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Abstract
The biological processes necessary for the development and continued survival of any
organism are often strongly influenced by the transport properties of various biolog-
ically active species. The transport phenomena involved vary over multiple temporal
and spatial scales, from organism-level behaviors such as the search for food, to sys-
temic processes such as the transport of oxygen from the lungs to distant organs, down
to microscopic phenomena such as the stochastic movement of proteins in a cell. Each
of these processes is influenced by many interrelated factors. Identifying which fac-
tors are the most important, and how they interact to determine the overall result is a
problem of great importance and interest. Experimental observations are often fit to
relatively simple models, but in reality the observations are the output of complicated
functions of the physicochemical, topological, and geometrical properties of a given
system. Herein we usemultistate continuous-time randomwalks and generalizedmas-
ter equations to model transport processes involving spatial jumps, immobilization at
defined sites, and stochastic internal state changes. The underlying spatial models,
which are framed as graphs, may have different classes of nodes, and walkers may
have internal states that are governed by a Markov process. A general form of the
solutions, using Fourier–Laplace transforms and asymptotic analysis, is developed for
several spatially infinite regular lattices in one and two spatial dimensions, and the
theory is developed for the analysis of transport and internal state changes on gen-
eral graphs. The goal in each case is to shed light on how experimentally observable
macroscale transport coefficients can be explained in terms of microscale properties
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of the underlying processes. This work is motivated by problems arising in transport
in biological tissues, but the results are applicable to a broad class of problems that
arise in other applications.

Keywords Continuous-time random walk · Multiscale model · Drosophila ·
Multistate random walk · First passage time

1 Introduction

Within any organism, various spatially distributed networks with widely distinct char-
acteristics exist—the nervous system, the cardiovascular system, and air passages in
the lungs of higher organisms are but a few examples. When biochemical processes
occur within these biological networks, the network structure can play a significant
role in determining the outcome of such processes. For instance, if a biochemical sig-
nal secreted by a set of cells has to travel through this network to reach distant cells,
transport properties of the network play a crucial role in determining the strength
and dynamic behavior of the signal. In order to understand complicated cell-level
and tissue-level processes such as morphogenesis, it is crucial to assess the effects of
interactions between the complex spatial structures and the properties of associated sig-
nal transduction networks that translate chemical signals into cellular responses. This
problem is particularly challenging as it is difficult to interpret tissue or organism-scale
experiments in terms of microscopic details of reactions and transport, and conversely,
it is a challenge to extrapolate local microscale measurements of transport to tissue-
level behavior.

A widely-studied example arises in the analysis of transport and transduction of
bone morphogenetic protein (BMP) signals during morphogenesis of the wing disk of
the fruit fly Drosophila melanogaster. Wing disks (Fig. 1a) arise in the embryo at the
intersection of a circumferential stripe of the protein wingless (Wg) and an anterior–
posterior (AP) stripe of Decapentaplegic (Dpp) (Gou et al. 2020). The disk has two
layers of cells separated by a lumen (Fig. 1b), one a layer of columnar epithelial cells

Fig. 1 AWing disk A: anterior, P: posterior, D: dorsal, V: ventral, AP &DV: anterior–posterior and dorsal–
ventral boundaries, DP: disk pouch. B side view along B in (A). Modified from Widmann and Dahmann
(2009)
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Fig. 2 Left: A schematic of a portion of the wing disk, showing the luminal section (1) at the top, , the
cellular array below (2), and the source of Dpp at the left. Right: A cross section of a disk showing the
transport processes that affect the morphogen distribution (Othmer et al. 2009). ZA are aka AJ

with the apical side at the lumen and the basal side at the basal lamina, the other a
peripodial epithelium overlying the lumen (Fig. 2). The lateral membranes of adjacent
columnar cells are connected via adherens junctions (AJs), which are complexes of
E-cadherins and adapter proteins, and via septate junctions (SJs) that lie basal to the
AJs and separate the extracellular fluid into apical and baso-lateral layers (Gibson and
Gibson 2009; Harris and Tepass 2010; Choi 2018).

The wing disk is perhaps the best understood system in which transport of a
molecule—in this case the BMP family member Dpp—involves a number of very
distinct steps in a geometrically complex tissue. The secretion of Dpp from a stripe of
cells along the AP boundary colored red in Fig. 2(left) gives rise to a spatial distribu-
tion of Dpp transverse to the AP boundary, but how the distribution is established is
still an open question.

Various local processes and paths are involved in the transport of Dpp in the wing
disk, and it has been observed that Dpp dispersal occurs both in the lumenal and
the baso-lateral space. Dpp is uniformly distributed in the lumen, while in the baso-
lateral region a graded Dpp distribution was found (Gibson et al. 2002; Mundt 2013;
Harmansa et al. 2017). Extracellular Dpp can bind to membrane receptors, which
can restrict its long-range transport by retaining it on cell surfaces (Haerry et al.
1998). It can then be internalized via endocytosis for either lysosomal degradation or
recycling to the membrane, as well as for transcellular transport (Entchev et al. 2000;
Akiyama et al. 2008). For instance, as was shown for Wg (Yamazaki et al. 2016), Dpp
might also undergo apico-basal transport in the columnar cells, which promotes the
communication between the apical and baso-lateral regions.

Spatial profiles of Dpp measured via imaging techniques such as FRAP, are usually
described with a reaction–diffusion model based on diffusion and first-order decay
(Kicheva et al. 2007; Wartlick et al. 2011). Fitting this model to FRAP data from one
set of experiments yielded a diffusion coefficient of 0.1µm2/s (Kicheva et al. 2007).
In contrast, Zhou et al. (2012) measured a free diffusion coefficient of 20µm2/s
using fluorescence correlation spectroscopy. The discrepancy between the two values
can be understood since the former is a macroscopic parameter, and in reality, the
simple diffusion model integrates various local processes, such as receptor-mediated
uptake, local degradation and transport in each cell. More recent work shows that
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Fig. 3 Comparisons of stochastic simulations and continuum results for two times, t = {1, 5} with n = 15.
The cell-averaged concentration, obtained through smoothing the stochastic data, approaches the continuum
macroscale solution as time progresses. The spikes are due to slower jumping rates at the cell membranes
as compared with the interior, which leads to local accumulation. The waiting times at interior points are
set to be 4.5 times faster than at the junctions and roughly 100 jumps occur per unit time on average

spreading of Dpp in the apical lumen, where free diffusion can occur, plays a minor
role in both growth and patterning—most occurs in the baso-lateral space (Mundt
2013; Harmansa et al. 2017). Given the complexity of the geometric structure of the
disk and the different local processes that may be involved in Dpp transport, a much
more complicated transport model is required to describe the establishment of the Dpp
profile in this system.

Herein we describe transport processes as multistate random jump processes in
which the walkers are characterized by both their spatial location and their internal
state. Spatial states live on lattices and general graphs, chosen so as to represent some
aspects of transport in the disk, and as used here, these lattices have a translation-
invariant structure that makes the problems amenable to analytical techniques. We
analyze a number of examples of Markovian problems to obtain relations for certain
transport coefficients in terms of the details of the underlying processes, and develop
techniques for use on general graphs and non-Markovian jump processes. While we
focus on analytically-tractable problems, numerical approaches can be applied to sup-
plement what can be obtained analytically in more complex applications.

As a motivating example, consider Dpp transport in a 1D domain that is subdivided
into a number of cells, each of width L . We overlay a lattice with two types of vertices
on the line of cells, n = L/Δx vertices within each cell and a distinct vertex at each
membrane. We suppose that within each cell a molecule can jump from site to site at
a rate μ, and at membrane points a molecule can linger longer, and either return to
where it came from or jump into the neighboring cell. A stochastic simulation of the
movement of a particle that begins at x = 0 leads to the distributions shown at two
different times in Fig. 3.

Depending on the waiting-time distributions for a jump at interior points and at
the membranes, the time spent at these points can be very different, as shown by
the spikes at both times, but when the stochastic results are averaged the result is
a normal or Gaussian distribution characteristic of a diffusion process. As we show
later, if we define the diffusion coefficient within a cell as Dm = μ/Δx2 and set the
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mean membrane residence time τ = λ−1
0 = λ−1Δx , then the macroscopic diffusion

coefficient that characterizes the spread of the molecule’s location at long times is
DM = λDm

λ+Dm/L2 under a suitable scaling of the jump rates as the lattice spacing
goes to zero. The yellow line in Fig. 3 shows the solution of the macroscale diffusion
equation using this diffusion coefficient.

Amajor objective of thiswork is to understand in general howparameters describing
microscale processes can be “lifted” to parameters for macroscale descriptions of the
processes. This has been done in a continuum framework for a line of cells, but
for nonlinear reactions the homogenization is not simple (Othmer 1983). This also
becomes difficult when describing transport in complex geometries such as the wing
disk. We show that the lattice structure often makes it possible to reduce a random
process with numerous (even infinite) internal states into random processes with just
a few internal states. The effect of this change is to ignore certain local details, by
including information about local processes in overall transport coefficients valid at
larger length and timescales.

We only deal with linear processes, which leads to linear evolution equations and
thus to potentially large spectral problems, and a great deal of earlier work has dealt
with similar problems (Othmer and Scriven 1971; Gadgil et al. 2005; Kang et al. 2012;
Hu and Othmer 2011; Ciocanel et al. 2020). However, earlier work was focused on
simple geometries, and in this article, we expand the scope of these problems to cases
where there are multiple types of states that have differing connectivity patterns, and
we show how exact macroscale waiting-time distributions can be derived in some
cases. The computation of spatial moments for multistate random walks has also
been treated earlier (Landman and Shlesinger 1979a, b, 1977; Roerdink and Shuler
1985a, b; Scher and Wu 1981), and while there is some overlap with earlier work, our
approach includes both microscale spatial structure, complex geometries, and internal
states for the walkers.

An outline of the paper is as follows. In the following section, we provide a brief
introduction to the standard theory of continuous-time random walks (CTRWs) in
continuum space. We then extend these ideas to lattice walks on graphs in which
there are two distinct classes of vertices in the underlying graph, one of which we call
primary junctions or vertices, and the other, which we call secondary vertices, live on
edges connecting primary junctions. We also consider processes in which the walker
has internal states as well, and develop evolution equations for the stochastic evolution
of both spatial location and internal state. In Sect. 3, we derive the moment equations
for one-dimensional lattices, and in Sect. 4 and 5, we develop different approaches
to the “micro-to-macro” analysis in one-dimensional lattices. In Sect. 6, we consider
hexagonal lattices and develop the evolution and moment equations for such lattices.
In Appendix B, we describe a general formulation by which arbitrary graphs can be
treated. For reference, Table 1 contains a list of the abbreviations used throughout.
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Table 1 List of abbreviations and recurring notation

Abbreviation Notation Meaning

CTRW Continuous-time random walk

WTD φ(t) or ψ(t) Waiting-time distribution

Φ(t) Cumulative waiting-time distribution

Φ̂(t) Complementary waiting-time distribution

FPT f (t) First-passage-time density distribution

Junction A vertex in the primary graph G

SV Secondary vertices–spatial states on an edge connecting
vertices in the primary graph

p(x, t |0) or p(x, t) Probability of occupying location x at time t after
starting at x = 0 at t = 0.

q(x, t |0) or q(x, t) Probability density of arriving at location x at time t
after starting at x = 0 at t = 0.

n(x, t) Number density of particles at x and t

m(k)(t) kth spatial moment of p(x, t)

T (x, y) Spatial jump distribution operator for a jump process

K (t) Internal state transition matrix

Λ(t) Diagonal matrix of internal state exit rates

W (x, y) Spatial transition operator for a differential master
equation

Γ (t) Memory kernel for a differential master equation

⊗ Kronecker product operator

nk Number of SVs on an edge

ns Number of internal states of a walker or particle

Blank entries in the notation column apply when the abbreviation has no associated mathematical sym-
bol. Likewise, the abbreviation column is empty for mathematical symbols that are not abbreviated.The
dependence on the initial position x = 0 in p and q is often omitted in the text

2 The Continuous-Time RandomWalk

2.1 Single-StateWalkers in a Continuum

When the underlying space is a continuum, a continuous-time random walk (CTRW)
is a random jump process on Rn in which the particle or walker, which can range
from a molecule to an organism, executes a sequence of spatial jumps of negligible
duration. In biological contexts, a walker may have many internal states such as the
configuration of a molecule that can also change, but to begin we assume that the
only change in the jump process is position in space—the case of multiple internal
states is treated in the following subsection.We assume that the waiting times between
successive jumps at a given position are independent and identically distributed, i.e.
if the jumps occur at T0, T1, . . . then the increments Ti − Ti−1 are independently
and identically distributed, and therefore, the jump process is a semi-Markov process
(Feller 1968; Karlin and Taylor 1975).
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Let Ψ (x, t | y, 0) be the joint conditional probability density that a walker at y at
time t = 0 remains at y until it jumps at t− and lands at x. The waiting time TTT
between jumps is governed by the waiting-time distribution (WTD)

φ( y, t) =
∫
Rn

Ψ (x, t | y, 0)dx (1)

and the spatial distribution of jumps is given by

T (x, y) =
∫ ∞

0
Ψ (x, t | y, 0)dt . (2)

The cumulative and complementary waiting-time distributions, Φ and Φ̂, respec-
tively, are

Φ( y, t) =
∫ t

0
φ( y, s) ds = Pr{TTT ≤ t} (3)

and

Φ̂( y, t) =
∫ ∞

t
φ( y, s) ds = 1 − Φ(t) = Pr{TTT ≥ t}. (4)

The fact that we condition on the assumption that the current time at position y can
be taken as t = 0 means that the jump distribution, T (x, y), is independent of the
waiting time. In the above we incorporated the current position, y, in the waiting-time
distribution and this will be used later for lattice walks, but in this section we will
omit this. Thus, if the jumps are governed by a Poisson process with parameter λ,
the cumulative distribution is Φ(t) = 1 − e−λt and the waiting-time distribution is
φ(t) = λe−λt . This is the only smooth distribution for which the jump process is
Markovian (Feller 1968).

CTRWsare particularly useful since experimental observables, such as themoments
of the displacement distribution and their dependence on time, can be related to the
quantities, φ and T that specify the CTRW. In turn, φ and T are specified in terms
of the microscale properties of the system being studied. To relate observables to φ

and T we require an evolution equation for the density function p(x, t | 0), which is
defined such that p(x, t | 0)dx is the probability that the position of a jumper which
begins at the origin at t = 0 lies in the interval (x, x + dx) at time t . We derive this
equation via equations for some auxiliary quantities.

Let qk(x, t)dx dt be the joint probability that a walker starting at the origin takes
its kth step in the interval (t, t + dt) and lands in the interval (x, x + dx). Then for
any x �= 0, t > 0, qk satisfies the first-order integro-difference equation

qk+1(x, t |0) =
∫ t

0

∫
Rn

φ(t − τ)T (x, y)qk( y, τ |0) d y dτ, k = 1, 2, . . . (5)

The density function for arriving in the interval (x, x+ dx) in time interval (t, t +dt)
after any number of steps is the sum of these, from which we obtain the integral
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equation

q(x, t |0) =
∞∑
k=0

qk(x, t |0) = q0(x, t |0) +
∫ t

0

∫
Rn

φ(t − τ)T (x, y)q( y, τ |0) d y dτ.

(6)
Since thewalker starts at x = 0, q(x, t |0)must satisfy the initial condition q(x, 0|0) =
δ(x) and therefore

q(x, t |0) = δ(x)δ(t) +
∫ t

0

∫
Rn

φ(t − τ)T (x, y)q( y, τ |0) d y dτ. (7)

To obtain the density function p(x, t |0), observe that it is the product of the probability
of arriving in (x, x + dx) at some time τ < t and the probability that no transition
occurs in the remaining time t − τ . As a result,

p(x, t |0) =
∫ t

0
Φ̂(t − τ)q(x, τ |0) dτ

=
∫ t

0
Φ̂(t − τ){δ(x)δ(τ ) +

∫ τ

0

∫
Rn

φ(τ − s)T (x, y)q( y, s|0) d y ds} dτ

= Φ̂(t)δ(x) +
∫ t

0

∫
Rn

(∫ t

s
Φ̂(t − τ)φ(τ − s) dτ

)
T (x, y)q( y, s|0)d y ds.

(8)

From this, one finds that p(x, t |0) satisfies the following renewal equation (Othmer
et al. 1988)

p(x, t |0) = Φ̂(t)δ(x) +
∫ t

0

∫
Rn

φ(t − τ)T (x, y)p( y, τ |0) d y dτ (9)

which is sometimes called the integral master equation (Mainardi et al. 2000).
Although p(x, t |0) gives the probability density for a single particle to be located

at x at time t , in experiments it is more common to observe a concentration distri-
bution associated with many particles. If the initial number density distribution of
non-interacting walkers is f (x), then at time t , the number density, n(x, t) satisfies

n(x, t) = Φ̂(t) f (x) +
∫ t

0

∫
Rn

φ(t − τ)T (x, y)n( y, τ ) d y dτ. (10)

The necessary and sufficient condition for conservation of walkers is that the jump
distribution satisfies

∫
Rn

T (x, y) dx = 1.
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To obtain a differential form of the integral master equation, we define the Laplace
transform of an exponentially bounded f (t) as

f̃ (s) = L {〈 f (t)〉} ≡
∫ ∞

0
e−st f (t) dt

and take the Laplace transform of (10). This leads to

ñ(x, s) = 1 − φ̃(s)

s
f (x) + φ̃(s)

∫
Rn

T (x, y)ñ( y, s) d y (11)

which can be rearranged to

{
1 − φ̃(s)

sφ̃(s)

}
{sñ(x, s) − f (x)} = −ñ(x, s) +

∫
Rn

T (x, y)ñ( y, s) d y. (12)

The second bracketed quantity on the left side is the transform of
∂n(x, t)

∂t
, while the

leading factor defines the function

Γ (t) ≡ L −1

{
1 − φ̃(s)

sφ̃(s)

}
,

which is called thememory function (Mainardi et al. 2000). Thus the inverse transform
of (12) is

∫ ∞

0
Γ (t − τ)

∂n(x, τ )

∂τ
dτ = −n(x, t) +

∫
Rn

T (x, y)n( y, t) d y. (13)

For an exponential WTD of the form φ(t) = λexp(−λt), Γ (t) = δ(t)/λ and (13)
reduces to

∂n(x, t)

∂t
= −λn(x, t) + λ

∫
Rn

T (x, y)n( y, t) d y. (14)

This is the differential form of the master equation (Othmer et al. 1988). A number
of examples of choices for T (x, y) that lead to either a diffusion equation or a tele-
grapher’s equation are given in Othmer et al. (1988). A choice that will be used later
defines a CTRW on a lattice or graph.

In the above, we consider a general jump function T (x, y), but if the jumps depend
only on the difference ξ ≡ x − y the foregoing equations can be rewritten slightly.
For example (14) can be written as

∂n(x, t)

∂t
= λ

∫
Rn

T (ξ , 0) {n(x − ξ , t) − n(x, t)} dξ . (15)

Since T (x − y, 0) = T (x, y) in this case, we can omit the second argument of T
and just write T (x − y).
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2.2 Walkers with Multiple Internal States and Binding

In biological transport problems, there are often various types of reaction, such as
binding, catalysis, and degradation, that occur. One way to include these in the present
formulation is to describe a walker in a CTRW as having internal states, each of which
describes a distinct internal characteristic of the walker. For example, the internal state
may describe the conformation of a protein, or it could describe a molecular type when
interconversions occur according to a first-order reaction.

In a later example, binding will only occur in a subset of the spatial locations, thus
some properties are attached to the spatial point, not to the internal state of the walker.
On the other hand, if there is a probability of spontaneous interconversion between
internal states (or death) that is the same for all spatial sites, that is built into the internal
dynamics of the walker.

When walkers have a finite number ns of internal states that evolve according to a
Markov chain, the transitions can be included in the foregoing equations by defining
the WTDs for internal state changes and the probability of a jump between states. We
assume that changes in internal states and spatial position do not occur simultaneously,
and thus, the effects of the processes are additive. Suppose that the internal states are
S = (S1, · · · , Sns ) and that they evolve according to a Markov chain with evolution
equation

dS

dt
= RS, (16)

where Ri j is the transition rate between states j and i . Then the probability of a jump
from state j to i is

ki j = Ri j∑
l �= j Rl j

(17)

and the parameter of the Poisson process governing the WTD in state j is the sum of
the exit rates from state j , which is

λ j =
∑
l �= j

Rl j . (18)

In this case,where the space jumps and internal state changes are themselvesMarko-
vian processes, the waiting-time distributions for the composite process may be found
explicitly. For the composite process of space jumps and internal state changes, the
waiting-time density φci (t) for a space jump while in the i th state 1, conditioned on
no change in the i th state, is the product of the WTD for a pure jump process times
the probability of no change in the i th internal state. Thus

φci (t) = λe−λt ×
(
1 −

∫ t

0
λi e

−λi τdτ

)
= λe−(λ+λi )t , (19)

and the density for a jump in space, given no change in any internal state, is simply
the product of these taken over all internal states.

1 The subscript c indicates the composite process rather than the pure space jump process.

123



A Random Walk Approach to Transport in… Page 11 of 84    92 

Since the position and state changes cannot occur simultaneously, their effects are
additive, and letting qk be the ns-vector of states as a function of time and space, the
generalization of (5) for arrival at (x, S) at time t is

qk+1(x, t) =
∫ t

0

{[∫
Rn

φc(t − τ)T (x, y)qk( y, τ )d y
]

+ KΛ(t − τ)qk(x, τ )

}
dτ.

(20)
Here φc(t) = diag{φci (t)} and Λ(t) = diag{λi e−(λ+λi )t }. The elements of Λ rep-
resent the waiting-time densities for the state changes multiplied by the probability
that no space jump occurs in [0, t], and the entries of K represent the probabilities
of jumps between states, given that one occurs. K is the analog in the set of internal
states of the jump kernel T in physical space. Note that for brevity of notation, we
have omitted the conditioning on the initial condition in q and p.

