baseline at
1 s, reaches a minimum at 1.5 s, and returns to the baselif®at 4 s. A ramp or spatial gradient
must exceed a threshold level in order to elicit a respohfp [A decrease in attractants or increase
in repellents causes a decrease(i6'C'V) [4], and the response is more rapid than that for a positive
gradient. However, the response threshold for a negatadignt is large, so that CC'W) remains at
baseline for most negative gradients encountered in the[@lil When a gradient exceeds threshold, it is
found experimentally thai(CC'W) is proportional to the time derivative of the level of cheeaptor
occupancy, and this relationship holds for concentrationa range near the receptor dissociation
constant10].

E. coli respond chemotactically to a variety of attractants andllepts over a range of concentrations
which exceed a threshold concentration but do not saturaiell'a receptors §. The response to
aspartate may range over 5 orders of magnitddg fvith a threshold o8 x 108 M [12] or
6 x 10~% M [13] (depending on what medium and form of aspartate are usetiy greak chemotactic
response at0—2 M [13]. The response is sensitive to changes in aspartate ocoppfd. 1-0.2%, which
corresponds to the binding of one or two ligand moleculescpéi{11]. If we define the gain in signal
transduction as the change in rotational bias divided byglla@ge in receptor occupancy, the gain can be
as high as 551[4]. If we define the upstream signaling gain as the ratio of #tative change in kinase
activity divided by the change in receptor occupancy, ifaga35 [15].

2.2. The Biochemistry of Signal Processindgircoli

Two essential properties of tle coli chemotaxis are excitation and adaptation, which stem from a
signal processing system comprised of five chemoreceppasty(Tsr - taxis to serine and repellents,
Tar-taxis to aspartate and repellents, Tap - taxis to digept Trg-taxis to ribose and galactose, and
Aer-taxis to oxygen) and six Che-proteins (CheA, CheW, Cl@heZ, CheR, and CheB). The signal
transduction pathway based on these proteins is depictédume2 and discussed below.

Chemoreceptors are the transmembrane methyl-acceptergathxis proteins (MCP) that bacteria
use to detect chemicals, light, or temperature. Among treediasses, Tsr and Tar are the major-type
receptors with a few thousand copies per cell; Tap, Trg, agda#e the minor types with a few hundred
copies per cell. The functional form of chemoreceptors ishcal, intertwined homodimer. Each
monomer consists of a variable periplasmic ligand-bindloghain, a transmembrane domain, and a
conserved cytoplasmic signaling domain. The ligand-lsigdilomain contains a four-helix bundle
(o1l—4 in Figure3) arranged in parallel to form a cluster of eight helices mdmmer [L6]. The helices
a1l anda4 of the bundle extend to the helices TM1 and TM2 of the tramsbrane domain respectively,
and TM2 is linked to the cytoplasmic domain. The moleculansetry generates two ligand-binding
sites, each at the dimer interface within the quasi-folixhmindle near the top of the molecule, distal
from the membrane. Aspartate binding is negatively codperan that binding of an aspartate to either
site causes an asymmetric change in the dimer that predbiaigisg at the second site.
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Figure 2. A schematic of the signal transduction pathwayEn coli. The trimer of
chemoreceptor homodimers spans the cytoplasmic memlwéhe ligand-binding domain
on the periplasmic side and a signaling domain on the cysoplaside. The cytoplasmic
signaling proteins, denoted Che in the text, are identifiedibgle letters, e.g., A = CheA.
Proteins and reactions in red promote counterclockwis&\{®tation of flagella, and those
in blue promote clockwise (CW) rotation of flagella. Receptethylation sites involved in
adaptation are shown as white (demethylated) and blackiaéed) circles.
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The cytoplasmic domain extends from the transmembrane idoamal bends back via a “U” turn
(59 in Figure3) [17]. This domain is highly conserved and the degree of sequaterdity is
maximal in the “U” turn region and declines away from the eerf1819]. The cytoplasmic domain
consists of four primary functional regions: (1) histidikimase, adenylyl cyclase, methyl-binding
proteins and phosphatase (HAMP) regial (n Figure3); (2) adaptation region, including two helixes
(o6 anda9 in Figure3); (3) flexible bundle region; and (4) signaling regierv(anda8 in Figure3). The
structure of the HAMP subdomain is proposed as two amphghdlices joined by a connector in the
monomer and a parallel, four-helix bundle in the dimer, WwHits the role in converting ligand-binding
conformational changes into intracellular signali@,p1]. The subdomains (2)—(4) in the homodimer
is a continuous foure-helix, antiparallel coiled-coil containing two helixe®im each monomer with a
hairpin turn at its membrane distal enti7]. The adaptation region of each monomer contains four or
more glutamyl residues, glutamate (E) or glutamine (Q)aled midway along the coiled-coil (circles
shown in Figure3), which can be modified by the methyltransferase CheR andritihylesterase
CheB R2-24]. These residues are spaced in heptad repeats along oneffaeeh helix 5. The
flexible bundle region contains a conserved glycine hingesisting of six glycine residues in a plane
transecting the four-helix bundle in each monomer, whidbwa its long axis to bend10° [26,27].
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The region is known to be crucial for kinase control in thabstitution of larger residues for glycine
locks the receptor in the kinase-on or -off ste2&][ The signaling region, bracketing the hairpin turn,
is highly conserved and serves as a substrate for intenawiiitth CheA and CheWZ2]. The carboxyl

terminus of Tar and Tsr carries a conserved pentapeptideE[NW\or NWESF) that binds with CheR
and CheB 28,29].

Figure 3. The structure of chemoreceptors. The schematic view of anoheceptor
monomer (left) demonstrates the primary architecture isting of ligand-binding domain
(al—4), transmembrane domain (TM1-TM2), and cytoplasmic donfafi+«9). The
cytoplasmic domain can be further divided into four funoibsubdomains: the HAMP
region, the adaptation region, the flexible bundle regiord the signaling region. The
schematic view of a chemoreceptor homodimer (middle)tilaiss the spatial organization,
and the conformational changes of the homodimer involvabdarexcitation and adaptation
phases are shown in the flowchart (right), summarized fi@th [
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In addition to the chemoreceptors, the excitation phas@ves a two-component signal transduction
system to control motor behavior, based on CheA, a histglioein kinase (HPK), and CheY, aresponse
regulator. HPK is linked to a sensory unit that detects ckamg the environmental condition and when
activated by the unit, the kinase catalyzes phosphotrafrsi@ ATP to its own histidine residue. The
response regulator, when phosphorylated by HPK, actsthjirec modify the bias of the motor, and
thereby leads to a change in cellular behaviorElrcoli CheA, which functions as a dimer, associates
with receptors as well as with a monomeric protein CheW, Wwisierves as a scaffold for receptor and
CheA, to form stable ternary signaling complexes. The cemxgd sense environmental changes and
regulate autophosphorylation of CheA in the presence of AlifPactant binding or repellent release
inhibits the kinase activity; attractant release or reggglbinding promotes it. CheY, reversibly bound to
CheA, is phosphorylated by ChgAand then diffuses to the flagellar motors. Clpehinds to the protein
FliM at the base of the motors and changes the rotationaldfitiee flagella, enhancing the probability
of clockwise rotation §(C'WW)) and therefore promoting the tumbling of the cell. The dimerotein
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phosphatase CheZ assists in dissipating CW signals by figr@heYp—CheZ oligomer and enhancing
dephosphorylation of Chgy In E. coliandS. typhimuriumthe geneeheAencodes two forms of CheA:
the full-length CheA, which plays an essential role in chemotaxis, and the shiogAg; which lacks
the phosphorylation sit[l]. CheZ binds to the N-terminus of CheAnd forms mixed oligomers, and
the CheA-CheZ complex formedh vitro shows a greater dephosphorylation activity on Ghélvan
free CheZ B1,32]. Therefore, CheA contributes to recruiting CheZ to the signaling complexesthen
CheZ-dependent localization of Che3334).

The adaptation phase involves CheR and CheB, proteinsvied@h changes of the methylation level
of chemoreceptors. CheR methylates glutamate{ F,,); CheB demethylates glutamate,; — FE)
and deamidates glutamine to glutamape-> F). The activity of CheR is unregulated, whereas that of
CheB is strongly enhanced upon phosphorylation by Ghé#us CheB is activated by feedback signals
from the signaling complexes, which generates a negategbigck loop. The methylation level of a
receptor affects the autophosphorylation rate of Che/Aan ¢ach addition of a methyl group increases
CheA activity and each removal of a methyl group decreaseg\@ltivity. Since methylation by CheR
counteracts the effect of attractant binding or repellefgase and demethylation by CheB counteracts
the effect of attractant release or repellent binding, #reyresponsible for the relatively slow phase of
adaptation to stimuli after the initial excitation phasehe® is targeted to receptors through binding
to the C-terminal pentapeptide sequence NWETF or NWESFW@imajor chemoreceptors Tar and
Tsr contain, which the minor types do n@4. The low-abundance receptors lack the docking site for
CheR and are defective in methylation. They stimulate larady weaklyin vitro and cannot support
chemotaxis when expressed alone, but they mediate strepgnses to stimuli in wild-type cells. One
explanation could be that methylation occurs via an intered process. It has been found that CheR
bound to one monomer in a Tsr dimer catalyzes the additionethyh groups to a monomer in an
adjacent dimer36]. CheB also binds to the pentapeptide sequence, but with éhrawer affinity
than CheR. Interaction of CheB with the sequence activagasethylation by allosterically activating
the receptor substrate and thereby increasing the reaetienwhereas CheR binding at the sequence
increases the enzymatic activity near the methyl-accggfintamates37).

