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Abstract: The machinery for transduction of chemotactic stimuli in the bacteriumE. coli
is one of the most completely characterized signal transduction systems, and because of
its relative simplicity, quantitative analysis of this system is possible. Here we discuss
models which reproduce many of the important behaviors of the system. The important
characteristics of the signal transduction system are excitation and adaptation, and the latter
implies that the transduction system can function as a “derivative sensor” with respect to the
ligand concentration in that the DC component of a signal is ultimately ignored if it is not
too large. This temporal sensing mechanism provides the bacterium with a memory of its
passage through spatially- or temporally-varying signal fields, and adaptation is essential for
successful chemotaxis. We also discuss some of the spatial patterns observed in populations
and indicate how cell-level behavior can be embedded in population-level descriptions.
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1. Introduction

Most organisms have developed signal detection systems that extract information from their
environment to enable them to find food and mates, initiate developmental changes, avoid harmful
environments or execute any of the multitude of actions and behaviors in their repertoire. Since most
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organisms maintain a clear distinction between inside and outside, many primary environmental signals
do not penetrate the organism very far, and therefore mechanisms for transducing an external signal into
an internal signal, and where appropriate, an internal response are needed. For example, at the cellular
level extracellular hydrophilicfirst messengersignals elicit a response via receptors in the cell membrane
that transduce the signal into an intracellularsecond messengersignal. Similarly, in the sensory systems
of higher organisms light or mechanical stimuli are transduced into an electrical signal that is processed
at a higher level. The overall process from signal to response in E. coli, the model system described in
detail later, can be summarized as follows.

Signal
Detection

−→ Signal
Transduction

−→ Motor −→ Population

The response at the individual level to changes in the signalinvolves changes in the bias of the flagellar
motor, and this can also lead to a response in the form of spatial pattern formation at the population level.

Figure 1. Two examples of the response of an adapting system to changesin the stimulus
level. We show the predicted cyclic AMP (cAMP) relay response, as measured by the
secreted cAMP, to extracellular cAMP stimuli in the cellular slime mold Dictyostelium
discoideum. Left: A step change in extracellular cAMP from0 to 10−8 M elicits a single
pulse of secreted cAMP. Right: The system responds and adapts to a sequence of step
increases ranging from10−9 M to 10−6 M, but at the highest stimulus the transduction system
saturates. (From [1], with permission.)

Signal transduction systems often filter the signal as well,since not all features of a signal are equally
important. Often the important information in a signal is the short-term change in amplitude, rather than
the absolute amplitude itself, and many systems have evolved to ignore constant background signals,
yet remain responsive to changes in the signal. In such systems a step change in the signal from
one constant level to another may elicit a transient change in one or more components of the internal
state and some behavior of the organism, followed by a returnto a basal level of that component or
behavior. The process that leads to termination of the response in the face of a constant stimulus is
called desensitization, habituation, or adaptation, depending on the context, but here we use adaptation
when the stimulus does not provoke any gross rearrangementsor alterations in the signal-processing
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machinery, whereas desensitization may involve structural changes such as the degradation of receptors.
The visual system and mechanoreceptors in the dermis of mammals provide examples of adaptation to
certain stimuli, but this capability is very common in sensory systems. In general adaptation also involves
maintenance of sensitivity to further changes in the signal, and here we define an adapting sensory system
as one that responds transiently to a transient change in thesignal, returns to a basal activity level in the
presence of a prolonged constant stimulus, and retains sensitivity to further changes in the stimulus.
These characteristics are shown schematically for anothercellular model system in Figure1; detailed
models of adaptation inE. coli will be discussed later. Clearly adaptation represents a form of memory,
since having it in a signal transduction system enables the organism to avoid responding to a constant
signal when such a response is not advantageous. In addition, by adapting to background levels of
a signal (or equivalently, changing the sensitivity to the amplitude of signals) the sensory system can
process a far greater range of amplitudes. In fact the range of signal amplitudes that can be tolerated is
enormous. For example, the visual system in certain amphibians can detect and respond to light stimuli
whose amplitude ranges over five or more orders of magnitude [2].

2. Signal Transduction inE. coli

At the cellular level and higher, the response to environmental signals frequently involvestaxis,
which is directed movement toward or away from an external stimulus. If it is toward the stimulus
the taxis is positive, and otherwise it is negative. Many different types of taxis are known, including
aerotaxis, chemotaxis, geotaxis, haptotaxis, and others.The purposes of taxis range from movement
toward food and avoidance of noxious substances to large scale aggregation for the purpose of survival.
The process by which a cell alters its speed or frequency of turning in response to an extracellular
chemical signal is also frequently called chemotaxis, although it is more accurate to describe it as
chemokinesis. Chemotaxis in this broader sense has been most thoroughly studied in the peritrichous
bacteriaEscherichia coliand Salmonella Typhimurium, particularly in E. coli. In this section, we
first discuss the chemotactic behavior ofE. coli, then describe the biochemical aspects of the signal
transduction system. Later we discuss mathematical modelsand analysis of the system.

2.1. Cell Movement and Taxis

E. coli cells move by rotating rigid flagella in a corkscrew-like manner [3]. Each cell contains
6–8 flagella distributed uniformly over the cell surface, and when rotated counterclockwise (CCW),
the flagella coalesce into a propulsive bundle, resulting ina relatively straight “run” [4]. When rotated
clockwise (CW) they fly apart, resulting in a “tumble” which reorients the cell but causes no significant
change of location. The cell thus alternates between runs and tumbles. In the absence of stimuli, the
probability of a tumble is essentially independent of when the last tumble occurred [5]. The mean run
interval is about 1 s in the absence of chemotaxis; the mean tumble interval is about 0.1 s [6]. Both are
distributed exponentially, with shorter intervals more probable. The mean run length is 35µm [6], and
the speed may range from 20 to 60µm s−1[5]. Because of rotational Brownian movement, runs are not
perfectly straight, and cells can veer off course by as much as 90◦ in 10 s [6]. The angles between two
successive runs appear to be gamma distributed [7], with a mean of68◦ in a medium of low viscosity
and103◦ in one of medium viscosity [7,8]. In the absence of chemotaxis, the diffusion constant of cells
in liquid culture is around4.8− 5.2× 10−6cm2s−1 [6,9].
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A chemoeffector alters the probabilities that the flagella will rotate in a given direction, thereby
changing the frequencies of runs and tumbles, and these probabilities change in response totemporal
changes in the chemoeffector concentrations detected by the cell. A transient increase in the
concentration of an attractant or a decrease in that of a repellent leads, after a 0.2 s. latency period,
to an increase in the probability of counterclockwise rotation (p(CCW )) above the baseline probability
of 0.64 [4]. For modest stepsp(CCW ) reaches a maximum at 0.4 s, crosses below the baseline at
1 s, reaches a minimum at 1.5 s, and returns to the baseline at about 4 s. A ramp or spatial gradient
must exceed a threshold level in order to elicit a response [10]. A decrease in attractants or increase
in repellents causes a decrease inp(CCW ) [4], and the response is more rapid than that for a positive
gradient. However, the response threshold for a negative gradient is large, so thatp(CCW ) remains at
baseline for most negative gradients encountered in the wild [6]. When a gradient exceeds threshold, it is
found experimentally thatp(CCW ) is proportional to the time derivative of the level of chemoreceptor
occupancy, and this relationship holds for concentrationsin a range near the receptor dissociation
constant [10].

E. coli respond chemotactically to a variety of attractants and repellents over a range of concentrations
which exceed a threshold concentration but do not saturate acell’s receptors [6]. The response to
aspartate may range over 5 orders of magnitude [11], with a threshold of3× 10−8 M [12] or
6 × 10−8 M [13] (depending on what medium and form of aspartate are used) and a peak chemotactic
response at10−2 M [13]. The response is sensitive to changes in aspartate occupancy of 0.1–0.2%, which
corresponds to the binding of one or two ligand molecules percell [11]. If we define the gain in signal
transduction as the change in rotational bias divided by thechange in receptor occupancy, the gain can be
as high as 55 [14]. If we define the upstream signaling gain as the ratio of the relative change in kinase
activity divided by the change in receptor occupancy, it is up to 35 [15].

2.2. The Biochemistry of Signal Processing inE. coli

Two essential properties of theE. coli chemotaxis are excitation and adaptation, which stem from a
signal processing system comprised of five chemoreceptor types–(Tsr - taxis to serine and repellents,
Tar-taxis to aspartate and repellents, Tap - taxis to dipeptides, Trg-taxis to ribose and galactose, and
Aer-taxis to oxygen) and six Che-proteins (CheA, CheW, CheY, CheZ, CheR, and CheB). The signal
transduction pathway based on these proteins is depicted inFigure2 and discussed below.

Chemoreceptors are the transmembrane methyl-accepting chemotaxis proteins (MCP) that bacteria
use to detect chemicals, light, or temperature. Among the five classes, Tsr and Tar are the major-type
receptors with a few thousand copies per cell; Tap, Trg, and Aer are the minor types with a few hundred
copies per cell. The functional form of chemoreceptors is a helical, intertwined homodimer. Each
monomer consists of a variable periplasmic ligand-bindingdomain, a transmembrane domain, and a
conserved cytoplasmic signaling domain. The ligand-binding domain contains a four-α-helix bundle
(α1–α4 in Figure3) arranged in parallel to form a cluster of eight helices in the dimer [16]. The helices
α1 andα4 of the bundle extend to the helices TM1 and TM2 of the transmembrane domain respectively,
and TM2 is linked to the cytoplasmic domain. The molecular symmetry generates two ligand-binding
sites, each at the dimer interface within the quasi-four-helix bundle near the top of the molecule, distal
from the membrane. Aspartate binding is negatively cooperative in that binding of an aspartate to either
site causes an asymmetric change in the dimer that precludesbinding at the second site.
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Figure 2. A schematic of the signal transduction pathway inE. coli. The trimer of
chemoreceptor homodimers spans the cytoplasmic membrane,with a ligand-binding domain
on the periplasmic side and a signaling domain on the cytoplasmic side. The cytoplasmic
signaling proteins, denoted Che in the text, are identified by single letters, e.g., A = CheA.
Proteins and reactions in red promote counterclockwise (CCW) rotation of flagella, and those
in blue promote clockwise (CW) rotation of flagella. Receptor methylation sites involved in
adaptation are shown as white (demethylated) and black (methylated) circles.