The vector version of (8) for occupancy in the state (x, S) at time t becomes

p(x, t) = δ(x)δ(t)S0 +
∫ t

0

{[∫
Rn

φc(t − τ)T (x, y) p( y, τ )d y
]

+KΛ(t − τ) p(x, τ )

}
dτ, (21)

where S0 is the vector of the initial internal states. The state of a multiparticle system
is now defined by the ns-vector n(x, t) = (n1(x, t), · · · , nns (x, t)) and the corre-
sponding vector master equation is

∂n(x, t)

∂t
= −(λI + Λ(0))n(x, t) + λ

∫
Rn

T (x, y)n(x − ξ , t) dξ + KΛ(0)n(x, t).

(22)

2.3 Generalization of theWaiting-Time Distributions

In order to generalize to non-Markovian subprocesses, we consider the combination
of two stochastic processes whose individual renewal equations are

q(1)
k+1(x, t) =

∫ t

0

∫
Rn

φ(t − τ)T (x, y)q(1)
k ( y, τ )d ydτ

q(2)
k+1(t) =

∫ t

0
KΛ(t − τ)q(2)

k (τ )dτ,

whereΛ is a matrix of waiting-time densities for the pure internal state process and K
is thematrix of jumpprobabilities as before. To combine two, possibly non-Markovian,
processes into a generalized master equation, we write

qk+1(x, t) =
∫ t

0

∫
Rn

φc(t − τ)T (x, y)qk( y, τ )d ydτ +
∫ t

0
KΛc(t − τ)qk(x, τ )dτ,

(23)
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where φc and Λc are diagonal matrices of waiting-time densities for the composite
process that incorporates the probability of no jump in the complementary process,
similar to above. Thus

φc j (t) = φ(t)

(
1 −

∫ t

0
Λ j (τ )dτ

)
and Λc, j (t) = Λ j (t)

(
1 −

∫ t

0
φ(τ)dτ

)
.

Next, we sum over k = 0, . . . ,∞ in Eq. (23) to obtain

q(x, t) = δ(x)δ(t)S0 +
∫ t

0

∫
Rn

φc(t − τ)T (x, y)q( y, τ )dτ

+
∫ t

0
KΛc(t − τ)q(x, τ )dτ.

Making use of the relation between p and q in Eq. (8) leads to an integral equation
for p:

p(x, t) = δ(x)Φ̂c(t)S0 +
∫ t

0

∫
Rn

φc(t − τ)T (x, y) p( y, τ )dτ

+
∫ t

0
κ(t − τ) p(x, τ )dτ.

The reaction matrix kernel κ(t) introduced in this equation is defined via an inverse
Laplace transform:

κ(t) = L −1
[ ˜̂
Φc(s)K cΛ̃c(s)

˜̂
Φ−1

c (s)
]

wherein the diagonal matrix of complementary waiting-time distributions, Φ̂c is
defined as

Φ̂ci (t) = 1 − Φci (t) = 1 −
∫ t

0

(
φci (τ ) + Λci (τ )

)
dτ.

Following the derivation in Eqs. (13)–(15), we obtain the evolution equation for the
number density of several non-interacting particles as

∫ t

0
Γ (t − τ)

∂n
∂t

dτ = −n(x, t) +
∫ t

0

∫
Rn

μ(t − τ)T (x, y)n( y, τ )d ydτ

+
∫ t

0
ν(t − τ)n(x, τ )dτ

(24)
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with the kernels, Γ , μ, and ν defined in terms of inverse Laplace transformations as
follows.

Γ (t) = L −1
[
1

s

[
φ̃c(s) + Λ̃c(s)

]−1 ˜̂
Φc(s)

]

μ(t) = L −1
[[

φ̃c(s) + Λ̃c(s)
]−1

φ̃c(s)

]

ν(t) = L −1
[[

φ̃c(s) + Λ̃c(s)
]−1 ˜̂

Φc(s)K cΛ̃c(s)
˜̂
Φ−1

c (s)

]
.

(25)

As shown earlier, when both transport and reaction are governed by Poisson pro-
cesses, the resulting master equation is a system of ODEs, but what we see here
is that non-Poissonian WTDs will generally lead to a more complicated integro-
differential equations. We also note that in many cases, Γ cannot be defined as a
function, but must be understood as a singular distribution (e.g., a Dirac delta func-
tion). As an example, the Erlang distribution φ(t) = λ2te−λt has a singular memory
kernel, Γ (t) = λ−2δ′(t) + 2λ−1δ(t) where δ′(t) is the distributional derivative of
the Dirac delta (c.f. Othmer et al. 1988). In particular, if φ(0) = 0, Γ (t) will typi-
cally be a singular distribution and the evolution equation for p(x, t) will depend on
higher-order derivatives of p(x, t) with respect to time.

In what follows, we do not explicitly outline the manipulations needed when com-
bining various stochastic processes. However, in each case in which we introduce
a waiting-time distribution, it should be assumed that it is in fact the waiting-time
distribution for the combined process whenever needed.

2.4 LatticeWalks

In many problems, the underlying space can be treated as a lattice, obtained for exam-
ple, by discretizing an underlying continuum space or as a model of cellular tissues.
Here we deal with infinite 1D and 2D lattices in which every lattice point has the
same number of neighbors. The lattice can be defined by an undirected graph G , all
of whose vertices are of the same degree, and we call such graphs regular. The spatial
points in an n-dimensional lattice are typically integer multiples of n basis vectors that
define the spacing between vertices. The evolution equation for the probability pi of
a walker being at the i th vertex at time t , assuming an exponential WTD, is

dpi
dt

= λ
∑

j∈N (i)

Ti . j
{
p j (t) − pi (t)

}
, (26)

where Ti, j is the probability of a jump from vertex j to vertex i andN (i) is the set of
all vertices that are connected to i by a single edge. The adjacency matrixA of graph
G is the doubly infinite matrix whose entries are 0 or 1, with Ai j = 1 if vertex i is
connected to vertex j by a single edge. Since the graph is undirected,A is symmetric.
If jumps to all incident edges are assumed to be equiprobable, then Eq. (26) can be
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written
dpi
dt

= λ

d

∑
j∈N (i)

Ai . j
{
p j (t) − pi (t)

}
, (27)

where d is the degree of any vertex in G .2 Here we have used the fact that

∑
j∈N (i)

Ai . j = d

and the fact that A is symmetric. For example, if G is a circular ring of N vertices,
the evolution of p(t) = (p1(t), · · · , pN (t))T is the solution of

d p
dt

= λ

2
Δ p, (28)

where Δ is the N × N graph Laplacian

Δ =

⎡
⎢⎢⎢⎣

−2 1 0 · · · 1
1 −2 1 · · · 0
...

... · · · ...
...

1 0 · · · 1 −2

⎤
⎥⎥⎥⎦ .

When there are ns identical internal states of the walker the state vector is an ns N -
component vector and the evolution equation becomes

d p
dt

=
{
Δ ⊗ λ

2
Im + IN ⊗ KΛ(0)

}
p, (29)

where IN and Ins are identity matrices of size N × N and ns × ns , K and Λ have the
same meaning as in Sect. 2.1, and A ⊗ B is the tensor product of the matrices A and
B3.

2.5 Lattices with Multiple Vertex Types and Internal States

In the preceding example, all vertices are equivalent, and theWTD for jumps between
them, in what will be called the primary undirected graph G , is the same at every
vertex. However, many biological systems require more detailed models with more
than one type of vertex. For example, consider a horizontal slice through the columnar
cells in Fig. 2 and define the primary graph G by placing a vertex or junction in each
cell. Secondary structure is introduced by assigning a node to the space between cells,

2 In a finite regular graph boundary vertices have a different degree, but the boundary conditions determine
how the degree changes. See (Othmer and Scriven 1971) for the structurally identical problem of diffusion
between coupled cells in a finite regular lattice with various boundary conditions.
3 The convention used in defining the tensor product is given in “Appendix A” and in Othmer and Scriven
(1971).
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Fig. 4 Graphical depiction of the setup for a random walk with an SV between junctions with distinct
transition rates between the SVs and junctions. Junctions have a waiting-time density φ(t) = λe−λt while
SVs have a waiting-time density χ(t) = μe−μt . The arrows indicate the transitions, colored according to
whether they begin at a junction (blue circle) or SV (red square)

with the result that one obtains a graph in which the edges of G have vertices between
junctions. In general, we call these new vertices secondary vertices or SVs, and in
effect, introduction of SVs creates a new, extended graph Ge. Later we will show in
examples how the primary graph reflects the macrostructure of a system, whereas the
extended graph incorporates the microstructure.

To illustrate how the evolution equations for such lattices change, consider the
following example.

Example 1: A circular ring with two vertex types

Suppose that N = 2M and that even-numbered vertices are junctions in the
primary graphG while odd-numbered vertices represent the secondary structure.
Suppose that all junctions have the same Poisson parameter λ, while the SVs
have transition rates labeled μ. Thus there are M pairs of successive vertices,
and we label each vertex by V i

j , i = 1, 2 with j = 1, . . . , M . A diagram of the
allowable transitions at each point is given in Fig. 4. The evolution equations
can be written as

dp(1)
j

dt
= −λp(1)

j + μ

2

∑
k∈N ( j,1)

p(2)
k (t)

dp(2)
j

dt
= −μp(2)

j + λ

2

∑
k∈N ( j,2)

p(1)
k (t),

(30)

where N ( j, k) denotes the neighborhood of vertex k in the j th pair. Define

pi =
(
p(1)
i

p(2)
i

)
,

and then, (30) can be written

d pi (t)
dt

= Api + B−1 pi−1 + B1 pi+1, (31)
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where

A =
[−λ

μ
2

λ
2 −μ

]
and B−1 =

[
0 μ

2
0 0

]
and B1 =

[
0 0
λ
2 0

]
.

Notice that up to a scaling factor, B1 = BT−1 . Equation (31) can be written in
block format as

d

dt

⎛
⎜⎜⎜⎜⎜⎜⎝

p1
...

...

pM

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

A B1 B−1
B−1 A B1

B−1 A B1
. . .

. . .
. . .

B1 B−1 A

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

p1
...

...

pM

⎞
⎟⎟⎟⎟⎟⎟⎠

. (32)

This matrix has a block structure that suggests the discrete Laplacian for the
single-state system. In fact, if λ = μ the equation can be written a

d P
dt

= μ

2
ΔP

where P is the 2M vector of states and Δ is the Laplacian for the ring. The
structure in (32) will appear in subsequent examples as well, and in this sense, we
expect that even a very complex multistate systemwith many internal states may
at a large scale exhibit diffusive behavior. In this simple case, such behavior can
further be motivated by considering the case when μ = μ0ε

−1 and letting ε go
to zero. In that case, the explicit solution for p(2)

i (t), ignoring initial conditions,
can be written as

p(2)
i (t) = lim

ε→0

∫ t

0
e−μ0ε

−1(t−τ) λ

2

(
p(1)
i (t) + p(τ )

i+1(τ )
)
dτ = 0.

This is merely a reflection of the fact that with a large μ, particles spend neg-
ligible amounts of time on the type 2 points. Thus, particles essentially jump
directly between type 1 points, and the effect of the intervening points drops
out. (A similar mechanism also explains the spikes seen in Fig. 3, and those
spike states have slower dynamics than the surrounding states and thus accu-
mulate probability.) In this limit, one can therefore describe the evolution of the
systems by

d p(1)

dt
= 2λΔ p(1)

where p(1) is the vector of all M type 1 points. The factor of 4 when compared
with the previous result arises since each jump (really two jumps in rapid suc-
cession) now covers twice the distance, and since D ∼ 〈Δx2〉/Δt , doubling the
distance per jump quadruples the diffusivity.
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Hence, we have found that the dynamics reduce to Laplacian dynamics in both
the case that λ = μ and when λ and μ are of greatly different magnitudes.
This suggests that perhaps after sufficient time has elapsed to level out local
probability gradients, the system behavior may exhibit a diffusive character for
arbitrary values of λ and μ. As we show in the subsequent sections, this is
indeed true for many systems, and in a rough sense, part of what we discuss is
a method of understanding the diffusive behavior of systems as a function of
these local jump parameters and later on, the topology of the network. We note,
however, that one should not always expect such nice behavior. As demonstrated
in the comb example in Sect. 4 (and also many examples in the literature, e.g.,
Metzler and Klafter 2000; Othmer et al. 1988), non-diffusive behavior can arise
too. However, these other limiting behaviors appear naturally in the CTRW
framework- no special modifications need be introduced.

The foregoing results can be extended to a system with finitely many types of SVs,
each with a different waiting-time distribution. Let {X I }I∈Zd denote the positions
of junctions of a d-dimensional lattice whose connectivity is encoded in the graph
G , and suppose that each edge is populated with nk SVs, which could represent the
discretization of the channel joining a pair of tertiary junctions (junctions at which
three edges meet) in the hexagonal lattice, that must be traversed in order to move
between any given pair of junctions (cf.Fig. 5). In biological settings, SVs can be used
to represent processes such as diffusion in the space between cells or sites for surface
binding and unbinding on a membrane. We assume that each step can be represented
as a linear operator, both for simplicity and because the linear case covers a wide
variety of applications. Implicit in this assumption is the requirement that particles do
not interact with each other. In the context of binding reactions mentioned above, this
requires that the substrate which the diffusing particle can bind to is present in great
abundance relative to the concentration of the diffusing particles (Lin and Othmer
2017).

In addition to SVs, we also suppose that there are ns internal states that characterize
a walker, as depicted in Fig. 5. These internal states are distinguished from the nk SVs
by the fact that they do not represent changes in position along an edge. Instead, they
allow us to consider systems involving first-order reactions of several chemical species
or possibly even generalized master-equation-type formulations (Isaacson 2009; Hu
and Othmer 2011; Gadgil et al. 2005).We also assume that, there are ne edges incident
to each junction. This results in nT = ns(1 + nenk) degrees of freedom associated
with each junction.

Recalling the definitions from Sect. 2.1, we introduce the nT -dimensional vector-
valued occupation and arrival probabilities p(X, t) and q(X, t) for particles starting
from X = 0 at t = 0. Spatial transitions between adjacent SVs and between SVs and
junctions are described by an nT ×nT -matrix function T (X−X ′)which is the analog
for a multistate lattice, of the spatial jump operator T (x, y) defined in Eq. (2). In the
definition of T (X − X ′), X and X ′ are junctions on the lattice, and for a given X ,
T (X − X ′) is typically only nonzero when X ′ = X or when X and X ′ are connected
by an edge. The waiting-time distributions for each of these jumps form a diagonal
matrix, denoted by φ(t).
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Fig. 5 Transitions allowed in a hexagonal lattice random walk having nk SVs and ns internal states. The
larger dots represent the internal states at a junction and the smaller dots are the internal states at the nk
SVs. The lattice in this case is a 2D lattice with several internal states, but the edges in 1D or 3D (or higher)
lattices behave in the samewaywith regard to the transitions between spatial states and the ns internal states.
The arrows are color-coded according to the matrix that contains each transition. Note that in practice, the
internal states need not correspond with a physical height as they appear in this image

As an example, consider Fig. 4. For this two-state problem, T is nonzero only for
X − X ′ = {−1, 0, 1}, and for these values,

T (0) =
(
0 1

2
1
2 0

)
, T (−1) =

(
0 1

2
0 0

)
, T (1) =

(
0 0
1
2 0

)

and

φ(t) =
(

φ(t) 0
0 χ(t)

)
.

In more general settings, transitions between internal states must also be described,
and for this we use matrices K and Λ(t). These are generalizations of the K and Λ

defined above, because they now allow for possibly different reactions to occur at each
SV.
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Finally, we have the evolution equations:

q (X, t) = δ(t)δk0,�0δ(X) +
∫ t

0

⎡
⎣ ∑

X ′∈N (X)

T (X − X ′)φ(t − τ)q(X ′, τ )

⎤
⎦ dτ

+
∫ t

0
KΛ(t − τ)q(X, τ )dτ

p (X, t) = Φ̂(t)δk0,�0δ(X) +
∫ t

0
Φ̂(t − τ)

∫ τ

0⎡
⎣ ∑

X ′∈N (X)

T (X − X ′)φ(τ − s)q(X ′, s)

⎤
⎦ ds dτ

+
∫ t

0
Φ̂(t − τ)

∫ τ

0
KΛ(τ − s)q(X, s)ds dτ

(33)
where the vectors δk0,�0 specify the initial internal state (�0) and the initial SV (k0) for
the process, and N (X) is the set of lattice points adjacent to X .

The nonzero elements of the diagonal matrix Φ̂ of complementary waiting times
(recall Eq. (4)) are defined as

Φ̂k,�(t) = 1−
∫ t

0
ψk,�(t) = 1−

∫ t

0

⎛
⎝ ∑

X ′∈N (X)

1T T (X ′)φ(τ )δk,� + 1T KΛ(τ )δk,�

⎞
⎠ dτ,

(34)
The factor, 1 is a vector of ones of length nT .

To obtain a differential master equation for this system, a Laplace transformation
is applied to Eq. (33) to obtain

p̃ (X, s| {k0, �0})

= ˜̂
Φ(s)δk0,�0δ(X) +

⎡
⎣ ∑

X ′∈N (X)

˜̂
Φ(s)T (X − X ′)φ̃(s) + ˜̂

Φ(s)K Λ̃(s)

⎤
⎦( ˜̂

Φ(s)
)−1

p̃(X ′, s, {k0, �0}).
(35)

As long as assumptions about the lack of particle–particle interactions remain valid,
an equation for the number density, n(x, t) can now be obtained. The manipulations
involved are similar to those in Landman et al. (1977), eventually yielding
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Γ̃ (s) (sñ (X, s) − f (X)) = −ñ(X, s) +
∑

X ′∈N (X)

Γ̃ (s)T(X − X ′)φ̃(s)( ˜̂
Φ(s))−1ñ(X ′, s)

+ Γ̃ (s)K Λ̃(s)
( ˜̂
Φ(s)

)−1
ñ(X, s)

(36)

where Γ̃ (s) = 1
s

( ˜̂
Φ(s)(ψ̃(s))−1

)
is the diagonalmemory functionmatrix. If all of the

distributions are Poisson distributed with distinct rates, the above equation simplifies
to become

∂n
∂t

= −(φ(0) + Λ(0))n(x, t) +
∑

X ′∈N (X)

T (X − X ′)φ(0)n(X ′, t) + KΛ(0)n(X, t).

This is the analog of Eq. (22) for multistate lattice random walks.
Since T and φ fully determine the evolution of p, we next focus on their properties

through several examples. General forms for the structure of T and K are given in
Appendix C.

Example 2: Secondary Vertices

Let us consider an extension of Ex. 1 in Sect. 2.5. That previous system can be
thought of as having junctions and SVs with a single SV between each pair of
adjacent junctions. Here we extend that example and consider a system with nk
SVs between each junction. The case with nk = 3 is illustrated in Fig. 6. We
also now consider the lattice to be of infinite extent rather than over a ring of
length 2M . Although this problem is still relatively straightforward, the goal is to
clearly showhowdifferent types of transitionmatrices that arise inmore complex
problems, namely, T SV , Ds , De, D′

s , and D′
e, defined below, are constructed.

As before, let the WTDs for the SVs be χ(t) = μe−μt and the WTDs for the
junctions be φ(t) = λe−λt . The governing ODEs on each junction and edge are
of the form

⎛
⎜⎜⎜⎜⎜⎜⎝

d
dt p

(0)
i

d
dt p

(1)
i

...

d
dt p

(nk)
i

⎞
⎟⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎝

λ

μ

μ

. . .

μ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

p(0)
i

p(1)
i

p(2)
i
...

p(nk )
i

⎞
⎟⎟⎟⎟⎟⎟⎠

+ 1

2

⎛
⎜⎜⎜⎜⎜⎝

0 μ 0
λ 0 μ

μ 0 μ

.. .
. . .

. . .

μ 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

p(0)
i

p(1)
i

p(2)
i
...

p(nk)
i

⎞
⎟⎟⎟⎟⎟⎟⎠

+ 1

2

⎛
⎜⎜⎜⎜⎜⎝

μp(nk )
i−1
0
...

0
λp(0)

i+1

⎞
⎟⎟⎟⎟⎟⎠

(37)
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Fig. 6 A depiction of Ex. 2 with nk = 3 over several junctions. Green arrows depict transitions in T SV ,
purple arrows in D′ and dark red arrows in D. The letters “s” and “e” label the start and end of each edge.
The coloring of the entries in the matrix also indicates which types of transitions each entry corresponds
to. All blank entries in the matrix are 0

where p(0)
i (t) are the junction probabilities and p(k)

i (t) for k > 0 are the proba-
bilities at each SV.
We now rewrite Eq. (37) to highlight certain types of transitions that occur in
this system and other problemwewill encounter. Let us write the solution vector
p as

p =

⎛
⎜⎜⎜⎜⎜⎝

...

pi−1
pi
pi+1
. . .

⎞
⎟⎟⎟⎟⎟⎠

where each pi is written in terms of the junction and SV states as

pi =
(

pi,J
pi,SV

)
.

Since there is only a single internal state (but many SVs) in this case, there are
three types of transitions that must be considered: jumps between adjacent SVs,
jumps from an SV to a junction, and jumps from a junction to an SV. We will
organize these categories of jumps into transition matrices denoted T SV , D, and
D′, respectively. Since transitions from an SV to a junction can occur from either
end of an edge (k = 1 or k = nk here), we define two different matrices Ds and
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De associated with the transitions from the two ends 4. Since the rate of jumps
is μ at each SV, and there is a 1/2 probability of jumping to the right or left, we
have Ds,e ∈ R

1×nk and (see Fig. 6)

Ds = (μ
2 0 . . . 0

)
, De = (0 . . . 0 μ

2

)
.

The matrices Ds and De can be thought of as linear operators acting on the SVs
along an edge to yield the flux of a particle to land on the junctions attached to
that edge.
Next, we consider jumps from junctions to SVs. Since each junction is connected
to two edges, there are two types of transitions: transitions from junction i to
the nthk SV on edge i − 1, and transitions from junction i to the first SV on
edge i . Thus, we define D′

e to describe jumps to edge i − 1 and D′
s to describe

jumps to edge i , Since the rate of jumping from a junction is λ, and there is a
1/2 probability of jumping right or left, we have D′

s,e ∈ R
nk×1 and (see Fig. 6)

D′
s =

⎛
⎜⎜⎜⎝

λ
2
0
...

0

⎞
⎟⎟⎟⎠ , D′

e =

⎛
⎜⎜⎜⎝

0
...