The high signaling sensitivity and wide response rangEg.icoli chemotaxis probably stem from
chemoreceptor clusterin8,39]. Though the exact organization of chemoreceptor clustasanot been
determined unequivocally, it is known that chemoreceptomn stable homodimerslp,40-44], that
three homodimers assemble into a trimer of dimé&fg45-48], that a large number of trimers cluster
into an approximately hexagonal arrad9F55], and that several arrays localize at the cell po&§.[
First, the trimer of dimers is formed through direct diméndr interaction at the helical hairpin tips,
and the trimer contact residues are identical in all five $yplechemoreceptord}]. The homodimers
within a trimer can be either pure-type or mixed-type, whiethects the relative cellular abundandéjf
Receptors still form trimers of dimers in the absence of otteemotactic proteinsdf], but without
CheA or CheW, trimers exchange their dimer members, anddarptesence of both, the exchanges
do not take place47]. Thus, CheA and CheW stabilize trimer assemblies, prgbtirbugh binding
interaction with receptors. However, overexpression a&\Whnterferes with trimer formation, probably
because bound CheW masks the trimer contact surfd@dss], and CheW competes for binding sites
on receptors with CheA5[7,58]. The stoichiometry of receptors, CheA and CheW in the tgrna
signaling complex has not been firmly established. Thougkrsé earlier studies reported different
results p8-61], the recent studies presented the consistent stoichig@EMCP : CheA : CheW =6 :
1: 1, suggesting that the ternary signaling complex is ca@agmf 2 trimer of MCP dimers, 1 CheA
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dimer, and 2 CheW monomers455,62]. An in vivo study estimates the stoichiometry as 3.4 receptor
dimers/1.6 CheW monomers/1 CheA dimer, suggesting thaethary signaling complex is composed
of one trimer of MCP dimers, one CheA dimer, and two CheW mossnel]. Secondly, in respect
to the larger patches of MCP-CheA-Chew signaling compléiRas are roughly hexagonally packed,
about 80 percent are located at one or both cell poles ancegeare distributed in non-polar, lateral
patches at future division site63. The polar patches are mobile within the curved membranéef
pole, and the lateral patches are fixé8][ The patches appear circular or ellipsoid with varyingesiz
and an average diameter 250 n®d][ The patch size is not variable with the expression levéllGfP,
CheA and CheW, and the packing density is slightly variabta e culture conditions33]. Recently,
two imaging studies show that the hydrophobic interactietwieen CheW and CheA (the P5 regulatory
domain) connects the trimer of dimers into an extended fena@geceptor arraysy,55]. Lastly, as to
polar localization, knock-out of CheA or CheW reduces theber and size of polar patches, especially
CheW, while CheY, Chez, CheB and CheR are not requiB&®bfl]. Localization and clustering seem
independent since the minor receptors Trg and Tap are dsficielustering if locked in the state of
fully inhibited CheA , but polar localization is not alterggb).

Table 1. Structure-function relationship of chemoreceptor clissieE. coli chemotaxis.

Dimer Trimer of dimers Cluster of trimers
Ligand binding ‘&> Yes ves
minimal structural unit
Adaptational Yes Yes Yes
modification minimal structural unit
Transmembrane Yes Yes Yes
signaling minimal structural unit
Kinase activity No Yes Yes
control minimal structural

unit, core functional
unit (maximal kinase

activation)
Coonerativit Low Moderate High
P y Hill coefficient~1 Hill coefficient~2-3; in Hill coefficient>3; in

wild-type cells and some cheRcheB mutant strains

cheR/cheB/cheRcheB with Tar or Tsr highly

mutant strains overexpressed, in receptor
Tsrin vitro

With the preceding description of the structure of the cheoeptor clusters, which involve multiple
levels of organization, at hand, we discuss the structumetfon relationship (summarized in Taldlp
The receptor homodimer is the minimal stable structurat einieceptor clusters. A single homodimer
is able to perform ligand binding, signal transmission frpariplasm to cytoplasm, and adaptational
modification, all of which are not dependent on the dimeratimteraction, but fails to perform CheA
kinase activity control and thus chemotactic respod8&p]. The trimer of dimers is a core structure in
chemoreceptor clusters and plays a central role in the laignfanction. It is structurally the smallest
stable signaling complex when bound with CheA and Ch&W4b-47], and serves as the architectural
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unit of the larger receptor arra}9-53]. Functionally, the trimer of dimers is the minimal sigmegiunit,
and is necessary for most of the functions (Tak)lerhe homodimer fails to control CheA kinase activity,
and compared to other larger clusters, the trimer of dimassthe maximal kinase activatioad,66).
The interaction among dimers within a trimer is probably enonportant for the signaling function
than the longer-range interaction among trimers, congigehat the extremely high cooperativity of
receptors (the Hill coefficient measured in kinase actikggponses is larger than 3) is only observed in
two special cases, the responses byctieRcheBnutant cells with Tar or Tsr highly overexpress&d|[
or by the receptor Tsin vitro [67], while in wild-type cells and othecheRcheBnutant strains, the
cooperativity is moderate (the Hill coefficient is less tI®BnA recent study on CheW provides indirect
support for the central role of the trimer of dimers, in thaemotaxis is reduced in cells with CheW
overexpressed, because the excess level of CheW prevergs fiormation p6]. In evolutionary terms,
the structural unit of a trimer of dimers and the underlyirgnaling mechanism are highly conserved
and could be a universal architecture for many bacteriatispdb?2).

Finally, we discuss the conformational aspect of the siggamechanism of receptor clusters.
A homodimer is usually treated as a two-state (active or tim&c switch. Ligand binding,
methylation/demethylation, and interaction with neighibg receptors can shift the equilibrium between
the two signaling states in a dimer. In more detail, attrictanding initiates a piston-like sliding
of the transmembrane signaling helix (TM2 in FiguBetowards the cytoplasm along its long axis
perpendicular to the membrane, by0.15 nm B8], and adaptional modification reverses the motion
and drives the movement towards the periplasm. The contana signaling of the HAMP region is
not clear yet, but presumably it interconverts the ligantlirig-induced sliding of the transmembrane
helix and the conformational change of the adjacent adapteggion. The signal conversion should not
involve large helical displacements in that the HAMP domuaihich is constrained by disulfides across
the two helices or the adjoining subunit interface, stahsmits the attractant-generated sign2is44].
The conformational signaling of the adaptation region imes weakening or strengthening the
subunit interactions of the domain corresponding to theoofion state, respectively. The ligand
binding-induced signal changes the subunit interfacetétddzed by attractants and stabilized by
repellents) through mechanical forceBl69], and methylation/demethylation alters the interface via
electrostatic forces70]. Specifically, the glutamates and several other side shkinated in the
interface are anionic, and covalent neutralization of tlhgmmethyl esterification or amidation stabilizes
the interface and activates the kinase. The flexible bureligon enables the cytoplasmic domain
to bend and/or twist, increasing (kinase deactivation) exrelasing (kinase activation) its flexibility.
The conformational change of the signaling region is stiller investigation, but like the adaptation
region, the subunit interface seemingly plays an impontalethere in that some mutations at interfacial
locations lock the receptor in the active stadd,71]. When extending conformational signaling to
the scale of trimers of dimers, a recent study proposes astate- model for kinase control (trimer
expansion or closing, corresponding to kinase deactivaircactivation, respectivelypp]. Attractant
binding drives piston sliding of the transmembrane helioire dimer member of a trimer, then the
displacement induces bending of the dimer around the HAMRailo, and finally the trimer of dimers
expands, leading to kinase deactivation. Two other cordtional changes have been suggested to take
place when the trimer of dimers changes staB&} [rotation of the periplasmic domain of each dimer
about its long axisq2], and tilting of dimers relative to the central trimer axi&3[74], both of which
could be driven by the change in flexibility of the four-helinndle in the cytoplasmic domai@7,70].
With respect to the larger receptor clusters, the mecharesnains open. The advanced imaging for
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chemoreceptor arrays by cryoelectron tomography suggiestshe interconnected CheA and CheW
proteins might serve the molecular basis for the conforonali spread throughout the receptor array
of an attractant signal originating at one MCP dim®4,55]. A more comprehensive review is given
in [30]; we turn next to some general considerations about elaitaind adaptation and then describes
mathematical models of signal transductiorkincoli.

3. Models of Signal Transduction and Adaptation

The chemotaxis signal transduction systenkincoli must cope with a wide range of changes in
ligand levels that are transduced into the bias of the flaged the level of Che). It was predicted
theoretically [/5] and later verified experimentally§] that much of the observed gain arises either in
the interaction of Chep with the motor, or from interaction between motor subunits.a result, small
changes in Cheyare strongly amplified in either or both of these steps, aackfore it is necessary that
CheYp return to a level close to its prestimulus value after a ceandigand concentration. Otherwise
there would only be a narrow range of ligand concentratiores which the bias does not saturate (at
one or zero). Thus to maintain both sensitivity and resp@m&ss to a wide range of ligand levels, it is
necessary that the tumble signal adapt, to return to a level very close to its prestimulus valuel &n
it returns to exactly its prestimulus level for all ligandwentrations we say that it adapts perfectly.

This raises the question as to how adaptation can be ensuradsystem of chemical reactions.
To illustrate that this is not easy to answer in general, weeole that for any network of chemical
reactions, adaptation of a given component does not nedgssesure adaptation of a particular species
located further “downstream” in the kinetic pathway. Thessdemonstrated with several schematic
counterexamples in Figure

In addition to the problem inherent in specifying an upstrealapting quantitg priori, some models
invoke unwarranted restrictions on the system’s kineticerder to facilitate calculation of the steady
state levels of the upstream quantity. Goldbeter and KashJa7] assume that a receptor cannot be
both methylated and free of ligand at the same time. AsakndaHonda 78] likewise assume that
certain receptor states cannot be attained, and furthemmesshat the ratio of the methylation and
demethylation rates is the same for each methylation dtaéé a receptor generating a tumble signal
cannot be methylated, and that an attractant-bound racegtoneither be demethylated nor generate a
tumble signal, regardless of its methylation state.
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Figure 4. Examples of various adapting and non-adapting systespé. gignal transduction
pathway in which a specified upstream quantity adapts, beitottput species further
downstream does not, because the output depends on a nmmgdaibcomponent of the
upstream adapting quantityg)(Similar to that in &), except that here the upstream quantity
does not adapt, but the subcomponent adapts, and so thd spguies adapts as well. We
will see later that one may think of the adapting subcompbagthe sum of the states of the
receptor containing phosphorylated CheA, and the upstreaadapting quantity as some
other function involving the various phosphorylated anghosphorylated states¢)(An
example of a signal transduction pathway in which a specifjgstream quantity adapts,
but the output species further downstream does not, betlaeseitput depends on both the
adapting quantity and another non-adapting quantifyAq example of a signal transduction
pathway in which a specified upstream quantity adapts, keitotitput specified further
downstream does not because it depends on an intermedizgssem which possesses
more than one stable steady state. Transient changes ipslream quantity may cause the
intermediate subsystem to reach a steady state diffex@ntifs prestimulus state.