The cytoplasmic domain extends from the transmembrane domain and bends back via a “U” turn
(α5–α9 in Figure3) [17]. This domain is highly conserved and the degree of sequenceidentity is
maximal in the “U” turn region and declines away from the center [18,19]. The cytoplasmic domain
consists of four primary functional regions: (1) histidinekinase, adenylyl cyclase, methyl-binding
proteins and phosphatase (HAMP) region (α5 in Figure3); (2) adaptation region, including two helixes
(α6 andα9 in Figure3); (3) flexible bundle region; and (4) signaling region (α7 andα8 in Figure3). The
structure of the HAMP subdomain is proposed as two amphiphilic helices joined by a connector in the
monomer and a parallel, four-helix bundle in the dimer, which fits the role in converting ligand-binding
conformational changes into intracellular signaling [20,21]. The subdomains (2)–(4) in the homodimer
is a continuous four-α-helix, antiparallel coiled-coil containing two helixes from each monomer with a
hairpin turn at its membrane distal end [17]. The adaptation region of each monomer contains four or
more glutamyl residues, glutamate (E) or glutamine (Q), located midway along the coiled-coil (circles
shown in Figure3), which can be modified by the methyltransferase CheR and themethylesterase
CheB [22–24]. These residues are spaced in heptad repeats along one faceof each helix [25]. The
flexible bundle region contains a conserved glycine hinge consisting of six glycine residues in a plane
transecting the four-helix bundle in each monomer, which allows its long axis to bend10◦ [26,27].
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The region is known to be crucial for kinase control in that substitution of larger residues for glycine
locks the receptor in the kinase-on or -off state [27]. The signaling region, bracketing the hairpin turn,
is highly conserved and serves as a substrate for interaction with CheA and CheW [22]. The carboxyl
terminus of Tar and Tsr carries a conserved pentapeptide (NWETF or NWESF) that binds with CheR
and CheB [28,29].

Figure 3. The structure of chemoreceptors. The schematic view of a chemoreceptor
monomer (left) demonstrates the primary architecture consisting of ligand-binding domain
(α1–α4), transmembrane domain (TM1–TM2), and cytoplasmic domain(α5–α9). The
cytoplasmic domain can be further divided into four functional subdomains: the HAMP
region, the adaptation region, the flexible bundle region, and the signaling region. The
schematic view of a chemoreceptor homodimer (middle) illustrates the spatial organization,
and the conformational changes of the homodimer involved inthe excitation and adaptation
phases are shown in the flowchart (right), summarized from [30].

In addition to the chemoreceptors, the excitation phase involves a two-component signal transduction
system to control motor behavior, based on CheA, a histidineprotein kinase (HPK), and CheY, a response
regulator. HPK is linked to a sensory unit that detects changes in the environmental condition and when
activated by the unit, the kinase catalyzes phosphotransfer from ATP to its own histidine residue. The
response regulator, when phosphorylated by HPK, acts directly to modify the bias of the motor, and
thereby leads to a change in cellular behavior. InE. coli CheA, which functions as a dimer, associates
with receptors as well as with a monomeric protein CheW, which serves as a scaffold for receptor and
CheA, to form stable ternary signaling complexes. The complexes sense environmental changes and
regulate autophosphorylation of CheA in the presence of ATP. Attractant binding or repellent release
inhibits the kinase activity; attractant release or repellent binding promotes it. CheY, reversibly bound to
CheA, is phosphorylated by CheAp and then diffuses to the flagellar motors. CheYp binds to the protein
FliM at the base of the motors and changes the rotational biasof the flagella, enhancing the probability
of clockwise rotation (p(CW )) and therefore promoting the tumbling of the cell. The dimeric protein
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phosphatase CheZ assists in dissipating CW signals by forming CheYp–CheZ oligomer and enhancing
dephosphorylation of CheYp. In E. coli andS. typhimurium, the genecheAencodes two forms of CheA:
the full-length CheAl, which plays an essential role in chemotaxis, and the short CheAs, which lacks
the phosphorylation site [31]. CheZ binds to the N-terminus of CheAs and forms mixed oligomers, and
the CheAs-CheZ complex formedin vitro shows a greater dephosphorylation activity on CheYp than
free CheZ [31,32]. Therefore, CheAs contributes to recruiting CheZ to the signaling complexes and then
CheZ-dependent localization of CheY [33,34].

The adaptation phase involves CheR and CheB, proteins involved in changes of the methylation level
of chemoreceptors. CheR methylates glutamate (E → EM ); CheB demethylates glutamate (EM → E)
and deamidates glutamine to glutamate (Q → E). The activity of CheR is unregulated, whereas that of
CheB is strongly enhanced upon phosphorylation by CheAp thus CheB is activated by feedback signals
from the signaling complexes, which generates a negative feedback loop. The methylation level of a
receptor affects the autophosphorylation rate of CheA, in that each addition of a methyl group increases
CheA activity and each removal of a methyl group decreases CheA activity. Since methylation by CheR
counteracts the effect of attractant binding or repellent release and demethylation by CheB counteracts
the effect of attractant release or repellent binding, theyare responsible for the relatively slow phase of
adaptation to stimuli after the initial excitation phase. CheR is targeted to receptors through binding
to the C-terminal pentapeptide sequence NWETF or NWESF thattwo major chemoreceptors Tar and
Tsr contain, which the minor types do not [35]. The low-abundance receptors lack the docking site for
CheR and are defective in methylation. They stimulate kinase only weaklyin vitro and cannot support
chemotaxis when expressed alone, but they mediate strong responses to stimuli in wild-type cells. One
explanation could be that methylation occurs via an inter-dimer process. It has been found that CheR
bound to one monomer in a Tsr dimer catalyzes the addition of methyl groups to a monomer in an
adjacent dimer [36]. CheB also binds to the pentapeptide sequence, but with a much lower affinity
than CheR. Interaction of CheB with the sequence activates demethylation by allosterically activating
the receptor substrate and thereby increasing the reactionrate, whereas CheR binding at the sequence
increases the enzymatic activity near the methyl-accepting glutamates [37].

The high signaling sensitivity and wide response range inE. coli chemotaxis probably stem from
chemoreceptor clustering [38,39]. Though the exact organization of chemoreceptor clustershas not been
determined unequivocally, it is known that chemoreceptorsform stable homodimers [16,40–44], that
three homodimers assemble into a trimer of dimers [17,45–48], that a large number of trimers cluster
into an approximately hexagonal array [49–55], and that several arrays localize at the cell poles [38].
First, the trimer of dimers is formed through direct dimer-dimer interaction at the helical hairpin tips,
and the trimer contact residues are identical in all five types of chemoreceptors [17]. The homodimers
within a trimer can be either pure-type or mixed-type, whichreflects the relative cellular abundance [46].
Receptors still form trimers of dimers in the absence of other chemotactic proteins [46], but without
CheA or CheW, trimers exchange their dimer members, and in the presence of both, the exchanges
do not take place [47]. Thus, CheA and CheW stabilize trimer assemblies, probably through binding
interaction with receptors. However, overexpression of CheW interferes with trimer formation, probably
because bound CheW masks the trimer contact surfaces [47,56], and CheW competes for binding sites
on receptors with CheA [57,58]. The stoichiometry of receptors, CheA and CheW in the ternary
signaling complex has not been firmly established. Though several earlier studies reported different
results [58–61], the recent studies presented the consistent stoichiometry of MCP : CheA : CheW = 6 :
1 : 1, suggesting that the ternary signaling complex is composed of 2 trimer of MCP dimers, 1 CheA
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dimer, and 2 CheW monomers [54,55,62]. An in vivo study estimates the stoichiometry as 3.4 receptor
dimers/1.6 CheW monomers/1 CheA dimer, suggesting that theternary signaling complex is composed
of one trimer of MCP dimers, one CheA dimer, and two CheW monomers [61]. Secondly, in respect
to the larger patches of MCP-CheA-Chew signaling complexesthat are roughly hexagonally packed,
about 80 percent are located at one or both cell poles and the rest are distributed in non-polar, lateral
patches at future division sites [63]. The polar patches are mobile within the curved membrane ofthe
pole, and the lateral patches are fixed [63]. The patches appear circular or ellipsoid with varying sizes
and an average diameter 250 nm [61]. The patch size is not variable with the expression level ofMCP,
CheA and CheW, and the packing density is slightly variable with the culture conditions [53]. Recently,
two imaging studies show that the hydrophobic interaction between CheW and CheA (the P5 regulatory
domain) connects the trimer of dimers into an extended hexagonal receptor array [54,55]. Lastly, as to
polar localization, knock-out of CheA or CheW reduces the number and size of polar patches, especially
CheW, while CheY, CheZ, CheB and CheR are not required [38,64]. Localization and clustering seem
independent since the minor receptors Trg and Tap are deficient in clustering if locked in the state of
fully inhibited CheA , but polar localization is not altered[65].

Table 1. Structure-function relationship of chemoreceptor clusters inE. coli chemotaxis.

Dimer Trimer of dimers Cluster of trimers

Ligand binding
Yes Yes Yes
minimal structural unit

Adaptational
modification

Yes Yes Yes
minimal structural unit

Transmembrane
signaling

Yes Yes Yes
minimal structural unit

Kinase activity
control

No Yes Yes
minimal structural
unit, core functional
unit (maximal kinase
activation)

Cooperativity
Low Moderate High
Hill coefficient∼1 Hill coefficient∼2-3; in

wild-type cells and some
cheR/cheB/cheRcheB
mutant strains

Hill coefficient≫3; in
cheRcheB mutant strains
with Tar or Tsr highly
overexpressed, in receptor
Tsr in vitro

With the preceding description of the structure of the chemoreceptor clusters, which involve multiple
levels of organization, at hand, we discuss the structure-function relationship (summarized in Table1).
The receptor homodimer is the minimal stable structural unit of receptor clusters. A single homodimer
is able to perform ligand binding, signal transmission fromperiplasm to cytoplasm, and adaptational
modification, all of which are not dependent on the dimer-dimer interaction, but fails to perform CheA
kinase activity control and thus chemotactic response [48,66]. The trimer of dimers is a core structure in
chemoreceptor clusters and plays a central role in the signaling function. It is structurally the smallest
stable signaling complex when bound with CheA and CheW [17,45–47], and serves as the architectural
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unit of the larger receptor array [49–53]. Functionally, the trimer of dimers is the minimal signaling unit,
and is necessary for most of the functions (Table1). The homodimer fails to control CheA kinase activity,
and compared to other larger clusters, the trimer of dimers has the maximal kinase activation [48,66].
The interaction among dimers within a trimer is probably more important for the signaling function
than the longer-range interaction among trimers, considering that the extremely high cooperativity of
receptors (the Hill coefficient measured in kinase activityresponses is larger than 3) is only observed in
two special cases, the responses by thecheRcheBmutant cells with Tar or Tsr highly overexpressed [39]
or by the receptor Tsrin vitro [67], while in wild-type cells and othercheRcheBmutant strains, the
cooperativity is moderate (the Hill coefficient is less than3). A recent study on CheW provides indirect
support for the central role of the trimer of dimers, in that chemotaxis is reduced in cells with CheW
overexpressed, because the excess level of CheW prevents trimer formation [56]. In evolutionary terms,
the structural unit of a trimer of dimers and the underlying signaling mechanism are highly conserved
and could be a universal architecture for many bacterial species [52].