0
λ
2

⎞
⎟⎟⎟⎠

Similar to Ds,e, D′
s,e may be thought of as linear operators that give the flux of

particles from a junction to the SVs on edges attached to it.
Lastly, we must define the matrix of transitions between SVs on the edge. Since
transitions between neighboring points are possible in Eq. (37), this yields an
nk × nk transition matrix,

T SV = 1

2

⎛
⎜⎜⎜⎜⎜⎝

0 μ 0
μ 0 μ

μ 0 μ

.. .
. . .

. . .

μ 0

⎞
⎟⎟⎟⎟⎟⎠

which incidentally, is also the transition matrix for a random walk with WTD
χ(t) and absorbing boundaries at n = 0 and n = nk + 1.
The previous matrices describe transitions associated with a single junction and
edge, and now, we must incorporate this description into the topology of the
primary graph. In particular, we must describe how junction i and edge i are
connected to the edges and junctions that they are adjacent to. To formulate
this as a matrix problem, define the matrices As and Ae as permutations of the

4 The subscripts s and e are meant to indicate the start (k = 1) and end (k = nk ) of an edge. However, this
is merely for labeling purposes and does not mean that the transport is directed.
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infinite-dimensional identity matrix over the lattice as follows

As =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

0 1
0 1

0 1

0
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ae = AT
s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

. . . 0
1 0

1 0
1 0

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (38)

From Eq. (37), we see that probability, p(nk )
i , of being located at the nthk SV of

edge i depends directly on p(0)
i+1. By definition, transitions from the nthk SV to a

junction are described by De, and Ae describes the connection between edge i
and junction i + 1. Thus, one can see that Ae ⊗ De is the appropriate matrix to
describe these transitions across the entire lattice. Likewise, we see that As ⊗ D′

e

describes jumps from junction i to the nthk SV on edge i − 1.
After constructing the transition matrices involving Ds and D′

s , and gathering
all the terms together, this ultimately leads to a global transition matrix:

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Ds 0 0
D′
s T SV D′

e 0
0 De 0 Ds 0 0
0 0 D′

s T SV D′
e 0

0 De 0 Ds 0 0
0 0 D′

s T SV D′
e 0

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= I ⊗
(

0 Ds

D′
s T SV

)

+As ⊗
(

0 0
D′
e 0

)
+ Ae ⊗

(
0 De

0 0

)

where I is an infinite-dimensional identity matrix on the lattice. We also rewrite
the evolution equation in Eq. (37), now over the entire lattice rather than a single
junction and edge, as

d

dt
p = −Λ p + W p (39)
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where

Λ = I ⊗ diag(λ, μ, · · · , μ).

The first term on the right-hand side, −Λ p, reflects the fact that jumps from
junctions occur at a rate λ and from SVs at a rate μ. As in Ex. 1, −Λ + W has
a kind of block Laplacian type of structure.
Further analysis of this system will be done in Sect. 4.2, but here we describe a
few properties that will be clarified later. First, for fixed nk , if μ � λ, then we
expect that the transitions between the SVs and from SVs to junctions will take a
negligible amount of time compared to transitions from junctions to SVs. Given
this, the transport at large enough length and timescales will evolve as though
it were a random walk with no SVs and a waiting time λe−λt for a particles to
jump between two adjacent junctions.
The second property we note is that setting dp(k)

i /dt = 0 for all i and k, we
can solve for steady-state solutions. If we suppose that the particle is confined
to edge i and junction i , the steady-state solution can be found as

p(k)
ss =

{
μ

nkλ+μ
k = 0

λ
nkλ+μ

k = 1, . . . , nk

This type of analysis for steady-state solutions has been used elsewhere
(Roerdink and Shuler 1985a, b) to obtain the long-time asymptotic mean and
variance for certain multistate random walk processes. Accordingly, some of
our long-time asymptotics can be found from the analysis presented there. How-
ever, the methods developed throughout this paper can also be used to find the
full solution, and not just long-time asymptotics.

Although the previous example ultimately just leads to a reformulation of Eq. (37)
over the lattice, the categorization of transitions into different classes will prove useful
in more complicated problems where the evolution equations are otherwise difficult
to write out. The main categories of transitions which may occur are: internal state
changes at junctions (K J ), junction-to-SV (D′), SV-to-junction (D), and SV-to-SV
spatial and internal jumps (T SV and K SV ). The transitions at the junctions and SVs
described by these matrices are then connected to the topology of the underlying
lattice through structural matrices As and Ae which are permutations of the infinite-
dimensional identity matrix on the lattice. In more general settings, there may be
m = 1, 2, . . . , ne types of edges each associated with its own structural matrices As,m

and Ae,m , and n = 1, 2, . . . , ne types of vertices each associated with its own K J .

3 Moments of the Density Distribution

In general, equations such as (9) cannot be solved analytically, but often the quantities
of interest are the low-order moments of the spatial distribution rather than p(x, t)

123



A Random Walk Approach to Transport in… Page 25 of 84    92 

itself. To illustrate how these can be found, consider a scalar equation in a 1D homo-
geneous medium. We define the moments of p(x, t |0) as

m(n)(t) = 〈xn(t)〉 =
∫ +∞

−∞
xn p(x, t |0) dx

=
∫ +∞

−∞

∫ t

0

∫ +∞

−∞
xnT (x − y)φ(t − τ)p(y, τ |0) dy dτ dx, (40)

and let

mk =
∫ +∞

−∞
xkT (x) dx

be the kth moment of the jump kernel T about zero. Then after a change of variables,
one finds that (40) can be written as

m(n)(t) =
∫ t

0

n∑
k=0

(
n
k

)
mkφ(t − τ)m(n)(t) dτ, (41)

and therefore, all the moments of x(t) can be obtained by solving a sequence of linear
integral equations of convolution type.

It is often convenient to work with the Laplace transformed equations for the
moments since this allows for the use of Laplace transform limit theorems to obtain
the asymptotic time dependence of the moments. The Laplace transformed solutions
for the first two moments are

m̃(1)(s) = m1

s

φ̄(s)

1 − φ̄(s)

m̃(2)(s) =
(
2m1m̃

(1)(s) + m2

s

) φ̄(s)

1 − φ̄(s)
. (42)

If the first moment of T vanishes, then these simplify to

m̃(1)(s) = 0

m̃(2)(s) = m2

s

φ̄(s)

1 − φ̄(s)
. (43)

In simple cases, the moments can be found directly. For example suppose that
m1 = 0 and that φ(t) = λe−λt . Then one finds that

m(2)(t) = m2

∫ t

0
L −1

(
λ

s

)
dτ = m2λt, (44)
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and therefore, the underlying process is asymptotically a diffusion process with diffu-
sion coefficient D = m2λ/2. Furthermore, analogous results hold for homogeneous5

1D lattice random walks with the integrals in mk replaced by summation over the
lattice.

Anomalous diffusion is said to occur when the large-time limit of the mean square
displacement grows either sub- or superlinearly. If the second moment varies as

m(2)(t) ∼ γ tβ

for β �= 1 and t → ∞, it is called subdiffusion if β < 1 and superdiffusion if β > 1
(Metzler and Klafter 2000). The former occurs when particles spread slowly, and in
particular, if the mean waiting time between jumps is infinite. If m1 = 0, then from
(43), if φ̃ ∼ 1 − τ̄−1sρ for ρ ∈ (0, 1), τ̄ > 0, and s → 0, then 〈x2(t)〉 ∼ m2tρ

for t → ∞, i.e.,movement is asymptotically subdiffusive. An example for which all
moments of φ are infinite arises from the WTD

φ(t) = 1

(1 + t)2
.

The transform of φ is

φ̄(s) =
(π

2
− Si(s)

)
cos s + Ci(s) sin s

where Si and Ci are the sine and cosine integral functions (Ruel 1958). From the
asymptotic expansion of the integrals, one finds that

m(2)(t) ∼ log t,

and thus, the process is also subdiffusive. The superdiffusive case arises when the
walk is highly persistent in time, or for walks having a fat-tailed jump distribution.
The simplest example of the first case arises when the walker never turns, which leads
to awave equation forwhich themean square displacement scales as t2. An application
to bacteria that exhibit long runs is discussed in Matthaus et al. (2009).

3.1 First and SecondMoments for Systems

The evolution equations for the first and second moments of a stochastic system
consisting of Nc cells coupled by diffusion with first-order reactions in the cells were
derived in Gadgil et al. (2005). The deterministic governing equations for this system
can be written as

dn
dt

= Ωn,

5 Homogeneous in a lattice as in a continuum, means that T (x, y) and φ(t |y) do not vary with current
position of a particle, as in the continuum case.
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where n is the vector of molecule numbers for all cells, the ns Nc × ns Nc matrix
Ω ≡ Δ ⊗ D + I ⊗ KΛ(0), and I and Δ are the identity matrix and graph Laplacian
for the underlying lattice, respectively. Evolution equations for the mean and second
moments were then derived through a generating function approach.

Generating functions of the form

g(z, t) =
∞∑
n=0

zn1 zn2 . . . znns p(n1, n2, . . . , nns , t)

were used in Gadgil et al. (2005) to describe the number of molecules in a particular
state. In the present context, we have matrix-valued generating functions for the posi-
tion and internal state of a single particle, with argument z corresponding to lattice
indices rather than particle numbers. For a single-particle, one-dimensional transport
problem, we have

gk,�(z, t) =
∞∑

j=−∞
z j pk,�( j, t), (45)

where j ∈ Z is a lattice point. The quantities, pk,�( j, t), are the probabilities that the
particle is located in internal state � at SV k, along edge j of the lattice at time t (e.g.,
consider the k = 0, . . . , nk internal states as a discretization of an edge, as in Fig. 5
or later in Fig. 7). The negative powers are needed as it is assumed that the lattice has
infinite extent in both directions. We also note that

lim
z→1− gk,�(z, t)

is the total probability that the particle is located in SV k with internal state �.
Let us assume that jumps only occur between neighboring points. Then for a drift–

diffusion process, T , which is equal to

T (X) = D0δ(X) + D+δ(X − ΔX) + D−δ(X + ΔX),

where D+ and D− are equal for purely diffusive transport, but differ when there is
even a transient drift. As before, the reaction matrix is K , or we may write Kδ(X) to
indicate that no transport occurs during reactions. To construct the generating function,
we equate nΔX with zn , where ΔX is the lattice spacing, and write

Ω(z) = (KΛ(0) + D0 + D+ + D−)+ D+ (z − 1) + D− (z−1 − 1
)

.

Systems with multiple connections and dimensions require one function like (z − 1)
or (z−1 − 1) for each neighboring junction in the lattice. These functions coordinate
the topology of the lattice in the generating function formalism and correspond to
At,m , the structural matrices specifying the lattice connectivity used before. Further
discussion can be found in the general formulation given in Appendix C.1.
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Differentiating the vector g(z, t), whose elements are gk�(z, t), with respect to t
and z and setting z → 1 yields the spatial moments

d

dt
g = lim

z→1

∂

∂t
g(z, t) = (KΛ(0) + D0 + D+ + D−)g (46)

d

dt
m(1) = L lim

z→1

∂2

∂z∂t
g(z, t) = (KΛ(0) + D0 + D+ + D−)m + L(D+ − D−)g

(47)

d

dt
v = L2 lim

z→1

∂3

∂z2∂t
g(z, t) = (KΛ(0) + D0 + D+ + D−)v + 2L(D+ − D−)m

+ 2L2D−g (48)

where L is the distance between two junctions, m are the k-th moments, and v is
realted to the second moment by

v(t) = m(2)(t) − m(1)(t).

Note that these spatial moments do not take into account microstructural geometry
of edges, specifically the location of SVs relative to the junctions of the lattice. The
inclusion of microscale details is discussed in Appendix C.1, although there we use a
lattice Fourier transform approach rather than a generating function6.

We also see that the resulting elements of g, m, and v are for particles at a specific
SV and in a specific internal state. However, experimental measurements are usually
not at this level of resolution, and we will discuss this point further in subsequent
sections.

Although these results hold for single-particle transport, the multiple particle case
described by the general formulation from Gadgil et al. (2005) could in principle be
applied. Additionally, for a d-dimensional lattice, the generating function g is of the
form

g(z1, . . . , zd , t) =
∞∑

j1=−∞
· · ·

∞∑
jd=−∞

z j11 z j22 . . . z jdd p( j1, . . . , jd , t)

where the elements of g and p again describe SVs and internal states at each junction.
The derivations ofm and v are similar to the one-dimensional case with one important
difference. In multiple dimensions, one gets several distinct vectors, m j and v jk with
j, k = 1, . . . d. This occurs since differentiation is now taken with respect to z j ,

6 Both are formally equivalent if one replaces z by eiω in g(z, t)). One advantage of the Fourier transform
method is that the lattice spacings can be included as multiplying factors in the Fourier transform, e.g.,
eiΔXω whereas the generating function approach is defined only for integer powers of z. What this means
is that the moments defined above must be multiplied by appropriate length factors related to the lattice
spacing to obtain the correct results, whereas in the Fourier transform approach, these factors are included
automatically.
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j = 1, . . . , d. Furthermore, v jk is now defined as

v jk(t) =
{
m(2)

jk (t) − m(1)
k (t) j = k

m(2)
jk (t) j �= k.

3.2 TheMoments in a One-Dimensional System

In the following example, we derive the moment equations for a one-dimensional
lattice with SVs.

Example 3

In Ex. 2, we obtained the transition matrix T for that system and the evolution
Eq. (39)

d

dt
p = −Λ p + W p. (49)

With the definitions of Λ and W from Ex. 2 of Sect. 2.5, we can write W as

W(X) = (K + D0)δ(X) + D+δ(X − ΔX) + D−δ(X + ΔX)

=
(

0 Ds

D′
s T E

)
δ(X) +

(
0 De

0 0

)
δ(X − ΔX) +

(
0 0
D′
e 0

)
δ(X + ΔX).

We now solve for the lower-order moments of this system, and to do so, we use
a Fourier–Laplace transform. This yields the 4 × 4 matrix equation

⎛
⎜⎜⎝
s p̃(0)(ω, s)
s p̃(1)(ω, s)
s p̃(2)(ω, s)
s p̃(3)(ω, s)

⎞
⎟⎟⎠−

⎛
⎜⎜⎝
p(0)(0)
p(1)(0)
p(2)(0)
p(3)(0)

⎞
⎟⎟⎠

=
[
−Λ +

(
0 Ds + e−iΔXωDe

D′
s + eiΔXωD′

e T E

)]
⎛
⎜⎜⎝
p̃(0)(ω, s)
p̃(1)(ω, s)
p̃(2)(ω, s)
p̃(3)(ω, s)

⎞
⎟⎟⎠

where p̃(k)(ω, s) are the Fourier–Laplace transformed probabilities p(k)(X , t).
Assuming an initial condition, p(k)(0) = 1/4, we now solve for p̃(k)(ω, s). The
next step is to either invert p̃(k)(ω, s) to obtain p(k)(X , t), or if we are interested
in the spatial moments, we can make use of certain identities that allow for their
direct computation in Fourier space. In particular, applying the operator

(
(−i)

∂

∂ω

)r ∣∣∣∣
ω→0
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to p̃(k) yields the Laplace transform of the r th spatial moment of p(k)(x, t). For
instance, if r = 0, we obtain the probability of a particle being in SV k on any
edge. For r = 1, we obtain the mean position of particles in SV k, and for r = 2
the second moment of particles in SV k.
This dependence on the SV state k can be a complication sincemost experimental
results would report a single mean or variance result rather than multiple results
for each internal state of some given system. For SVs, we make use of the fact
that given a junction at X , the position of SV k is then X + (k/4)ΔX , see Fig. 6.
Thus, the overall first moment is

m(1)(t) =
3∑

k=0

∑
X∈Z

(
X + k

4
ΔX

)
p(k)(X , t) =

3∑
k=1

(
m(1,k)(t) + k

4
ΔXm(0,k)(t)

)

wherem(r ,k)(t) are the r th moments for particles in state k. Note that since there
are multiple states, m(0,k), the probability of a particle being in state k is less
than unity for each individual SV, but

3∑
k=0

m(0,k)(t) = 1

since particles are conserved in this system. Making use of Fourier transform
identities, we find that

m̃(1)(s) =
3∑

k=0

(
(−i)

∂ p̃(k)(ω, s)

∂ω
+ k

4
ΔX p̃(k)(0, s)

)

= 3ΔX

8s

(50)

with inverse Laplace transform, m(1)(t) = 3ΔX/8.
We apply the same technique for the second moment and obtain the following.

m̃(2)(s) =
3∑

k=0

∑
X∈Z

[
X2 + 2X

kΔX

4
+
(
kΔX

4

)2
]
p(k)(X , s)

=
3∑

k=0

(
(−i)2

∂2 p̃(k)(ω, s)

∂ω2 + 2(−i)
kΔX

4

∂ p̃(k)(ω, s)

∂ω
+
(
kΔX

4

)2

p̃(k)(0, s)

)

= ΔX2
(
14s3 + (39λ + 31μ)s2 + 4μ(17λ + 3μ)s + 8λμ2

)
32s2

(
2s2 + 2(λ + 3μ)s + μ(3λ + μ)

) .

(51)
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To leading order, this yields

m(2)(t) ∼ ΔX2

4

λμ

λ + μ
t = ΔX2

4

(
1

μ
+ 3

λ

)−1

≡ Dt .

Thus, to make an analogy to electronic circuits, the individual exit rates for each
state combine like resistors in parallel for SVs that are in series. In contrast, for a
set of four single-state, 1D lattices aligned in parallel with jump rate λ for the first
and μ for the remainder, m(2)(t) = 1

4 (λ + 3μ) t . Thus, SVs in parallel combine
like resistors in series. Of course, the analogy becomes harder to follow in cases
where there are both internal states and SVs since there are paths in parallel and
in series in those cases.

In the above example, the results for all t can also be found explicitly in terms
of eigenvalues and eigenfunctions of Ω (Gadgil et al. 2005). Though the results are
somewhat lengthy, the explicit solution, after Fourier and Laplace transformation, for
this problem can easily be found by symbolic calculation inMathematica, for instance.
Later, we will discuss a technique that in some cases allows for a simplification of the
moment calculation so that it need not be enumerated for every internal state, but can
be estimated around each vertex. A general description of the moment computations
can be found in Appendix C.1.

4 From “Micro” to “Macro” Moments

As we saw in the preceding section, the macroscale moments,m(r), which are the typ-
ical experimental observables, involve sums over the moments for each internal state,
m(r ,k), and require details of the local geometry.However, this approach becomes cum-
bersome as more internal states and geometrical features are involved, and suggests
that amore direct approach is needed. This is further supported by the observation that,
in experiments, it is often difficult to accurately measure concentration distributions
over short time and length scales, and thus, in some cases experimental results may
only be valid for sufficiently large length and timescales. For instance, tissue-scale
diffusivity values would not be expected to hold at very short length scales when a
diffusing substance is still confined to a specific cell in the tissue. Thus, a simplified
means of obtaining the dynamics over intermediate- and long-term time and length
scales is appropriate.

Here we discuss a more direct method of determining these macroscale properties
that obviates the need to sum over the SVs. In particular, we reduce the size of the
state space of themultistate CTRWby deriving effective waiting-time distributions for
jumps between junctions. In this sense, a single jump corresponds to a path beginning at
a given junction and terminating at an adjacent junction or returning to the starting point
without visiting an adjacent junction. The path is in turn made up of jumps between
SVs and internal states on a given edge. As will be shown, the effective waiting-

123



   92 Page 32 of 84 J. Stotsky et al.

time distributions for these compound jumps are closely related to the solutions of
first-passage-time problems.

Example 4: The Alternating 1D Lattice Revisited

To observe how these effective transition rates may be computed, we return to
Ex. 1 on the lattice with alternating junctions and SVs (see Fig. 4). Recall that
the evolution equations for this random walk are of the form

dp(1)
i

dt
= −λp(1)

i + μ

2

∑
j∈N (i,1)

p(2)
j (t)

dp(2)
i

dt
= −μp(2)

i + λ

2

∑
j∈N (i,2)

p(1)
j (t),

with index i ∈ Z. As before, we consider the type 1 points to represent the
junctions of a graph, and the type 2 points as SVs along edges of this graph.
If we assume a particle starts at a type 1 point, then we see from the form of
the equations that the occupancy probabilities at a type 2 point depends solely
upon the probabilities over time at the two type 1 points it is adjacent to. This
is because in order to reach type 2 point i that particle has to first reach one of
the neighboring type 1 points at i or i + 1. Thus, we may determine formulas
that give the probability at each 2 point as a function of the probabilities at the
adjacent type 1 points. Starting with the evolution equation for p(2)

i (t) which

has initial condition, p(2)
i (0) = 0 since the particles starts on a type 1 point, we

have the following:

dp(2)
i

dt
= −μp(2)

i +λ

2
(p(1)

i−1(t)+p(1)
i (t))

L⇒ (s+μ) p̃(2)
i (s) = λ

2
( p̃(1)

i−1(s)+ p̃(1)
i (s))

(52)
where the arrow indicates Laplace transformation. For the type 1 points, we have

dp(1)
i

dt
= −λp(1)

i + μ

2
(p(2)

i (t) + p(2)
i+1(t))

L⇒ (s + λ) p̃(1)
i (s)

= δi,0 + μ

2
( p̃(2)

i (s) + p̃(2)
i+1(s)), (53)

where δi,0 gives the initial condition of the particle in the type 1 state at X0 = 0.
Combining these yields a system of equations for p̃(1)

i (s)where p̃(2)
i (s) has been

eliminated. After simplifying, we have

p̃(1)
i (s) = 1

λ + s
δi,0 + μλ

4(s + μ)(s + λ)

(
p̃(1)
i−1 + 2 p̃(1)

i + p̃(1)
i+1

)
(54)
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or, after inverting the Laplace transform

p(1)
i (t) = e−λtδi,0 +

∫ t

0

λμ

4(λ − μ)

(
e−μ(t−τ) − e−λ(t−τ)

)
(
p(1)
i−1(τ ) + 2p(1)

i (τ ) + p(1)
i+1(τ )

)
dτ. (55)

This is the integral master equation for a random jump process, but while the
initial system had two types of points and wasMarkovian, this new process has a
single type of point, and, having a non-Poissonwaiting-time distribution, is semi-
Markovian. We also see that p(1)

i appears on the right- and left-hand sides of Eq.
(55). This obfuscates the meaning of a jump, since jumps that return a particle
to its origin could occur in this setting, but the remedy is quite straightforward
here – simply rearrange terms in Laplace space before inverting so that pi1 is
isolated on the left. This leads to

p̃(1)
i (s) = s + μ

(s + λ)(s + μ) − 1
2λμ

δ(X) + f̃ (s)
(
p̃(1)
i−1(s) + p̃(1)

i+1(s)
)

(56)

where

f̃ (s) = 1

4

μλ

(s + λ)(s + μ) − 1
2λμ

, (57)

or, after inverting the Laplace transform,

f (t) = 1

2

λμe− λ+μ
2 t√

λ2 + μ2
sinh

(√
λ2 + μ2

2
t

)
. (58)

Note that f (t) is not quite aWTD since it integrates to 1/2. In fact, one can think
of f (t) as 1

2φ(t) where the factor of 1/2 is from the jump distribution operator
(e.g., T (Xi±1, Xi ) = 1/2) which accounts for the fact that there is a 50% chance
of jumping to the left and 50% to the right at any given step. This in turn leads
to an integral master equation of the form

p(1)
i (t) = Ψ̂ (t)δi0 +

∫ t

0
f (t − τ)

(
p(1)
i−1(τ ) + p(1)

i+1(τ )
)
dτ

where

Ψ̂ (t) = e− λ+μ
2 t

(
cosh

(
t

2

√
λ2 + μ2

)
+ μ − λ√

λ2 + μ2
sinh

(
t

2

√
λ2 + μ2

))

At first, this last rearrangement may seem like an unnecessary complication, but
it enables us to understand the waiting time f (t) in terms of a standard jump
process where each jump implies a change of position. Only when self-jumps
are removed can the terms in the transition matrix be understood as the waiting
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times for a jump to occur. As will be discussed in the following section, the
modified waiting-time distribution is also equal to the first-passage-time for a
particle to travel between type 1 points.
Notice that Ψ̂ (t) is not the complementary cumulative waiting-time distribution
of f (t). This is because even though we have written a master equation for
p(1)(t) alone, in reality the system still has two states, and thus, at any given
moment, some of the particles will reside in type 1 states, and some in type
2 states. Thus, Ψ̂ includes this additional information and differs from Φ̂, as
discussed below.
Of course, given f (t), we can compute Φ̂ as

Φ̂(t) = 1 −
∫ t

0
f (τ )dτ = e− λ+μ

2 t
(
cosh

(
t

2

√
λ2 + μ2

)

+ λ + μ√
λ2 + μ2

sinh

(
t

2

√
λ2 + μ2

))
.