@ Stimulus (b) Stimulus © Stimulus (d) Stimulus

Adapting system

Non-adapting subcomponent

y
Output Output Output Output

3.1. Adaptation in Model Systems

In view of the fact thaad hocassumptions may lead to models with limited applicabiiitg, present
a method for determining relations among rate constantshylwhere applicable, ensures that perfect
adaptation occurs. The method is applicable to a varietyhefracal systems, requires r@opriori
assumptions regarding a second adapting quantity, andglaw restrictions on the kinetics. By perfect
adaptation, we mean that there is a species in the tranedymsithway whose concentration changes
transiently in response to a change in the level of some &iBnbut whose steady state concentration
Is independent of the stimulus level. Our analysis dealk Wie question of what guarantees that the
quantity in question returns to its basal level; the questibwhether the transient response is suitable
must be answered a case-by-case.

As we will see later, the signal transduction system in alsifgcteriuum can be described by a
finite number of state variables and an evolution equatiahdktermines how the state changes under
prescribed inputs or stimuli. We denote the state vectai(by e R" and write the evolution equation

in the form J
U
— =F(u,S 1
o = F(u,S) (1)
whereS € R represents the stimulus or input to the system. In generaaage inS leads to a change
in the transient and steady-state values obut in systems that adapt, some functional:cfhould be
independent o when S is time-independent. Thus suppose that the resp@hsé the system is a

functionalG of the state: given as follows:

R(7) = G(u(7)) (@)
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More generallyG could depend on the derivatives of the state variables; gasit history, or directly
on the stimulus and its derivatives. If we only consider eyst whose “basal dynamics” are time
independent, which means that the system has an asympyositable steady state in the presence
of any constant stimulus, we can define perfect adaptaticonstant stimuli as follows.

Definition 1 The respons® of a system whose dynamics are governed by Equal)da $aid to adapt
to constant stimuli if the steady state response is indegretimaf the magnitude of the stimulfis

Evidently this definition allows for the trivial case whénis independent of, in which case there is
no change in response to any changes'inFurthermore this definition of adaptation does not imply
that the steady state values of all variables must be indiEpeerof .S, and in fact some of the state
variables must generally change to compensate for the lstsmahanges. In the case Bf colithe
methylation level compensates for the background sigwal leand thus does not adapt. The reader can
consult [75,77,79-8]] for a review of models that involve adaptation, includingrse for bacterial
chemotaxis and adenylyl cyclase. A very general result tieines the structure necessary in a
dynamical system in order that it can adapt is giver8ig].[

A widely-used model system that illustrates some of thergeddeatures of an adaptive system is
given as follows. Suppose that there are two internal s@tabiesu; andu,, and that these variables
evolve according to the following equations.

duy F(S(1)) — (uy + uz)

dr T, 3)
duy _ f(S(7) =y
dr T,

In these equations the functigit-) encodes the signal transduction steps, and it should hayedperty
that f(0) = 0. For concreteness we suppose that the response is pro@bitioo.,, i.e, G(u(r)) =
au (7) wherea is a constant. Then this simple scheme can be viewed as hawingput pathways, an
excitatory one in which the stimulus increases the produatif v; and hence increases the response,
and an inhibitory one that increases the productiomofvhich in turn shuts off the response.

Since this system is linear, the solution can be obtainedulagligature once the stimulus is specified.
For the special case in whiaeh (0) = u(0) = 0 and.S(7) is a step function of amplitud§, that turns
on atT = 0, the solution is as follows.

M(B—T/m _ e_T/Te)

Tq + Te

uy = f(So)(1—e ™)

Uy =

(4)

Thus the response occurs on two time scales, the scale ¢&owj which is characterized hy, and
the scale of adaptation, which is characterized by-rom this one sees thatif << 7,, then whenever
T >> 7., u; relaxes to

uy ~ f(Sp)e” ™™ = f(Sy) — ua(7)

This is just the pseudo-steady-state value:pfvhich is gotten by settingu; /dr = 0. On the other
hand, if7, << 7. then adaptation is rapid compared to excitatiopnever rises significantly above
zero, and there is no significant response. The typical resptor a single step in the stimulus when
T, < T, IS shown in Figures(a), where one can see that when the system begifis at,) = (0,0)



Int. J. Mol. Sci.2013 14 9217

neitheru; noru, exceedsS;. The response to two step changes that are well separatqzhoearto the
adaptation time are shown in Figusé).

We note from Equation3) that when the stimulu$(7) is constant the steady state levelwafis
zero, i.e.,, the response adapts perfectly to any constant stimulughbuevel ofu, does not adapt.
Moreover, when, << 7, the system is excitable in the following sense. The res¢ stethe absence of
a stimulus (uy, us) = (0,0)) is asymptotically stable, but a brief stimulus of the proype can produce
a significant response, followed by a return to the steadg.stdus iff is linear, if the system is initially
at(0,0), and if S(r) = S; for 7 € (0, 7.) and zero thereafter, then will rise to approximately.5; /3
and then return to zero. Usually an excitable system is densdl as one that has a threshold and shows
anall-or-nothingresponse, such as the firing of a neuron, depending on theituwégiof the stimulus.

In contrast to this, the response of the present systgmadedin that there is a response to any stimulus
level. Other excitable systems that show a graded ratherahall-or-none response occur in models of
intracellular calcium dynamic8B-85|.

Figure 5. The response to singl@)(and multiple p) steps in the signal for the model
adapting system described by Equati8hwhen f is a linear function.

Yo Y2
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This simple model illustrates some of the basic featuresssary in an adapting system, but there is
no explicit biochemical basis for it. However the excitatvariabley, can represent the active state of
a ligand-occupied receptor, whereas the adaptation Var@iuld represent an internal variable that
desensitizes the receptor. Of course the actual physicaitijies should remain non-negative. A
more realistic four-dimensional model, which is sometirnaled the adapting box model, was first
proposed and analyzed by Katz and Thesl86] [in a study of adaptation produced by acetylcholine
at the motor end-plate of frog muscle, and more general fomere subsequently used by others in
a similar context @7] and references therein). More realistic modelsEorcoli are described in the
following sections.

4. Models of Signal Transduction inE. coli

E. coli chemotaxis has been the subject of various mathematicatlmgdstudies since the early
1970s (Table?). In recent work the focus of the models has changed from #séclexcitation and
adaptation properties of the signal transduction pathwagther properties of the system, such as
receptor clustering-induced cooperativity and sengjtiviThe modeling methods have ranged from
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classical chemical kinetics to statistical mechanics, #edsimulation techniques used have varied
from numerical methods for deterministic differential atjans to Monte Carlo methods for stochastic
processes. Quantitative modeling has played a significéentm understanding this system by providing
a framework for interpreting existing data and stimulatimgy experiments, with the result that the
multitude of experimental results are beginning to fit intibaerent picture.

Table 2. Mathematical models of bacterial chemotaxis (1982—-2012).

Excitation, adaptation, and robustness

Model

Methods

Assumptions and Outcomes

Goldbeter and Koshland ODE

Jr [91]

Includes ligand binding and one-site methylation; Uses-state
assumption (methylated and demethylated); Demonstraseperfect
adaptation could be achieved via methylation whose reaatives
depend on receptor occupancy.

Block et al.[10Q]

ODE

Uses two-state assumption (CW and CCW); Includes atiapt
Demonstrates that transition between the run and tumbkssi@pends
on adaptation to the sensory input.

Asakura and Hond&/B|

ODE

Includes ligand binding and multiple-site methylatidJses two-state
assumption (methylated and demethylated); Shows adaptat
attractants and repellents at both low and high background
concentrations via multiple methylation.

Segelet al.[92]

ODE

Similar with Goldbeter and Koshland JB1] but allows receptor
modification to occur on both ligand-free and ligand-bouwskptors.

Brayet al.[93]

ODE

Includes ligand binding, phosphorylation cascade mmotor control;
Reproduces the motor bias response to step changes inaitsaand
repellents ; Does not include methylation/demethylatioth amodel for
adaptation.

Bray and Bourret34]

ODE

Models the ternary MCP/CheA/CheW signaling complexTfation and
adds it into Brayet al.[93] to study the effect of the signaling complex
formation on motor bias.

Hauri and Ross1[13

ODE

Models the complete signal transduction pathway apdocuces the
excitation and adaptation phases of bacterial chemotaxighe
experimentally agreed timescales; Assumes that CheA
autophosphorylation rate dependent on the methylatiorl lef
receptors.

Spiroet al.[75]

ODE

Models the complete signal transduction pathway wétiuced three
methylation states and reproduces excitation and adaptati the

experimentally agreed timescales. Assumes the autopbpgption

rate increases with the methylation level, the methylatiate is

greater for attractant-bound than attractant-free receptand the
demethylation rate is independent of ligand binding of ptaes.
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Table 2. Cont
Excitation, adaptation, and robustness
Model Methods Assumptions and Outcomes
Barkai and Leibler§6)  ODE Includes ligand binding and methylation/demethylati for a

three-component system (MCP, CheR and CheB); Uses twe-stat
assumption (active or inactive for receptors); AssumeisGhaR works

at saturation in a constant rate and CheB acts only on aceptors

in a rate independent of ligand binding; Shows perfect ategt of
receptor activity and robustness of the ratio of adapteddststate
receptor activity over prestimulus activity for a wide rargf parameter
values.