Finally, we discuss the conformational aspect of the signaling mechanism of receptor clusters.
A homodimer is usually treated as a two-state (active or inactive) switch. Ligand binding,
methylation/demethylation, and interaction with neighboring receptors can shift the equilibrium between
the two signaling states in a dimer. In more detail, attractant binding initiates a piston-like sliding
of the transmembrane signaling helix (TM2 in Figure3) towards the cytoplasm along its long axis
perpendicular to the membrane, by∼ 0.15 nm [68], and adaptional modification reverses the motion
and drives the movement towards the periplasm. The conformational signaling of the HAMP region is
not clear yet, but presumably it interconverts the ligand binding-induced sliding of the transmembrane
helix and the conformational change of the adjacent adaptation region. The signal conversion should not
involve large helical displacements in that the HAMP domain, which is constrained by disulfides across
the two helices or the adjoining subunit interface, still transmits the attractant-generated signals [21,44].
The conformational signaling of the adaptation region involves weakening or strengthening the
subunit interactions of the domain corresponding to the offor on state, respectively. The ligand
binding-induced signal changes the subunit interface (destabilized by attractants and stabilized by
repellents) through mechanical forces [44,69], and methylation/demethylation alters the interface via
electrostatic forces [70]. Specifically, the glutamates and several other side chains located in the
interface are anionic, and covalent neutralization of themby methyl esterification or amidation stabilizes
the interface and activates the kinase. The flexible bundle region enables the cytoplasmic domain
to bend and/or twist, increasing (kinase deactivation) or decreasing (kinase activation) its flexibility.
The conformational change of the signaling region is still under investigation, but like the adaptation
region, the subunit interface seemingly plays an importantrole here in that some mutations at interfacial
locations lock the receptor in the active state [44,71]. When extending conformational signaling to
the scale of trimers of dimers, a recent study proposes a two-state model for kinase control (trimer
expansion or closing, corresponding to kinase deactivation or activation, respectively) [68]. Attractant
binding drives piston sliding of the transmembrane helix inone dimer member of a trimer, then the
displacement induces bending of the dimer around the HAMP domain, and finally the trimer of dimers
expands, leading to kinase deactivation. Two other conformational changes have been suggested to take
place when the trimer of dimers changes states [30], rotation of the periplasmic domain of each dimer
about its long axis [72], and tilting of dimers relative to the central trimer axis [73,74], both of which
could be driven by the change in flexibility of the four-helixbundle in the cytoplasmic domain [27,70].
With respect to the larger receptor clusters, the mechanismremains open. The advanced imaging for
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chemoreceptor arrays by cryoelectron tomography suggeststhat the interconnected CheA and CheW
proteins might serve the molecular basis for the conformational spread throughout the receptor array
of an attractant signal originating at one MCP dimer [54,55]. A more comprehensive review is given
in [30]; we turn next to some general considerations about excitation and adaptation and then describes
mathematical models of signal transduction inE. coli.

3. Models of Signal Transduction and Adaptation

The chemotaxis signal transduction system inE. coli must cope with a wide range of changes in
ligand levels that are transduced into the bias of the flagella via the level of CheYp. It was predicted
theoretically [75] and later verified experimentally [76] that much of the observed gain arises either in
the interaction of CheYp with the motor, or from interaction between motor subunits.As a result, small
changes in CheYp are strongly amplified in either or both of these steps, and therefore it is necessary that
CheYp return to a level close to its prestimulus value after a change in ligand concentration. Otherwise
there would only be a narrow range of ligand concentrations over which the bias does not saturate (at
one or zero). Thus to maintain both sensitivity and responsiveness to a wide range of ligand levels, it is
necessary that the tumble signal adapt,i.e., to return to a level very close to its prestimulus value, and if
it returns to exactly its prestimulus level for all ligand concentrations we say that it adapts perfectly.

This raises the question as to how adaptation can be ensured in a system of chemical reactions.
To illustrate that this is not easy to answer in general, we observe that for any network of chemical
reactions, adaptation of a given component does not necessarily ensure adaptation of a particular species
located further “downstream” in the kinetic pathway. This is demonstrated with several schematic
counterexamples in Figure4.

In addition to the problem inherent in specifying an upstream adapting quantitya priori, some models
invoke unwarranted restrictions on the system’s kinetics in order to facilitate calculation of the steady
state levels of the upstream quantity. Goldbeter and Koshland [77] assume that a receptor cannot be
both methylated and free of ligand at the same time. Asakura and Honda [78] likewise assume that
certain receptor states cannot be attained, and further assume that the ratio of the methylation and
demethylation rates is the same for each methylation state,that a receptor generating a tumble signal
cannot be methylated, and that an attractant-bound receptor can neither be demethylated nor generate a
tumble signal, regardless of its methylation state.
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Figure 4. Examples of various adapting and non-adapting systems. (a) A signal transduction
pathway in which a specified upstream quantity adapts, but the output species further
downstream does not, because the output depends on a non-adapting subcomponent of the
upstream adapting quantity; (b) Similar to that in (a), except that here the upstream quantity
does not adapt, but the subcomponent adapts, and so the output species adapts as well. We
will see later that one may think of the adapting subcomponent as the sum of the states of the
receptor containing phosphorylated CheA, and the upstreamnon-adapting quantity as some
other function involving the various phosphorylated and unphosphorylated states; (c) An
example of a signal transduction pathway in which a specifiedupstream quantity adapts,
but the output species further downstream does not, becausethe output depends on both the
adapting quantity and another non-adapting quantity; (d) An example of a signal transduction
pathway in which a specified upstream quantity adapts, but the output specified further
downstream does not because it depends on an intermediate subsystem which possesses
more than one stable steady state. Transient changes in the upstream quantity may cause the
intermediate subsystem to reach a steady state different from its prestimulus state.

3.1. Adaptation in Model Systems

In view of the fact thatad hocassumptions may lead to models with limited applicability,we present
a method for determining relations among rate constants which, where applicable, ensures that perfect
adaptation occurs. The method is applicable to a variety of chemical systems, requires noa priori
assumptions regarding a second adapting quantity, and places few restrictions on the kinetics. By perfect
adaptation, we mean that there is a species in the transduction pathway whose concentration changes
transiently in response to a change in the level of some stimulus, but whose steady state concentration
is independent of the stimulus level. Our analysis deals with the question of what guarantees that the
quantity in question returns to its basal level; the question of whether the transient response is suitable
must be answered a case-by-case.

As we will see later, the signal transduction system in a single bacteriuum can be described by a
finite number of state variables and an evolution equation that determines how the state changes under
prescribed inputs or stimuli. We denote the state vector byu(·) ∈ Rn and write the evolution equation
in the form

du

dτ
= F (u, S) (1)

whereS ∈ R represents the stimulus or input to the system. In general a change inS leads to a change
in the transient and steady-state values ofu, but in systems that adapt, some functional ofu should be
independent ofS whenS is time-independent. Thus suppose that the responseR of the system is a
functionalG of the stateu given as follows:

R(τ) = G(u(τ)) (2)
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More generally,G could depend on the derivatives of the state variables, their past history, or directly
on the stimulus and its derivatives. If we only consider systems whose “basal dynamics” are time
independent, which means that the system has an asymptotically stable steady state in the presence
of any constant stimulus, we can define perfect adaptation toconstant stimuli as follows.

Definition 1 The responseR of a system whose dynamics are governed by Equation (1) is said to adapt
to constant stimuli if the steady state response is independent of the magnitude of the stimulusS.

Evidently this definition allows for the trivial case whenF is independent ofS, in which case there is
no change in response to any changes inS. Furthermore this definition of adaptation does not imply
that the steady state values of all variables must be independent ofS, and in fact some of the state
variables must generally change to compensate for the stimulus changes. In the case ofE. coli the
methylation level compensates for the background signal level, and thus does not adapt. The reader can
consult [75,77,79–81] for a review of models that involve adaptation, including some for bacterial
chemotaxis and adenylyl cyclase. A very general result thatdefines the structure necessary in a
dynamical system in order that it can adapt is given in [82].

A widely-used model system that illustrates some of the essential features of an adaptive system is
given as follows. Suppose that there are two internal state variablesu1 andu2, and that these variables
evolve according to the following equations.

du1

dτ
=

f(S(τ))− (u1 + u2)

τe
(3)

du2

dτ
=

f(S(τ))− u2

τa

In these equations the functionf(·) encodes the signal transduction steps, and it should have the property
that f(0) = 0. For concreteness we suppose that the response is proportional to u1, i.e., G(u(τ)) =

au1(τ) wherea is a constant. Then this simple scheme can be viewed as havingtwo input pathways, an
excitatory one in which the stimulus increases the production of u1 and hence increases the response,
and an inhibitory one that increases the production ofu2, which in turn shuts off the response.

Since this system is linear, the solution can be obtained by quadrature once the stimulus is specified.
For the special case in whichu1(0) = u2(0) = 0 andS(τ) is a step function of amplitudeS0 that turns
on atτ = 0, the solution is as follows.

u1 =
f(S0)τa
τa + τe

(e−τ/τa − e−τ/τe)

(4)
u2 = f(S0)(1− e−τ/τa)

Thus the response occurs on two time scales, the scale of excitation, which is characterized byτe, and
the scale of adaptation, which is characterized byτa. From this one sees that ifτe << τa, then whenever
τ >> τe, u1 relaxes to

u1 ∼ f(S0)e
−τ/τa ≡ f(S0)− u2(τ)

This is just the pseudo-steady-state value ofu1 which is gotten by settingdu1/dτ = 0. On the other
hand, if τa << τe then adaptation is rapid compared to excitation,u1 never rises significantly above
zero, and there is no significant response. The typical response for a single step in the stimulus when
τe < τa is shown in Figure5(a), where one can see that when the system begins at(u1, u2) = (0, 0)
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neitheru1 noru2 exceedS1. The response to two step changes that are well separated compared to the
adaptation time are shown in Figure5(b).

We note from Equation (3) that when the stimulusS(τ) is constant the steady state level ofu1 is
zero, i.e., the response adapts perfectly to any constant stimulus, but the level ofu2 does not adapt.
Moreover, whenτe << τa the system is excitable in the following sense. The rest state in the absence of
a stimulus ((u1, u2) = (0, 0)) is asymptotically stable, but a brief stimulus of the proper type can produce
a significant response, followed by a return to the steady state. Thus iff is linear, if the system is initially
at (0, 0), and ifS(τ) = S1 for τ ∈ (0, τe) and zero thereafter, thenu1 will rise to approximately2S1/3

and then return to zero. Usually an excitable system is considered as one that has a threshold and shows
anall-or-nothingresponse, such as the firing of a neuron, depending on the magnitude of the stimulus.
In contrast to this, the response of the present system isgradedin that there is a response to any stimulus
level. Other excitable systems that show a graded rather than an all-or-none response occur in models of
intracellular calcium dynamics [83–85].

Figure 5. The response to single (a) and multiple (b) steps in the signal for the model
adapting system described by Equation (3) whenf is a linear function.