In order to understand the distinction between Ψ̂ and Φ̂, we begin by summing
over i ∈ Z in Eq. (56). This yields an equation in Laplace transform space for
the zeroth-order moment, m̃(0)(s) of p̃(1)(s). Upon simplifying,

m̃(0)(s) =
˜̂
Ψ (s)

1 − 2 f̃ (s)

and, after inverseLaplace transformation,m(0)(t) = 1/(μ+λ)
(
μ + λe−(μ+λ)t/2

)
.

Thus, the probability of a particle being on a type 1 point varies in time, since,
depending on the values ofμ andλ, there is a nonzero probability that the particle
can be located on a type 2 point at any given time.
On the other hand, if we replace Ψ̃ by Φ̃, the same steps yield: m(0)(t) = 1, or
the particle remains on type 1 states with probability 1. At first glance, it appears
that we have eliminated (seemingly erroneously) the possibility of a particle to
ever land on a type 2 state. However, there is a more subtle interpretation of this
change. By going from Ψ̂ to Φ̂, we have changed the meaning of the quantity,
p(1)
i (t) being computed. Originally, p(1)

i (t) was the probability of being located
on the i th type 1 point, but the new probability is that of having reached the i th
type 1 point, but not yet having reached an another type 1 point. In other words,
with Φ̂, each pi (t) refers to the combined probability of all paths that occupy
the type 1 point at i at time t , and also those that have reached i at a prior time,
but not reached the type 1 points at i ± 1.
Depending on the application, it can be useful to use Ψ̂ or Φ̂. If we are to reduce
this problem solely to a random jump process on type 1 points, then Φ̂ should
be used—for instance, if we attempt to compute moments without resorting to
details about the type 2 points. On the other hand, if we wish at the end to also
compute occupation probabilities for the SVs, then Ψ̂ should be used since it
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includes information about how particles are distributed between type 1 and type
2 points.
Given this explicit solution over the type 1 points, we can also examine how
variation of the parameters μ and λ affect the outcome. For instance of μ � λ,
then the process reduces to a single-state process with exit rate λ from each point.
For instance, using Φ(t) and the fact that φ(t) = 2 f (t), we can derive an
differential master equation,

1

μλ

d2 pi
dt2

+
(
1

μ
+ 1

λ

)
dpi
dt

= 1

2
(pi−1(t) − 2pi (t) + pi+1(t))

This equation appears similar to a discretization of the telegrapher’s equation;
however, as discussed in Othmer et al. (1988), supposing λ = μ, there is no
scaling of λ with time that results in the telegrapher’s equation. Rather, in this
case, diffusive behavior results if we set ΔX = Xi − Xi−1 and let ΔX → 0
while λ → ∞ and λΔX2 = const..

4.1 First-Passage-Time Problems

The first-passage-time (FPT) density of a stochastic process is the probability density
function, f (t, x1|x0) that characterizes the time it takes the trajectory of a random
process, having started at a point x0, to reach a point, x1 for the first time (c.f. Montroll
and Weiss 1965). In the special case that x0 = x1, the FPT density describes the time
it takes a particle to return to x0 after having made at least one jump away. We now
show how f (t) above can be understood as a FPT density.

In general, FPT densities can be found as the fluxes of particles leaving a domain
subject to absorbing boundary conditions (Kampen 1992). Let us consider the first-
passage-time from the type 1 point i , to reach the adjacent type 1 points located at Xi+1
or Xi−1. To solve this problem, we apply absorbing boundary conditions at Xi±1, e.g.,
p(1)
i−1(t) = 0 and p(1)

i+1(t) = 0, and write out the evolution equations for the random
walk on the interval between these points, which includes an SV on either side of the
type 1 point at the origin.

dp(2)
i

dt
= −μp(2)

i + λ

2
p(1)
i (t), p(2)

i−1(0) = 0

dp(1)
i

dt
= −λp(1)

i + μ

2
(p(2)

i−1(t) + p(2)
i (t)), p(1)

i (0) = 1

dp(2)
i+1

dt
= −μp(2)

i+1 + λ

2
p(1)
i (t), p(2)

i+1(0) = 0.

(59)

Upon solving Eq. (59) for p(1)
i , p(2)

i , and p(2)
i+1, the FPT densities at Xi±1 are then

found as the fluxes of particles at the type 1 points at i ± 1. These fluxes are simply
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the convolution of φ(t) with p(2)
i (t) and p(2)

i+1(t), and therefore,

f+1(t) = μ

2

∫ t

0
e−μ(t−τ) p(2)

i+1(τ )dτ.

f−1(t) = μ

2

∫ t

0
e−μ(t−τ) p(2)

i (τ )dτ.

Due to symmetry, f+1(t) = f−1(t) and we may solve the above equations for the
first-passage-time density,

f (t) = 1

2

λμe− λ+μ
2 t√

λ2 + μ2
sinh

(√
λ2 + μ2

2
t

)
.

We see that f (t) is precisely the modified WTD from Eq. (58). The effective WTD
for this problem is thus φ(t) = 2 f (t).

Having derived the form of the first-passage-time distribution to travel between
adjacent type 1 points, we have reduced the problem to a random walk on a 1D lattice
with waiting time 2 f (t). To find the moments, it is convenient to apply a Laplace
transformation to the integral master equation. The result of Eq. (43) can then be
applied to yield

m(2)(t) = L −1
[
L2

s

2 f (s)

1 − 2 f (s)

]
= L2

2

λμ

λ + μ
t − L2 λμ

(λ + μ)2

(
1 − e−(λ+μ)t

)
.

Recall that in previous examples, we had a factor of ΔX2 multiplying the second
moment. The factor of L2 which appears here reflects the fact that we specify that the
lattice spacing L = ΔX , and this appears as the nth power in an nth-order moment.

In Appendices D.1 and 2, we show that the FPT procedure can be generalized to
more complicated random walks.

4.2 A 1D CTRWwithMany SVs

Let us continue with the preceding example, but now with an arbitrary number, nk ,
of SVs, as in Fig. 7. The system of equations describing the probabilities associated
with each junction and SV are of the form

⎛
⎜⎜⎜⎜⎜⎜⎝

d
dt p

(0)
i

d
dt p

(1)
i

p(2)
i
...

d
dt p

(nk)
i

⎞
⎟⎟⎟⎟⎟⎟⎠

= −

⎛
⎜⎜⎜⎜⎜⎝

λ

μ

μ

. . .

μ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

p(0)
i

p(1)
i

p(2)
i
...

p(nk )
i

⎞
⎟⎟⎟⎟⎟⎟⎠

+ 1

2

⎛
⎜⎜⎜⎜⎜⎝

0 μ 0
λ 0 μ

μ 0 μ

.. .
. . .

. . .

μ 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

p(0)
i

p(1)
i

p(2)
i
...

p(nk)
i

⎞
⎟⎟⎟⎟⎟⎟⎠
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Fig. 7 Depiction of the random walk problem described in Sect. 4.2. Red dots are junctions and blue dots
refer to SVs along each edge

+ 1

2

⎛
⎜⎜⎜⎜⎜⎝

μp(nk )
i−1
0
...

0
λp(0)

i+1

⎞
⎟⎟⎟⎟⎟⎠

(60)

for index, i ∈ Z.
This problem can serve as a simple model for diffusive transport in a series of

cells. The transport of molecules in cell interiors can be modeled as jumps on the
nk SVs, and the junctions represent cell membranes. Since the cell membranes are
then represented by a single junction point, this case corresponds to a situation where
adjacent cells are closely packed together. Further extensions can be included when
the intracellular gap between adjacent cells must be considered, as in Sect. 5.1.

Computing the moments in this case would generally be quite complicated, since
it requires averaging over every internal state. Thus, to obtain an approximation for
a simplified system, we first compute how long it takes to travel the length of an
edge, from junction Xi to Xi+1. Once the effective waiting-time distribution for this
transport to occur is found, we can then treat this system as a standard one-dimensional
CTRW on a lattice.

To solve for the effective WTD at junctions, we compute the first-passage-time
density to traverse an edge, i.e. to travel from one side of a cell to the other. Consider
a particle starting from membrane i (the left side of cell i , or equivalently the right
membrane of cell i−1 in thismodel) and traveling tomembrane i−1, or i+1. Since the
process terminates upon arrival at either membrane, we impose absorbing boundary
conditions at Xi±1. In terms of the microscale SVs, these absorbing conditions are
applied to p(0)

i−1 and p(0)
i+1.

We can use a recursion method to find the solution to this problem, as was done in
Teimouri and Kolomeisky (2013). We also note that due to the symmetry about Xi ,
p(k)
i = p(nk−k)

i−1 for each k, and without loss of generality, we only have to consider
transport from Xi to Xi+1 with modified boundary condition at Xi . In particular, there
is an absorbing boundary condition at Xi+1, and a reflecting boundary condition at Xi .
The reflecting condition is obtained by simplifying the equation for p(0)

i on the full

lattice with the assumption that p(1)
i = p(nk )

i−1 . That this yields a reflecting boundary can
be verified via a method of images argument (Chandrasekhar 1943). The absorbing
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condition at Xi+1 and the reflecting condition at Xi can be written as

p̃(0)
i+1 =0

p̃(0)
i = 1

s + λ
+ μ

s + λ
p̃(1)
i

(61)

Between Xi and Xi+1, Equation (60) can be solved by assuming an ansatz, p̃(k)
i = ak

for k = 1, 2, 3, . . . and leaving p̃0i unspecified at first. Thus, we start by solving for

p̃(k)
i with

p̃(1)
i = 1

s + μ

(
μ

2
p̃(2)
i + λ

2
p̃(0)
i

)
k = 1 (62)

p̃(0)
i+1 =0 k = 0 (63)

After some algebraic simplifications

p̃(k)
i = A1(s)w−(s)k + A2(s)w+(s)k k = 1, 2, 3, . . . , nk

with

w−(s) =
⎛
⎝
(
s

μ
+ 1

)
−
√(

s

μ
+ 1

)2

− 1

⎞
⎠ ,

w+(s) =
⎛
⎝
(
s

μ
+ 1

)
+
√(

s

μ
+ 1

)2

− 1

⎞
⎠

and where A1(s) and A2(s) are specified by the boundary conditions. Finally, we
enforce the boundary condition at k = 0 to find p̃(0)

i .
Ultimately, the result only depends on μ, λ, nk , and s, and if we compute the FPT,

f̃ (s), for a particle to arrive at the boundary at Xi+1, we obtain

f̃ (s) = μ

2
p
nk
i (s)

= 1

2

λμ(w+ − w−)w
nk−1
+ w

nk−1
−

w
nk+
(
2s2 + 2s(μ + λ) + μλ − μ(s + λ)w−

)− w
nk−
(
2s2 + 2s(μ + λ) + μλ − μ(s + λ)w+

)
(64)

Since i was left unspecified, this relation is true for each junction, and we ultimately
obtain a system of equations for p̃(0)

i where the dependence on the SVs has been
removed,

p̃(0)
i = f̃ (s)

(
p̃(0)
i−1 + p̃(0)

i+1

)
.
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Thus, f̃ (s) is an effective WTD for transitions in a 1D single-state CTRW on Z with
no SVs. It is also useful to note that the mean waiting time to travel between cell, can
be found, after much algebra, as

t̄ = −2 lim
s→0

∂ f̃
∂s

= (nk + 1)
nkλ + μ

λμ
.

The factor of 2 appears since if we compute how long it takes to travel from Xi to
Xi±1, we must include the rates of particles arriving at Xi+1 and Xi−1, which in this
case are both equal to f̃ (s).

The macroscale moments can be found by using the result from Eq. (43) and
assuming that L = ΔX is independent of nk . The explicit solution can be written out
in Laplace space, and the asymptotic result can be found as

m(2)(t) = L2μλ

(nk + 1)(nkλ + μ)
t .

Since we regard the SVs as representing a discretization of diffusion within each cell,
we expect that the space between each pair of SVs is Δx = L/nk . The average time
it takes a diffusing particle to travel a distance Δx is

√
DmΔt where Dm is the micro-

scopic diffusion constant within a cell. Thus, if we set μ = Dm/Δx2 = Dmn2k/L
2,

we should obtain an approximation of diffusion within each cell. Furthermore, if we
let λ = λ∞nk ,

m(2)(t) = Dmλ∞t

λ∞ + Dm/L2 ≡ 2DMt

where DM may be treated as a macroscale diffusion coefficient. This scaling of λ is
necessary because as nk grows, the number of times a random walker will return to
the origin before reaching an adjacent junction increases. If λ does not scale with nk ,
this increasing number of returns to the origin leads to arbitrarily long waiting times
to reach an adjacent junction, and no macroscale diffusion occurs.

Although we do not consider all of the details here, with suitable scalings of μ and
λ as nk approaches infinity, we can consider the problem not merely as a discretization
of diffusion within the cell, but as a continuum problem.

4.3 CTRWwith SVs and Internal States

Next we consider an extension of the previous problem in which there are two internal
states: a mobile state and an immobile bound state. Let us assume that transitions from
the mobile to the bound state occurs at rate k+ and from bound to mobile at rate k−.
The resulting reaction network is diagrammed in Fig. 8.

From the discussion in Sect. 2.2, we know that Poisson processes can be additively
combined to obtain a multistate differential master equation. Thus, we obtain the
following system of equations
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Fig. 8 Diagram of the various
transitions allowed in the system
discussed in a jump process
involving both SVs and internal
states. Note that there are no
internal state transitions at the
junctions since we assume that
all particles are in a mobile state
there

dp(0)
i,m

dt
= −λp(0)

i,m + μ

2

(
p(nk )
i−1,m + p(1)

i,m

)
k = 0

dp(1)
i,m

dt
= −(μ + k+)p(1)

i,m + 1

2

(
λp(0)

i,m + μp(2)
i,m

)
+ k− p(1)

i,b k = 1

dp(k)
i,m

dt
= −(μ + k+)p(k)

i,m + μ

2

(
p(k−1)
i,m + p(k+1)

i,m

)
+ k− p(k)

i,b k = 2, . . . , nk − 1

dp(nk )
i,m

dt
= −(μ + k+)p(nk )

i,m + 1

2

(
μp(nk−1)

i,m + λp(0)
i+1,m

)
+ k− p(nk )

i,b k = nk

dp(k)
i,b

dt
= −k− p(k)

i,b + k+ p(k)
i,m k = 1, . . . , nk

(65)

where m and b subscripts indicate mobile and bound states. To solve this, we first
note that each p(k)

i,b can be found in terms of p(k)
i,m as

p(k)
i,b =

∫ t

0
e−k−(t−τ)k+ p(k)

i,m(τ )dτ.

We can rearrange terms to obtain

dp(k)
i,m

dt
= −(−μ + k+)p(k)

i,m + μ

2

(
p(k−1)
i,m + p(k+1)

i,m

)
+ k−k+

∫ t

0
e−k−(t−τ) p(k)

i,m(τ )dτ.

In Laplace transform space, we obtain a recursion relation with the same boundary
conditions as in the previous section, but with w+ and w− now set to

w±(s) = 1

μ

⎡
⎣
(
s + μ + k+ − k+k−

s + k−

)
±
√(

s + μ + k+ − k+k−
s + k−

)2

− μ2

⎤
⎦ .

We find that to leading order, the FPT in this case is

f (s) ∼ 1

2
− (1 + nk)(k+nkλ + k−(nkλ + μ)

k−λμ
s
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and the second moment is

m(2)(t) ∼ L2k−λμ

(nk + 1)((k+ + k−)nkλ + k−μ)
t

In the limit that nk → ∞ with λ ∼ λ∞nk and μ ∼ (Dm/L2)n2k ,

m(2)(t) ∼ Dmλ∞k−
(k+ + k−)λ∞ + k−Dm/L2 t ≡ 2DMt .

We see that if unbinding is much more rapid than binding, i.e. k− � k+, we recover
the case with no immobilization.

Another case of interest occurs when k− = 0, i.e. if binding is irreversible, or rep-
resents a degradation reaction. In this case, since all particles eventually are degraded,
the long-time asymptotic moments vanish. However, if there is a source term, then a
steady-state distribution can be found by taking the limit that s → 0 in Laplace space.
The solution for the probability of being located in a particle index j is then of the
form

p( j, s) = 1 − f (s)

s

1√
1 − f (s)2

(
(1 − f (s) −√1 − f (s)2)

f (s)

)| j |
h(s)

where h(s) is the Laplace transform of a source at j = 0. For h(s) = h0, a constant
source, the steady-state solution can be found as

lim
s→0

sp( j, s)

Of course, there are many variations that can be applied: immobilization and degra-
dation as separate reactions, multiple mobile states with different jump rates, etc.

Example 5: Comb Geometry

Combmodels arewidely used to study transport phenomenon, especially in percolation
theory (Havlin and Ben-Avraham 1987), and in studies of transport in systems where
anomalous transport behavior is observed. They also arise in certain polymerization
problems and in the study of transport in dendrites (Iomin 2011; Iomin and Méndez
2013; Iomin et al. 2016; Iomin 2019; Berezhkovskii et al. 2014, 2015; Hu and Othmer
2011; Bressloff and Newby 2013).

The basic comb mode shown in Fig. 9 consists of a “backbone” with periodic side
branches which effectively act as traps for particles which diffuse along the backbone.
If the side branches are infinitely long, the mean waiting time for particles in the side
branches to return to the backbone becomes infinite, leading to anomalous transport
behavior. If the side branches are of finite length, crossover behaviors occur with an
initial anomalous transport phase followed by normal diffusion, albeit with a smaller
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Fig. 9 A Basic comb geometry. Green dots represent junctions along the backbone and black dots are
secondary spatial states on the teeth. B Depiction of the various transitions that can occur from state 1 and
state 2 at each junction in the comb model with 2 internal states. The probabilities for each transition to
occur are labeled adjacent to the arrows indicating each allowed transition

diffusion coefficient than that which would be observed for a particle traveling on a
backbone without traps (Lubashevskii and Zemlyanov 1998).

Rather than simply solve for the density distributions of a random walk along the
comb, which is known from many previous studies (Havlin and Ben-Avraham 1987;
Weiss and Havlin 1986), we combine the comb geometry with the multistate transport
processes discussed earlier. In particular, we will consider a two-state, persistent or
biased randomwalk (Montroll andWest 1979).A randomwalk in 1Dwill be called per-
sistent if the particles can enter into various internal states that have unequal likelihoods
of jumping forward or backwards. In the continuum sense, this leads to telegrapher’s
equation models in one space dimension (Othmer et al. 1988). In a biological exam-
ple, this type of transport is believed to play an important role in the putative ability
of fingerlike projections, known as cytonemes, to transport morphogens from source
cells to target cells (Kornberg and Roy 2014; Kornberg 2014; Roy et al. 2014). Current
modeling efforts (Kim and Bressloff 2018; Bressloff and Kim 2018) suggest that this
type of transport can be understood in terms of a velocity jump process (Othmer 1983)
similar to a telegrapher’s equation, but much still remains unknown about this mode
of transport and it could be a rich field for modeling.

Here, we combine persistence with a complex geometry and show how our formu-
lation makes this type of otherwise very–complicated problem fairly straightforward
to study. For the sake of simplicity, we take a two-state random walk. Junctions are
located at integers along the x-axis, and the comb teeth point vertically, emanating
from each junction, but only connected horizontally along the x-axis (y = 0) as in
Fig. 9a.