Levinetal.[114 ODE Investigates the effect of changes in chemotacticgmogxpression
levels on the concentration of ChgYand compares the fine-tuned and
the robust adaptation models in this aspect.

Morton-Firth and Bray Free-energy-based Includes phosphorylation cascade; Simulates the temfflacbiation

[99] stochastic simulation of CheYp.

Morton-Firthet al.[99]  Free-energy-based Includes phosphorylation cascade (based om®5])[ and

stochastic simulation methylation/demethylation (based o®€]); Assumes that CheR
only methylates inactive receptors and Cheily demethylates active
receptors; Shows excitation and adaptation;

Yi etal.[8]] ODE Analyzes the Barkai and Leibler's model and shows aregrdl
feedback control imbedded in the system that leads to rgiersect
adaptation.

Almogy et al.[115 ODE Proposes an alternative adaptation mechanism thathiesugh

dephosphorylation of Chgy by both CheZ and the ChgACheZ
complex rather than methylation/demethylation of recepto

Mello and Tu fL1§ ODE Studies the robust adaptation problem analyticallg proposes six
conditions for achieving perfect adaptation, confirmingst key
assumptions that Barkai and Leibler uSé|[

Arocena and Acerenza ODE Studies the response range of bacterial chemotaxis,shods the

[117 wider range when receptor modification is through methgtatand
phosphorylation than through attractant binding.

Kollmannet al.[11]] ODE Uses a simplified signaling network only including aggexmethylation

site; Shows the robustness to the intercellular variatiochiemotactic
protein concentrations arising from gene expression, hadariation
of CheYp is much smaller than that of other proteins.
Tuetal.[112 ODE, mean-field the- Simulates chemotactic responses to time-varying exp@ieramp,
ory sine wave, and impulsive signals.

Receptor clustering and signaling sensitivity

Brayetal.[11§ probability analysis Conceptual model; Shows that remeplustering and conformational
spread among neighboring receptors can explain high satysit
Shiand Duke 97] statistical mechanics, Ising-type model and mean-field theory applied; Shows teeg¢ptor
Ising model coupling strength affects response more than attractadtriy.
Duke and Bray]19 Monte Carlo meth- Monte Carlo simulation of97]; Shows higher signaling sensitivity
ods than the uncoupled system and ability to respond to over fidercof

magnitude of attractant concentrations.
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Table 2. Cont

Receptor clustering and signaling sensitivity

Model Methods Assumptions and Outcomes
Shi [99] statistical mechanics, Adaptive Ising-type model with CheR, ChgB and their negative
Ising model feedback effect on receptor activity included; More robiltn P7]
because of relaxation of the filed strength assumptionswSHhuagh
sensitivity.

Shi[12q Ising model Compares simulations of the model87,98] with experiments
and shows good agreement on the ratio of attractant binding t
receptor-receptor interactions, the adaptation time, el ag the ratio
of pre- and post-stimulus CheA phosphorylation.

Shi[12]] Ising model, Monte Considers the receptor movement and allows them to floatwSho

Carlo methods

strong correlation for neighboring receptors and expaakdécay with
increasing receptor-receptor distance.

Levinetal.[122 Monte Carlo Studies effect of binding and diffusion of CheR through ptoeclusters
methods with the model 99]; Shows that if binding is within the physiological
limits, CheR can access and modify a large number of recgjtofuster.
Shimizuet al.[123 Ising model, Ising modelincorporated int®p]; Compares effect of receptor array size

free-energy-based
stochastic simulation

and geometry on sensitivity, gain and signal-to-noiserakieproduces
overshoot.

Mello and Tu fLOQ

Ising model

Deterministic version of Ising-type model; cludes receptor
interactions between Tar and Tsr; Includes methylatiank&tlylation
(same assumptions a9g499); Reproduces the FRET data on
cheR/cheB/cheRcheBhutant and wild-type cells 15] using two
different parameter sets.

Mello et al.[124]

Ising model,
mean-field  theory,
Monte Carlo
methods

Mean-field theory applied to and Monte Carlo simulation1d(.

Goldmanet al.[10]

Lattice gas model,

Applies 2-D lattice gas model of protein association to cbesneptor

Monte Carlo clusters.
methods

Sourjik and Berg 39| MWC model Applies MWC model to explain their FERT data.

Albertet al.[107 ODE Model for dynamic formation of trimer of dimers; Assumthe time
scale of association and dissociation of trimer of dimemsgarable to
that of ligand binding and kinase activity, which was disg® later by
experiments103.

Raoet al.[13( MWC model Model of static trimer of dimers; Reprodudeitro kinase activity data
on Tar [L04 and Tsr p7] as well asn vivodata on mutant cellsLp]

Mello and Tu fLO7] MWC model Generalizes MWC model for allosteric interantiand multiple signal
integration in heterogeneous receptor clusters; Repesiuteasured
responses for 14 mutant strains with varied expressionsevieTar
and/or Tsr B9.

Keymeret al.[10€] MWC model Proposes two regimes for a two-state receptginre | is characterized

by low to moderate kinase activity and a low, constant irtlahinumber
for half-maximal activity K;, in which coupling of receptors leads to
high sensitivity (in the case of wild-type amtieRmutant cells); regime
Il is characterized by high kinase activity and a high, increasing
with the methylated level of receptors, in which couplingde to
high cooperativity (in the case eheRcheBnutant cells); Accordingly
proposes a modified MWC model; Reproduces Sourjik and BERET
data f15].
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Table 2. Cont

Receptor clustering and signaling sensitivity

Model Methods

Assumptions and Outcomes

Endres and Wingreen MWC model
(110

Adaptation model based on ‘assistant-neighbmitbo105, using the
key assumptions on CheR and CleBs P6,99; Incorporates the
MWC model [L0§; Shows sensitivity and adaptation for mixed-type
receptors observed inl}]; Suggests two limits of adaptation to
attractants: (1) saturation of ligand binding sites on pémes; (2) full
methylation of receptors.

[129 MWC model, Ising Compares activity response of receptor clusters generéed
model one-dimensional Ising-type model, two-dimensional Isiyige model,
and two-regime MWC-type model; Shows that the outputs ofjgiype
models are not consistent with the FRET data on activity aeses
to steps of attractants for wild-type amtheR mutant cells 15],
which the MWC-type model can reproduce; Suggests strooglypled
receptor clusters.

Mello and Tu fL.2§ MWC model Studies the mechanism how the cells maintain Bigsitivity over a
wide range of backgrounds based on a simplified versiorl @7][for
homogeneous receptor complexes.

Endreset al.[13]] statistical mechanics, Model of static trimer of dimers; Reproduc#svitro kinase activity

MWC model data on Tar104108109.

Parket al.[132 sensitivity analysis Performs sensitivity analysis fomier of dimers and shows enhanced
signaling sensitivity compared with dimers.

Hanseret al.[127] MWC model Robust adaptation model extended frar{ including binding and
unbinding of CheR and ChgR Analyzes adaptation limits from the
angle of CheR and CheB kinetics.

Endreset al.[133 MWC model, statis- Determines the sizes of signaling clusters through besidith vivo

tical method FRET data with the modellp€ using statistical PCA method; Shows
the cluster sizes increasing with methylation levels.

Hanseret al.[134] statistical mechanics, Model of dynamic signaling clusters of trimers of dimers,eth

MWC model boundaries of which are variable in simulation; Shows sjssn
coupling of active trimers of dimers than inactive.

Meir et al.[12§ MWC model, ODE Analyzes the characteristics of precisepgatéon and finds the asym-

metries (.e., different adaptation time) in responses to addition and
removal of attractants; Proposes two possible sourcegafymmetry:

(1) dynamic phosphorylation of CheB and (2) scarcity of mittion
site.

Clausznitzeet al.[144 MWC model, ODE

Studies the dynamics (time courses) of atapt and evaluate the
existing adaptation models.

Khursigareet al.[53] MWC model

Study with experiments and simulations combjn&dutoff distance
used to determine the range of interacting receptors andifeeof
signaling receptor clusters variable; Shows that the sife o
receptor arrays is relatively stable, non-correlated vtit protein
expression level, and the packing density is slightly \éhiredifficult
growth media.

Xin and Othmer 143 ODE

Model of trimer of dimers; Simulates dynamics for theemall
pathway; Explains a line aifh vitro kinase activity data on Tar and
Tsr [67,104108109 and in vivo FRET data in mutant cellslp]
with the single trimer without higher-order clusters; Sisoenhanced
sensitivity and robustness to protein expressions gestbiay trimer
of dimers.




Int. J. Mol. Sci.2013 14 9222

Table 2. Cont
Other features
Model Methods Assumptions and Outcomes
Raoet al.[13] ODE Compares signaling pathways betwedn coli and Bacillus

subtilis Shows robust adaptation in both pathways Busubtiliscan
perform methylation-independent chemotaxis because istezce of
CheV-CheY pathway.
Lipkow et al.[135 spatiotemporal 3D stochastic simulation of CheY phosphorylation, Che¥gh
stochastic simulation diffusion, CheYy binding to FliM and dephosphorylation; Studies
effects of CheZ localization, motor position, and macroscalar
crowding on spatial concentration of ChgY Shows a constant
concentration of Chey throughout the cytoplasm when CheZ is
restricted to anterior ends and an exponential gradiensache length
of the cell when CheZ diffuses freely.
Lipkow [13€] spatiotemporal Studies the effect of CheZ localization; Suggests thattetirgy of
stochastic simulation CheZ-CheA-CheYp at the cell poles, introducing a negative feedback
to the CheY, level, serves a secondary adaptation mechanism and
explains the overshoot of Chg¥n cheRcheBnutant cells.

Endres 137 statistical mechanics  Free energy-based model for faomat clusters of trimer of dimers;
Studies the determining factors of the size of polar recegtsters.

Robertset al.[139 ODE Develops a control engineering method and appliesatuoidating the
signaling pathways dRhodobacter sphaeroidesemotaxis.

Tindall et al.[14Q ODE Studies the signal integration mechanisnRimodobacter sphaeroides
chemotaxis.