1y

y2
(a)

1S(τ) = 0 S(τ) = S

1y

y2
(b)

S(τ) = 0 S(τ) = S1 S(τ) = S2

This simple model illustrates some of the basic features necessary in an adapting system, but there is
no explicit biochemical basis for it. However the excitation variabley1 can represent the active state of
a ligand-occupied receptor, whereas the adaptation variable could represent an internal variable that
desensitizes the receptor. Of course the actual physical quantities should remain non-negative. A
more realistic four-dimensional model, which is sometimescalled the adapting box model, was first
proposed and analyzed by Katz and Thesleff [86] in a study of adaptation produced by acetylcholine
at the motor end-plate of frog muscle, and more general formswere subsequently used by others in
a similar context ([87] and references therein). More realistic models forE. coli are described in the
following sections.

4. Models of Signal Transduction inE. coli

E. coli chemotaxis has been the subject of various mathematical modeling studies since the early
1970s (Table2). In recent work the focus of the models has changed from the basic excitation and
adaptation properties of the signal transduction pathway to other properties of the system, such as
receptor clustering-induced cooperativity and sensitivity. The modeling methods have ranged from
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classical chemical kinetics to statistical mechanics, andthe simulation techniques used have varied
from numerical methods for deterministic differential equations to Monte Carlo methods for stochastic
processes. Quantitative modeling has played a significant role in understanding this system by providing
a framework for interpreting existing data and stimulatingnew experiments, with the result that the
multitude of experimental results are beginning to fit into acoherent picture.

Table 2. Mathematical models of bacterial chemotaxis (1982–2012).

Excitation, adaptation, and robustness

Model Methods Assumptions and Outcomes
Goldbeter and Koshland
Jr [91]

ODE Includes ligand binding and one-site methylation; Usestwo-state
assumption (methylated and demethylated); Demonstrates that perfect
adaptation could be achieved via methylation whose reaction rates
depend on receptor occupancy.

Block et al. [10] ODE Uses two-state assumption (CW and CCW); Includes adaptation;
Demonstrates that transition between the run and tumble states depends
on adaptation to the sensory input.

Asakura and Honda [78] ODE Includes ligand binding and multiple-site methylation; Uses two-state
assumption (methylated and demethylated); Shows adaptation to
attractants and repellents at both low and high background
concentrations via multiple methylation.

Segelet al. [92] ODE Similar with Goldbeter and Koshland Jr [91] but allows receptor
modification to occur on both ligand-free and ligand-bound receptors.

Brayet al. [93] ODE Includes ligand binding, phosphorylation cascade, and motor control;
Reproduces the motor bias response to step changes in attractants and
repellents ; Does not include methylation/demethylation and model for
adaptation.

Bray and Bourret [94] ODE Models the ternary MCP/CheA/CheW signaling complex formation and
adds it into Brayet al. [93] to study the effect of the signaling complex
formation on motor bias.

Hauri and Ross [113] ODE Models the complete signal transduction pathway and reproduces the
excitation and adaptation phases of bacterial chemotaxis in the
experimentally agreed timescales; Assumes that CheA
autophosphorylation rate dependent on the methylation level of
receptors.

Spiroet al. [75] ODE Models the complete signal transduction pathway with reduced three
methylation states and reproduces excitation and adaptation in the
experimentally agreed timescales. Assumes the autophosphorylation
rate increases with the methylation level, the methylationrate is
greater for attractant-bound than attractant-free receptors, and the
demethylation rate is independent of ligand binding of receptors.



Int. J. Mol. Sci.2013, 14 9219

Table 2. Cont.

Excitation, adaptation, and robustness

Model Methods Assumptions and Outcomes
Barkai and Leibler [96] ODE Includes ligand binding and methylation/demethylation for a

three-component system (MCP, CheR and CheB); Uses two-state
assumption (active or inactive for receptors); Assumes that CheR works
at saturation in a constant rate and CheB acts only on active receptors
in a rate independent of ligand binding; Shows perfect adaptation of
receptor activity and robustness of the ratio of adapted steady-state
receptor activity over prestimulus activity for a wide range of parameter
values.

Levin et al. [114] ODE Investigates the effect of changes in chemotactic protein expression
levels on the concentration of CheYp, and compares the fine-tuned and
the robust adaptation models in this aspect.

Morton-Firth and Bray
[95]

Free-energy-based
stochastic simulation

Includes phosphorylation cascade; Simulates the temporalfluctuation
of CheYp.

Morton-Firthet al. [99] Free-energy-based
stochastic simulation

Includes phosphorylation cascade (based on [95]) and
methylation/demethylation (based on [96]); Assumes that CheR
only methylates inactive receptors and CheBp only demethylates active
receptors; Shows excitation and adaptation;

Yi et al. [81] ODE Analyzes the Barkai and Leibler’s model and shows an integral
feedback control imbedded in the system that leads to robustperfect
adaptation.

Almogy et al. [115] ODE Proposes an alternative adaptation mechanism that is through
dephosphorylation of CheYp by both CheZ and the CheAs–CheZ
complex rather than methylation/demethylation of receptors.

Mello and Tu [116] ODE Studies the robust adaptation problem analytically and proposes six
conditions for achieving perfect adaptation, confirming those key
assumptions that Barkai and Leibler use [96].

Arocena and Acerenza
[117]

ODE Studies the response range of bacterial chemotaxis, andshows the
wider range when receptor modification is through methylation and
phosphorylation than through attractant binding.

Kollmannet al. [111] ODE Uses a simplified signaling network only including a single methylation
site; Shows the robustness to the intercellular variation in chemotactic
protein concentrations arising from gene expression, and the variation
of CheYp is much smaller than that of other proteins.

Tu et al. [112] ODE, mean-field the-
ory

Simulates chemotactic responses to time-varying exponential ramp,
sine wave, and impulsive signals.

Receptor clustering and signaling sensitivity

Brayet al. [118] probability analysis Conceptual model; Shows that receptor clustering and conformational
spread among neighboring receptors can explain high sensitivity.

Shi and Duke [97] statistical mechanics,
Ising model

Ising-type model and mean-field theory applied; Shows that receptor
coupling strength affects response more than attractant binding.

Duke and Bray [119] Monte Carlo meth-
ods

Monte Carlo simulation of [97]; Shows higher signaling sensitivity
than the uncoupled system and ability to respond to over five order of
magnitude of attractant concentrations.
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Table 2. Cont.

Receptor clustering and signaling sensitivity

Model Methods Assumptions and Outcomes
Shi [98] statistical mechanics,

Ising model
Adaptive Ising-type model with CheR, CheBp, and their negative
feedback effect on receptor activity included; More robustthan [97]
because of relaxation of the filed strength assumptions; Shows high
sensitivity.

Shi [120] Ising model Compares simulations of the models [97,98] with experiments
and shows good agreement on the ratio of attractant binding to
receptor-receptor interactions, the adaptation time, as well as the ratio
of pre- and post-stimulus CheA phosphorylation.

Shi [121] Ising model, Monte
Carlo methods

Considers the receptor movement and allows them to float; Shows
strong correlation for neighboring receptors and exponential decay with
increasing receptor-receptor distance.

Levin et al. [122] Monte Carlo
methods

Studies effect of binding and diffusion of CheR through receptor clusters
with the model [99]; Shows that if binding is within the physiological
limits, CheR can access and modify a large number of receptors in cluster.

Shimizuet al. [123] Ising model,
free-energy-based
stochastic simulation

Ising model incorporated into [99]; Compares effect of receptor array size
and geometry on sensitivity, gain and signal-to-noise ratio; Reproduces
overshoot.

Mello and Tu [100] Ising model Deterministic version of Ising-type model; Includes receptor
interactions between Tar and Tsr; Includes methylation/demethylation
(same assumptions as [96,99]); Reproduces the FRET data on
cheR/cheB/cheRcheBmutant and wild-type cells [15] using two
different parameter sets.

Mello et al. [124] Ising model,
mean-field theory,
Monte Carlo
methods

Mean-field theory applied to and Monte Carlo simulation of [100].

Goldmanet al. [101] Lattice gas model,
Monte Carlo
methods

Applies 2-D lattice gas model of protein association to chemoreceptor
clusters.

Sourjik and Berg [39] MWC model Applies MWC model to explain their FERT data.
Albert et al. [102] ODE Model for dynamic formation of trimer of dimers; Assumes the time

scale of association and dissociation of trimer of dimers comparable to
that of ligand binding and kinase activity, which was disproved later by
experiments [103].

Raoet al. [130] MWC model Model of static trimer of dimers; Reproducesin vitro kinase activity data
on Tar [104] and Tsr [67] as well asin vivodata on mutant cells [15]

Mello and Tu [107] MWC model Generalizes MWC model for allosteric interaction and multiple signal
integration in heterogeneous receptor clusters; Reproduces measured
responses for 14 mutant strains with varied expression levels of Tar
and/or Tsr [39].

Keymeret al. [106] MWC model Proposes two regimes for a two-state receptor: regime I is characterized
by low to moderate kinase activity and a low, constant inhibition number
for half-maximal activityKi, in which coupling of receptors leads to
high sensitivity (in the case of wild-type andcheRmutant cells); regime
II is characterized by high kinase activity and a highKi, increasing
with the methylated level of receptors, in which coupling leads to
high cooperativity (in the case ofcheRcheBmutant cells); Accordingly
proposes a modified MWC model; Reproduces Sourjik and Berg’sFRET
data [15].
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Table 2. Cont.

Receptor clustering and signaling sensitivity

Model Methods Assumptions and Outcomes
Endres and Wingreen
[110]

MWC model Adaptation model based on ‘assistant-neighborhoods’ [105], using the
key assumptions on CheR and CheBp as [96,99]; Incorporates the
MWC model [106]; Shows sensitivity and adaptation for mixed-type
receptors observed in [15]; Suggests two limits of adaptation to
attractants: (1) saturation of ligand binding sites on receptors; (2) full
methylation of receptors.

[129] MWC model, Ising
model

Compares activity response of receptor clusters generatedby
one-dimensional Ising-type model, two-dimensional Ising-type model,
and two-regime MWC-type model; Shows that the outputs of Ising-type
models are not consistent with the FRET data on activity responses
to steps of attractants for wild-type andcheR mutant cells [15],
which the MWC-type model can reproduce; Suggests strongly-coupled
receptor clusters.

Mello and Tu [126] MWC model Studies the mechanism how the cells maintain highsensitivity over a
wide range of backgrounds based on a simplified version of [107] for
homogeneous receptor complexes.

Endreset al. [131] statistical mechanics,
MWC model

Model of static trimer of dimers; Reproducesin vitro kinase activity
data on Tar [104,108,109].

Parket al. [132] sensitivity analysis Performs sensitivity analysis for trimer of dimers and shows enhanced
signaling sensitivity compared with dimers.

Hansenet al. [127] MWC model Robust adaptation model extended from [110] including binding and
unbinding of CheR and CheBp; Analyzes adaptation limits from the
angle of CheR and CheB kinetics.