At each junction, and at SVs along the teeth, we assume that there are two internal
states, � = 1 and � = 2. At SVs with y ≥ 1, particles in state 1 only can jump to
state 1 at position y + 1 or to state 2 while remaining fixed at y. Particles in state 2
can only jump to state 2 at y − 1 or transition to state 1. Let us assume that φ(t) is the
WTD for all of the transitions so that we can reduce the number of parameters. This
can be generalized if needed. Thus, at each point on a tooth (where y ≥ 1), we have
the following transition matrices:

T SV (y, y′) = 1

2

[(
1 0
0 0

)
δ(y − y′ − 1) +

(
0 0
0 1

)
δ(y − y′ + 1)

]
, K SV = 1

2

(
0 1
1 0

)
.
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At y = 1, the form of T (y) is different, there is only a (1− f ) probability for a particle
traveling along the backbone to enter into a tooth. Thus, for y = 1, we write

T SV (1, y′) = 1

2

(
0 0
0 1

)
δ(2 − y′)

and define

D′ = 1

2

(
(1 − f ) (1 − f )

0 0

)

as the transfer matrix for particles jumping from a tooth to the backbone. Similarly,
the transfer of particles from the tooth to the backbone is given by

D =
(
0 1

4
0 1

4

)
.

It remains to specify K J and the additional matrix, T J , which describes spatial jumps
between adjacent junction points on the backbone. At y = 0, let us assume state 1
points can only travel to the right, change state, or travel up to y = 1, and a state 2
point can only travel left or change state. In matrix form, we have

T J (x, x
′) = 1

2

[(
f 0
0 0

)
δ(x − x ′ − 1) +

(
0 0
0 f

)
δ(x − x ′ + 1)

]
, K J = 1

2

(
0 f
f 0

)
,

where f is the fraction of particles that did not jump to y = 1. Putting everything
together, we write:

T + K = I ⊗
(
K J D
D′ T SV + K SV

)
+ As ⊗

(
T J (1, 0) 0

0 0

)
+ Ae ⊗

(
T J (0, 1) 0

0 0

)

(66)

where As and Ae are the infinite-dimensional permutation matrices from Eq. (38).
Because of the infinite extent of the teeth, this problem, even after Fourier transfor-
mation along the x-direction is still of infinite dimension. Thus, we will make use of
the FPT method discussed in Sect. 4.1.

After Laplace transformation of φ(t), the problem becomes an infinite-dimensional
matrix vector problem. To find the relevant FPT, wemust invert I−φ̃(s)(T SV (y, y′)+
K SV )which, in general is a difficult taskwhen there are infinitelymany states involved.
However, due to the simple structure of T SV (y, y′)+K SV , inversion is possible in this
case. Let us first consider, instead of a semi-infinite tooth, one that is bidirectionally
infinite. Thus, consider y ∈ Z rather than just positive-valued.Noting that the transition
matrixT SV (y, y′)+K SV is translation-invariant along this infinite tooth (i.e. a function
only of y− y′), then we can take a lattice Fourier transform in the y-direction to obtain
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that

T̂ SV (ν) + K SV = 1

2

(
e−iνy 1
1 eiνy

)

Accordingly,

[
I − φ̃(s)(T̂ SV (ν) + K SV )

]−1 = 1

1 − φ(s) cos ν

(
1 − φ̃(s)

2 eiν φ̃(s)
2

φ̃(s)
2 1 − φ̃(s)

2 e−iν

)

The inverse lattice Fourier transform is then found as7

[
I − φ̃(s)(T SV (y) + K SV )

]−1 = 1

2π

∫ π

−π

[
I − φ̃(s)(T̂ SV (ν) + K SV )

]−1
e−iνydν

= 1√
1 − φ̃2

ζ |y|
(
1 − φ̃

2 ζ
φ̃
2

φ̃
2 1 − φ̃

2 ζ

)

(67)

with

ζ = 1 −
√
1 − φ̃2

φ̃
.

With this solution over an infinite tooth, we can now calculate the first-passage-time
distribution for a particle to start at y = 1 in state 1 and return to y = 1 in state 2.
As discussed in Hughes (1996), Montroll and Greenberg (1964), first-passage-time
distributions for a discrete time and space random walk can be found by noting that
the probability of being located at some point can be calculated as the sum of the
probability of arriving at the point for the first time, plus the probability of returning
to that point after already having visited it one or more times previously. Recall the
definition of qn(y, t |y0) as the probability of arriving at y after n steps at time t starting
from y0. We define fn(y, t |y0) as the probability of reaching y for the first time after
n steps at time t starting from y0. It has been shown in Montroll and Weiss (1965),
Hughes (1996) that the Laplace transforms of these quantities are related by

q̃n(y, s|y0) = δn,0δ(y − y0) +
n∑

m=1

f̃m(y, s|y0)q̃n−m(y, s|y).

7 In this sense, the probability p(y) defined at each lattice point can be thought of as the Fourier series for
the function p̂(ν). Thus, the inverse lattice Fourier transform is simply the integral that gives the Fourier
coefficients of p(ν).
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One can make use of this result to eventually obtain that the first-passage-time distri-
bution for a CTRW is of the form

f̃ (y, s|y0) = q̃(y, s|y0) − δ(y − y0)

q̃(y, s|y)

recalling that q(y, t |y0) is the probability density associated with arrival at y at time
t from Eq. (6) in Sect. 2.1. From the derivation in Hughes (1996), we see that this
definition extends directly to multistate problems. In the current situation, set

q̃i j (1, s|1) = δy,1δi

[
I − φ̃(s)(T SV − K SV )

]−1
δy,1δ j

where δi and δ j indicate the internal state (i, j ∈ {1, 2}) for ending and starting the
sojourn on a tooth, and δy,1 is the Kronecker delta concentrated at y = 1. With this,
f̃21(s), which is interpreted as the first-passage-time probability density for reaching
state 2 at y = 1 after starting at y = 1 in state 1, is found as

f21(s) = q̃21(1, s|1)
q̃22(1, s|1) =

φ̃
2

1 − φ̃
2 ζ

= 1

2

φ̃(s)

1 +
√
1 − φ̃2(s)

.

The effective transition rate for particles to enter the comb in state 1 and return to the
backbone in state 2 is then

D̃
eff

(s) = φ̃2(s)D
(

f̃11(s) f̃12(s)
f̃21(s) f̃22(s)

)
D′ = (1 − f )φ̃2(s) f̃21(s)

4

(
1 1
1 1

)

= 1 − f

8

φ̃3

1 +
√
1 − φ̃2

(
1 1
1 1

)

where the φ̃2 factor comes about due to the waiting times for a particle to jump to the
tooth in the first step, and to the backbone in the last step. This formulation yields
a problem where we need only consider transport along the backbone. The transition
matrix in this case is now

T J (x, x
′)φ̃(s) + K φ̃(s) + D̃

eff
(s).

After Fourier transformation in the x-direction, we obtain

T̂ J (ω)φ̃(s) + K φ̃(s) + D̃
eff

(s) =
(

f
2 e

iω 1
2

1
2

f
2 e

−iω

)
φ̃ + D̃

eff
(s).
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Fig. 10 An elaboration of the
transport and kinetics processes
involved in the wing disk. In the
analysis that follows not all
processes are treated, and we
identify the membranes on
adjacent cells. From Gou et al.
(2018)

The moments then follow from Equations (D.2) and (D.3). For φ(t) = ρe−ρt , at
leading order, we have

m(1)(t) ∼ f

3 − f

m(2)(t) ∼
√
2ρt

π

f (3 + f )

(3 − f )(1 − f )
+ O(1)

where the estimates are found using asymptotic results for the Laplace transform.
Because the teeth are of infinite extent, the exit time from a tooth may be very long,
hindering the transport of the particle along the backbone. This leads to anomalous
diffusion and similar anomalous transport results are typical of comb models, as men-
tioned earlier. Furthermore, recalling the discussion in Sect. 3.1, we see that this is
an example of subdiffusion, which is to be expected since the comb teeth act as traps
that hinder the particle. Note that the anomalous behavior is dependent on the fact
that these traps have an undefined mean waiting time since in Laplace domain space,
f̃21(s) has an unbounded derivative near s = 0. When the mean waiting time is finite,
the asymptotic long-term behavior is not anomalous, although there can be crossover
effects where the system at first appears anomalous but eventually relaxes to normal
asymptotic behavior.

5 Transport in a Series of Cells

In this section, we address in more detail the problem that motivated this study, which
was to reconcile the vast disparity between experimentally determined parameters for
transport in the wing disk. We do this by determining how parameters that describe
microscopic processes involved in reaction and transport in the wing disk are reflected
in the macroscopic diffusion and decay constants that are estimated from FRAP data.
Fig 10 shows the numerous processes that are involved in transport, binding and other
reactions in the disk in detail, but as observed earlier, experimentallymeasured profiles
of Dpp measured via FRAP are usually described using a reaction–diffusion model
such as Eq. 68, which is based on “free diffusion” and first-order decay (Kicheva et al.
2007; Wartlick et al. 2011).
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∂c

∂t
= D

∂2c

∂x2
− kc x ∈ (0, L p)

−D
∂c

∂x
(x) = j x = 0

−D
∂c

∂x
(x) = 0 x = L p (68)

Here x = 0 (x = L p) is the location of the Dpp source (pouch boundary). For
simplicity we consider a line of cells in which there is only axial variation of the
components, and we begin with a simple system that only involves diffusion within
cells and in the gaps between those cells. Amore complicatedmodelmight also include
membrane binding kinetics, which can be addressed with the method below as well.

5.1 Diffusion with Extracellular Gaps

We begin with a simple problem that involves diffusion only to understand the effect
of the gap between cells. Consider the problem with continuum diffusion in a series
of cells of width L separated by gaps of width δ, wherein the diffusion coefficients in
the cell and in the gap are to be interpreted as those obtained from the earlier analysis
of lattice walks. We write the governing equations as

∂ p(1)
i

∂t
= Dm,1

∂2 p(1)
i

∂x2
, Xi < x < δ + Xi

∂ p(2)
i

∂t
= Dm,2

∂2 p(2)
i

∂x2
, Xi + δ < x < Xi + L

p(1)
i (Xi + δ, t) = p(2)

i (Xi + δ, t)

Dm,1
∂ p(1)

i

∂x

∣∣∣∣∣
x=Xi+δ

= Dm,2
∂ p(2)

i

∂x

∣∣∣∣∣
x=Xi+δ

(69)

where p(1)
i (x, t) is the probability density for a particle to be located in the i th gap, and

p(2)
i (x, t) the probability density for a particle to be located in the i th cell. Consider the

left-hand cell membrane of each cell (e.g., Xi = i L) the junctions in this system and
the right-hand cell membrane as a secondary vertex between each pair of junctions.

Then the WTDs for particles to jump between the two types of vertices are the
respective FPTs for a particle starting at a membrane to reach a membrane to its left
or right. The two FPTs (to travel across a gap, and to travel across a cell) are found as
the fluxes to the left and right of the following system:
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∂G(1)

∂t
= Dm,1

∂2G(1)

∂x2
0 < x < δ

∂G(2)

∂t
= Dm,2

∂2∂G(2)

∂x2
δ < x < L

G(1)(δ, t) = G(2)(δ, t)

Dm,1
∂G(1)

∂x

∣∣∣∣∣
x=δ

= δ(t) + Dm,2
∂G(2)

∂x

∣∣∣∣∣
x=δ

(70)

which can be solved after Laplace transformation. The resulting fluxes at x = 0 and
x = L are then

f̃0(s) =
√
Dm,1csch

(√
s

Dm,1
δ

)

√
Dm,1s coth

(√
s

Dm,1
δ

)
+√Dm,2s coth

(√
s

Dm,2
(L − δ)

)

f̃L(s) =
√
Dm,2csch

(√
s

Dm,2
(L − δ)

)

√
Dm,1s coth

(√
s

Dm,1
δ

)
+√Dm,2s coth

(√
s

Dm,2
(L − δ)

)
(71)

Making use of this result, we can simplify Eq. (69) to obtain, after Laplace transfor-
mation, that

P̃(L)
i = f̃0(s)P̃

(R)
i−1 + f̃L(s)P̃(R)

i

P̃(R)
i = f̃0(s)P̃

(L)
i + f̃L(s)P̃(L)

i+1

(72)

where P̃(L,R)
i (s) represent the probability densities at the left and right cell membrane

of each cell.8

Already, we have reduced the problem to essentially a two-state CTRW, but before
obtaining the diffusivity, we further collapse the system, by solving for the FPT to go
between P(L)

i and P(L)
i±1. This yields

P(L)
i = f̃0(s) f̃L(s)

1 − f̃ 20 (s) − f̃ 2L (s)

(
P(L)
i−1 + P(L)

i+1

)

Wehave at this point transformedwhatwas initially a continuumproblem into a single-
state spatially discrete CTRW for transport between cell membranes. Thewaiting-time
distribution is the first-passage-time for a particle undergoing heterogeneous diffusion
to travel a distance L after starting at x = 0. As such, Eq. (43) can be used to show

8 These two quantities technically represent the probabilities associated with particles having reached
membrane i (right or left) and not having yet reached a subsequent cell membrane.
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that the asymptotic second moment at large t is

m(2)(t) = 2t
1−η
Dm,2

+ η
Dm,1

≡ 2DMt

where η = δ/L . This is equivalent to equation (42) in Othmer (1983) with λ = 1 (in
fact the more general case with λ �= 1 can analyzed with FPTs as well).

5.2 Macroscale Equations

With the result for pure diffusion at hand, we consider a line of cells as shown in Fig.
10, with internal reactions and degradation, and derive a macroscale equation that
describes the overall process at large enough time and space scales. Within each cell
there is diffusion, binding to and release from an immobile site, and degradation of
the immobilized particle. The probability densities of states in cell i evolve according
to the following equations,

∂ p(2,1)
i

∂t
= Dm,1

∂2 p(2,1)
i

∂x2
+ k− p(2,2)

i − k+ p(2,1)
i (73)

dp(2,2)
i

dt
= −k− p(2,2)

i + k+ p(2,1)
i − kd p

(2,2)
i . (74)

∂ p(1)
i

∂t
= Dm,2

∂2 p(1)
i

∂x2
(75)

where p(2,1) and p(2,2) represent mobile and bound states in the intracellular domains,
and p(1) represents the (mobile) extracellular state.At the boundaries between adjacent
cells, the boundary conditions on p(1)

i and p(2,1)
i are the same as those discussed in

the previous section.
Eq. (74) can be eliminated by solving for p(2,2)

i in terms of p(2,1)
i , and as a result,

Eq. (73) becomes

∂ p(2,1)
i

∂t
= Dm

∂2 p(2,1)
i

∂x2
+ k−k+

∫ t

0
e−(k−+kd )(t−τ) p(2,1)

i (τ )dτ − k+ p(2,1)
i .

To further simplify this, we consider the FPT for a particle starting in state 1 at
a membrane to reach an adjacent membrane in state 1. After applying a Laplace
transformation, the FPT can be found as in the previous example, but with s replaced
by

ν(s) = s − k+
(

k−
s + k− + kd

− 1

)
,
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in the Green’s function9. Thus, the FPTs for a particle starting at a membrane to reach
an adjacent membrane (to the left or right) are

f̃0(s) =
√
Dm,1scsch

(√
s

Dm,1
δ

)

√
Dm,1s coth

(√
s

Dm,1
δ

)
+√Dm,2ν(s) coth

(√
ν(s)
Dm,2

(L − δ)
)

f̃L(s) =
√
Dm,2ν(s)csch

(√
ν(s)
Dm,2

(L − δ)
)

√
Dm,1s coth

(√
s

Dm,1
δ

)
+√Dm,2ν(s) coth

(√
ν(s)
Dm,2

(L − δ)
)

(76)

and as in the previous section, we obtain an equation for themembrane concentrations,
P(L)
i (s),

P̃(L)
i (s) = f̃0(s) f̃L(s)

1 − f̃ 20 (s) − f̃ 2L (s)

(
P̃(L)
i−1(s) + P̃(L)

i+1(s)
)

+ Φ̂(s)δi0 (77)

with WTD

F̃(s) = 2 f̃0(s) f̃L(s)

1 − f̃ 20 (s) − f̃ 2L (s)
.

We leave the complementary waiting-time distribution, Φ̂(t), which gives the proba-
bility that no jumps have occurred by time t , undefined for a moment.

We know that F̃(s) is the WTD for a process with both diffusion and degradation,
and in order to see how the diffusion and degradation terms appear on the macroscale,
we write,

F(t) = αg(t). (78)

Here α is the overall probability that a particle leaving membrane i eventually reaches
membrane i + 1 or i − 1, and g(t) is the unitary WTD (i.e. it integrates to 1) for this
to occur. Since degradation is involved, α < 1, but since g(t) is a unitary WTD, we
can define Φ̂ in terms of g̃(s) as

Φ̂(s) = 1 − g̃(s)

s
.

The reason we use g̃(s) rather than F̃(s) here is that a particle must eventually jump
or be degraded. Defining Φ̂ in terms of F(t), which is non-unitary, would imply that
there is a (1 − α) chance for a particle to simply never jump, which is inconsistent
with Eqs. (73) and (74). The use of a unitary WTD, g(t), resolves this inconsistency.
On the other hand, the presence of decay implies that the use of g(t) involves a slight

9 If particle immobilization is irreversible the following analysis simplifies somewhat, for Eq. (73) is then

independent of p(2,2)
i and k+ takes the place of kd in the macroscopic parameters.
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approximation since there is a nonzero probability of degradation to occur before
reaching a junction. However, since we are ultimately interested in asymptotic limits
that are approached only after many jumps occur, the use of an approximate WTD for
the first step of the transport process has a negligible effect.

With Φ̂ specified, we rearrange Eq. (77), following the derivation in Sect. 2.1, to
obtain the Laplace transform of the differential form of the master equation,

1 − g̃(s)

sg̃(s)
(s p̃i − δi0) = −(1 − α) p̃i + α

2
( p̃i−1 − 2 p̃i + p̃i+1) . (79)

If g(t) were a Poisson distribution of rate θ , this could be inverted to obtain

dpi
dt

= −θ(1 − α)pi + αθ

2
(pi−1 − 2pi + pi+1) ,

and this leads to an interpretation of αθ/2 as a discrete diffusivity and θ(1 − α) as a
degradation rate.

However, g(t) as defined via F(t) is a more complex distribution whose explicit
time-dependent form cannot be obtained analytically. Nonetheless, at leading order
we may still approximate g(t) by a Poisson distribution. To do so, we compute the
Taylor expansion of g̃(s) about s = 0 up to first order as

g̃(s) ≈ g̃(0) + g̃′(0)s = 1 − g′(0)s =
(∫ ∞

0
g(t)dt

)
−
(∫ ∞

0
tg(t)dt

)
s.

We then note that by equating this expansion with the first-order Taylor expansion
of the Laplace transform of a Poisson distribution, we may approximate g(t) by a
Poisson distribution with rate θ = −1/g̃′(0). By the same Taylor expansion approach,
we also see that α = F̃(0). With F̃(s) as defined above, we see that

α = 2Dm,2

2Dm,2 cosh
(√

ν(0)
Dm,1

(L − δ)
)

+√ν(0)Dm,1δ sinh
(√

ν(0)
Dm,1

(L − δ)
) ,

θ = 2(
(1−η)
Dm,2

+ η
ηDm,1

)
(η + (1 − η)ν′(0)) L2

+ O(1)
(80)

where

ν(0) = k+kd/(kd + k−), ν′(0) = 1 + k+km
(kd + k−)2

.

On a tissue-level scale, we are concerned with the evolution of pi at length scales
L∞ � L: thus, we set L = εL∞. In the limit ε → 0, this leads to

(1 − α)θ = (1 − η)ν(0)

η + (1 − η)ν′(0)
= (1 − η)kdk+(kd + k−)

(kd + k−)2 + (1 − η)k−k+
, (81)
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αθ = 2(
(1−η)
Dm,2

+ η
ηDm,1

)
(η + (1 − η)ν′(0)) ε2L2∞

= 2(
(1−η)
Dm,2

+ η
Dm,1

) (
η + (1 − η)

(
1 + k−k+

(kd+k−)2

))
ε2L2∞

. (82)

Furthermore, in this limit pi (t) can be treated as a function defined with respect to
a continuous variable x (i.e. p(x, t)) since ΔX = Xi − Xi−1 = ε2L∞ becomes
very small compared to L∞, the length scale of interest over the tissue. Noting that
1/(ε2L2∞) times the discrete Laplacian approaches the continuum Laplacian, we can
write

∂ p(x, t)

∂t
= − (1 − η)ν(0)

η + (1 − η)ν′(0)
p(x, t) + 1(

(1−η)
Dm,2

+ η
Dm,1

)
(η + (1 − η)ν′(0))

∂2 p(x, t)

∂x2

= −
[

(1 − η)kdk+(kd + k−)

(kd + k−)2 + (1 − η)k−k+

]
p(x, t)

+
⎡
⎣ 1(

(1−η)
Dm,2

+ η
Dm,1

) (
η + (1 − η)

(
1 + k−k+

(kd+k−)2

))
⎤
⎦ ∂2 p(x, t)

∂x2

= −KM p(x, t) + DM
∂2

∂x2
p(x, t).

(83)

Thus the macroscale diffusion and degradation coefficients

KM ≡ (1 − η)kdk+(kd + k−)

(kd + k−)2 + (1 − η)k−k+
, and

DM ≡ 1(
(1−η)
Dm,2

+ η
Dm,1

) (
η + (1 − η)

(
1 + k−k+

(kd+k−)2

)) (84)

are complex functions of the microscale parameters.
Furthermore, since there are more microscopic parameters than macroscale coeffi-

cients, there will be many combinations of the microscopic parameters that yield the
same macroscopic parameters. Thus, if one attempts to fit data on the macroscale to
a “standard” diffusion–degradation equation, the resulting diffusion and degradation
coefficients cannot be interpreted as having simple meaning in terms of microscale
processes. This presents a real challenge to those in the field, since it certainly seems
possible that many microscale models could be adapted to macroscale diffusion–
reaction equations as we have done here, but in each case, the macroscale diffusion
and degradation coefficients are found as different functions of the microscale param-
eters.

In certain limits, the multiplicity is reduced somewhat. For example, if k− and k+
both tend to infinity at a fixed finite ratio k+/k− = β (e.g., rapid equilibration of
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diffusing and immobile species), the foregoing reduces to

KM = kdβ(1 − η)

1 + (1 − η)β
DM = 1

(1 + (1 − η)β)
[

η
Dm,1

+ 1−η
Dm,2

] (85)

and there is one less microscopic parameter. In any case, if the microscale parameters
can be perturbed, one can observe the macroscale behavior, and given the functional
dependence of KM and DM on microscale parameters, this may prove to be a useful
way of ascertaining whether a given model is plausible.

