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ABSTRACT We study the models for calcium (Ca) dynamics developed in earlier studies, in each of which the key
component is the kinetics of intracellular inositol-1,4,5-trisphosphate-sensitive Ca channels. After rapidly equilibrating steps
are eliminated, the channel kinetics in these models are represented by a single differential equation that is linear in the state
of the channel. In the reduced kinetic model, the graph of the steady-state fraction of conducting channels as a function of
log1O(Ca) is a bell-shaped curve. Dynamically, a step increase in inositol-1,4,5-trisphosphate induces an incremental increase
in the fraction of conducting channels, whereas a step increase in Ca can either potentiate or inhibit channel activation,
depending on the Ca level before and after the increase. The relationships among these models are discussed, and
experimental tests to distinguish between them are given. Under certain conditions the models for intracellular calcium
dynamics are reduced to the singular perturbed form edx/dT = f(x, y, p), dy/dT = g(x, y, p). Phase-plane analysis is applied
to a generic form of these simplified models to show how different types of Ca response, such as excitability, oscillations, and
a sustained elevation of Ca, can arise. The generic model can also be used to study frequency encoding of hormonal stimuli,
to determine the conditions for stable traveling Ca waves, and to understand the effect of channel properties on the wave
speed.

INTRODUCTION

IP3-sensitive intracellular Ca channels

Cytoplasmic calcium (Ca,) is a universal second messenger
for regulation of many cellular components and processes,
including muscle contraction, secretion, membrane perme-
ability, and fertilization. The extracellular signals for such
processes can be hormones, growth factors, neurotransmit-
ters, membrane depolarization, or physical signals such as
light or shear stresses. One mode of regulation of Ca, is by
means of the activation and inactivation of Ca channels
between the cytoplasm and intracellular Ca stores, which
are either the endoplasmic reticulum (ER) in nonmuscle
cells or the sarcoplasmic reticulum (SR) in muscle cells.
These channels are of two major types, inositol-1,4,5-
trisphosphate (lP3)-sensitive Ca channels (IP3R) and ryano-
dine-sensitive Ca channels (RyR), but there may be many
subtypes of these two types, depending on the cell type in
question.

Experiments in which IP3R are inserted into lipid bilayers
show that IP3 upregulates the channel activity (Watras et al.,
1991), whereas Ca has both a positive and a negative effect
on the channel activity. At steady state the graph of the
fraction of channels open versus logl0([Cal]), which we
denote pCa, is a bell-shaped curve (Bezprozvanny et al.,
1991). Moreover, activation of channels at low Ca concen-
trations and inhibition at high concentrations are seen in a
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variety of intact cell types (Zhao et al., 1990; Wakui and
Petersen, 1990; Parker and Ivorra, 1990; Meyer and Stryer,
1990).

Theoretical problems in Ca dynamics

Several theoretical questions arise from the study of intra-
cellular Ca dynamics, one of which relates to the mecha-
nism of frequency encoding. In the study of Ca dynamics in
hepatocytes in response to vasopressin stimuli, Woods et al.
(1986) found that, over the range of 200 nM to 1 AM in the
hormone concentration, stimuli evoke repetitive spikes in
the intracellular Ca concentration rather than simply elevat-
ing the level of Ca. Moreover, they found that as the
hormone concentration was raised, the frequency of spiking
increased but the amplitude remained essentially constant.
Thus the continuously graded (analog) extracellular hor-
mone signal was converted into a frequency-encoded digital
signal (the number of Ca spikes). Similar dynamic behavior
has been found in a large number of cell types since then
and has led to the suggestion that Ca spiking and frequency
encoding must have a physiological role (Meyer and Stryer,
1991). In secretory cells such as pancreatic acinar cells, this
frequency can determine the secretion rate of digestive
enzymes and fluid (Kasai, 1995).