Endreset al. [133] MWC model, statis-
tical method

Determines the sizes of signaling clusters through best fitting in vivo
FRET data with the model [106] using statistical PCA method; Shows
the cluster sizes increasing with methylation levels.

Hansenet al. [134] statistical mechanics,
MWC model

Model of dynamic signaling clusters of trimers of dimers, the
boundaries of which are variable in simulation; Shows stronger
coupling of active trimers of dimers than inactive.

Meir et al. [128] MWC model, ODE Analyzes the characteristics of precise adaptation and finds the asym-
metries (i.e., different adaptation time) in responses to addition and
removal of attractants; Proposes two possible sources of the asymmetry:
(1) dynamic phosphorylation of CheB and (2) scarcity of methylation
site.

Clausznitzeret al. [142] MWC model, ODE Studies the dynamics (time courses) of adaptation and evaluate the
existing adaptation models.

Khursigaraet al. [53] MWC model Study with experiments and simulations combined; A cutoff distance
used to determine the range of interacting receptors and thesize of
signaling receptor clusters variable; Shows that the size of
receptor arrays is relatively stable, non-correlated withthe protein
expression level, and the packing density is slightly varied in difficult
growth media.

Xin and Othmer [143] ODE Model of trimer of dimers; Simulates dynamics for the overall
pathway; Explains a line ofin vitro kinase activity data on Tar and
Tsr [67,104,108,109] and in vivo FRET data in mutant cells [15]
with the single trimer without higher-order clusters; Shows enhanced
sensitivity and robustness to protein expressions generated by trimer
of dimers.
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Table 2. Cont.

Other features

Model Methods Assumptions and Outcomes
Raoet al. [138] ODE Compares signaling pathways betweenE. coli and Bacillus

subtilis; Shows robust adaptation in both pathways butB. subtiliscan
perform methylation-independent chemotaxis because of existence of
CheV-CheY pathway.

Lipkow et al. [135] spatiotemporal
stochastic simulation

3D stochastic simulation of CheY phosphorylation, CheY/CheYp
diffusion, CheYp binding to FliM and dephosphorylation; Studies
effects of CheZ localization, motor position, and macromolecular
crowding on spatial concentration of CheYp; Shows a constant
concentration of CheYp throughout the cytoplasm when CheZ is
restricted to anterior ends and an exponential gradient across the length
of the cell when CheZ diffuses freely.

Lipkow [136] spatiotemporal
stochastic simulation

Studies the effect of CheZ localization; Suggests that clustering of
CheZ–CheAs–CheYp at the cell poles, introducing a negative feedback
to the CheYp level, serves a secondary adaptation mechanism and
explains the overshoot of CheYp in cheRcheBmutant cells.

Endres [137] statistical mechanics Free energy-based model for formation of clusters of trimer of dimers;
Studies the determining factors of the size of polar receptor clusters.

Robertset al. [139] ODE Develops a control engineering method and applies it toelucidating the
signaling pathways ofRhodobacter sphaeroideschemotaxis.

Tindall et al. [140] ODE Studies the signal integration mechanism inRhodobacter sphaeroides
chemotaxis.

Hamadehet al. [141] control theory Studies the feedback configuration ofRhodobacter sphaeroides; Shows
the role of cascade control in achieving robust functions.

We first focus on theoretical studies of the excitation and adaptation characteristics of the signal
transduction pathway and the underlying mechanism for system robustness. The early modeling
studies were directed toward understanding the observed adaptation in bacterial chemotaxis [4,10,88,89].
Macnab and Koshland [90] proposed a conceptual network for chemotactic responses in which a
response regulator is upregulated by a fast enzyme activityand downregulated by a slow enzyme
activity, and later Koshland proposed that methylation/demethylation of receptors was probably the
source of the slow enzyme activity [89]. Block et al. [4] postulated a two-state assumption for
the system and then formulated a deterministic model that includes a description of adaptation [10].
Goldbeter and Koshland proposed the first adaptation model that includes the ligand binding and
one-site methylation reactions [91], and Segel and Goldbeter modified the model by allowing receptor
modification to occur on both ligand-free and ligand-bound receptors [92]. Asakura and Honda [78]
extended Goldbeter and Koshland’s model to multiple-site methylation. Brayet al. [93] first modeled
the excitation response of chemotaxis using a simplified network without methylation and demethylation
and later added a hypothetical reaction network for formation of the ternary MCP/CheA/CheW signaling
complexes [94]. Hauri and Ross [113] developed a model of the signal transduction pathway that exhibits
both chemotactic excitation and adaptation to attractantsand repellents. Spiroet al. [75] developed a
model of the complete pathway based on three methylation states that included the phosphotransfer steps,
and showed that the model accurately reproduces the step, ramp and saturation responses to aspartate
on the correct time scales. That model was used predict that ahigh Hill coefficient≥ 11 in binding of
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CheYp to FliM is needed to explain a modest gain 3 to 6 in the absence of cooperativity upstream in the
signal transduction pathway, and this was later confirmed experimentally [76].

A long-standing question is how biological systems maintain the stability of their functions in the
face of perturbations of parameters or state variables suchas reaction rates or molecular concentrations.
Barkai and Leibler [96] constructed a signal transduction model that includes theligand binding
and methylation/demethylation reactions among three components (MCP, CheR and CheB), and the
model shows robustness of the ratio of adapted steady-statesystem activity over prestimulus activity.
Following earlier two-state models for the receptor, they made the key assumptions that each receptor
is either active or inactive, and that CheB acts only on active receptors at a rate that is independent
of ligand binding. The direct coupling between kinase activity and demethylation rate provides an
integral feedback control in their model and leads to robustperfect adaptation, as was demonstrated
later [81]. However, the robustness of the output of the system such asthe concentration of CheYp
or the rotational bias of flagellar motors was not addressed since CheY was not included in the model.
Later, an experimental study showed that the working range of the concentration of CheYp for the
proper response of flagellar motors is so narrow that the level of CheYp in adapted cells can vary
only about one-third from its optimal value [76], which indicates that the stationary concentration of
CheYp should be tightly controlled. Kollmannet al.[111] showed that the signaling network topology of
E. coli chemotaxis (with only a single methylation site considered) is robust to the intercellular variation
in chemotactic protein concentrations arising from gene expression, and the variation of CheYp is much
smaller than that of other proteins, and this has been confirmed by the experimental finding that the cells
maintain the concentration of CheYp in the right range and still remain chemotactic upon up to 6.6-fold
overexpression of all proteins in the system [111]. It was also reported that the fine-tuned adaptation
systems [75,113] behave differently than the robust adaptation system [96], when examining the effects
on the level of CheYp and the motor bias by the coordinate overexpression of all sevenche-genes [114].
Other analyses, both deterministic and stochastic, are described in Table2.

A comparison of the fine-tuned and the robust adaptation models shows that the significant difference
lies in the treatment of methylation by CheR and demethylation by CheBp especially the latter. In the
fine-tuned systems [75,113], CheR and CheBp can modify receptors in all states, while in the robust
ones [96,99,111,116], CheBp can only access receptors in the active state and CheR in the inactive
state (except in [96], where CheR is assumed to work at saturation in a constant rate on all receptors).
Though a mechanism of the receptor activity-dependent methylation/demethylation leading to robustness
of adaptation has been proposed theoretically [81,111], it remains to confirm it experimentally.

Next we review a large number of models that employ a receptorclustering-based explanation for the
high signaling sensitivity, large transduction gain, and wide dynamic range of the signaling system.
Brayet al.[118] proposed that receptor clustering could account for the observed sensitivity and dynamic
range. Each receptor existing in an extended lattice interacts with its neighbors and conformational
spread occurs from ligand-bound receptors to neighbors so that at low concentrations, deactivation
of a single receptor is magnified and can inhibit the phosphorylation cascade to the flagella, while at
high concentrations, the methylation/demethylation-induced adaptation can free those affected receptors
to respond to further changes. Thereafter, many models haveemerged, and we separate them into
two categories.

Category I: The models in this category are based on the hypothesis that receptors exist in an
extended, weakly-coupled lattice network and use the Ising-type framework. As an implementation
of Bray’s idea [118], Shi and Duke first adopted the Ising model developed for ferromagnetism to
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the chemotactic signaling. This application was based on the similarity of the two systems, in that
each unit of the lattice lies in two stable states, active or inactive, that the probability of being in
a state state is determined by not only its own properties butalso the states of its neighbors, and
that the ligand input could be treated as a magnetic field [97]. A Monte Carlo simulation of the
model shows that a two-dimensional lattice of coupled receptors generates the higher sensitivity to
external stimuli and the wider functional range of ambient ligand concentrations than an array of
independent receptors [119]. Shi extended the previous model [97] by incorporating the effect of
CheR and CheBp, and made a perfectly-adapting Ising model [98]. Then Shi compared the theoretical
predictions of his models [97,98] with the experimental measures and found good agreement onthe
ratio of attractant binding to receptor-receptor interactions, the adaptation time, as well as the ratio of
pre- and post-stimulus CheA phosphorylation [120]. Following that, Shi incorporated the effect of
receptor movement into the model and showed that the receptor correlation remains strong for nearby
receptors and decays exponentially with increasing distance between receptors [121]. Shimizu et al.
incorporated the Ising-type description of receptor clustering into the stochastic model they developed
earlier [99], compared the effects of size and geometry of receptor arrays, and convincingly showed the
enhanced signal gain through receptor-receptor interaction [123]. Mello and Tu proposed a deterministic
version of the Ising-type lattice model, taking into account receptor interactions among different species
Tar and Tsr, and including methylation/demethylation [100]. Later, the mean-field theory was applied
to simplify the model and also the Monte Carlo simulation wasimplemented [124]. Both models
reproduced Sourjik and Berg’s FRET data on thecheR/cheB/cheRcheBmutant strains as well as the
wild-type cells [15], although using two different parameter sets.