Hamaderet al.[141]] control theory Studies the feedback configuratioRbbdobacter sphaeroideShows

the role of cascade control in achieving robust functions.

We first focus on theoretical studies of the excitation andpgation characteristics of the signal
transduction pathway and the underlying mechanism foresystobustness. The early modeling
studies were directed toward understanding the obsenagataitbn in bacterial chemotaxi410,88,89].
Macnab and Koshland9()] proposed a conceptual network for chemotactic responseshich a
response regulator is upregulated by a fast enzyme actwity downregulated by a slow enzyme
activity, and later Koshland proposed that methylatiomd#hylation of receptors was probably the
source of the slow enzyme activitydd]. Block et al. [4] postulated a two-state assumption for
the system and then formulated a deterministic model trdtidies a description of adaptatiohd].
Goldbeter and Koshland proposed the first adaptation mdalincludes the ligand binding and
one-site methylation reaction87]], and Segel and Goldbeter modified the model by allowingptxe
modification to occur on both ligand-free and ligand-bouedeptors 92]. Asakura and Honda7g]
extended Goldbeter and Koshland’s model to multiple-sigthylation. Brayet al. [93] first modeled
the excitation response of chemotaxis using a simplifiedrort without methylation and demethylation
and later added a hypothetical reaction network for foramatif the ternary MCP/CheA/CheW signaling
complexes94]. Hauri and Ross]13 developed a model of the signal transduction pathway ttfabés
both chemotactic excitation and adaptation to attractantsrepellents. Spiret al. [75 developed a
model of the complete pathway based on three methylatitesdtiaat included the phosphotransfer steps,
and showed that the model accurately reproduces the step,aad saturation responses to aspartate
on the correct time scales. That model was used predict thighaHill coefficient> 11 in binding of
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CheYp to FliM is needed to explain a modest gain 3 to 6 in the absehceaperativity upstream in the
signal transduction pathway, and this was later confirmgeementally [6].

A long-standing question is how biological systems mamtai stability of their functions in the
face of perturbations of parameters or state variables @sicbaction rates or molecular concentrations.
Barkai and Leibler 96] constructed a signal transduction model that includeslitdnd binding
and methylation/demethylation reactions among three corpts (MCP, CheR and CheB), and the
model shows robustness of the ratio of adapted steadysstatem activity over prestimulus activity.
Following earlier two-state models for the receptor, theadethe key assumptions that each receptor
is either active or inactive, and that CheB acts only on acteceptors at a rate that is independent
of ligand binding. The direct coupling between kinase aigtiand demethylation rate provides an
integral feedback control in their model and leads to rolpestect adaptation, as was demonstrated
later [81]. However, the robustness of the output of the system sudheasoncentration of Chgy
or the rotational bias of flagellar motors was not addressext <CheY was not included in the model.
Later, an experimental study showed that the working rarfgiaeo concentration of Chgy for the
proper response of flagellar motors is so narrow that thel lelv€heYp in adapted cells can vary
only about one-third from its optimal valu&§], which indicates that the stationary concentration of
CheYp should be tightly controlled. Kollmaret al.[111] showed that the signaling network topology of
E. colichemotaxis (with only a single methylation site considgiedobust to the intercellular variation
in chemotactic protein concentrations arising from gern@&ssion, and the variation of Chg¥ much
smaller than that of other proteins, and this has been coaditoy the experimental finding that the cells
maintain the concentration of Chg¥n the right range and still remain chemotactic upon up tef6lé
overexpression of all proteins in the systebi]]. It was also reported that the fine-tuned adaptation
systems 75,113 behave differently than the robust adaptation syst@@h lvhen examining the effects
on the level of Che)§ and the motor bias by the coordinate overexpression of\atirsghe-genes 114].
Other analyses, both deterministic and stochastic, a@ides in Table2.

A comparison of the fine-tuned and the robust adaptation lmaetiews that the significant difference
lies in the treatment of methylation by CheR and demethyeltly Chely especially the latter. In the
fine-tuned systems/p,113, CheR and Chep can modify receptors in all states, while in the robust
ones P6,99111116, CheBy can only access receptors in the active state and CheR imdctivie
state (except ing6], where CheR is assumed to work at saturation in a constesmbraall receptors).
Though a mechanism of the receptor activity-dependentytatbn/demethylation leading to robustness
of adaptation has been proposed theoretic8iyl[1]], it remains to confirm it experimentally.

Next we review a large number of models that employ a recegbiistering-based explanation for the
high signaling sensitivity, large transduction gain, andexdynamic range of the signaling system.
Brayetal.[118 proposed that receptor clustering could account for treenled sensitivity and dynamic
range. Each receptor existing in an extended lattice iotenaith its neighbors and conformational
spread occurs from ligand-bound receptors to neighbor$abat low concentrations, deactivation
of a single receptor is magnified and can inhibit the phosghtion cascade to the flagella, while at
high concentrations, the methylation/demethylationizetl adaptation can free those affected receptors
to respond to further changes. Thereafter, many models dianerged, and we separate them into
two categories.

Category |I: The models in this category are based on the hgpi® that receptors exist in an
extended, weakly-coupled lattice network and use the igipg framework. As an implementation
of Bray’s idea [L1§, Shi and Duke first adopted the Ising model developed forofaagnetism to
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the chemotactic signaling. This application was based enstmilarity of the two systems, in that
each unit of the lattice lies in two stable states, activenaciive, that the probability of being in
a state state is determined by not only its own propertiesalsd the states of its neighbors, and
that the ligand input could be treated as a magnetic field. [ A Monte Carlo simulation of the
model shows that a two-dimensional lattice of coupled remspgenerates the higher sensitivity to
external stimuli and the wider functional range of ambiegamd concentrations than an array of
independent receptord19. Shi extended the previous modél7] by incorporating the effect of
CheR and Chep, and made a perfectly-adapting Ising modis][ Then Shi compared the theoretical
predictions of his models9[7,98] with the experimental measures and found good agreemettieon
ratio of attractant binding to receptor-receptor intamaw, the adaptation time, as well as the ratio of
pre- and post-stimulus CheA phosphorylatid2(]. Following that, Shi incorporated the effect of
receptor movement into the model and showed that the receptelation remains strong for nearby
receptors and decays exponentially with increasing distdoetween receptord21]. Shimizuet al
incorporated the Ising-type description of receptor @tiag into the stochastic model they developed
earlier P9, compared the effects of size and geometry of receptoysyrend convincingly showed the
enhanced signal gain through receptor-receptor interaft23. Mello and Tu proposed a deterministic
version of the Ising-type lattice model, taking into accoteptor interactions among different species
Tar and Tsr, and including methylation/demethylatid@(. Later, the mean-field theory was applied
to simplify the model and also the Monte Carlo simulation vaplemented 124. Both models
reproduced Sourjik and Berg’s FRET data on dheR/cheB/cheRchaButant strains as well as the
wild-type cells [L5], although using two different parameter sets.

Category II: These models hypothesize that receptors exsveral strongly coupled clusters and
use the Monod-Wyman-Changeux (MWC)-type framework. ThEFRexperiments in
Sourjik and Berg 39 indicate that the clustered chemoreceptors work in highpeoativity and the
functional interaction mimics the behavior of multi-subiuadlosteric proteins, and thus they proposed
to use the classical MWC model29 to explain it. Subsequently, Mello and Tu reported a geliezd
MWC model for allosteric interaction and multiple signatidgration in heterogeneous receptor clusters,
and it reproduces the measured responses for 14 mutanssiriéh varied expression levels of Tar and/or
Tsr [107]. Further, the authors proposed a simplified version for bgemeous receptor complexes
and studied the underlying mechanism of how the cells miairiteyh sensitivity over a wide range
of backgrounds]26. Recently, the Wingreen group pointed out that the difiees of FRET data
between wild-typecheR andcheRcheBnutant cells suggest two regimes of receptor behaviornregi
| is characterized by low to moderate kinase activity andva lmonstant inhibition number for half-
maximal activity ;, in which coupling of receptors leads to high sensitivity {the case of wild-type
and cheRmutant cells); regime Il is characterized by high kinasevagtand a high K, increasing
with the methylated level of receptors, in which couplingds to high cooperativity (in the case of
cheRcheBnutant cells) 106. Following the modified MWC framework and inspired by theeat
experimental finding “assistance neighborhoods” that CluaiRCheB can access five to seven receptors
when tethered to a particular receptd0¥f, Endres and Wingreen extended the Barkai and Leibler
model P6] to the mixed Tar-Tsr clusters and showed that “assistar@hborhoods” are necessary for
precise adaptation because the probability of the enzyrheR@nd CheB encountering fully methylated
or demethylated receptors, which is believed to induce @tige adaptation, is greatly reduced due to
a large number of modification sites availabld (. Recently, Hanseet al. extended the ‘assistance
neighborhood’ model by including binding and unbinding ¢feR and CheB so that the authors could
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further consider the adaptation limits from the angle of Rla@d CheB kineticslf27. Using a similar
model, Meir et al. analyzed the characteristics of prectagtation and found the asymmetrieg.(
different adaptation time) in responses to addition ancoretof attractants, and proposed two possible
resources of the asymmetry: (1) dynamic phosphorylatio€léB and (2) scarcity of methylation
site [128. To dissect the Ising-type and the MWC-type models, theghéen group also compared the
activity response of coupled receptors from three differendels: a one-dimensional Ising-type model
for a weakly-coupled receptor lattice, a two-dimensiosaid-type model for weakly-coupled receptor
lattice, and a two-regime MWC-type model for isolated stjlgrcoupled receptor clusters. They found
that Sourjik and Berg’s FRET data of activity responses ¢épsif chemoattractants for wild-type and
cheRmutant strains]5] are inconsistent with the Ising-type model, but consistath the MWC-type
model, which seemingly suggests that receptors form isdlstrongly-coupled clusterZ9.