Another significant aspect of intracellular Ca dynamics is
that the response in many cells is spatially inhomogeneous.
In a variety of cell types, waves of Ca release propagate
across the cell in response to hormonal or other stimuli. For
instance, in Xenopus laevis oocytes, penetration of a sperm
into the egg triggers a localized increase in Ca, that propa-
gates away from the point of entry at approximately 10
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,gm/s, inducing cortical contraction, meiosis, and structural
rearrangement (Nuccitelli, 1991). Because some of the IP3-
sensitive calcium stores in Xenopus oocytes are localized at
the animal pole (Lupu-Meiri et al., 1988; Berridge, 1990),
spatiotemporal propagation of Ca, waves is essential for
inducing the entire cell to respond to a localized stimulus.
Spatially inhomogeneous waves such as spiral waves and
target patterns can also be triggered locally along the cor-
tical surface of Xenopus oocytes (Lechleiter et al., 1991;
Lechleiter and Clapham, 1992), though the physiological
significance of these artificially induced waves is unknown.
In hepatocytes Ca oscillations appear to originate from a
single locus and propagate across the cell. The initiation site
seems to be relatively constant in a given cell, even for
different agonists. When hepatocytes are treated with phe-
nylephrine, followed by washout and restimulation with
vasopressin, Ca waves originate from the same site. The
speed of the waves in hepatocytes is typically 20-25 ,um/s
(Thomas et al., 1991). These cells are polarized to a degree,
and a variety of receptors are known to be concentrated at
the sinusoidal membrane, which may account for the hy-
persensitivity of this region to activating signals. The phys-
iological significance of nonuniform spatiotemporal pat-
terns of Ca is probably clearest in eosinophils during
chemotaxis. In these cells an intracellular Ca gradient is
responsible for the initial polarization of a homogeneous
cell and for the subsequent change in polarity as the cell
responds to extracellular chemical attractants (Fay et al.,
1995).

Spatial variations in calcium are important at the supra-
cellular level as well. For instance, Ca waves may be used
to synchronize large cell assemblies such as ciliated epithe-
lial cells (Meyer, 1991), and diffusion of IP3 through gap
junctions appears to be necessary for the propagation of
these waves (Boitano et al., 1992). In the mammalian brain,
it is found that Ca waves can spread from a single astrocyte
into a population of astrocytes in vitro (Nedergaad, 1994;
Sneyd et al., 1994). The slowly spreading Ca waves of -20
gm/s may be correlated with the phenomenon of spreading
depression in vivo (Gorelova and Bures, 1983).

Kinetic models for IP3R

Many mathematical models for Ca dynamics in systems
involving IP3R have been proposed (Ehrenstein and
FitzHugh, 1986; Meyer and Stryer, 1988; Goldbeter et al.,
1990). Models that were proposed before the work of
Bezprozvanny et al. (1991) usually involve feedback regu-
lation of Ca on 1P3 production with the result that IP3
oscillates whenever Ca does. The model of Ehrenstein and
FitzHugh (1986) and that of Meyer and Stryer (1988) be-
long to this category. Wakui et al. (1989) showed that 1P3
oscillations are not required for Ca oscillations because the
nonhydrolyzable IP3 analog 1P3S3 also induces Ca oscilla-
tions. The experimental findings of Bezprozvanny et al.

that center around the kinetics of IP3R (De Young and
Keizer, 1992; Othmer and Tang, 1993; Atri et al., 1993;
Bezprozvanny and Ehrlich, 1994). In view of the aforemen-
tioned experimental data on channel activities, these models
of IP3R assume three regulatory sites on the channel com-
plex, one for IP3 and two for Ca. Of the two Ca regulatory
sites, one is positive regulatory (activating) and the other
negative regulatory (inhibitory). In all the models Ca bind-
ing to the positive regulatory site is a fast process compared
with that of negative binding. These models predict that the
steady-state fraction of open channels as a function of pCa
is a bell-shaped curve with the optimal fraction open at
physiological Ca concentrations.
The kinetic model of IP3R proposed by De Young and

Keizer assumes that the ligands can bind to any unoccupied
site on the receptor irrespective of the binding status of
other sites. The Othmer-Tang model, on the other hand,
assumes a sequential binding scheme: IP3 has to bind at the
IP3 site before Ca can bind to the channel. In addition,
the binding of Ca to the two Ca sites is also ordered: Ca has
to bind to the positive regulatory site before it can bind to
the negative site. The most general scheme is to assume
state-dependent binding to each site with distinct parameters
for each of the binding and release steps, and both the
De Young-Keizer model and the Othmer-Tang model
can be obtained by a special choice of parameters in
such a scheme. Another variation on this general scheme
assumes that the binding and/or release of the regulators is
state independent, which leads to the Atri-Amundson-
Clapham-Sneyd model. The Bezprozvanny-Ehrlich model
is a variation of the Othmer-Tang sequential binding
scheme, which incorporates an additional transition to the
open state. In this model IP3R with the 1P3 and positive Ca
sites occupied is assumed to be a closed state, and the
channel undergoes a fast transition from this state to the
open state. In addition, a slight inhibitory effect ofER Ca on
the channel is incorporated into the model. Numerical sim-
ulations using these models show that they are all capable of
predicting experimental results qualitatively. Among all
these models, the Othmer-Tang model has the least number
of channel states and kinetic parameters, yet it adequately
explains the experimentally observed channel kinetics
(Bezprozvanny and Ehrlich, 1994).