Category II: These models hypothesize that receptors existin several strongly coupled clusters and
use the Monod-Wyman-Changeux (MWC)-type framework. The FRET experiments in
Sourjik and Berg [39] indicate that the clustered chemoreceptors work in high cooperativity and the
functional interaction mimics the behavior of multi-subunit allosteric proteins, and thus they proposed
to use the classical MWC model [125] to explain it. Subsequently, Mello and Tu reported a generalized
MWC model for allosteric interaction and multiple signal integration in heterogeneous receptor clusters,
and it reproduces the measured responses for 14 mutant strains with varied expression levels of Tar and/or
Tsr [107]. Further, the authors proposed a simplified version for homogeneous receptor complexes
and studied the underlying mechanism of how the cells maintain high sensitivity over a wide range
of backgrounds [126]. Recently, the Wingreen group pointed out that the differences of FRET data
between wild-type,cheR, andcheRcheBmutant cells suggest two regimes of receptor behavior: regime
I is characterized by low to moderate kinase activity and a low, constant inhibition number for half-
maximal activityKi, in which coupling of receptors leads to high sensitivity (in the case of wild-type
and cheRmutant cells); regime II is characterized by high kinase activity and a highKi, increasing
with the methylated level of receptors, in which coupling leads to high cooperativity (in the case of
cheRcheBmutant cells) [106]. Following the modified MWC framework and inspired by the recent
experimental finding “assistance neighborhoods” that CheRand CheB can access five to seven receptors
when tethered to a particular receptor [105], Endres and Wingreen extended the Barkai and Leibler
model [96] to the mixed Tar-Tsr clusters and showed that “assistance neighborhoods” are necessary for
precise adaptation because the probability of the enzymes CheR and CheB encountering fully methylated
or demethylated receptors, which is believed to induce imprecise adaptation, is greatly reduced due to
a large number of modification sites available [110]. Recently, Hansenet al. extended the ‘assistance
neighborhood’ model by including binding and unbinding of CheR and CheB so that the authors could
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further consider the adaptation limits from the angle of CheR and CheB kinetics [127]. Using a similar
model, Meir et al. analyzed the characteristics of precise adaptation and found the asymmetries (i.e.,
different adaptation time) in responses to addition and removal of attractants, and proposed two possible
resources of the asymmetry: (1) dynamic phosphorylation ofCheB and (2) scarcity of methylation
site [128]. To dissect the Ising-type and the MWC-type models, the Wingreen group also compared the
activity response of coupled receptors from three different models: a one-dimensional Ising-type model
for a weakly-coupled receptor lattice, a two-dimensional Ising-type model for weakly-coupled receptor
lattice, and a two-regime MWC-type model for isolated strongly-coupled receptor clusters. They found
that Sourjik and Berg’s FRET data of activity responses to steps of chemoattractants for wild-type and
cheRmutant strains [15] are inconsistent with the Ising-type model, but consistent with the MWC-type
model, which seemingly suggests that receptors form isolated strongly-coupled clusters [129].

The models addressed above, either of Ising-type or MWC-type, treat the receptor homodimer as
the basic functional unit and thus the receptor interactionis at the dimer-dimer level. However, it is
now established that the trimer of homodimers serves as the core unit in signaling, especially in kinase
control [48]. An increasing number of models concentrate on this uniquestructure. Albertet al. [102]
developed a dynamic trimer formation model to account for high upstream sensitivity, which assumes
that the time scale of association and dissociation of a trimer of dimers is comparable to that of ligand
binding and kinase activity. The model produced good agreement with experimental data, but later the
their assumption was disproved in that the half-life of trimers was experimentally estimated to be around
5 min [103] and thus a static scheme is more appropriate. Raoet al. reported a MWC-type model of the
static trimer of dimers [130] and later Endreset al. reported another static trimer model [131] following
the modified MWC framework [106]. The two models mainly explainin vitro kinase activity data on
Tar [104,108,109] and Tsr receptors [67]. Parket al. performed sensitivity analysis for the trimer of
dimers-based signaling [132].

Thus far the MWC-type models reviewed all have a prescribed stoichiometry and a fixed size of
receptor clusters. In cells, the number of the receptor complexes involved in chemotactic responses
probably varies with the stimulus magnitude. Recently, theoreticians have begun to develop models for
dynamic signaling receptor clusters with a variable size. Endreset al. used a backward approach,
determining the sizes of the signaling clusters through best fitting in vivo FRET data with the
model [106], and found that the size increases with the methylation level, up to 2–3 fold [133]. Intrigued
by this finding, Hansenet al. presented a model of dynamic signaling clusters of trimersof dimers,
the boundaries of which are able to change during a simulation course, and the model shows that the
active trimers of dimers seem to couple more strongly than inactive ones [134]. In a very recent study, a
cutoff distance was used to determine the range of interacting receptors and the simulation on size-varied
signaling clusters was performed to explore the effect of lateral density of receptor arrays on signaling
sensitivity [53].

Next we discuss several models analyzing other features of the system. Lipkowet al. [135] did
a stochastic simulation of the downstream pathway, including CheY phosphorylation, CheY/ CheYp
diffusion, CheYp binding to FliM and dephosphorylation, which has two important features (1) it
incorporated diffusion of molecules in the stochastic simulation of chemical reactions and (2) it tracked
the spatial locations of individual molecules in 3D. The model shows that when CheZ is restricted to
receptor ends, the concentration of CheYp is constant throughout the cytoplasm, but when CheZ is
free to diffuse, CheYp has an exponential gradient across the length of the cell, highest at the anterior
end [135]. Later, Lipkow used the model to study the effect of CheZ localization and noted that clustering
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of the CheZ, CheYp and CheAs complexes at the cell poles introduces a negative feedback to maintain
the CheYp level, which could play a secondary adaptation role and explain the overshoot of CheYp in
cheRcheBmutant cells [136]. Recently, Endres [137] addressed the question of what determines the
size of receptor clusters at the cell poles. The receptor cluster-membrane elastic energy disfavors large
clusters due to their high intrinsic curvature, while the receptor-receptor coupling favors large clusters.
The author hypothesized that the cluster size is determinedby minimizing the cluster-membrane free
energy and developed a free energy-based model for formation of clusters of trimer of dimers. Besides
E. coli, Rao et al. modeled bacterial chemotaxis in a different speciesBacillus subtilisand argued
that the core control strategy of the two signaling pathwaysremains the same [138]. The modeling
for the signaling pathway ofRhodobacter sphaeroideschemotaxis has begun and is becoming a new
model system [139–141]. For further reading we recommend a comprehensive review on mathematical
modeling of bacterial chemotaxis in 1976–2006 in Tindallet al. [144].

Lastly, we introduce a recent, trimer of dimers-based model[143]. The accumulating evidence
that demonstrates the key role played by the trimer of dimersin signaling function for bacterial
chemotaxis, especially Boldoget al.’s experiments showing that homodimers fail to regulate kinase
activity and trimers of dimers perform the maximal kinase activation compared with other higher-order
structures [48], suggested further study of the dynamics of the molecular structure. The existing models
for the single trimer of dimers restrict to the equilibrium behavior and only consider the ligand binding
and kinase activity control reactions, excluding the downstream phosphoryl transfer and methylation
chain [130–132]. In contrast, we treat the ternary complex of one trimer of receptor dimers, one
CheA dimer, and two CheW monomers as a signaling complex (depicted in Figure2), incorporate the
sensing unit into the overall signal transduction pathway (shown in Figure2 and the corresponding
transition network shown in Figure6), and simulate the dynamics of the network in response to
multiple stimuli [143]. The single trimer model could explain the kinase activityvariation with ligand
concentration for the methylation-fixed receptors Tar [104,108,109] and Tsr [67] in vitro and the CheYp
responses incheRcheB/cheR/cheBmutant cellsin vivo [15]. We then did a sensitivity analysis for each
stage of the signal transduction pathway and showed the enhancement of upstream sensitivity in ligand
binding and activity regulation due to the structural assembly from homodimers to trimers of dimers.
We also tested the robustness to model parameters and found that precise adaptation is well-preserved
when varying the expression levels of protein components inindividual or concert. However, in such
cases the steady-state level of CheYp is not invariant and the adaptation time is also variable. Therefore,
we make several new predictions as to how the adaptation timeand the CheYp level vary with the
quantity of signaling proteins. Because of the complex network and various states, the full model
consists of 158 ODEs. To facilitate computation and furtheranalysis, we do model reduction by applying
multi-time-scale analysis and mean-field theory and simplify it into the 16-ODE and 4-ODE systems,
respectively, while keeping the key features intact.
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Figure 6. Signal transduction network. The basic unit of the network is the signaling
complex, denoted by T. The three indices used to denote the properties of the complex
are shown in the upper left corner. In the reaction network, vertical transitions are
ligand binding and release, horizontal transitions are methylation and demethylation, and
front-to-rear and reverse transitions are kinase activation, deactivation, phosphorylation and
dephosphorylation. The details of the phosphotransfer transitions are depicted at the left.
Adopted with permission from [143].

The single trimer model cannot reproduce the higher receptor cooperativity,i.e., the Hill coefficient of
response larger than 3, and fails to explain the data of thecheRcheBmutant cells with Tar or Tsr highly
overexpressed [39]. It suggests that the trimers of dimers are not independentof each other and that
larger receptor clusters with trimer-trimer interaction must be involved. Here we extend the single trimer
model to a trimer cluster model. We first consider the pure-type trimer of dimers (all three homodimers
are of the same receptor type). For a given methylation level, a trimer of dimers has two activity states
and four ligand-binding states. Therefore, a trimer of dimers at a fixed methylation level could exist
in eight distinct free-energy levels. We denote the free-energy level for the active ligand-free trimer as
Em

on, and similarly the free-energy level for the inactive ligand-free trimer asEoff . All energies are in
unit of the thermal energykBT . For simplicity, we specifyEm

on as a function of the methylation levelm
andEoff independent ofm, since only an offset energy, the relative difference between the two energy
levels, appears when use Boltzmann’s law to derive the formula for the probability of each state. Next,
we deal with the ligand-binding states. We consider the firstligand binding to, or releasing from, an
active trimer. In the steady state,

3kon,m
1 L

kon,m
−1

= e−∆Eon,m

1 (5)

∆Eon,m
1 is the free-energy change upon the first ligand binding to theactive trimer of dimers.L is the

ligand concentration. Therefore,

∆Eon,m
1 = − log

(

3kon,m
1 L

kon,m
−1

)

= − log

(

3L

Kon,m
d1

)

(6)
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whereKon,m
d1 is the first ligand dissociation constant of an active trimerandKon,m

d1 = kon,m
−1 /kon,m

1 .
Therefore, the free-energy level for the active trimer withone-ligand bound is

Em
on +∆Eon,m

1 = Em
on − log

(

3L

Kon,m
d1

)

(7)

Similarly, we obtain the free-energy levels for the pure-type trimer of dimers, shown in Table3.

Table 3. Free-energy levels for a pure-type trimer of dimers.