The models addressed above, either of Ising-type or MWE;tyeat the receptor homodimer as
the basic functional unit and thus the receptor interacisoat the dimer-dimer level. However, it is
now established that the trimer of homodimers serves asditeeunit in signaling, especially in kinase
control [48]. An increasing number of models concentrate on this ungjuecture. Alberet al.[107
developed a dynamic trimer formation model to account fghhipstream sensitivity, which assumes
that the time scale of association and dissociation of aetriof dimers is comparable to that of ligand
binding and kinase activity. The model produced good ages¢iwith experimental data, but later the
their assumption was disproved in that the half-life of gns\was experimentally estimated to be around
5 min [103 and thus a static scheme is more appropriate. &ab. reported a MWC-type model of the
static trimer of dimers13( and later Endrest al. reported another static trimer mod&B[l] following
the modified MWC framework10€g. The two models mainly explaim vitro kinase activity data on
Tar [104,108109 and Tsr receptorsgl/]. Parket al. performed sensitivity analysis for the trimer of
dimers-based signalind.37.

Thus far the MWC-type models reviewed all have a prescriliettlsometry and a fixed size of
receptor clusters. In cells, the number of the receptor ¢éexeps involved in chemotactic responses
probably varies with the stimulus magnitude. Recentlypthgcians have begun to develop models for
dynamic signaling receptor clusters with a variable sizendrEset al. used a backward approach,
determining the sizes of the signaling clusters throught figgng in vivo FRET data with the
model [LOg], and found that the size increases with the methylatioel)exp to 2—-3 fold L33. Intrigued
by this finding, Hansert al. presented a model of dynamic signaling clusters of trinoérdimers,
the boundaries of which are able to change during a simulatwurse, and the model shows that the
active trimers of dimers seem to couple more strongly thaative ones134. In a very recent study, a
cutoff distance was used to determine the range of inteigoticeptors and the simulation on size-varied
signaling clusters was performed to explore the effect t&fréd density of receptor arrays on signaling
sensitivity p3].

Next we discuss several models analyzing other featureheofystem. Lipkowet al. [135 did
a stochastic simulation of the downstream pathway, inagi€CheY phosphorylation, CheY/ ChgY
diffusion, CheYp binding to FliM and dephosphorylation, which has two impottfeatures (1) it
incorporated diffusion of molecules in the stochastic dation of chemical reactions and (2) it tracked
the spatial locations of individual molecules in 3D. The mloshows that when CheZ is restricted to
receptor ends, the concentration of Cipel¢ constant throughout the cytoplasm, but when CheZ is
free to diffuse, Che)f has an exponential gradient across the length of the celelst at the anterior
end [L35. Later, Lipkow used the model to study the effect of CheAl@ation and noted that clustering



Int. J. Mol. Sci.2013 14 9226

of the CheZ, Che)§ and CheA complexes at the cell poles introduces a negative feedioackintain

the Chep level, which could play a secondary adaptation role andaxjthe overshoot of Chgyin
cheRcheBnutant cells 136. Recently, Endres137] addressed the question of what determines the
size of receptor clusters at the cell poles. The receptateitmembrane elastic energy disfavors large
clusters due to their high intrinsic curvature, while theegtor-receptor coupling favors large clusters.
The author hypothesized that the cluster size is determgeninimizing the cluster-membrane free
energy and developed a free energy-based model for formatiolusters of trimer of dimers. Besides
E. coli, Raoet al. modeled bacterial chemotaxis in a different spe®esillus subtilisand argued
that the core control strategy of the two signaling pathwaysains the samelg. The modeling

for the signaling pathway dRhodobacter sphaeroidethiemotaxis has begun and is becoming a new
model system139-141]. For further reading we recommend a comprehensive reviemathematical
modeling of bacterial chemotaxis in 1976—2006 in Tineakhl. [144].

Lastly, we introduce a recent, trimer of dimers-based m¢ilég. The accumulating evidence
that demonstrates the key role played by the trimer of dimersignaling function for bacterial
chemotaxis, especially Boldogt al’s experiments showing that homodimers fail to regulateake
activity and trimers of dimers perform the maximal kinasBvation compared with other higher-order
structures48], suggested further study of the dynamics of the molecutactire. The existing models
for the single trimer of dimers restrict to the equilibriureHavior and only consider the ligand binding
and kinase activity control reactions, excluding the davaan phosphoryl transfer and methylation
chain [L30-132. In contrast, we treat the ternary complex of one trimer eéfeptor dimers, one
CheA dimer, and two CheW monomers as a signaling complexdehin Figure2), incorporate the
sensing unit into the overall signal transduction pathwstyovn in Figure2 and the corresponding
transition network shown in Figuré), and simulate the dynamics of the network in response to
multiple stimuli [L43. The single trimer model could explain the kinase activigyiation with ligand
concentration for the methylation-fixed receptors T@¥4108109 and Tsr B7] in vitro and the Che)}
responses isheRcheB/cheR/cheButant cellsn vivo [15]. We then did a sensitivity analysis for each
stage of the signal transduction pathway and showed theneahent of upstream sensitivity in ligand
binding and activity regulation due to the structural adsignirom homodimers to trimers of dimers.
We also tested the robustness to model parameters and foaingrecise adaptation is well-preserved
when varying the expression levels of protein componentsdividual or concert. However, in such
cases the steady-state level of Cha¥ not invariant and the adaptation time is also variableréfore,
we make several new predictions as to how the adaptation dimdethe Che) level vary with the
guantity of signaling proteins. Because of the complex petwand various states, the full model
consists of 158 ODEs. To facilitate computation and furtrelysis, we do model reduction by applying
multi-time-scale analysis and mean-field theory and siipjiiinto the 16-ODE and 4-ODE systems,
respectively, while keeping the key features intact.
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Figure 6. Signal transduction network. The basic unit of the netwarkhe signaling
complex, denoted by T. The three indices used to denote thygepres of the complex
are shown in the upper left corner. In the reaction networstieal transitions are
ligand binding and release, horizontal transitions arehgiation and demethylation, and
front-to-rear and reverse transitions are kinase actmatieactivation, phosphorylation and
dephosphorylation. The details of the phosphotransfaesitians are depicted at the left.
Adopted with permission fromlj 3.
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The single trimer model cannot reproduce the higher receptaperativityj.e., the Hill coefficient of
response larger than 3, and fails to explain the data ofhle®cheBnutant cells with Tar or Tsr highly
overexpressed3p]. It suggests that the trimers of dimers are not independestich other and that
larger receptor clusters with trimer-trimer interactionsnbe involved. Here we extend the single trimer
model to a trimer cluster model. We first consider the pupetyimer of dimers (all three homodimers
are of the same receptor type). For a given methylation |egimer of dimers has two activity states
and four ligand-binding states. Therefore, a trimer of dsrat a fixed methylation level could exist
in eight distinct free-energy levels. We denote the freergy level for the active ligand-free trimer as
E, and similarly the free-energy level for the inactive ligafinee trimer ast,;;. All energies are in
unit of the thermal energyz 1. For simplicity, we specify”? as a function of the methylation level
and I,y independent ofn, since only an offset energy, the relative difference betwae two energy
levels, appears when use Boltzmann’s law to derive the ftariou the probability of each state. Next,
we deal with the ligand-binding states. We consider the ligsind binding to, or releasing from, an
active trimer. In the steady state,

k™™ L B

g

AE™™ is the free-energy change upon the first ligand binding tcattive trimer of dimers.L is the
ligand concentration. Therefore,

kL L
AE!™™ = —log (317) = —log < 5 ) (6)

on,m on,m
k* 1 Kdl

e AE (5)
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where K;"™ is the first ligand dissociation constant of an active triraad K" = k7™ /k7™™.
Therefore, the free-energy level for the active trimer waitte-ligand bound is

3L
Ej+ AB" = Ej—log (—Kon,m) ™)
dl

Similarly, we obtain the free-energy levels for the purpetyrimer of dimers, shown in Tabg

Table 3. Free-energy levels for a pure-type trimer of dimers.

State Free-energy Level (unit:kgT)

On with O ligand bound E7}

) ) 3L
On with 1 ligands bound E} — log <W>
Ky

. . 3L?
On with 2 ligands bound E} — log <W>
Ka Kd23

On with 3 ligands bound E} — log Ks?ngng§§m>

Off with O ligand bound  E, s/

Off with 1 ligands bound E,; — log SL )

K
. . 3L7?
Off W|th 2 |IgandS bound Eoff — log W
Ky Kp”
. . L3
Off with 3 ligands bound E,; — log Kg{f’ngf’ch‘gf’m>

Using Boltzmann’s law, the probability that the pure-typeer of dimers is active is as below.

1
on ™ T _Afm 8
b 14 eAf™ (8)
1 3L n 3L? . L3
Fofftm o peoffim prof fime T grof fim prof fym grof fim
Afm — Egré o Eoff 4 log dl 37 dl 3L§l2 dl 532 d3 (9)
1+ on,m + on,m 1.-omn,m + on,m 1.-0m,m 1.-01,m
Kdl Kdl Kd2 Kdl Kd? Kd?)