Mathematical models for Ca dynamics and
their simplification

Each of the above models for IP3R can be incorporated into
a model for intracellular Ca dynamics for those cells for
which IP3R are the only type of intracellular Ca channels,
and this has been done for all but the Bezprozvanny-Ehrlich
model. The typical cell types modeled are hepatocytes,
Xenopus oocytes, and endothelial cells. A schematic dia-
gram of the components involved in these models is shown
in Fig. 1. There is a transmembrane receptor responsive to

(1991) gave rise to a new class of Ca dynamics models
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FIGURE 1 Schematic diagram of Ca regulation in cells with IP3R. An
extracellular agonist binds to a receptor which then activates a G-protein.
The activated G-protein in turn activates PLC, which breaks down phos-
phatidyl inositol 4,5-biphosphate (PIP2) to generate 1P3 and diacylglycerol
(DAG). 1P3 diffuses into the cytoplasm and binds with lP3-sensitive Ca
channels (IP3R) in the ER membrane. Ca is released through IP3R and
through a nonspecific leakage, and it is pumped into the ER by Ca pumps
in the ER membrane. In general, there is also a Ca flux, Jm, across the
cytoplasm membrane.

ulatory signal to a G-protein. The activated G-protein in turn
activates phospholipase C (PLC), and activated PLC cata-
lyzes the hydrolysis of a membrane phospholipid, phos-
phatidyl inositol 4,5-bisphosphate, thereby generating two
messengers, IP3 and diacylglycerol. IP3 is water soluble and
diffuses into the cytoplasm. On binding with IP3R, it acti-
vates the Ca channels and induces the release of stored Ca
from the ER into the cytoplasm. In addition, there is leakage
of Ca from the ER into the cytoplasm. The Ca-ATPase on
the ER membrane is primarily responsible for pumping Ca
back into the ER. Cytoplasmic IP3 is short lived: after a few
seconds it is degraded and recycled into the membrane
through specific pathways. Cells may also exchange Ca
with the extracellular medium through unspecified leaks or
special protein-mediated processes.
Each of the models can simulate certain aspects of

the experimental behavior of these cells. For example, the
Othmer-Tang model can predict excitability and oscilla-
tions, depending on the hormonal concentration. When the
hormonal level exceeds a certain value, sustained stable
oscillations are replaced by temporally damped oscillations
around a relatively high Ca, level. A further increase in
hormonal stimulation leads to an overdamped response
around a high sustained Ca level. When spatial aspects are
introduced, the Othmer-Tang model generates various
types of traveling wave.

Even though the above-mentioned models are simple and
are suitable for numerical studies, they are generally too
complex for analytical studies aimed at understanding fre-
quency encoding (Tang and Othmer, 1995) and traveling
waves. Past experience with models for excitable systems

has shown that simplifications can often reveal the essential
dynamical behavior in a model, and can suggest critical
experimental tests of its applicability and limitations. For
instance, the Hodgkin-Huxley (1952) model for the trans-
membrane potential in nerve cells has been simplified to
two equations (the Fitzhugh-Nagumo system) and studied in
detail mathematically, leading to the first proof of the ex-
istence of traveling wave solutions in the reduced system
and advancing our understanding of excitable media. In this
spirit, Keizer and De Young (1994) and Li and Rinzel
(1994) have reduced the De Young-Keizer model to differ-
ent forms of a two-equation system. The equations in the
reduced Keizer-De Young system govern the dynamics of
IP3R, whereas the other components of the Ca dynamics are
assumed to relax instantaneously. In the Li-Rinzel reduc-
tion, one equation is for IP3R kinetics and the other is for Ca
release from and uptake into the ER.
We extend this work by showing that all of the afore-

mentioned kinetic schemes for IP3R kinetics can be reduced
to a single equation of the Hodgkin-Huxley form:

dy _ YoY
dT Ty ' (1)