As an application of this analysis, we consider the model for Dpp transport in
the Drosophila wing disk discussed in Kicheva et al. (2007). There DM and KM are
estimated from FRAP data to be

DM = 0.10 ± 0.05μm/s, KM = 2.52 × 10−4 ± 1.29−4s−1.

The authors also note that there is a slow “irreversible” binding process, and an immo-
bile fraction of 62.8%of allDppmolecules. Since themicroscalemodel has 6 unknown
parameters—Dm,1, Dm,2, kd , k+, k−, and η—but only three parameters—DM , KM ,
and the immobile fraction—were measured experimentally, there can be many com-
binations of the microscale parameters that yield the observed macroscale parameter
values. In addition, a more complete description of the processes in Fig. 10 would
introduce other microscopic processes and the attendant parameters, and make the
problem of connecting macroscopic and microscopic parameters even more difficult.
While parameter estimates from other contexts and limiting cases discussed earlier
may be useful, further experiments are needed to connect the micro- and macropro-
cesses.

Finally, we see that by deriving the macroscale equation from a starting point that
involves microscope-level details, assumptions that are needed for the validity of the
macroscopic equation can be determined. For instance, in order to justify the limit
ε → 0, it is necessary that sufficient time has elapsed so that the waiting time for
a single jump between adjacent cells is small. Otherwise, the discrete nature of the
system will dominate and the continuum description will not be appropriate.

6 The Hexagonal Lattice

In this section, we return to a discussion of spatially discrete CTRWs. The goal here
is to formulate solutions in hexagonal lattices, which are topologically more complex.
However, note that in some cases one can use the FPTs of continuum processes as
WTDs for a discrete CTRW, as was done in the preceding section.

Hexagonal lattices are of particular importance since cells of many tissues tend
to pack into a arrays that can be approximated by hexagonal grids. There are in fact
two types of arrays that can be described in this context: those where transport occurs
directly between neighboring, hexagonally shaped cells, and those in which transport
occurs around the borders of such cells. The two topologies thus defined for the primary
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Fig. 11 Interior hexagon lattice
that connects adjacent hexagon
centers to one another. Each
center is connected by an edge
to six neighbors on adjacent
edges. The vectors in the upper
left show the displacements
between adjacent junctions and
the three types of edges are
labeled as ei . The red shaded
region contains all junctions and
SVs with the same index (I , J )

graphs lead to what we call the interior and exterior hexagonal lattice problems. They
are related in the sense that the exterior lattice is the Voronoi diagram of the interior
hexagonal lattice, and thus, the interior lattice is the Delaunay tessellation of the
exterior lattice (Aurenhammer et al. 2013).

The interior lattice can be described as in Othmer and Scriven (1971) (see Fig. 11).
Each junction is connected by a single edge to six adjacent junctions. The edges can
be classified into three types distinguished by their orientation relative to the x-axis. In
order to describe this connectivity, some labeling convention must be introduced that
maps each lattice point to the edges it is linked to and each edge with the lattice points
at which it terminates. One such convention is to assume that for each junction (labeled
by X I with I = (I , J ) ∈ Z

2), there are three edges (one of each type) with index I
as well that connect to junction I . As shown in Fig. 11, one can consistently label all
lattice points and edges in this way. It turns out then, that junction I is connected to
the three edges of label I and the type I (horizontal) edge of label (I − 1, J ), the type
II (vertical) edge of label (I , J − 1) and the type III (diagonal) edge of (I − 1, J − 1).
To make this consistent, it then must be the case that each edge of type I of label (I , J )

is attached to lattice points (I , J ) and (I + 1, J ), and each edge of type II with label
(I , J ) is attached to junctions (I , J ) and (I , J + 1). Finally, each type III edge of
label (I , J ) is attached to junctions (I , J ) and (I + 1, J + 1).

With this description of the geometry, let us consider an example that makes use of
the interior lattice. Suppose that we have a hexagonal array of cells and some substance
that can diffuse through the interior and can be transported through the boundaries of
adjacent cells. Let us also assume that this substance can transiently enter an immobile
state when on the cell boundaries. In a simple model, we can describe the key steps
in the transport process in terms of a few waiting-time distributions. Let ψ(t) be the
WTD for the substance to diffuse through the cell and reach a boundary. Since this
process involves diffusion within the cell, ψ(t) must be considered here as a spatial
average of waiting times for particles starting at different positions within the cell. Let
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φ(t) be the WTD for a particle to be transported across the boundary to an adjacent
cell, and χ(t) be the WTD for transitions to and from the immobile state which we
will suppose only occurs on the boundary. This model can be thought of as having
nk = 1 (one boundary point between each adjacent pair of junctions) and ns = 2 (a
mobile and an immobile state). For simplicity, we will assume that all threeWTDs (ψ ,
φ, and χ ) are Poisson distributions with parameters λ, μ, and ξ resp. The objective
is now to pose this problem in the framework of the earlier sections and solve for the
probability distributions.

The matrix, KΛ, from Equation (33) describes all internal state changes. For a
single junction and set of edges, it can be written as

KΛ =

⎛
⎜⎜⎝
K JΛJ 0 0 0

0 K SVΛSV 0 0
0 0 K SVΛSV 0
0 0 0 K SVΛSV

⎞
⎟⎟⎠

where K JΛJ describes internal state transitions at junctions, and K SVΛSV describes
internal state transitions at SVs on each edge. Since the junctions are placed in the cell
centers, transitions between mobile and immobile states inside the cell are described
by K J . However, we have assumed that immobilization only occurs on the boundary,
and therefore K J is simply a 2 × 2 matrix of zeros. Transitions between internal
states at SVs on each edge are described by K SV . There are two types of transitions
that occur at an SV: 1) mobile to immobile and 2) immobile to mobile. Defining the
probability of each state as p = (pm, pi ) with m = mobile and i = immobile, K SV

can be written in matrix form as

K SVΛSV =
(

0 1
(1 − f ) 0

)(
φ 0
0 χ

)
=
(

0 χ

(1 − f )φ 0

)
.

where (1 − f ) is the probability of transitioning to an immobile state.
The next step is to define the transition matrices D, D′, T SV and describing spatial

jumps between junctions and SVs and between adjacent SVs. Since there is only a
single SV on each edge, all spatial jumps involve transitions between edges and junc-
tions, thus T SV = 0. Furthermore, since the immobile state cannot change position,
the rows of D and D′ corresponding to the immobile state will be all zeros. Transitions
from junctions to SVs are governed by ψ and are written in matrix form in terms of
D′. With p = (pm, pi ) as above, we can write

D′ =
( 1

6ψ 0
0 0

)
.

The factor of 1/6 comes from the fact that each cell center is linked to 6 SVs, and each
of them is equally likely to receive a particle from the cell center. In this case, since
nk = 1, the start and end SV on each edge coincide, and we do not need to distinguish
between D′

s and D′
e, or Ds and De as we did in Ex. 2. Since transitions from the cell

membrane to the cell center are governed by WTD φ, D takes on a similar form with
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φ in place of ψ . In particular,

D =
( f

2 φ 0
0 0

)
.

The factor of f /2 accounts for the probability of particles not being immobilized, and
that a mobile particle has a 50% chance of going to either of the junctions that the
edge is connected to. This concludes the enumeration of all the transitions relevant
on the edges and in the cell centers. What remains is to connect the current transition
matrices with the topological structure of the hexagonal lattice, which is done via Am

and A′
m .

Since K J and K SV do not involve changes of position, the relevant matrices for
internal state changes over the entire lattice are formed by taking Kronecker products
of thesematrices with the lattice identity matrix, e.g., I⊗K J . The transitions in D and
D′ involve changes in position of the particles, and thus require non-trivial structural
matrices. Generally, Am and A′

m can be written as permutations of the identity matrix
over the junctions. However, they can also be thought of as linear operators on the
lattice points. In particular, for m = 1, 2, 3, define

Am(X, X ′) = δ(X − X ′ − ΔXm),

where δ(·) is a Kronecker delta over the junctions, e.g., δ(X) = 0 for X �= 0 and 1
for X = 0 where X is a lattice point in the hexagonal lattice. Similarly,

A′
m(X, X ′) = δ(X − X ′ + ΔXm).

The displacementsΔXm are those depicted in Fig. 11. From geometric considerations,
these are found as

ΔX1 = (1, 0), ΔX2 =
(
1

2
,

√
3

2

)
, ΔX3 =

(
−1

2
,

√
3

2

)
. (86)

Although Am can also be written as matrices, in complicated problems it seems that
the operator approach may be more intuitive since it reflects the problem geometry
rather than a particular ordering of the degrees of freedom.

Putting all of the pieces together, we obtain the overall transition matrix T . Let
q = (q J , qSV1 , qSV2 , qSV3) be the probabilities for a particle starting in cell (I0, J0) =
(0, 0) to arrive in some other cell (I , J ) at time t in the cell interior (q J ) or at the
portion of the cell membrane attributed to an edge of type i , (qSVi ). After Laplace
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transformation, we write Eq. (33) for this system:

⎛
⎜⎜⎝

q̃ J
q̃SV1
q̃SV2
q̃SV3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

δ(X)

0
0
0

⎞
⎟⎟⎠+ I ⊗

⎡
⎢⎢⎣

⎛
⎜⎜⎝

K JΛJ D D D
D′ K SVΛSV 0 0
D′ 0 K SVΛSV 0
D′ 0 0 K SVΛSV

⎞
⎟⎟⎠

+
3∑

m=1

(
Am ⊗ Dm + A′

mD′
m

)]
⎛
⎜⎜⎝

q̃ J
q̃SV1
q̃SV2
q̃SV3

⎞
⎟⎟⎠

(87)

where

Dm =

⎛
⎜⎜⎝

. Dδm,1 Dδm,2 Dδm,3

. . . .

. . . .

. . . .

⎞
⎟⎟⎠ , D′

m =

⎛
⎜⎜⎝

. . . .

D′δm,1 . . .

D′δm,2 . . .

D′δm,3 . . .

⎞
⎟⎟⎠ ,

with δmn the Kronecker delta concentrated at m = n.
To solve this infinite-dimensional matrix equation, we make use of a lattice Fourier

transform to block-diagonalize the problem. For any function f (X) defined over the
lattice, the lattice Fourier transform is defined as

f̂ (ω) =
∑
X∈G

eiX ·ω f (X). (88)

This definition holds whether f (X) is scalar-, vector-, or matrix-valued. Since the
space between junctions on a lattice is fixed, the maximum wave number that can be
represented on the junctions is ωmax = (2π)/|ΔX| where ΔX is the edge length.
Additionally, on an infinite lattice, ω is defined over a continuum with each element
of ω in the range −π/ΔXi < ωi < π/ΔXi . This differs from Fourier analysis of
discretizations which are being refined, where ΔX is not fixed. In those cases, the
maximum wave number which can be represented by a lattice function increases as
the discretization is refined.

Applying the lattice Fourier transform to the evolution to q̃, we obtain an 8 × 8
system:

⎛
⎜⎜⎜⎝

q̂ J

q̂SV1
q̂SV2
q̂SV3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
1
0
0
0

⎞
⎟⎟⎟⎠

+I ⊗

⎛
⎜⎜⎜⎝

K J (1 + e−iΔX1·ω)D (1 + e−iΔX2·ω)D (1 + e−iΔX3·ω)D
(1 + eiΔX1·ω)D′ K SV 0 0
(1 + eiΔX2·ω)D′ 0 K SV 0
(1 + eiΔX3·ω)D′ 0 0 K SV

⎞
⎟⎟⎟⎠

123



   92 Page 58 of 84 J. Stotsky et al.

⎛
⎜⎜⎜⎝

q̂ J

q̂SV1
q̂SV2
q̂SV3

⎞
⎟⎟⎟⎠ .

This matrix equation can be solved directly, but can be slightly simplified. First,
K J = 0, and second, the immobile state associated with q̂ J has no transitions to or
from any other states, and thus can be removed to yield a 7 × 7 system.

The solution here yields q̂ from Eq. (33). However, the most important quantity
is typically p(X, t), the probability of being located at X at time t . Inversion of the
Fourier and Laplace transforms is often only feasible numerically, but the solution
for p̂(ω, s) is possible once we have found Φ̂ defined in Eq. (34). After Fourier and
Laplace transform, one can show that the nonzero entries are

Φ̂k,�(s) = 1

s

(
1 − 1T Kδk,� − 1T T̂ (ω = 0, s)δk,�

)
. (89)

In this example, after simplifying (89), we obtain diagonal entries:

Φ̂ = diag
(

1
λ+s

1
μ+s

1
ξ+s

1
μ+s

1
ξ+s

1
μ+s

1
ξ+s

)

Finally, we may solve (33) for p. The exact solutions may be found using Mathemat-
ica’s symbolic solver; however, it is often useful to obtain simpler summary statistics
that describe the distribution. Here we give one sample that is straightforward to com-
pute. The proportion of particles in the cell centers can be found by summing pc over
the junctions. In Fourier space,

∑
X

pc(X, t) = lim
ω→0

p̂c(ω, t).

Applying this result to our solution in the Laplace domain,

lim
ω→0

p̂c(ω, s) = 1

s

2s(ξ + s) + μ(ξ + 2s)

2s(ξ + s) + μ(ξ + 2s) + λ(μ + 2(ξ + s))

The steady-state limit may be found using the Laplace transform final value theorem
(Bracewell et al. 1986) as

lim
s→0

sp(0, s) = μξ

μξ + λμ + 2λξ
.

We can observe how this compares with the steady-state probabilities, pc,ss , reported
for a segment in Ex. 2.We see here that the analogous result is obtainedwhen ξ → ∞,

pc,ss = μ

μ + 2λ
,
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or, in otherwords, whenmobilization (unbinding) occurs rapidly compared to the other
transitions. However, because of the hexagonal topology, in that case even though there
is only a single SV per edge, the denominator has 2λ rather than λ as it would for the
1D case. This same result is observed for a square lattice with a single SV and the
same immobilization/mobilization transition at that SV.

A key point here is that by describing a complicated transport process in terms
of fundamental steps, we found results that reflect how macroscale observables, here
the steady-state solution, depend on microstructural mechanisms. Next, we turn to
computation of the mean and variance of the hexagonal lattice problem.

6.1 TheMoments for Transport in the Hexagonal Lattice

For the interior hexagonal lattice in Fig. 11, let us assume that a particle starts inside
a cell (that is, on a junction). Then we may use Eq. (C.7) to find the first moment of
the transport process, which due to the symmetry of this problem should be zero. This
fact is confirmed upon computation.

The second moment, found by using Eq. (C.9), is nonzero. In order to compute this
result, we must specify how each internal state and each SV are positioned relative to
the junction that shares the same index, (I , J ). To determine this, we use ΔX i from
above, and note that the SVs are located precisely halfway along each edge. This gives
us sufficient information to compute x for each SV and internal state. All that remains
is to apply Eq. (C.9) and substitute each term with one specific to the hexagonal lattice
system at hand. The large-t asymptotic result for the second moment is

m(2)(t) = λμ f ξ t

4 ( f μξ + λ((1 − f )μ + ξ))

for both x-direction transport and y-direction transport. The moments for particles to
be in the mobile or immobile state can easily be found by summing over the degrees
of freedom associated with the mobile or immobile states.

Recall that λ, μ, and ξ are the rate constants associated with diffusion, bound-
ary binding, and immobilization. Thus, we see that if mobilization/immobilization
happens rapidly compared to diffusion and binding, e.g., that ξ → ∞, then

m(2)(t) = λμ f t

4 ( f μ + λ)
.

Similarly, if diffusion is very rapid compared to binding and immobilization, then
λ → ∞ and

m(2)(t) = μξ f t

4((1 − f )μ + ξ)
.

If binding is very rapid compared to immobilization and diffusion, μ → ∞ and

m(2)(t) = λξ f t

4( f ξ + (1 − f )λ)
.
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Finally, if binding is rapid compared with diffusion and very little immobilization
occurs, e.g., f = 1, we obtain

m(2)(t) = λt

4

independent of ξ . This is the result for pure diffusion in this lattice structure.
For the exterior hexagonal lattice, the local displacements are found by similar

calculations since ΔX i are equivalent to those for the interior lattice. The details are
described in “Appendix B”. In that case, consider an initial condition with a particle
at junction X = 0. This condition leads to a first moment equal to zero, and the
asymptotic second moment is found using Eq. (C.9):

m(2)(t) = λμ f ξ t

12 ( f μξ + λ((1 − f )μ + ξ))
.

Remark 1 Note that the scale factors 1/4 and 1/12 corresponds to the case that ΔX i

are the same length for the interior and exterior lattices (see Fig. 11). However, in the
exterior hexagonal lattice with nk = 1, the length of each jump is 1/

√
3 times the

length of each jump in the interior lattice. In a diffusive process, the average time t̄
required to travel a distance x̄ scales quadratically, e.g., Dt̄ ∼ x̄2. If one rescales λ, μ,
and ξ in the exterior lattice by a factor of 3 to account for shorter distances, one obtains
precisely the result on the interior lattice. However, the rescaling we have supposed
is only sensible for μ and λ. The coefficient, ξ was not hypothesized to depend on
diffusion, but instead is a kinetic immobilization rate constant. Thus, although there
may be some analogies between transport on interior and exterior hexagonal lattices,
there are situations where the analogy breaks down.

Remark 2 In general, the secondmoment and the variance can differ since the variance
involves both the first and second moment as

σ 2(t) = m(2)(t) −
(
m(1)(t)

)2
.

This distinction is especially important in biased CTRWs (Shlesinger 1974; Othmer
et al. 1988); however, when the transport is unbiased, thenm(1)(t) = 0 and the variance
and second moment are equal.

Remark 3 With the use of first-passage-times, the moment calculation can be sim-
plified somewhat. Rather than needing to handle details about the positions of SVs
relative to each other, FPTs can be used to reduce this system to a single-state CTRW
(for the junctions). Of course, collapsing all the information about the local geometry
leads to a slight approximation; however, if the timescales of interest are larger than
λ, μ, and ξ , the approximation will be accurate.
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7 Conclusion

Transport processes in complex media such as biological tissues often involve several
sub-processes that play a crucial role in setting the experimental data, and without
incorporating the microscopic processes, macroscopic models may shed little light on
the meaning of the data. As evidenced by the example involving transport in the wing
disk, the macroscopic coefficients have detailed information embedded in them, and
interpretation of the experimental data must be based on the microscopic processes.
However, the complexity of the geometry in tissues often makes it difficult to do this
using continuum reaction–diffusion equations. For example, developing an analyti-
cally tractable model of transport, binding, and degradation of Dpp in the cells and
extracellular space of the wing disk is nigh impossible, but as we have shown herein,
approaching this problem from a graph-based model of the geometry, coupled to a
discrete description of spatial and internal states of a walker, enables one to obtain
the coefficients of a macroscopic reaction–transport model based on the underlying
microscopic processes. Our analysis is based on lattices in which all junctions have
the same degree, all edge lengths are equal, and the lattice is infinite, which allows the
use of Fourier transforms to analyze the resulting equations, but the incorporation of
secondary vertices along edges and internal states of the walkers provides the means
for describing several levels of microstructure in the models. In this description, the
extracellular space in the wing disk is approximated by the set of edges in a graph,
which simplifies the description, and while this does not capture all the details of the
underlying structure, it is a significant step toward “lifting” microscopic information
to a macroscopic description.

One potential complication is that microscale models are often difficult to define,
and are not necessarily “better” or “worse” than an ad hocmacroscalemodel. However,
when there is uncertainty about the macroscale model, understanding how microscale
details eventually coalesce into readily observable macroscale behavior may help
to separate promising theories from specious ones. In the wing disk, there are many
experimental tools available to perturb various cellular-level biochemical andmechan-
ical cues that are involved in normal growth and development. By perturbing these
microscale parameters through genetic modifications or other means, and observing
the resulting Dpp distribution, one can determine how KM and DM should depend on
those parameters. These results can then be comparedwith the KM and DM determined
via the methods presented here to assess whether the model is sensible. For instance, it
is not immediately obvious that DM in Eq. (84) should depend on the degradation rate,
kd , but retrospectively this is easily explained: rapid degradation will rapidly remove
immobile particles leading to a larger proportion of mobile particles. This increases
the macroscale diffusivity and the macroscale degradation coefficient.

Several previous studies (Goldhirsch and Gefen 1986, 1987) have presented ideas
related to the development here with regard to compressing degrees of freedom in a
random walk and computing moments. However, in those investigations the internal
states consisted only of discrete spatial positions within various blocks making up a
larger network. Neither the continuous-time aspects, nor the multistate aspects were
studied. Moments of multistate random walks were also in Landman and Shlesinger
(1979b), Landman and Shlesinger (1979a), Roerdink and Shuler (1985b), Roerdink
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and Shuler (1985a), Scher and Wu (1981), and Gadgil et al. (2005). Here we have
extended the approaches in these studies and have shown how to systematically work
withmultistate systems thatwould be quite cumbersome to dealwith in the frameworks
developed previously. We have also shown how the theory developed in Othmer and
Scriven (1971) can be applied to random processes that are not locally homogeneous.

The connection between micro- and macroscale properties is also extensively stud-
ied in homogenization theory (Pavliotis and Stuart 2008) and renewal theory (Cox
1967). In fact many of the problems we analyzed can be posed as systems of renewal
equations, and some recent results have been obtained regarding the derivation of
macroscale transport coefficients (Ciocanel et al. 2020). One difference between our
method and classically homogenization theory is in the type of approximation used to
extract the macroscale dynamics. In classical homogenization theory, one often begins
by assuming an ansatz of the form

pε(t, x, x/ε, . . . ) =
∞∑
i=0

εi pi (t, x, x/ε, . . . )

and then obtaining limiting equations as ε → 0. In a number of cases, this process has
been rigorously verified. On the other hand, it is not true in all cases that the ansatz is
valid, or frequently, the presence of boundary layers means that the expansion is only
valid up to low order. In contrast, with our method, the asymptotic limit only need be
considered in the last step of our method after deriving first-passage-time distributions
which preserve the exact internal dynamics.

Finally, in this studyweprimarily considered examples inwhich the local state space
of the random walk was discrete in nature, even when infinitely many states existed,
such as in the comb problem. In a sequel, to this paper we will develop a detailed
continuum computational model of the wing disk, which will enable us to compare
predictions made herein with a microscopic continuum description. In effect, we will
be able to model the time evolution of the Dpp distribution in the disk and determine
in what parameter regimes the macroscopic parameters determined from the graph-
based model coincide with those of the continuum model. It will also enable us to
study variations in cell size and other factors that may affect morphogen distributions,
and to determine when such problems can be reduced to lattice-based random walks
by solving for certain continuum first-passage-time distributions.