Now, we consider a receptor cluster withirimers of dimers. We assume that the energy for a cluster
depends linearly on the number of trimers, that is, the é&neergy level for the cluster to be in a certain
state is the sum of the free-energy level for each trimer ofeds to be in the same state. Thus, the
probability of then-trimer cluster being active at equilibrium is

1
on — 10

Finally, we consider a cluster of mixed-type receptors.eilare work on the case of two types, Tar and
Tsr, as an example. In this case, a trimer could contain fraekomodimers, three Tsr homodimers, or a
combination of Tar and Tsr homodimers. For simplicity, we tige approximation wherein only trimers
made of the same homodimers exist in a mixed-type recepistezrl With this assumption, a Tar-Tsr
cluster only consists of the pure Tar trimers and the puretfirsiers. We only consider the response
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of the mixed-type cluster to a single type of ligands. Thebptulity of the mixed-type receptor cluster
with n, Tar trimers anch, Tsr trimers coupled being active at equilibrium is

1

DPon = 1 + A +nsAf) (11)
1+ 3L n 3L n L3
| R R R RERE |
fa - on,a ~ off.a + 0og 3, 3L2 L3 ( )
1+ on,m + on,m .-on,m + O, 7.-01, 1M, 7.-01, 1M
Kdl,a Kdl,a KdQ,a Kdl,a Kd2,a KdB,a
1+ 3L . 3L? . L?
o | R R KRR |
fs - on,s ~ Toff,s + 0og 3 3L2 L3 ( )
14 +

A T I S
We use this model to explain the observed ultrahigh coopégat We simulate the responses to
methyl-aspartate (MeAsp) and serine in ttleeRcheBnutants with different expression levels of the
receptors Tar and Tsr and compare to Sourjik and Berg’s erpats. In Figure/(A) are shown the
responses to MeAsp in tleheRcheBnutants with only Tar expressed (compare to Figure 2(a3%),[
in Figure7(B) are the responses to serine with only Tsr expressed (@anip Figure 2(b) in39)), in
Figure7(C) are the responses to MeAsp with native-level Tsr ancedaevel Tar expressed (compare to
Figure 1(c) in B9]), and in Figure7(D) are shown the responses to serine with native-level idr a
varied-level Tsr expressed (compare to Figure 1(d)38)[ We also simulate the kinase activity
responses of Tsr to serine vitro, shown in Figure7(E) and compare to Li and Weis’ experiments
(Figure 3 in p7]). Data fitting with the Hill function shows that the simula results have quantitative
agreement with the measures. The details of the simulatsuad as parameter values and data fitting,
are omitted here but documented M. Our modeling on a single trimer of dimers and extension
to a cluster of trimer of dimers indicates that the strongdypled trimer of dimers is the core unit for
signaling function, that the short-range interaction lestwdimer members of a trimer, which we call the
intratrimer interaction plays a key role, and that the long-range interaction betvigmers in a loosely
coupled cluster, which we call thetertrimer interaction is responsible for ultrahigh cooperativity.
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Figure 7. Responses of receptor Tigrvitro andcheRcheBnutants with varied expression
levels of Tar or Tsr. &) Simulated responses to MeAspatifeRcheBnutant cells expressing
only Tarat 1 (), 2 () and 6 ) times the native level) Simulated responses to serine
of cheRcheBmutant cells expressing only Tsr at 0.3)), 0.7 (J) and 5 () times the
native level; C) Simulated responses to MeAsp dieRcheBnutant cells expressing Tsr
at the native level and Tar at 8)( 0.6 (), 1 (O), 2 () and 6 () times the native level;
(D) Simulated responses to serine afeRcheBnutant cells expressing Tsr at the native
level and Tar at 0«), 0.6 (), 1 (O), 2 (@) and 6 (A\) times the native levelH) Simulated
responses to serine by the receptor Tsr at the methylate @QQQ (), QEQE () and
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5. Spontaneous Spatial Pattern Formation in Populations

At the population level, cell-cell-signaling and chemasaprovide a mechanism for long-range
cell-cell communication and formation of multicellularag@l patterns9,146-152. The spectacular
growth patterns observed in cultures provide a simple andipnéble system for studying bacterial
population chemotaxis in more complex environments, sushim biofilm formation, and in
bioremediation, which is a process that uses microorganignremove pollutantslp3154. The
excitation and adaptation response of bacteria are crucitle formation of these patterns. In this
section, we review biological experiments and mathemlatrezdels for the patterns formed by cells
such ast. coli that use a run-and-tumble strategy. Pattern formationherdbacterial colonies, e.g.,
Bacillus, ProteusandMyxococcusand mathematical models of more complicated biofilms aeudised
in [155-165.

5.1. Pattern Formation in Bacterial Colonies

Chemotaxis oE. colican lead to spontaneous, self-organized pattern formdtiche 1960’s it was
found that aE. coli colony forms moving bands/rings when exposed to a nutrleattadlso serves as a
chemoattractant}67]. In the 1990’s, it was shown th&. coli colonies can organize into stable spatial
patterns in either a semi-solid agar or liquid medium, byoesling to a self-secreted chemoattractant
(aspartate and analogue9)146. When grown in semi-solid agar with a single nutrient seufe.g.,
succinate), a droplet d&. coli grows and depletes nutrient locally, and over the followtimgee days,

a concentric swarm ring forms and spreads radially from tloeulation site. A symmetric array of
spots or stripes may form sequentially in the wake of theaahreg ring depending on the initial nutrient
concentration 9,146. The speed of the swarm ring is observed to be inverselygtamal to the
initial nutrient concentration. When grown in a liquid meut, E. coli cells secrete attractant and
self-organize into network patterns initially, and the vmatks subsequently collapse into moving
aggregates which merge over time. The timescale of patigifor the liquid suspension experiments is
of the order of minutes. Mittakt al. [166 studiedE. coli aggregate formation in a quasi-2D system,
and showed that the size of an aggregate is abdwt~ 200 xm in diameter and depends primarily
on the adaptation time scale of the bacteria and only weaklthe total number of cells. Recently,
E. coli traveling pulse patterns have also been observed in morplmated nutrients]68169. Due

to the complicated nature of the nutrient, the exact chdnsigaal that leads to these patterns is not
known, although the mechanism is believed to be similar tdrBue-Berg experiments. The adoption of
the recent microfluidic techniques, allows precise tragkihindividual trajectories of cells and analyze
their movement in great detail. 1169, it is found that not only the mean run length of cells but
also the directional persistence are larger in the diraatiovave propagation. By incorporating these
asymmetries of cell movement to a kinetic model similar ®hlgbrid cell-based model discussed later,
these authors matched numerical simulations to experahdata seamlessly.

The enteric bacteriurR. mirabilis, which is a pathogen that forms biofilmsvivo and has a similar
chemotactic system tB. coli, can swarm over hard surfaces and form a variety of spatiédnpa in
colonies. It has been shown thRt mirabilis colonies, when grown on hard surfaces, can grow and
expand, and form radial and spiral stream patterns in theeceh the colony 170. Remarkably, the
spiral streams always wind counterclockwise in repeatgbements. Xueet al. [17( showed that
assuming that cell secrete a chemoattractant, the formafigtreams can be explained as a result of
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the instability induced by local production of attractagtdells, and the spiral rotation of the population
results from the fact that cells swim with a rightward biasswimoving close to a surfac&q1,172.

5.2. Mathematical Models of E. coli Pattern Formation

The formation of these bacterial patterns involves a cormpiterplay between different processes,
including consumption of nutrients, production of chent@atants, tactic movement towards the
attractant, and hydrodynamic interaction with the envinent. Moreover, formation of these spatial
patterns can involve millions of cells. Mathematical maded the patterns include continuum models
that incorporate these processess in a phenomenologigabwa hybrid cell-based models that allow
detailed description of the microscopic behavior. The icontim models are easier to implement
numerically and more amenable to mathematical analysisjuitification of these models has to be
addressed. Hybrid cell-based models can be used to intelgetier descriptions of the experimental
picture, but can be computationally expensive.

Continuum approaches to bacterial pattern formation

A variety of Patlak-Keller-Segel type systems

Z_f = D,AS + gs(n, S, F) (14)
%_f — D;AF + g;(n, S, F)

have been developed and applied to mdéletoli patterns 147,173-182. Heren is the cell density,
S is the concentration of the extracellular chemidéljs nutrient, D,,, D, and D, are the diffusion
coefficientsx(S) is the chemotaxis sensitivity, arfdn, S, F), g;(n, S, F') andgs(n, S, F) represent the
local dynamics. The first equation in the system is calledPiak-Keller-Segel chemotaxis equation,
or PKS equation for short. Mathematical properties of treteay (L4) have been studied, for example
in [187, and also seellB3184] for recent reviews.

Traveling wave solutions of the systed¥] have been studied extensively as a means of describing
the moving band formation observed i coli colonies. Keller and Segell73 first applied the
chemotaxis model without th equation and cell growth term to describe Adler’s experiteefE. coli
chemotactic band formation. They showed that the systemudteons allow for an analytic traveling
wave solution, but they required a singular chemotaxisiteitg which violates the fact that cells have
finite speed whert becomes small. A nonsingular chemotactic sensitivity, év@v, would lead to a
moving band with decreasing speed and broadening densififepdue to the diffusive effect of cell
run-and-tumble. Laterl[74179 showed numerically that by incorporating cell growth arehth the
shape and the speed of the band can be stabilized. More reosdnbased on the velocity-jump process
described later has substantially clarified the pictags].

Numerous extensions of the PKS model at systehrhave been proposed to model tke coli
swarm ring and aggregation patterns found by Budrene and Bet46. Ben-Jacobet al. [176
and Tsimringet al. [177] added a repellent field that was assumed to autocatalyzprdariction of
attractant but to date there is no experimental confirmadioa repellent. In a model proposed by
Polezhae\et al.[18]] cells become immobile upon starvation, and simulationtefmodel predict the
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formation of a swarm ring and stable aggregation patterngposed of immobile cells. However, the
swarm ring formed has a very diffuse front, in contrast to whabserved experimentally. The above
models can produce patterns with some similarity to thoghersemi-solid agar experiments, but how
different processes control the patterns is not clear. Tem$ this, Brennegt al. [185 analyzed a
model of the form systemld), and suggested that movement of the swarm ring was drivdoday
nutrient depletion., The integrity of the swarm ring resdtom the high attractant concentration at the
ring, whereas aggregates are suggested to form within igetlirough fluctuations about the unstable
uniform cell density. In a subsequent papB8g an analysis of the transformation of high cell density
cylinders into regularly spaced aggregates from the swargnwas undertaken, with the conclusion that
a shifting balance between diffusion and chemotaxis leadsttapse of the strands. Despite numerous
attempts, there is at present no complete understandiing gfattern-forming process i coli.