where y is the fraction of channels with Ca bound at the
inhibitory site. Thus we obtain a standard form for a wide class
of models, and thereby we show that they differ only in the
dependence of yOs, T , and the fraction of activated states on Ca
and [P3. We show that the models proposed by Othmer and
Tang (1993) and by Bezprozvanny and Ehrlich (1994) are in
fact equivalent to within the choice of the parameter values.
We also provide a simplification for the De Young-Keizer
model that is different from both the De Young-Keizer reduc-
tion and the Li-Rinzel reduction. Finally, we show how the
phenomenological equations used by Atri et al. (1993) can be
obtained through a kinetic-based derivation.
When the total amount of Ca in the cytoplasm-ER com-

plex is conserved, it is shown that all the models for intra-
cellular Ca dynamics can be reduced to a generic two-
equation form. With the assumption that the channel gating
equation is slow compared with the Ca release from and the
uptake into the ER, the reduced two-equation system has
one slow variable and one fast variable. Phase-plane anal-
ysis and singular perturbation techniques are applied to a
generic model to show how excitability, oscillations, frequency
encoding, and sustained elevations of Ca, arise as the LP3
concentration varies. The influence on Ca dynamics of a slow
exchange of Ca between the cytoplasm and the extracellular
medium can also be studied in the reduced model.

SIMPLIFICATION OF KINETIC MODELS FOR IP3R

Othmer-Tang model

Othmer and Tang (1993) propose a four-state model for
the 'P3-sensitive Ca channel in which the transitions
between the different states occur according to the

------1-k-
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following scheme:
1o0 IIC 12C

R±RI TRIC+ ±RIC+C-. (2)
I-o 1i1 1-2

Here I denotes 'P3 and C denotes Ca1, R denotes the bare 'P3
receptor and RI the receptor with lP3 bound, RIC+ denotes
RI with a Ca bound at the activating site, and RIC+C-
denotes RIC+ with an additional Ca bound at the inhibitory
sites. Let Cc = [Caj, Ic = [1P3], sOOO = [R]/[R]T, SIOO =

[RI]/[R]T, s110 = [RIC+]/[R]T, and s1,1 = [RIC C ]/[RIT,
where [R]T denotes the total concentration of IP3 receptors.
Then the governing equations are

dt =- 10ICS00 + oSloo,

dt=l o-( + 1CC)S1oo + lolcsooo + 1 is1io,

dt =12CcSI10 - 1-2S1ll,

and sow + s1IO + sIIo + s 1 = 1. To simplify the channel
kinetics, we assume that the binding of 1P3 to the receptor
and of Ca to the positive regulatory site of the receptor is
fast and that the binding of Ca to the negative regulatory site
is slow. Experimentally it is found that the IP3-induced
channel opening occurs within hundreds of milliseconds for
1P3 in the nanomolar to micromolar range and decreases as

the 1P3 level increases (Wootton et al., 1995). The time
course of binding/release of 'P3 to the channel is not de-
tectable on the time scale of many measurements with an

1P3 level in the physiological range (Meyer and Stryer,
1990; Finch et al., 1991). Less is known directly about the
speed of Ca binding/release to the activating site on IP3R,
which can be measured experimentally by photoreleasing
caged Ca in permeabilized cells. For the RyR in cardiac
muscle the time scale is of order milliseconds (Gyorke
and Fill, 1993). If the time scales of Ca binding to the
activating site and 1P3 binding/release are at least 10
times faster than the time scale of Ca binding/release at

TABLE I Definition of dimensionless parameters and their values

Parameter Definition DeY-K O-T Generic B-E B AACS

E 1-2 s 0.21 0.21 0.018 0.8 0.8

a, (1 + Vr) * s 0.13 0.12 0.003

a2 (1 + Vr)pcha S 7.11 22.92 4.27
a3 V,prax/CM S 0.5326 5.449 0.64
a4 K¢m/CM 0.05924 0.32 0.019 0.1
n Hill Coefficient 2 4 2 1