Acknowledgements Supported in part by NIH Grants # GM29123 and 54-CA-210190 and NSF Grants
DMS # 178743 and 185357.

Appendix A: Definition of the Kronecker Product

We define the tensor product of vectors as

x ⊗ y ≡ (x1y, . . . , xNy)T = (x1y1, . . . , x1yn . . . , xN y1, . . . , xN yn)
T ,
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and if R is an N × N matrix and T an n × n one, their tensor product is the Nn × Nn
matrix

R ⊗ T =

⎡
⎢⎢⎢⎢⎣

R11T . . . R1N T
· ·
· ·
· ·
RN1T . . . RNNT

⎤
⎥⎥⎥⎥⎦ .

As we have seen throughout, multistate random walks can be conveniently written
as matrix–vector problems involving Kronecker products. An important property of
matrices and vectors formed as Kronecker products is that one can compute Fourier
transforms on the first and second terms of the Kronecker product separately. For
instance if F is a discrete Fourier transform matrix with Hermitian adjoint F′,

(F ⊗ I) (A ⊗ B)
(
F′ ⊗ I

) = FAF′ ⊗ B = Ã ⊗ B.

(I ⊗ F) (A ⊗ B)
(
I ⊗ F′) = A ⊗ FBF′ = A ⊗ B̃.

Kronecker products provide an easy way to describe certain multidimensional prob-
lems in terms of simpler one-dimensional problems (Othmer and Scriven 1971). Each
additional dimension is, roughly speaking, included by appending an additional Kro-
necker product to the previous transition matrix. This also applies in cases where the
dimension of the state space is increased by adding internal state transitions to a spatial
jump process.

Appendix B: The Exterior Hexagonal Lattice

In an exterior hexagonal lattice, there are three orientations of edges that occur, and
two types of junctions: those centered at upwards facing trijunctions (type I), and
those at downwards facing trijunctions (type II), see Fig. 12. Let us assume here that
T SV and K SV are the same for each edge, and that K J is the same for all junctions.
Likewise we assume that Ds , De, D′

e, and D′
s do not vary depending on the edge or

junction being considered.
With two types of junctions that alternate, an easy way of assigning which edges

start or end at which junctions is to require that all edges start at a type I junction
and end at a type II junction (see the edges labeled “e” and “s” in Fig. 12). It is also
helpful to specify some type of labeling system on the junctions and edges. To do so,
we consider the combination of three edges around a type I vertex, and the type II
junction attached at the end of the vertical edges to be labeled with the same label,
(I , J ) (see Fig. 12). The lattice position associated with this structure is given as X ,
the position of the type I vertex. Of course, the positions of each SV on an edge can
be found as some displacement, x from X .

With this description, type I edges are vertical edges that pair type I and type II
points with the same lattice index, e.g.,ΔI1 = 0. Type II edges are diagonal edges that
pair type I lattice points and type II lattice points that differ with ΔI2 = (0,−1) from
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Fig. 12 Geometric quantities
associated with the hexagonal
lattice are depicted. Blue points
are type I and Red points are
type II. The quantity ΔX12 is
the displacement vector between
a type I and type II point, and
ΔX1, ΔX2, and ΔX3 represent
lattice displacement vectors
between adjacent cells on the
lattice. The red boxes indicate
pairs of type I and type II points
with the same lattice index,
(I , J ). The labels “s” and “e”
indicate the starts and ends of
edges

start to end. Finally, type III edges pair type I and type II points with ΔI3 = (1,−1)
from start to end.

Since type I points are attached to the start of each edge and type II to the end of each
edge, if we structure the probability density vector as p = ( pI , pI I , pe1, pe2 , pe3)

T ,
we may write the overall transition matrix T + K as

T + K = I ⊗
⎛
⎜⎝

K J 0
0 K J

Ds Ds Ds
De 0 0

D′
s D′

e
D′
s 0

D′
s 0

T SV +K SV 0 0
0 T SV +K SV 0
0 0 T SV +K SV

⎞
⎟⎠

+ Ae,1 ⊗
(
0 0 0 0

0 De 0

0 0

)
+ AT

e,1 ⊗
⎛
⎝ 0 0

0 0
0 D′

e
0 0

0

⎞
⎠

+ Ae,2 ⊗
(
0 0 0 0

0 0 De

0 0

)
+ AT

e,2 ⊗
⎛
⎝ 0 0

0 0
0 0
0 D′

e
0

⎞
⎠

(B.1)

We apply a lattice Fourier transformation to X to obtain

T̂ (ω) + K = I ⊗

⎛
⎜⎜⎜⎜⎝

K J 0 Ds Ds Ds

0 K J De eiΔX2·ωDe eiΔX3·ωDe

D′
s D′

e T SV + K SV 0 0
D′
s e−iΔX2·ω 0 T SV + K SV 0

D′
s e−iΔX3·ωD′

e 0 0 T SV + K SV

⎞
⎟⎟⎟⎟⎠

(B.2)
where ΔXm are as defined in Eq. (86). Once the local transitions in K J , K SV , T SV ,
Dm , and D′

m are specified, substituting this matrix into Eq. (33) and solving for q
and p will yield a solution for the spatial distribution of a particle over the hexagonal
lattice with possible internal states and SVs between junction points. If we make use
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of the same definitions for D, D′, T SV , K SV and K J from the interior lattice example
in Sect. 6, with nk = 1 and ns = 2, we obtain a 8 × 8 matrix (after removing the
rows and columns associated with immobile states at the junctions as in Sect. 6) that
can be inverted to solve for p in Fourier–Laplace transform space. For instance, with
1− f the proportion of particles that are immobilized at the boundary, the steady-state
concentration at the junctions can be found as

lim
ω→0

lim
s→0

s (pI (ω, s) + pI I (ω, s)) = f μξ

f μξ + d((1 − f )μ + ξ)
.

In closing this section, we note that random walks on exterior hexagonal lattices
have been studied several times previously (Montroll 1969; Hughes 1996; Henyey and
Seshadri 1982); however, in those cases, no internal states were considered. Thus, our
formulation here provides a straightforward way to extend these previous results to
more complicated transport processes. We also note that the lattice Green’s function
for the exterior hexagonal lattice with no internal states or SVs is known (Henyey and
Seshadri 1982; Hughes 1996). In Fourier transform space, the Green’s function for a
hexagonal lattice where each edge is taken in one step, and the transition probabilities
at each intersection are all 1/3, is of the form

p(H)(ω, z) =

(
1 z

3

(
1 + eiΔX2·ω + eiΔX3·ω)

z
3

(
1 + e−iΔX2·ω + e−iΔX3·ω) 1

)

1 − z2
9

(
3 + 2 cosωx + 4 cos

(
ωx
2

)
cos

(√
3ωy
2

)) (B.3)

Of course, when we set nk = 1, ns = 1, and replace ψ(t) with z in Eq. (B.2), we
would obtain this result. The i j th element of pH gives the occupation probability for
a random walk that started on a type j vertex and is currently on a type i vertex.

Our result here appears to differ slightly from the previous results for this Green’s
function. This because we have directly included the displacement, ΔX i into the
computation, rather than just using changes in index ΔI i , which yield precisely the
result previously reported. In other words, Eq. (B.3) gives the probability of being
located at position X I , whereas previous results give the probability of being located
at index I .

B.1 The Exterior Hexagonal Lattice with Arbitrary nk

Here, we consider the hexagonal lattice with nk SVs and ns = 1. The FPT method
fromSect. 4.1 becomes essential here aswith arbitrary nk , directly solving the resulting
matrices is non-trivial.
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FromAppendixB,we found that the formof T̂ (ω)+K̂ (ω) for the exterior hexagonal
lattice. In this example, ns = 1, so K SV = K J = 0. We also have that

Ds = ψ

2

(
1 0 . . . 0

)

De = ψ

2

(
0 . . . 0 1

) (B.4)

and

D′
s = ψ

3

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ , D′

e = ψ

3

⎛
⎜⎜⎜⎝

0
...

0
1

⎞
⎟⎟⎟⎠ .

Lastly, T SV is the matrix for a 1D random walk on a segment of length nk with
absorbing boundaries. This can be written as

T SV = ψ

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . .

1 0 1 0 . . .

0 1 0 1 0 . . .
...

. . .
. . .

. . . 0 . . .

0 . . . 0 1 0 1
0 . . . 0 1 0.

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Since there is one internal state, K SV = 0. Since each edge has the same T SV , D
and D′, we may use the formulation in Appendix D.2 to obtain the effective transition
rates, Teff2,r .

To do so, start by noting that since ns = 1, Teff1,r and K r are both equal to 0 and

Teff2,r is a scalar-valued function. Since the type I and type II junctions are equivalent in

terms of the transitions that occur around them, Teff2,r is found independent of whether
the particle is at a type I or type II junction.

This leaves us with the following matrix equation:

⎛
⎜⎜⎜⎝

⎛
⎜⎜⎜⎝

1 0 0 . . .

0 1 0 . . .
...

. . .

0 . . . 1

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎜⎝

0
(

ψ
2 0 . . .

)
⎛
⎜⎝

ψ

0
...

⎞
⎟⎠ T SV

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

f̃1
f̃2
...

f̃nk

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠

for f̃ (s). Solving for f̃1 via a Schur complement yields,

f̃1 = 1 − 3Ds(I − T SV )−1Ds,
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and the remaining elements of f̃ are found as

f̃ = (I − T SV )−1D′
s

f̃1
.

Finally,

Teff2,r = De f̃ = De(I − T SV )−1D′
s

1 − 3D′
s(I − T SV )−1Ds

= ψ

2
f̃nk .

The next step is of course to explicitly solve for this FPT. Since each edge of the
lattice is simply a 1D segmentwith absorbing boundaries, the discussion inAppendixE
provides us with an explicit form of the solution to (I−T SV )−1. After some algebraic
simplifications, we find that

Teff2,r = 2

3

1(
1−

√
1−ψ2

ψ

)nk+1

+
(

1−
√

1−ψ2

ψ

)−nk−1

Since K = 0 and Teff1,r = 0, this reduces the problem to a single-state CTRW on a
hexagonal lattice. Thus, we can make use of formula in Eq. (B.3) with z replaced by
ψeff = 3Teff2,r . The factor of 3 comes from the fact that Teff2,r is in fact the effective
waiting time distribution multiplied by the probability that the particle actually travels
down a particular edge. This probability is 1/3 since each junction connects three
edges in the exterior hexagonal lattice, and each edge has the same probability of
being traveled on.

With this result, it is possible to directly compute the moments for the hexagonal
lattice with nK SVs. However, assuming each segment has a fixed total length of 1
independent of nk , the exact formulas become

m̃(1)(s) = 0

m̃(2)(s) = 1 − ψeff

s

ψeff

2(1 − ψ)2
= 1

s

1 − ψeff

(ank+1 + a−nk−1) + 4 1
ank+1+a−nk−1 − 4

with a = (1−√1 − ψ2)ψ−1. For a Poisson distributed waiting time ψ = λe−λt , we
obtain the following results for the first several nk = 1, 2, . . .

m(2)(t) = 1

2
λt nk = 0

m(2)(t) = 1

2

λt

4
− 1

16

(
1 − e−2λt

)
nk = 1

m(2)(t) = 1

2

λt

9
− 2

27
+ e−3λt

54
(4 + 3λt) nk = 2
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...

m(2)(t) = 1

2

λt

n2k
+ . . .

In these results, λ and nk are independent. However, if this hexagonal lattice is instead
interpreted as a discretization of a continuum problem with 1D diffusion along seg-
ments of the lattice, then λ ∼ n2k D where D is the diffusivity along the segment. In
that case, the leading-order term for any nk is

m(2)(t) = 1

2
Dt

Although we did not specify the direction of diffusion here, it turns out that for the
hexagonal lattice, whether diffusion is considered along the x or y direction, the results
are equivalent.

Note that the long-term asymptotics may be obtained easily, at least for a single
internal state, from the theory developed in Roerdink and Shuler (1985a). However,
the full time dependence is not computable under that theory.

Appendix C: General Form of T and K

Recall from Eqs. (33)–(36) that the solution p(X, t |{k0, �0}), to a transport problem
depends on the initial concentration distribution, and on the form of the transition
matrix. Equation (33) may be written as,

q (X, t) = δ(t)δk0,�0δ(X) +
∫ t

0

⎡
⎣ ∑

X ′∈N (X)

T (X − X ′)φ(t − τ)q(X ′, τ )

⎤
⎦ dτ

+
∫ t

0
KΛ(t − τ)q(X, τ, {k0, �0} dτ

p (X, t) = Φ̂(t)δk0,�0δ(X) +
∫ t

0
Φ̂(t − τ)

∫ τ

0

⎡
⎣ ∑

X ′∈N (X)

T (X − X ′)φ(τ

−s)q(X ′, s, )
]
ds dτ +

∫ t

0
Φ̂(t − τ)

∫ τ

0
KΛ(τ − s)q(X, s)ds dτ

with

Φ̂k,�(t) = 1−
∫ t

0
ψk,�(t) = 1−

∫ t

0

⎛
⎝ ∑

X ′∈N (X)

1T T (X ′)φ(τ )δk,� + 1T KΛ(τ )δk,�

⎞
⎠ dτ.

Wenowpresent a general structure formatrices T and K that can include the examples
studied, along with other examples that may arise in a variety of applications.
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Recall that the number of SVs is nk , the number of types of edges, ne, and the
number of internal states, ns . The global matrices Tφ and KΛ can be written in
block-structured formats, and will be understood here as functions of the Laplace
transform variable s. We also will abuse notation here and write T and K rather than
Tφ and KΛ. Recall also that K involves only transitions between internal states, and
no spatial movement whereas T involves spatial movement without any change in the
internal state. Let K J ∈ R

ns×ns , T SV , K SV ∈ R
(nkns )×(nkns ), D′

s, D
′
e ∈ R

(nkns )×ns ,

and Ds, De ∈ R
ns×(nkns ) be various blocks of T and K . In particular,

– K J characterizes transitions between the internal states at each junction
– K SV characterizes transitions between internal states associated with the SVs
along each edge

– T SV characterizes jumps between SVs on an edge
– Ds and De characterize transitions from the SVs to a vertex
– D′

s and D′
e characterize transitions from a junction to an SV

The transitions represented by these matrices are diagrammed in Fig. 5. The indices
s and e on D and D′ are used to distinguish whether the transfers occur at the “start”
or “end” of each edge (see Fig. 5). This is necessary since when the SVs are labeled
from k = 1 to k = nk , different (but closely related) matrices are needed to describe
transfers from k = 1 (start) and k = nk (end). Recall Ex. 2 in Sect. 2.5 where Ds and
De were explicitly constructed. This labeling does not imply that an edge is directed
or undirected, but merely serves as a way of specifying the exact positions of SVs
along the edge.

Next, define I as the infinite-dimensional identity matrix over the lattice positions,
X , and let As,m and Ae,m be infinite-dimensional adjacency matrices that specify
which edges start and end at a given vertex. Similarly, let A′

s,m and A′
e,m specify the

vertices that each edge is attached to. Often, A′
e,m is the transpose of As,m , and likewise

for A′
s,m and Ae,m , so long as the graph is undirected. The indexm = 1, . . . , ne is used

to distinguish between edges of different orientations (e.g., vertical or horizontal), and
ne is the number of different types of edges. For instance, in a square lattice, horizontal
edges connect junctions that differ in their x-coordinate, but the vertical edges connect
junctions that differ in their y-coordinate. Even if the same types of transition occur
regardless of the edge orientation, distinguishing the orientation of each edge is crucial
for obtaining spatial moments of the distribution. Furthermore, this formulation lends
itself to extensions where not all edges have the same internal transition matrices.

The overall transition matrix is of the form

T = I ⊗
⎛
⎝

0
T SV

. . .
T SV

⎞
⎠+

ne∑
k=1

(
As,k ⊗ D̄s,k + Ae,k ⊗ D̄e,k

)

+
ne∑
k=1

(
AT
s,k ⊗ D̄

′
s,k + AT

e,k ⊗ D̄
′
e,k

)
(C.1)

K = I ⊗
⎛
⎝

K J
K SV

. . .
K SV

⎞
⎠ (C.2)
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The blocks D̄t,k and D̄
′
t,k for k = 1, . . . , ne and t = {s, e} are themselves block

matrices of the form

D̄t,1 =

⎛
⎜⎜⎜⎜⎜⎝

0 Dt,1 0 . . .

0
0
...

0

0
0

. . .

0

⎞
⎟⎟⎟⎟⎟⎠

, D̄t,2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 Dt,2 0 . . .

0
0
...

0

0
0

. . .

0

⎞
⎟⎟⎟⎟⎟⎠

, etc.

D̄
′
t,1 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
D′
t,1
0
...

0

0
0

. . .

0

⎞
⎟⎟⎟⎟⎟⎠

, D̄
′
t,2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0
0

D′
t,2
0
...

0
0

. . .

0

⎞
⎟⎟⎟⎟⎟⎠

, etc.

Note that for each type of edge in k = 1, . . . , ne, it is often possible to label the lattice
so that edge J of that type connects to junction J at one terminus. With this in mind,
we assume that for each edge, J of type k, the s-end of the edge border junction J .
Thus, As,k = A′

s,k = I , where I is the identity operator on the lattice. If we further
assume that the matrices Dk are all equal, then T simplifies nicely,

T = I ⊗
⎛
⎜⎝

0 Ds ... Ds
D′
s T SV

...
. . .

D′
s T SV

⎞
⎟⎠+

ne∑
k=1

(
Ae,k ⊗ De,k + AT

e,k ⊗ D′
e,k

)
(C.3)

which resembles the Laplacian-type structure observed previously.
Although I , At,m , and A′

t,m with t = {s, e} were defined as infinite-dimensional
matrices, they can also be understood as linear operators over the infinite lattice, e.g.,
At,m = At,m(X,Y) where X and Y are two junctions. In all the cases, we have
considered, for each fixed Y , the lattice operators are only nonzero over a few (or one)
values of X . The interpretation of At,m as lattice operators also gives meaning to the
notation T (X − X ′, s) used in Eqs. (33)–(36).

Remark

In some cases there can be more than one type of junction. An example is the exterior
hexagonal lattice, which has two types of junctions. When this occurs, additional
blocks of rows and columns will augment Eqs. (C.1), (C.2), and the definitions of D
and D′ to describe internal transitions at each type of junction, transitions from each
type of junction to each type of edge, and transitions from each type of edge to each
type of junction, c.f. Eq. (B.1).

123



A Random Walk Approach to Transport in… Page 71 of 84    92 

We see that the dimension of the state-space associated with each junction, X is
nT = ns(nv + nenk) where nv is the number of junction types, and ne the number of
edge types.

C.1 Computation of Spatial Moments in the General Case

Wenow turn our attention toward computation of themoments for the general evolution
equations in Eq. (33). Many properties of CTRWs are most easily analyzed in Laplace
transform space.With lattice randomwalks, it is also often convenient to apply a lattice
Fourier transform over X , the lattice variable.

To compute the spatial moments (as functions of s, the Laplace transform variable),
we start by computing the lattice Fourier transform of Eqs. (C.3) and (C.2) over the
lattice spatial variable, X , obtaining

T̂ + K̂ = (F ⊗ I) (T + K )
(
F−1 ⊗ I

)
(C.4)

= I ⊗

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝

K J De + Ds . . . De + Ds

D′
e + D′

s T SV + K SV 0 . . .
... 0

. . . 0

D′
e + D′

s

... 0 T SV + K SV

⎞
⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎝

0 αe,1(ω)De . . . αe,m(ω)De

βe,1(ω)D′
e 0 . . .

...
...

βe,m(ω)D′
e 0 . . .

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦ (C.5)

= I ⊗ [K ′ + T ′(ω)
]

(C.6)

where
αe,m(ω) = (eiΔXm ·ω − 1), βe,m(ω) = (e−iΔXm ·ω − 1)

and F is the Fourier transform operator on the lattice. The vectors ΔXm specify the
displacements between adjacent junctions along a type m edge. The functions αe(ω)

and βe(ω) are analogous to the functions (z − 1) and (z−1 − 1) discussed in Sect. 3.1.
Since we use a lattice Fourier transform as opposed to a generating function for-

malism here, we have replaced z by eiω. With the lattice Fourier transform, it seems
somewhat easier to handle cases where ΔX t,m are not all of the same length for every
t = {s, e} or m = 1, . . . , ns , although these minutiae could likely be included in a
generating function approach with only a fewmodifications. Lastly, the matrix K ′ cor-
responds with K 0+D++D−, and T ′(ω) corresponds with (z−1)D++(1/z−1)D−
from Sect. 3.2.

Due to the translation invariance of the lattice points, we see that the Fourier
transform diagonalizes the adjacency matrices, Ae,m and A′

e,m . This reduces an
infinite-dimensional matrix problem to an nT × nT problem parameterized by a vari-
able, ω. The spatial moments over the junctions are found by considering derivatives
of (I− K̂ − T̂ )−1 with respect toω in the limit thatω → 0. For instance, on an infinite
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one-dimensional lattice, the derivative of the lattice Fourier transform of a function
f (xk) is

lim
ω→0

∂ j f̂ (ω)

∂ω j
=

∞∑
k=−∞

(−i x) j f (xk) = (−i) jm( j) j = 0, 1, . . .

Given T̂ and K̂ , in the limit ω → 0, we have

∂

∂ω j

[
I − K ′ − T ′(ω)

]−1 = [
I − K ′]−1

(
∂T ′

∂ω j

) [
I − K ′]−1

∂2

∂ω j∂ωk

[
I − K ′ − T ′(ω)

]−1 = 2
[
I − K ′]−1

(
∂T ′

∂ω j

) [
I − K ′]−1

(
∂T ′

∂ωk

) [
I − K ′]−1

+ [I − K ′]−1
(

∂2T ′

∂ω j∂ωk

) [
I − K ′]−1

where derivatives, ∂
∂ω j

, are taken with respect to ω and are understood to be evaluated

at ω = 0. Since T ′(ω) = 0 as ω → 0, the only matrix inverse required is
[
I − K ′]−1.