5.2.1. Hybrid Cell-based Models

Hybrid cell-based models for bacterial pattern formatiaméralso been developeti70,187,18§. In

these models, each cell is characterized by its poskienR”Y, velocityv € V C RY, internal state

y and other auxillary variables indicating the metaboli¢esta the cell. The movement of each cell is
modeled as a velocity jump processes with instantaneouwosityejumps mimicking the relatively short
tumbles. Because in the aformentioned experiments, thage®olume fraction of the cell population in
the substrate is small, these models assumed that celledisaparated with no mechanical interactions
between them, which means that cell movements are indepenfleach other. The rate of velocity
jumps depends on the internal variables which describadaltiular signaling, and this can lead to large
systems for the internal network. To reduce computatianad,tand with the goal of understanding the
role of excitation and adaptation of cell signaling to th@pation behavior, the abstract linear cartoon
model discussed earlier was used to describe the exci@tidadaptation components of cell signaling,

dyi _ G(S(x',t)) — (yi +v3)

dt t.
dy,  G(S(x',t) — ys

dt t,

(15)

Here the superscriptis the index of the cell5 is the local attractant concentration andndt, (with

te < t,) are constants defining excitation and adaptation timescarhe functionZ(S) models the
detection of the extracellular (chemoattractant) sign&smodel the run and tumble movement, these
models describe the velocity jumps using a turning kefhahd a turning rate for each cell, given by
forms similar to the following

1 4
T and A= (1 L)

= = R (16)
Vi %0+ Ivi]

Since patrticles are conserved in the turning process
/T(V,V')del
\%4
The foregoing individual-based model for cell movement che coupled with continuum

reaction-diffusion equations to describe the evolutiontloé extracellular nutrient and attractant
concentrations. The combined system is solved with a hydmigeme in which the movement of each
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cell is simulated by a Monte Carlo method while the reactidfusion equations are solved with an
alternating direction method. The details of this algarittan be found in189.

To model the experiments done by Budrene and Berg, the hgblidbased model was coupled with
the following equations for the attractant and nutrientaaarirations in 187

as al ‘

o :DSAS+’7;5(XX)+M

OF al ‘

- _ —x 17
oy DiAF k;é(x x') (17)
S(x,0)=0

F(X7O) = fO

where D, and D, are the diffusion ratesy defines the secretion rate of attractant by cellss the
consumption rate of the nutrient, apdis an unspecified degradation rate. Simulations of the Hybri
cell-based model can predict the time sequence of the nieamal aggregate formation in liquid medium
and swarm ring formation in agar as in the experiments of Bueland Bergof. Figure @)). In particular,
these simulations can reproduce the sharp wave front oftmsrings, in agreement with experiments.

Figure 8. SimulatedE. coli patterns by a cell-based modeh) Network formation from an
uniform cell lawn; ) Aggregate formation from the networlg)(Traveling wave formation
from a single inoculum in the center. Adapted frob8] with permission.

Cell Distribution att =6min  Cell Distribution att =12min el density at time =Ghours

(@) (b) (c)

To model the traveling band formation observed by Adler, ligbrid model was coupled with the
following equation forS [188],

8S al 4
E—DSAS—V;(S(x—x) 18)
S(x,0) =1

where~ is the consumption rate of the signal S by cells. Heleecomes negative because in this set of
experiments, the signal becomes the nutrient source ofdlieand they consume it instead of secrete
it. It was found that the cell population moves towards higt@ncentrations of signal at a constant
speed, and the profile of the traveling cell population shawisopout phenomena which has not been
reported by any continuum moddl§g. When coupled with cell growth, the wave shape and speed can
be stabilized, but oscillations of the wave speed have bbserved in the hybrid model §q.



Int. J. Mol. Sci.2013 14 9235

The hybrid cell-based model has also been applied to modeirand spiral stream formation of
P. mirabilis. The difference from the application . coli patterns is that in the patterns formed by
P. mirabilis, cells move close to a surface, and thus have a clockwiseiitdeeir movement when
observed from above the cell looking toward the surfacen€oriporate the bias, Xust al. [170 added
an angular component to the velocity of each cell. Remaykéie hybrid cell-based model predicts the
spiral stream patterns with the correct chirality qualty (Figure9). Further parameterization of the
model with refined experimental measurements are needdatamauantitative comparisons between
experiments and modeling.

Figure 9. Spiral streams in a growinBroteus mirabiliscolony. Reproduced froml[fQ
with permission.

Model Experiment

40

Hybrid cell-based models based on simplified descriptionsetl signaling have also been used
to study E. coli population chemotaxis in well-controlled spatially andanfporally varying signal
fields [191,192. Quantitative agreement of the cell density profile betvegperiments and models
were achieved by refining the parameters of these modelsswitjte cell data.

5.2.2. From Cell-based Models to Continuum Models

The hybrid cell-based models described above can be usettggrate details on cell signaling and
movement faithfully. However, when used to simulate popoitebehavior, it becomes computationally
intensive, especially when some parameters of the modalrdteown and parameter exploration is
needed. The continuum models such as those based on PK$agquat computationally managable
and analytically amenable. However, justification of thesmdels under different scenarios of signals,
and the relationship between macroscopic parameters ge th@dels with parameters known in the
signal transduction steps, are not rigorously establighéte original PKS equation.

To fill in this gap, significant effort has been put in deriveantinuum models from cell-based models
for chemotaxis oE. coli. Early works derived the PKS equation from cell movement eted as biased
random walks with signal-dependent parameté®3f203. Recently, the simplified description of
Equation (5) of signal transduction has also been incorporated, andPKf® equation was derived
when the signal detected by cells changes slow enough s@elatare close to their fully adapted
state [L89204,205. The derivation of the equation starts from linearizatairthe cartoon model of
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signal transduction around its adapted state, by introdpitie equivalent variable=y — (0, G(5))7,
which satisfies

&

dat — t.

doy _ =21 =2 4
at

and involves asymptotic approximations of the resultingt@aequation of the velocity jump process,

erVX . (vp(x,v, Z, t)) +V,, - [( - %)p(x,v, z, t)} +V., - [(%)p(x,v,z, t)]
= \(21) <—p(x,v,z, t) + [/T(V,V’)p(x, vz, t)dv') (20)

Herep(x, v, z,t) is the probability density for a cell to be at positianc RY, with velocityv € V C
RY, and intracellular state € R?. The formal derivation of the approximation involves rdswaof
Equation 20) on the diffusion space and time scales, calculating thermad state moment equations,
and closing the infinite moment system. When the signal grads small, the adaptation time scale
of the cell is much smaller than the time scale for signalatayn, and the ratio of these times scales
becomes a natural small parameter for closing the infinitenerd system and applying perturbation
methods to the closed moment system. This leads to a higrafa@pproximations of the lowest order
moments such as the cell densityx,t) = [ pdvdz. The first order closure ofi(x,¢) satisfies the
following PKS equation189,

bsit,
Vn — 9

a =Y W No(1 + Aota) (1 + Aote)

ot

2
on ( % vs) 1)
wheres is the cell speed) is the space dimension, is the basal turning rate, ards the derivative
0., A(0).

This PKS equation, in which the chemotactic sensitivity &ired in terms of cell parameters,
provides a very good approximation to the spatial-tempadyabmics observed in the cell-based models
under a variety of signal regimes, as long as the signal gnadimes the cell is small compared to the
reciprocal of the adaptation tim&8§9. Figure 10 shows a typical comparison between the results of
a stochastic simulation of the cell-based model with nuca¢solutions of Equation2(l) for a given
piecewise linear signal with a peakat 2mm.

However when the signal changes rapidly along the celljsdtary, the underlying assumption of the
derivation is not satisfied and Equatidti) is not adequate to describe the population dynaniic§]|
The main reason is that due to fast signal variation, inthalee signaling is far from its adapted
state, and this derivation has to be accounted for in a aammmmodel by introducing new variables
such as higher-order moments of the internal states. Rgceawnich a continuum model has been
proposed by including a mean methylation level of reced@0§], and the model can be used to capture
certain macroscopic quantities of the cell population saglthe mean position of a colony compared
to experiments and cell-based simulations. However, nrajchetween solutions of the proposed
continuum model and underlying cell-based model/expertai@lata as spatial-temporal functions was
not achieved in a satisfactory manner. Thus deriving comtimmodels for bacterial chemotaxis that can
quantitatively predict the evolution of cell density indarsignal gradients is still an open problem.
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Figure 10. Comparison of solutions of the derived PDEL( with stochastic simulations of
the cell-based model. Parameters usgds 201/, \g = 1, b = 4. 10 cells are used for the
cell-based model. Bars: histogram of the cell positionsmated from the cell-based model
with a total numbei0? cells. Red lines: numerical solutions of Equati@n)(
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6. Discussion

The signal transduction pathway that governs bacteriamci@xis inE. coli is one of the most
thoroughly understood molecular systems. At the singlel®eel it involves excitation and adaptation
responses to signals, which enable cells to move to moredaismenvironments. Atthe population level,
it provides a mechanism for cell-cell communication by ston of the attractant and for formation
of multicellular structures. To understand these phene@vandifferent spatial and temporal scales
quantitatively, biologists, physicists, and mathematsi have been involved in experimentation and
modeling. Although much is known, there are still many guestto be addressed.

At the receptor homodimer level, there are questions comugrconformational changes of the
cytoplasmic domain for signaling, especially in the HAMBion and the signaling region. At the trimer
of dimers level, further studies to determine the stoicletmnof the ternary MCP-CheA-CheW signaling
complexes, and how the signaling-induced conformatiomahges of one homodimer affect other dimer
members within a trimer, are needed. Major questions reatdire receptor cluster level, where a cluster
of trimers of dimers is probably used. One hypothesis thatdcbe tested in this context is that for
short-range interaction among three dimers of the sametritihhe protein interaction is primarily due
to the direct coupling of dimers in the cytoplasmic domaimjlevfor longer-range interaction among
trimers (dimers of different trimers), the protein intdran is due to indirect coupling through the
interconnected CheA and CheW network, or possibly membnaediated elastic interaction.

At the population level open questions include: how to deawguantitative macroscopic description
of bacterial population chemotaxis when the external digihanges rapidly, or whether such an
approach is even possible. Currently continuum modelsrayed@rived from coarse-grained or abstract
models of signal transduction that can perform excitatiod adaptation. Derivation of continuum
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models from cell-based models that take into account @etaéscriptions of cell signaling is currently
under investigation and will be published elsewhere.
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