go 10o 0.13/4c 0.667/Ic 0.8/Ic Unknown Unknown Unknown
ohc

PI 1-1 47.78 0.0705 0.077 0.2 0.7
ICM

(2 1-2 0.622 0.0749 0.064 0.2
12CM

(3 I-3 943.4/Ic
134c

4 1-4 85.6
14CM

(35 /-4/1-2 137.62

Or IrZr 228.8z, 0
1-2

/ it 25.2 0.1125
_t + IrZr 224 + 184z

iI/1/ CM 0.1152
1 + It/1-t

(2 -1 + it/i-t) 0.1426
12CM

/A2 V?L CM 0.7

CM Scaling concentration 1.688 ,uM 1.56 ,LM 1 ,uM 1.56 ,uM 1 ,uM
Here B stands for the Bezprozvanny model, B-E for the Bezprozvanny-Ehrlich model, DeY-K for the De Young-Keizer model; O-T for the Othmer-Tang
model, AACS for the Atri-Amundson-Clapham-Sneyd model, and Generic for the parameters used in the analysis sections. For AACS, basal rates of IP3R
transitions are not included.
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the inhibitory site, then, to a good approximation, we can

assume that the fast dynamics have equilibrated on the
slow time scale, i.e., s000 = gloo = 0 (Kijima and Kijima,
1983). This argument can be made rigorous by applying
singular perturbation techniques to the differential equa-
tions (Eq. 3). A more general and rigorous reduction of
first-order kinetic systems of this type based on singular
perturbation and graph-theoretic techniques will be given
elsewhere (Tikhonov, 1952).

Let us introduce dimensionless dissociation parameters
Pi, i = 0, 1, 2 for the three binding/release steps in the
kinetic transitions, with PO(Ic) = ILo(loI) and 3i =

li/(liCM), i = 1, 2, and CM is a reference Ca, concentration.

For later purposes, we define the dimensionless Ca concen-

tration x = CICM, the dimensionless fraction of channels in
the inhibited state y = s1II, and the dimensionless time T =

1-2t (cf. Table 1). Then on the slow time scale

I30(IO)I3(1 - y)
x + f3l(1 + I3O(Ic))

I3X(1 - y)
S100 =X + (3l(1 + /3o(Ic))' (4)

x(l-y)

Silo= x + p1(1 + Po(Ic))

and the equation for the slow variable is

dy x_2
d- Y 1321X + + + 3(I))] y). (5)

This can be written in the equivalent Hodgkin-Huxley form
(Eq. 1), wherein Ty and y, are given in Table 2.

Bezprozvanny-Ehrlich model

Bezprozvanny and Ehrlich (1994) proposed a model for
IP3R kinetics based on their experiments with IP3R inserted
into lipid bilayers. This model is a variation of the Othmer-
Tang (1993) model with the introduction of an additional
state R*IC+ for the channel. The kinetic scheme for the
channel is depicted in the following diagram. (The model
published in Bezprozvanny and Ehrlich (1994) differs
slightly from the scheme represented here, in that it does not
have the IP3 binding step. The symbols for the kinetic
constants are also changed to make the usage of symbols
consistent throughout this paper.)

R*IC+
It N, I-, \!~1r * Zr

lol lIC 12C

R ARIz RIC+ A.RIC+C-. (6)
l-o 1-i 1-2

In this model RIC+, the activated state, is not conducting;
only the transition to the state R*IC+ makes it conducting.
To account for the inhibitory effect of intraluminal Ca on

the channel observed in the experiments, Bezprozvanny and
Ehrlich (1994) also introduced a direct transition from the
open state to the inhibited state. This transition is mediated
by Ca in a specific location on the cytoplasmic side near the
conducting pore. According to the argument in Bezproz-
vanny and Ehrlich (1994), the Ca concentration at this
location is proportional to the fraction Zr of all divalent ions
inside the ER that is Ca.

Let s*10 be the fraction of channels in the state R*IC+. As
before we assume that binding of IP3 and Ca to the positive
site on IP3R is fast. In addition we assume that the transi-

TABLE 2 Ty and y,, in simplified kinetic models for IP3R
Model TY Y

O-T R32X + 1332( + o(Ic)) x2
X2 + 2x + 1(2(1 + 1(IC)) x2 + 2x + 132(1 + (o(Q))

B-E 132(1 + P3)x + 13112(1 + 1o(Q)) x2 + 13213r13t
x2 + 132(l + 13t + ,3r13t)X + 131132(1 + 13o(h)) x2 + 132(1 + 13t + 13r131)x + 131132(1 + 130(Ic))

B 132X + 112(1 + o(Ic)) x2
X2 + ,82X + 1(2(1 + 1o(Q)) x2 + A2X + 1(2(1 + N(Ic))