Averaging over the internal states within a cell, we can compute the average spatial
moments of a processwith transitionmatrix, T̂ as (c.f. Landman and Shlesinger 1979a)

m(1)
j =

〈
(−i)Φ̂

[
I − K ′]−1

(
∂T ′

∂ω j

) [
I − K ′]−1 + x j Φ̂

[
I − K ′]−1

〉
(C.7)

m(2)
jk =

〈
−Φ̂

[
I−K ′]−1

(
2

(
∂T ′

∂ω j

) [
I−K ′]−1

(
∂T ′

∂ωk

)
+
(

∂2T ′

∂ω j∂ωk

)) [
I − K ′]−1

(C.8)

+2(−i)x j Φ̂
[
I − K ′]−1

(
∂T ′

∂ωk

) [
I − K ′]−1 + x j xkΦ̂

[
I − K ′]−1

〉
,

(C.9)

where x = (x1, x2, . . . , xd) describes the position of SVs relative to a junction and
〈. . . 〉 is a suitable spatial-summation operator acting over the SVs. In this context,
elements of Φ̂ from Eq. (34) are written as

Φ̂i = 1

s

⎛
⎝1 −

∑
j

K ′
i j (s)

⎞
⎠ . (C.10)

Many of the same points carry through if the transport process is posed as a gen-
eralized differential master equation rather than as an integral master equation. In
the differential master equation setting, after Fourier and Laplace transformation, we
write

(sΓ + I − H − W(ω)) P = Γ δ
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with (recall we have set Tφ �→ T and KΛ �→ K in this section)

W(ω) = (F ⊗ I) Γ T
(
Φ̂
)−1

(F ⊗ I) , H = Γ K
(
Φ̂
)−1

Similar to the results above, we define the matrix S = (sΓ + I − H − W(0))−1,
and then, we may compute the moments using the matrix derivative formulas above
as

m(1)
j = (−i)S−1

(
∂W
∂ω j

)
S−1Γ δ + xSΓ δ

m(2)
jk =

[
−
(
2S
(

∂W
∂ω j

)
S
(

∂W
∂ωk

)
S + S

(
∂2W

∂ω j∂ωk

)
S
)

− 2i x j S
(

∂W
∂ωk

)
S

+x j xkS
]
Γ δ.

Appendix D: General First-Passage-Time Problems and Secondary
Vertex Reductions

In Sect. 4.1, we discussed how the SVs can be eliminated from some problems to form
a CTRW involving only the junctions. Here, we discuss how this is done in the general
case using the description in See Appendix C and C.1.

D.1 Reduction of SVs in the General Case

Recall the general integral master equation formulation in Eq. (36) with the nT × nT
matrices T and K defined in Eqs. (C.1) and (C.2). What we show in this section is that
the effective transition rates derived in the previous examples applies more generally
as well. In particular, by obtaining effective transition rates, the evolution of a system
that has arbitrarily many SVs can be described by a reduced system that only involves
internal states at junctions. We first give the resulting evolution equations and moment
formulas, and then proceed to describe how to derive the elements of the effective
transition matrices that appear in those equations.

In Laplace transform space, we write the ns-dimensional integral master equation
for the reduced system as

q J (X, s) = δ(X)δ(t)δk +
∑
X ′

A2(X − X ′) ⊗ Teff2 q J (X
′, s)

+
(
I ⊗ K J + A1 ⊗ Teff1

)
q J (X, s)

pJ (X, s) = Φ̂0(s)q J (X, s)

(D.1)
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where each nonzero element of the diagonal matrix Φ̂0 is

Φ̂0,k = 1

s

(
1 − 1T

(
I ⊗ K J + A1 ⊗ Teff1

)
δk −

∑
X

1T A2(X − X ′) ⊗ Teff2 δk

)
.

The ns × ns matrices Teff1 and Teff2 describe effective transition rates for transitions
within a junction, and for travel between adjacent junctions. They will be defined
precisely in Appendix D.2. The matrix, K J is the same as that in Eq. (C.2), and it
also describes internal transitions at a junction. The infinite-dimensional adjacency
matrices A1 and A2 are defined as10

A1 =
( ne∑
m=1

Ae,m A′
e,m + As,m A′

s,m

)
= 2ne I

A2 =
( ne∑
m=1

As,m A′
e,m + Ae,m A′

s,m

)
,

where ne is the number of different types of edges in the lattice. The adjacencymatrices
Ae,m and As,m are those that are introduced in Appendix C, and m ranges over the
various types of edges in the system. As described in Appendix C, these matrices can
also be understood as operators over the lattice. This leads to the notation in Eq. (D.1)
where A2(X − X ′) is written as a function of the lattice points.

From Eq. (D.1), the integral master equation for pJ can be derived as

pJ (X, s) = Φ̂0δ(X)δk +
∑
X ′

Φ̂0

(
A2(X − X ′) ⊗ Teff2

)
Φ̂

−1
0 pJ (X

′, s)

+Φ̂0

(
I ⊗ K J + A1 ⊗ Teff1

)
Φ̂

−1
0 pJ (X, s).

Normally, each transition in a random jump process implies a change of internal
state or position; however, with effective transitions, we must be able to account for
paths where a particle, starting from a junction in internal state �, makes a number
of jumps along an edge and then returns to that same junction in state �. The WTDs
for such events to occur are given by the diagonal elements of Teff1 , and they involve
no change in position or internal state. We will later discuss how to reformulate the
effective transition rates so that these self-jumps need not be considered as “transitions”
in Teff1 .

It also is the case that unlike T J and T SV which did not invoke changes in internal
states, Teff2 can include transitions that simultaneously change the position and internal

state of a particle. This is because each element of Teff2 is the aggregate of a number of
different steps on an edge. Even though each individual transition on the edge involves
only changes in state (K SV ) or position (T SV ), the aggregate of many transitions
required for a particle to travel between junctions can change both.

10 The reduction of A1 to 2ne I is valid only under the restrictions discussed below.

123



A Random Walk Approach to Transport in… Page 75 of 84    92 

Each element of Teff1 and Teff2 is found by solving a first-passage-time problem to
obtain the distribution of times for a particle to arrive in internal state � at a junction
after having started in state �0 at that junction or an adjacent one without having visited
any other junction states in the intervening time. We will discuss the solution to these
problems in the next section, but first turn to the computation of the spatial moments
for the reduced system.

Note that aside from the exterior hexagonal lattice and a remark in Appendix C,
we have only considered lattices with a single type of junction 11 (e.g., the exterior
hexagonal lattice doesnot fall into this category since it has type I and type II junctions).
This restriction is mostly done for ease of notation and clarity, as there do not appear to
be theoretical difficulties with considering multiple types of junctions. In this section,
we will make two additional restrictions, also to ensure clarity of the arguments that
follow.

Consider a lattice with a single type of junction and ne types of edges, each type
distinguished from the others only by its orientation relative to the x-axis. The first
additional restriction is that the transport along each edge is undirected. The second
restriction is that we now suppose that the lattice is constructed so that at each junction,
one edge of each type starts and one edge of each type ends at that junction. Note that
this restriction is also used in Appendix C. Aside from the exterior hexagonal lattice
and persistent comb random walk, the examples discussed in this paper have these
properties. As an example, in a square lattice, at each junction, one vertical edge and
one horizontal edge start (have their s-terminus) at that junction, and one vertical and
one horizontal edge end (have their e-terminus) at that junction. Thus, there are ne = 2
types of edges (vertical and horizontal), and each junction is connected to 4 = 2ne
edges in the square lattice.

Recall that the lattice Fourier transform of a function is

f̂ (ω) =
∑
X∈G

f (X)eiX ·ω

with ω defined over a d-dimensional cube,
[
− π

|ΔX | ,
π

|ΔX |
]d
. Here, d is the dimension

of the space and ΔX the lattice spacing.
Applying the lattice Fourier transform to the matrix,

(
I ⊗ K J + A1 ⊗ Teff1

)
+ A2(X) ⊗ Teff2 ,

from Eq. (D.1), and keeping in mind the restrictions above, we obtain

I ⊗
[
K J + 2ne(Teff1 + Teff2 )

]
+ I ⊗

⎡
⎣ 2ne∑

j=1

(eiΔX j ·ω − 1)Teff2

⎤
⎦

11 Each junction can still have arbitrarilymany internal states. A single type of junction refers to all junctions
in a lattice having the same connectivity, via a single edge, to other junctions in that lattice. For example, in
a square lattice, each junction is connected to its neighbors to the north, south, east, and west. This differs
from the exterior hexagonal lattice where type I junctions are connected to their neighbors to the north,
southeast, and southwest; and type II junctions to neighbors to their south, northeast, and northwest.
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≡ I ⊗ K 0 + I ⊗ Teff0 (ω).

To find the moments, we differentiate in Fourier space as in Appendix C.1. Differ-
entiating p̃J (ω, s), we obtain

m̃(1)
j = (−i)Φ̂0 [I − K 0]

−1

(
∂Teff0

∂ω j

)
[I − K 0]

−1 (D.2)

m̃(2)
jk = −Φ̂0 [I − K 0]

−1

(
2

(
∂Teff0

∂ω j

)
[I − K 0]

−1

(
∂Teff0

∂ωk

)

+
(

∂2Teff0

∂ω j∂ωk

))
[I − K 0]

−1 (D.3)

with j, k = 1, 2, . . . , d. Notice that there is no summation over the nk SVs since details
regarding the SVs have been condensed into the elements of Teff2 which describes
transfers between adjacent junctions. Likewise we do not need any information about
how the internal states are situated relative to a junction. We can also write Φ̂0 from
above as

(
Φ̂0(s)

)
i
= 1

s

⎛
⎝1 −

∑
j

K 0,i j (s)

⎞
⎠ .

Unlike the SVs, the internal states have not been summed over, so the moments are
still written as vectors over these states.

Remark 1 It is important to note that since no summation is doneover theSVs, the value
of pJ (X, t) at junction X is now the aggregate probability density of all particles that
have reached that junction, but not yet arrived at any other junctions. In other words,
a particle located on an edge after exiting junction X , but not having yet reached an
adjacent junction, would contribute to pJ (X, t). This is a reflection of the fact that in
the reduced process, the fine details of the exact location of a particle along an edge
have been suppressed. Nonetheless, if one uses the elements of Φ̂ associated with
junctions from the full system (e.g., Eq. (34)) rather than Φ̂0 for the reduced system,
the probabilities at junction X are obtained (c.f. the difference between Φ̂ and Ψ̂ in
Ex. 4).

Remark 2 When the FPT procedure is applied to a Markov process, this result is
typically a non-Markovian process with a reduced number of degrees of freedom
(Kampen 1992). The non-Markovian character arises since even if all the transitions
in the original process have Poisson distributed waiting times, the aggregate waiting-
time distribution for several sequential Poisson processes to occur is not a Poisson
distribution. As noted above, this leads to an overall non-Markovian process since
the only continuous waiting-time distributions which leads to a Markov process are
Poisson distributions.
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D.2 General First-Passage-Time Problems

It now remains to describe the general first-passage-time (FPT) problem which must
be solved to obtain Teff1 and Teff2 in Eq. (D.1). The elements of Teff1,2 are closely
related to FPTs for a random walk to reach state � at a junction given that it started in
state �0 at one of the junctions bordering that edge and did not leave the edge yet.

Recall that we assume that all edges have the same set internal transitions and spatial
jump transitions. Also recall that the transition matrices for internal state changes and
spatial jumps on an edge are K SV and T SV , respectively. Since a particle starting out
on an edge can eventually jump to a vertex at the “s” or “e” end of that edge, the
matrix T SV + K SV cannot conserve particle number. Thus, the matrix T SV + K SV is
the transition matrix for a random walk confined to an edge and subject to absorbing
boundary conditions. Since particles are absorbed at the boundaries, the rate at which
particles are absorbed can be defined. In the full matrix system, these absorption rates
correspond to the rate at which particles arrive at the vertices at either end of an edge.

In order to define the arrival rates, we consider the nonzero elements of De and
Ds which describe transitions from an edge to a vertex. As depicted in Fig. 5, there
are typically at most ns distinct transitions from each end of an edge, one from each
internal state at k = 1 and k = nk . Thus, there are typically at most ns nonzero entries
in Ds and De. Considering Ds first, each nonzero element of Ds can be written as
d�ψd,�(t). Here, d� is the probability for a particle at the first SV (k = 1) in state � to
jump to state � at the adjacent junction, and ψd,�(t) is the WTD for the jump when
it does occur. The same description holds for nonzero elements of De, except in that
case the particle is jumping from the nk th SV, k = nk rather than k = 1.

Then, the Laplace transform of the FPT density for a particle to reach the junction
attached to the “s”-end of an edge in state � after starting in state (k0, �0) on the edge
is of the form

f̃�(s|{k0, �0}) = d�ψd,�(s)δ
T
1,� (I − T SV − K SV )−1 δk0,�0

where δk0,�0 and δ1,� are Kronecker deltas over the state-space of the edge. But
f̃�(s|{k0, �0}) is just the �th component of a vector f̃ (s|{k0, �0}) over the internal
states at a junction. The FPT densities to reach each of the ns internal states at a
junction defined easily by decomposing Ds as a sum of rank one matrices,

Ds =
ns∑

�=1

d�ψd,�(s)δ�δ
T
1,�

and writing

f̃ (s|{k0, �0}) = Ds (I − T SV − K SV )−1 δk0,�0 .

This describes the FPT densities to reach the vertex adjacent to the “s”-end of the edge
for a particle starting at some SV on edge, and the FPT densities at the “e”-end can
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be found similarly. However, the effective transition rates we seek describe how long
it takes a particle to jump between vertices, not from an SV to a vertex.

Let us consider the nthk SV on an edge. Each internal state associated with this SV
is directly connected to the junction at the “e”-end of the edge, and jumps from that
junction to the edge are governed by D′

e. Like De, D′
e typically has at most ns nonzero

entries and we can write D′
e as

D′
e =

ns∑
�=1

d ′
�ψ

′
d,�(s)δnk ,�δ

T
�

where d ′
� is the probability of a particle in state � at the junction jumping to the edge,

and ψ ′
d,� is the WTD when the jump occurs.

With this, the elements of the vector,

f̃ (s|�0}) = Ds (I − T SV − K SV )−1 δnk ,�0ψ
′
d,�0

are the FPTs for a particle jumping from state �0 at the junction at the “e”-end of an
edge to reach state � at the junction at the “s”-end of the same edge. Elements of Teff2
are then found by multiplying these FPTs by d ′

�0
which gives the probability of the

jump occurring. Collecting all of these FPTs into a matrix, we obtain,

Teff2 = Ds (I − T SV − K )−1 D′
e (D.4)

By similar arguments, we find the elements of Teff1 by replacing Ds with De,

Teff1 = De (I − T SV − K )−1 D′
e. (D.5)

Notice that we could have replaced Ds and D′
e by De and D′

s in the computation of

Teff2 . Either combination is valid since we have assumed that transport along each
edge is undirected. Note that many useful examples involve just two types of effective
transitions (return to origin, and jump to other states) in which case the matrices above
will be rank two.

The presence of condensed paths over the SVs that return a particle to its starting
state prior to jumping is a peculiarity that arises here. However, as we will now show,
these self-jumps can be eliminated by solving an extended first-passage-time problem
which results in a rescaling of the values of Teff2 and the off-diagonal elements of Teff1
to account for the contingency of multiple returns to the starting point. This was done
implicitly in Ex. 4.2 when we solved for the FPT to reach Xi±1 from Xi in the a 1D
lattice. In that case, no self-jumps were possible since the effective WTD was defined
such that it described sojourns on edges that started (at Xi ) and ended (at Xi±1) at
different points in space. This same principle holds in general.

It turns out the form of the rescaled transition rates is relatively simple. We first
give the result and then discuss its derivation. To obtain the rescaled transition rates,
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Fig. 13 Random walk first-passage-time problems with n� = 1. A The most general type of FPT problem
involving the full set of states in between any two adjacent lattice states. B The two simplifications. In
the first simplification (top), only the internal states within an edge are considered, the FPT matrix here is
D (I − T SV − K SV )−1 D′. Self-returns and jumps to adjacent junctions are highlighted. In the second
case, the junction is considered as well. This rescales the problem to eliminate self-jumps. It can be under-
stood as equivalent to the general FPT problem when all edges exhibit the same set of transitions including
those to and from a lattice point. In (a) and (b), the highlighted boxes are used to indicate the states involved
in the FPT computation

we additively decompose Teff1 into diagonal and off-diagonal components,

Teff1 = Teff1,d + Teff1,o .

The subscripts d and o indicate the diagonal and off-diagonal components of Teff1 .

The self-jumps are characterized by Teff1,d , and jumps that change the state or position

of a particle are given by K , Teff1,o , and Teff2 . The rescaled internal transitions and
first-passage-times are then of the form

K r = K
(
I − 2neTeff1,d

)−1
, Teff1,r = 2neTeff1,o

(
I − 2neTeff1,d

)−1
,

Teff2,r = Teff2

(
I − 2neTeff1,d

)−1
(D.6)

As noted before, this rescaling is equivalent to the solution of an extendedfirst-passage-
time problem that does not terminate when a particle returns to its starting state.
Consider a particle starting at state � at vertex X . To exclude self-jumps, consider the
transition matrix for a particle in a system that includes state � at vertex X and all of
the SVs and internal states on the edges that are attached to X (see Fig. 13).

The transition matrices for each � are of the form

T r ,�+K r ,� =

⎛
⎜⎜⎜⎝

0 δT� Dt1 . . . δT� Dt2ne
D′
t1δ� T SV + K SV 0 . . .
...

...
. . .

...

D′
t2ne

δ� 0 . . . T SV + K SV

⎞
⎟⎟⎟⎠ , � = 1, . . . , N� (D.7)
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where tk = {s, e} specifies which end of edge k connects to vertex, X , see Fig. 13a.
We see that a particle starting on X in state � can exit the system by 1) reaching X
in any internal state except for �, or 2) by reaching a junction adjacent to X in any
internal state including �. Since the particle cannot exit this system from the same
position and state at which it started, no effective self-jumps occur.

The resulting matrix for the FPT problem is much larger in this case than the matrix
T e + K e which was needed to find Teff1,2 . This is disadvantageous since solutions may
be more difficult to compute. However, a significant simplification is possible due to
assumptions we have made. In the case, we have been considering, all edges have the
same set of transitions and WTDs. Given this, we find that since the particle starts at
the junction, the probabilities, p̃k,�(s) along each edge are equal. This allows us to
write

T r0,� + K r0,� =
(

0 (Dt1)�
2ne(D′

t1)
T
� T SV + K SV

)
.

Given this matrix, FPTs to reach an adjacent vertex or return to X in a state other than
� may be found using the techniques discussed above. After simplification, one can
show that Eq. D.7 are the resulting solutions.

Likewise, one can substitute Teff1,r and Teff2,r into Eqs. (D.2) and (D.3) for the spatial
moments. However, since both approaches end up computing approximate moments
for the same initial system which includes SVs and junctions, they must both yield
very similar results. The distinction is that in the latter case, the definition of a single
jump has been redefined to only include jumps where the position or state of the
particle changes. This distinction is important in regard to interpreting the elements of
Teff. In the former case, they cannot be considered as jump probabilities multiplying
waiting-time distributions in the standard sense, but after rescaling, they can.

Appendix E: RandomWalks on Segments with Various Boundary Con-
ditions

Consider a randomwalk onZwhere at each k ∈ Z, there is a 1/2 probability of jumping
to the left or right. If the randomwalk starts at � ∈ Z, the probability generating function
for the probability of finding the walker at m is (Hughes1996)

u(F)(z,m|�) =
∞∑
n=0

zn pn(m|�) = (1 − z2)−1/2x |m−�| (E.1)

with

x ≡ z−1
(
1 −

√
1 − z2

)

and pn(m|�) being the probability of reaching m after starting at � on the nth step of
the walk. For a periodic segment with m, � = 0, 1, . . . , N , the solution is given by
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using the method of images (Montroll and Greenberg 1964) as

u(P)(z,m|�) =
∞∑

k=−∞
u(F)(z,m + Nk|�) =

(
xm−� + xN−(m−�)

1 − xN

)
(1 − z2)−1/2.

It is also possible to find solutions with other types of boundary conditions (Hughes
1996; Weiss and Rubin 2007). For instance, the image points for a random walk on a
segment with two absorbing boundaries are of the form {2kN ± �}, and the method
of images solution yields

u(AA)(z,m|�) = x |m−�| − x |m+�| + x2N (x−|m−�| − x−|m+�|)√
1 − z2

(
1 − x2N

) . (E.2)

Moments of u(F)(z, ·|·) can be found by summing over m and using identities related
to geometric series:

N∑
n=0

rn = 1 − r N+1

1 − r

N∑
n=0

nrn = r
d

dr

[
1 − r N+1

1 − r

]
= r

1 − (N + 1)r N + NrN+1

(1 − r)2

N∑
n=0

n(n − 1)rn = r2
d2

dr2

[
1 − r N+1

1 − r

]

= r2
2 − N (1 + N )r N−1 + 2(N 2 − 1)r N − N (N − 1)r1+N

(1 − r)3

N∑
n=0

n(n − 1) . . . (n − k)rn = rk
dk

drk

[
1 − r N+1

1 − r

]

For finite N , these formulas are valid (if one uses L’Hopitals rule at r = 1) for all
r , and in the case that N → ∞, the results are valid if 0 ≤ r < 1. In particular, the
variance of u(F) over the integers is

σ 2(z) = z

(1 − z)2
. (E.3)

In the CTRW setting, one can find the arrival probabilities, q(x, t |y) by substituting
the Laplace transform of ψ(t) for z in the formulas in this section. Likewise, upon
multiplying by Φ̂(s), the probability, p(x, t |y) and time-dependent moments can be
found. For instance, for an unbiased 1D CTRW with nearest neighbor jumps,

σ(s) = L2 1 − ψ

s

ψ

(1 − ψ)2
= L2

s

ψ

1 − ψ
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as was found in Eq. (43) by different techniques.
Thefirst-passage-time probability generating functionmay also be found bymaking

use of the definition in Eq. (E.1) for u(F). As derived in Montroll and Weiss (1965),

f (F)(z,m|�) = u(F)(z,m|�) − δm,�

u(F)(z, 0|0) .

Furthermore, this result is easily extended to much more general cases such as multi-
state random walks, and walks on complicated structures (Hughes 1996).
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