State Free-energy Level (unit:kBT )

On with 0 ligand bound E
m
on

On with 1 ligands bound E
m
on − log

(

3L

K
on,m
d1

)

On with 2 ligands bound E
m
on − log

(

3L2

K
on,m
d1 K

on,m
d2

)

On with 3 ligands bound E
m
on − log

(

L
3

K
on,m
d1 K

on,m
d2 K

on,m
d3

)

Off with 0 ligand bound Eoff

Off with 1 ligands bound Eoff − log

(

3L

K
off,m
d1

)

Off with 2 ligands bound Eoff − log

(

3L2

K
off,m
d1 K

off,m
d2

)

Off with 3 ligands bound Eoff − log

(

L
3

K
off,m
d1 K

off,m
d2 K

off,m
d3

)

Using Boltzmann’s law, the probability that the pure-type trimer of dimers is active is as below.

pon =
1

1 + e∆fm
(8)

∆fm = Em
on − Eoff + log











1 +
3L

Koff,m
d1

+
3L2

Koff,m
d1 Koff,m

d2

+
L3

Koff,m
d1 Koff,m

d2 Koff,m
d3

1 +
3L

Kon,m
d1

+
3L2

Kon,m
d1 Kon,m

d2

+
L3

Kon,m
d1 Kon,m

d2 Kon,m
d3











(9)

Now, we consider a receptor cluster withn trimers of dimers. We assume that the energy for a cluster
depends linearly on the number of trimers, that is, the free-energy level for the cluster to be in a certain
state is the sum of the free-energy level for each trimer of dimers to be in the same state. Thus, the
probability of then-trimer cluster being active at equilibrium is

pon =
1

1 + en∆fm
(10)

Finally, we consider a cluster of mixed-type receptors. Here, we work on the case of two types, Tar and
Tsr, as an example. In this case, a trimer could contain threeTar homodimers, three Tsr homodimers, or a
combination of Tar and Tsr homodimers. For simplicity, we use the approximation wherein only trimers
made of the same homodimers exist in a mixed-type receptor cluster. With this assumption, a Tar-Tsr
cluster only consists of the pure Tar trimers and the pure Tsrtrimers. We only consider the response



Int. J. Mol. Sci.2013, 14 9229

of the mixed-type cluster to a single type of ligands. The probability of the mixed-type receptor cluster
with na Tar trimers andns Tsr trimers coupled being active at equilibrium is

pon =
1

1 + e(na∆fm
a
+ns∆fm

s
)

(11)

∆fm
a = Em

on,a −Eoff,a + log
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(13)

We use this model to explain the observed ultrahigh cooperativity. We simulate the responses to
methyl-aspartate (MeAsp) and serine in thecheRcheBmutants with different expression levels of the
receptors Tar and Tsr and compare to Sourjik and Berg’s experiments. In Figure7(A) are shown the
responses to MeAsp in thecheRcheBmutants with only Tar expressed (compare to Figure 2(a) in [39]),
in Figure7(B) are the responses to serine with only Tsr expressed (compare to Figure 2(b) in [39]), in
Figure7(C) are the responses to MeAsp with native-level Tsr and varied-level Tar expressed (compare to
Figure 1(c) in [39]), and in Figure7(D) are shown the responses to serine with native-level Tar and
varied-level Tsr expressed (compare to Figure 1(d) in [39]). We also simulate the kinase activity
responses of Tsr to serinein vitro, shown in Figure7(E) and compare to Li and Weis’ experiments
(Figure 3 in [67]). Data fitting with the Hill function shows that the simulation results have quantitative
agreement with the measures. The details of the simulations, such as parameter values and data fitting,
are omitted here but documented in [145]. Our modeling on a single trimer of dimers and extension
to a cluster of trimer of dimers indicates that the strongly-coupled trimer of dimers is the core unit for
signaling function, that the short-range interaction between dimer members of a trimer, which we call the
intratrimer interaction, plays a key role, and that the long-range interaction between trimers in a loosely
coupled cluster, which we call theintertrimer interaction, is responsible for ultrahigh cooperativity.
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Figure 7. Responses of receptor Tsrin vitro andcheRcheBmutants with varied expression
levels of Tar or Tsr. (A) Simulated responses to MeAsp ofcheRcheBmutant cells expressing
only Tar at 1 (©), 2 (�) and 6 (♦) times the native level; (B) Simulated responses to serine
of cheRcheBmutant cells expressing only Tsr at 0.3 (©), 0.7 (�) and 5 (♦) times the
native level; (C) Simulated responses to MeAsp ofcheRcheBmutant cells expressing Tsr
at the native level and Tar at 0 (∗), 0.6 (♦), 1 (©), 2 (�) and 6 (△) times the native level;
(D) Simulated responses to serine ofcheRcheBmutant cells expressing Tsr at the native
level and Tar at 0 (∗), 0.6 (♦), 1 (©), 2 (�) and 6 (△) times the native level; (E) Simulated
responses to serine by the receptor Tsr at the methylation state QQQQ (©), QEQE (♦) and
EEEE (△).
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5. Spontaneous Spatial Pattern Formation in Populations

At the population level, cell-cell-signaling and chemotaxis provide a mechanism for long-range
cell-cell communication and formation of multicellular spatial patterns [9,146–152]. The spectacular
growth patterns observed in cultures provide a simple and manipulable system for studying bacterial
population chemotaxis in more complex environments, such as in biofilm formation, and in
bioremediation, which is a process that uses microorganisms to remove pollutants [153,154]. The
excitation and adaptation response of bacteria are crucialin the formation of these patterns. In this
section, we review biological experiments and mathematical models for the patterns formed by cells
such asE. coli that use a run-and-tumble strategy. Pattern formation in other bacterial colonies, e.g.,
Bacillus, ProteusandMyxococcus, and mathematical models of more complicated biofilms are discussed
in [155–165].

5.1. Pattern Formation in Bacterial Colonies

Chemotaxis ofE. coli can lead to spontaneous, self-organized pattern formation. In the 1960’s it was
found that aE. coli colony forms moving bands/rings when exposed to a nutrient that also serves as a
chemoattractant [167]. In the 1990’s, it was shown thatE. coli colonies can organize into stable spatial
patterns in either a semi-solid agar or liquid medium, by responding to a self-secreted chemoattractant
(aspartate and analogues) [9,146]. When grown in semi-solid agar with a single nutrient source (e.g.,
succinate), a droplet ofE. coli grows and depletes nutrient locally, and over the followingthree days,
a concentric swarm ring forms and spreads radially from the inoculation site. A symmetric array of
spots or stripes may form sequentially in the wake of the spreading ring depending on the initial nutrient
concentration [9,146]. The speed of the swarm ring is observed to be inversely proportional to the
initial nutrient concentration. When grown in a liquid medium, E. coli cells secrete attractant and
self-organize into network patterns initially, and the networks subsequently collapse into moving
aggregates which merge over time. The timescale of patterning for the liquid suspension experiments is
of the order of minutes. Mittalet al. [166] studiedE. coli aggregate formation in a quasi-2D system,
and showed that the size of an aggregate is about150 ∼ 200 µm in diameter and depends primarily
on the adaptation time scale of the bacteria and only weakly on the total number of cells. Recently,
E. coli traveling pulse patterns have also been observed in more complicated nutrients [168,169]. Due
to the complicated nature of the nutrient, the exact chemical signal that leads to these patterns is not
known, although the mechanism is believed to be similar to Budrene-Berg experiments. The adoption of
the recent microfluidic techniques, allows precise tracking of individual trajectories of cells and analyze
their movement in great detail. In [169], it is found that not only the mean run length of cells but
also the directional persistence are larger in the direction of wave propagation. By incorporating these
asymmetries of cell movement to a kinetic model similar to the hybrid cell-based model discussed later,
these authors matched numerical simulations to experimental data seamlessly.

The enteric bacteriumP. mirabilis, which is a pathogen that forms biofilmsin vivo and has a similar
chemotactic system toE. coli, can swarm over hard surfaces and form a variety of spatial patterns in
colonies. It has been shown thatP. mirabilis colonies, when grown on hard surfaces, can grow and
expand, and form radial and spiral stream patterns in the center of the colony [170]. Remarkably, the
spiral streams always wind counterclockwise in repeated experiments. Xueet al. [170] showed that
assuming that cell secrete a chemoattractant, the formation of streams can be explained as a result of
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the instability induced by local production of attractant by cells, and the spiral rotation of the population
results from the fact that cells swim with a rightward bias when moving close to a surface [171,172].

5.2. Mathematical Models of E. coli Pattern Formation

The formation of these bacterial patterns involves a complex interplay between different processes,
including consumption of nutrients, production of chemoattractants, tactic movement towards the
attractant, and hydrodynamic interaction with the environment. Moreover, formation of these spatial
patterns can involve millions of cells. Mathematical models of the patterns include continuum models
that incorporate these processess in a phenomenological way, and hybrid cell-based models that allow
detailed description of the microscopic behavior. The continuum models are easier to implement
numerically and more amenable to mathematical analysis, but justification of these models has to be
addressed. Hybrid cell-based models can be used to integrate better descriptions of the experimental
picture, but can be computationally expensive.

Continuum approaches to bacterial pattern formation

A variety of Patlak-Keller-Segel type systems

∂n

∂t
= ∇ · (Dn∇n− χ(S)n∇S) + f(n, S, F )

∂S

∂t
= Ds∆S + gs(n, S, F )

∂F

∂t
= Df∆F + gf(n, S, F )

(14)

have been developed and applied to modelE. coli patterns [147,173–182]. Heren is the cell density,
S is the concentration of the extracellular chemical,F is nutrient,Dn, Ds andDf are the diffusion
coefficients,χ(S) is the chemotaxis sensitivity, andf(n, S, F ), gs(n, S, F ) andgf(n, S, F ) represent the
local dynamics. The first equation in the system is called thePatlak-Keller-Segel chemotaxis equation,
or PKS equation for short. Mathematical properties of the system (14) have been studied, for example
in [182], and also see [183,184] for recent reviews.

Traveling wave solutions of the system (14) have been studied extensively as a means of describing
the moving band formation observed inE. coli colonies. Keller and Segel [173] first applied the
chemotaxis model without theF equation and cell growth term to describe Adler’s experiments ofE. coli
chemotactic band formation. They showed that the system of equations allow for an analytic traveling
wave solution, but they required a singular chemotaxis sensitivity which violates the fact that cells have
finite speed whenS becomes small. A nonsingular chemotactic sensitivity, however, would lead to a
moving band with decreasing speed and broadening density profile due to the diffusive effect of cell
run-and-tumble. Later [174,175] showed numerically that by incorporating cell growth and death the
shape and the speed of the band can be stabilized. More recentwork based on the velocity-jump process
described later has substantially clarified the picture [168].

Numerous extensions of the PKS model at system14 have been proposed to model theE. coli
swarm ring and aggregation patterns found by Budrene and Berg [9,146]. Ben-Jacobet al. [176]
and Tsimringet al. [177] added a repellent field that was assumed to autocatalyze theproduction of
attractant but to date there is no experimental confirmationof a repellent. In a model proposed by
Polezhaevet al. [181] cells become immobile upon starvation, and simulations ofthe model predict the
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formation of a swarm ring and stable aggregation patterns composed of immobile cells. However, the
swarm ring formed has a very diffuse front, in contrast to what is observed experimentally. The above
models can produce patterns with some similarity to those inthe semi-solid agar experiments, but how
different processes control the patterns is not clear. To address this, Brenneret al. [185] analyzed a
model of the form system (14), and suggested that movement of the swarm ring was driven bylocal
nutrient depletion., The integrity of the swarm ring results from the high attractant concentration at the
ring, whereas aggregates are suggested to form within the ring through fluctuations about the unstable
uniform cell density. In a subsequent paper [186] an analysis of the transformation of high cell density
cylinders into regularly spaced aggregates from the swarm ring was undertaken, with the conclusion that
a shifting balance between diffusion and chemotaxis leads to collapse of the strands. Despite numerous
attempts, there is at present no complete understanding of the pattern-forming process inE. coli.

5.2.1. Hybrid Cell-based Models

Hybrid cell-based models for bacterial pattern formation have also been developed [170,187,188]. In
these models, each cell is characterized by its positionx ∈ R

N , velocityv ∈ V ⊆ R
N , internal state

y and other auxillary variables indicating the metabolic state of the cell. The movement of each cell is
modeled as a velocity jump processes with instantaneous velocity jumps mimicking the relatively short
tumbles. Because in the aformentioned experiments, the average volume fraction of the cell population in
the substrate is small, these models assumed that cells are well separated with no mechanical interactions
between them, which means that cell movements are independent of each other. The rate of velocity
jumps depends on the internal variables which describe intracellular signaling, and this can lead to large
systems for the internal network. To reduce computational time, and with the goal of understanding the
role of excitation and adaptation of cell signaling to the population behavior, the abstract linear cartoon
model discussed earlier was used to describe the excitationand adaptation components of cell signaling,

dyi1
dt

=
G(S(xi, t))− (yi1 + yi2)

te
dyi2
dt

=
G(S(xi, t))− yi2

ta

(15)

Here the superscripti is the index of the cell,S is the local attractant concentration andte andta (with
te ≪ ta) are constants defining excitation and adaptation timescales. The functionG(S) models the
detection of the extracellular (chemoattractant) signals. To model the run and tumble movement, these
models describe the velocity jumps using a turning kernelT and a turning rateλ for each cell, given by
forms similar to the following

T =
1

|V |
and λi = λ0(1−

yi1
γ0 + |yi1|

) (16)

Since particles are conserved in the turning process
∫

V

T (v,v′) dv = 1

The foregoing individual-based model for cell movement canbe coupled with continuum
reaction-diffusion equations to describe the evolution ofthe extracellular nutrient and attractant
concentrations. The combined system is solved with a hybridscheme in which the movement of each
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cell is simulated by a Monte Carlo method while the reaction-diffusion equations are solved with an
alternating direction method. The details of this algorithm can be found in [189].

To model the experiments done by Budrene and Berg, the hybridcell-based model was coupled with
the following equations for the attractant and nutrient concentrations in [187]

∂S

∂t
= Ds∆S + γ

N
∑

n=1

δ(x− x
i) + µ

∂F

∂t
= Df∆F − k

N
∑

n=1

δ(x− x
i)

S(x, 0) = 0

F (x, 0) = f0

(17)

whereDs andDf are the diffusion rates,γ defines the secretion rate of attractant by cells,k is the
consumption rate of the nutrient, andµ is an unspecified degradation rate. Simulations of the hybrid
cell-based model can predict the time sequence of the network and aggregate formation in liquid medium
and swarm ring formation in agar as in the experiments of Budrene and Berg (cf.Figure (8)). In particular,
these simulations can reproduce the sharp wave front of the swarm rings, in agreement with experiments.

Figure 8. SimulatedE. coli patterns by a cell-based model. (a) Network formation from an
uniform cell lawn; (b) Aggregate formation from the network; (c) Traveling wave formation
from a single inoculum in the center. Adapted from [187] with permission.

(a) (b) (c)

To model the traveling band formation observed by Adler, thehybrid model was coupled with the
following equation forS [188],

∂S

∂t
= Ds∆S − γ

N
∑

n=1

δ(x− x
i)

S(x, 0) = 1

(18)

whereγ is the consumption rate of the signal S by cells. Hereγ becomes negative because in this set of
experiments, the signal becomes the nutrient source of the cells and they consume it instead of secrete
it. It was found that the cell population moves towards higher concentrations of signal at a constant
speed, and the profile of the traveling cell population showsa dropout phenomena which has not been
reported by any continuum model [188]. When coupled with cell growth, the wave shape and speed can
be stabilized, but oscillations of the wave speed have been observed in the hybrid model [190].
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The hybrid cell-based model has also been applied to model radial and spiral stream formation of
P. mirabilis. The difference from the application toE. coli patterns is that in the patterns formed by
P. mirabilis, cells move close to a surface, and thus have a clockwise biasin their movement when
observed from above the cell looking toward the surface. To incorporate the bias, Xueet al. [170] added
an angular component to the velocity of each cell. Remarkably, the hybrid cell-based model predicts the
spiral stream patterns with the correct chirality qualitatively (Figure9). Further parameterization of the
model with refined experimental measurements are needed to obtain quantitative comparisons between
experiments and modeling.

Figure 9. Spiral streams in a growingProteus mirabiliscolony. Reproduced from [170]
with permission.

Model Experiment

Hybrid cell-based models based on simplified descriptions of cell signaling have also been used
to study E. coli population chemotaxis in well-controlled spatially and temporally varying signal
fields [191,192]. Quantitative agreement of the cell density profile between experiments and models
were achieved by refining the parameters of these models withsingle cell data.

5.2.2. From Cell-based Models to Continuum Models

The hybrid cell-based models described above can be used to integrate details on cell signaling and
movement faithfully. However, when used to simulate population behavior, it becomes computationally
intensive, especially when some parameters of the model areunknown and parameter exploration is
needed. The continuum models such as those based on PKS equations are computationally managable
and analytically amenable. However, justification of thesemodels under different scenarios of signals,
and the relationship between macroscopic parameters in these models with parameters known in the
signal transduction steps, are not rigorously establishedin the original PKS equation.

To fill in this gap, significant effort has been put in derivingcontinuum models from cell-based models
for chemotaxis ofE. coli. Early works derived the PKS equation from cell movement modeled as biased
random walks with signal-dependent parameters [193–203]. Recently, the simplified description of
Equation (15) of signal transduction has also been incorporated, and thePKS equation was derived
when the signal detected by cells changes slow enough so thatcells are close to their fully adapted
state [189,204,205]. The derivation of the equation starts from linearizationof the cartoon model of
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signal transduction around its adapted state, by introducing the equivalent variablēz = y − (0, G(S))T ,
which satisfies

dz1
dt

= −
z1
te

dz2
dt

=
−z1 − z2

ta

(19)

and involves asymptotic approximations of the resulting master equation of the velocity jump process,

∂p(x,v, z̄, t)

∂t
+∇

x
·
(

vp(x,v, z̄, t)
)

+∇z1 ·

[

(

−
z1
te

)

p(x,v, z̄, t)

]

+∇z2 ·

[

(−z1 − z2
ta

)

p(x,v, z̄, t)

]

= λ(z1)

(

−p(x,v, z̄, t) +

∫

V

T (v,v′)p(x,v′, z̄, t)dv′

)

(20)

Herep(x,v, z̄, t) is the probability density for a cell to be at positionx ∈ R
N , with velocityv ∈ V ⊂

R
N , and intracellular statēz ∈ R

q. The formal derivation of the approximation involves rescaling of
Equation (20) on the diffusion space and time scales, calculating the internal state moment equations,
and closing the infinite moment system. When the signal gradient is small, the adaptation time scale
of the cell is much smaller than the time scale for signal variation, and the ratio of these times scales
becomes a natural small parameter for closing the infinite moment system and applying perturbation
methods to the closed moment system. This leads to a hierarchy of approximations of the lowest order
moments such as the cell densityn(x, t) =

∫

pdvdz̄. The first order closure ofn(x, t) satisfies the
following PKS equation [189],

∂n

∂t
= ∇ ·

( s20
Nλ0

∇n−
bs20ta

Nλ0(1 + λ0ta)(1 + λ0te)
∇S
)

(21)

wheres0 is the cell speed,N is the space dimension,λ0 is the basal turning rate, andb is the derivative
∂z1λ(0).

This PKS equation, in which the chemotactic sensitivity is defined in terms of cell parameters,
provides a very good approximation to the spatial-temporaldynamics observed in the cell-based models
under a variety of signal regimes, as long as the signal gradient times the cell is small compared to the
reciprocal of the adaptation time [189]. Figure10 shows a typical comparison between the results of
a stochastic simulation of the cell-based model with numerical solutions of Equation (21) for a given
piecewise linear signal with a peak atx = 2mm.

However when the signal changes rapidly along the cell’s trajectory, the underlying assumption of the
derivation is not satisfied and Equation (21) is not adequate to describe the population dynamics [170].
The main reason is that due to fast signal variation, intracellular signaling is far from its adapted
state, and this derivation has to be accounted for in a continuum model by introducing new variables
such as higher-order moments of the internal states. Recently, such a continuum model has been
proposed by including a mean methylation level of receptors[206], and the model can be used to capture
certain macroscopic quantities of the cell population suchas the mean position of a colony compared
to experiments and cell-based simulations. However, matching between solutions of the proposed
continuum model and underlying cell-based model/experimental data as spatial-temporal functions was
not achieved in a satisfactory manner. Thus deriving continuum models for bacterial chemotaxis that can
quantitatively predict the evolution of cell density in large signal gradients is still an open problem.
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Figure 10. Comparison of solutions of the derived PDE (21) with stochastic simulations of
the cell-based model. Parameters used:s0 = 20µ/s,λ0 = 1, b = 4. 104 cells are used for the
cell-based model. Bars: histogram of the cell positions computed from the cell-based model
with a total number104 cells. Red lines: numerical solutions of Equation (21).
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6. Discussion

The signal transduction pathway that governs bacterial chemotaxis inE. coli is one of the most
thoroughly understood molecular systems. At the single-cell level it involves excitation and adaptation
responses to signals, which enable cells to move to more favorable environments. At the population level,
it provides a mechanism for cell-cell communication by secretion of the attractant and for formation
of multicellular structures. To understand these phenomena at different spatial and temporal scales
quantitatively, biologists, physicists, and mathematicians have been involved in experimentation and
modeling. Although much is known, there are still many questions to be addressed.

At the receptor homodimer level, there are questions concerning conformational changes of the
cytoplasmic domain for signaling, especially in the HAMP region and the signaling region. At the trimer
of dimers level, further studies to determine the stoichiometry of the ternary MCP-CheA-CheW signaling
complexes, and how the signaling-induced conformational changes of one homodimer affect other dimer
members within a trimer, are needed. Major questions remainat the receptor cluster level, where a cluster
of trimers of dimers is probably used. One hypothesis that could be tested in this context is that for
short-range interaction among three dimers of the same trimer, the protein interaction is primarily due
to the direct coupling of dimers in the cytoplasmic domain, while for longer-range interaction among
trimers (dimers of different trimers), the protein interaction is due to indirect coupling through the
interconnected CheA and CheW network, or possibly membrane-mediated elastic interaction.

At the population level open questions include: how to derive a quantitative macroscopic description
of bacterial population chemotaxis when the external signal changes rapidly, or whether such an
approach is even possible. Currently continuum models are only derived from coarse-grained or abstract
models of signal transduction that can perform excitation and adaptation. Derivation of continuum
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models from cell-based models that take into account detailed descriptions of cell signaling is currently
under investigation and will be published elsewhere.
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