DeY-K 2134[1 + 3(IC)][1 + 3o(Ih)] [1 + 133(IC)][134 + 132135P3o(Ic)]X
ax+b ax+b

DeY-K (indep.) 132 x
x+ 32 x+ 32

AACS (original) 2.0 CC
Cr + k2

AACS (rederived) (132)2 x
X2 + (2) x2 + (A2)2

Here DeY-K (indep.) stands for a variation of the De Young-Keizer model with the assumption that the binding of regulatory factors (I, C+, C-) is state
independent; AACS (original) stands for the original Atri-Amundson-Clapham-Sneyd model, in which 1 - yn corresponds to the gating variable n in their
original notation; and AACS (rederived) stands for the rederived Atri-Amundson-Clapham-Sneyd model based on the kinetic scheme presented in Eq. 18.
aX + b = [1 + 133(Ic)][134 + 13213590(IC)]X + 132134[1 + O(IC)][1 + P513('c)] in the DeY-K formulas. See text for more details of each model.
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tions between RIC+ and R*IC+ are fast. The latter assump-
tion is consistent with the choice of parameter values in
Bezprozvanny and Ehrlich (1994) for the transition steps.
Even with Ca, at 1 ,uM, the slowest process, which is the
transition between RIC+ and RIC+C-, is more than sixfold
slower than transitions between RIC+ and R*IC+. Thus, the
equations for the rapidly equilibrating species are

dst ooo-ls + l_oSloo,dt

dstm - (l- + 1i1 + 12Gc + l)s100 + 1l0cSO00dt (7)
+ l1ccs10O + 1-2SI11 + l-tS*110

dt 1o
-=(1-t + lrZr)SII0,

and sooo + slO0 + s,10 + s*10 + s,lI= 1. At a quasi-steady
state these yield

SOj- (1 + t3t)X + 3(1 ±+ O(IOJ)'
01(1 -y)

S1oo (1 + pt)x + 1PI(I + OQ(I))I
x(l-y)

Slo (1 + t)X+ 3(1 + 60(ic))'
(8)

=$ 1 + 13tX(1 -y)5110 (1 + Pj)X + 13(1 + OYJY
where the definition of 1Bi (i = 0, 1, 2) is as before. The new
parameters are 13r = lrZrI-2 and 13t = lt/(Lt + lrzr). We set
y = s1II as before and find that the equation for the slow
dynamics is

dy +X (X + 132133)
-( 9

dT 2[1- + 1 + PO(')) + (1 + AM)X]( -y)* (9)

Note that the dependence of y on x involves a linear term as
well as a quadratic term in the numerator.
The values of the dimensionless parameters that appear in

these equations are given in Table 1. According to these
estimates the inhibitory step that is ER Ca dependent is
never very significant compared with the inactivation step
R*IC+ -> RIC+. Under physiological conditions the tran-
sition from R*IC+ to RIC+C- is -20% of the transition
from R*IC+ to RIC+ (Bezprozvanny and Ehrlich, 1994).
Thus, to a first approximation, the transition of R*IC+
directly to the inhibited state can be ignored. In this case, the
Bezprozvanny-Ehrlich model reduces to a model proposed
by Bezprozvanny (1994) in which the inhibition of ER Ca
on the channel is absent, i.e., in Eq. 9 Br = 0 and Bt = 1/i1,
The improvement of the Bezprozvanny model over the

Othmer-Tang model lies in the introduction of the addi-
tional state R*IC+. Incorporation of this state resolves an
issue not treated by other models, which is that the exper-
imentally-observed fraction of channels in the conducting

state is usually below 10% (Bezprozvanny et al., 1991),
even though the fraction of the channels in the activated
state can be much higher in the mathematical models
(Othmer and Tang, 1993; De Young and Keizer, 1992).
To clarify the relationship between the Bezprozvanny

model and the Othmer-Tang model, let us denote the
combined fraction of channels in the states RIC+ and
R*IC+ by s1 0, i.e., -o = s10 + s*10. By introducing
the new dimensionless parameters 13, = 13I/(1 + I3t) and
132 = 12(1 + 13t) we obtain the following relations for the
steady-state fractions:

3o(IY)3( - y)
x + ,BI(I + j30(Ij))

f31(1 -y)
Sioo

xX+ 31(1 + o3(Ic))
- + x(l-y)
Silo0 X + f(1 + 3o(Ic))'

Eq. 9 can now be rewritten as

dy x2
dr -y + 3[X + (13(1 + 13Q(Ic))]

(10)

(1 1)

Thus, under the assumption that the transition between
the activated state and the open state is fast compared
with that of channel inhibition by Ca and channel recov-
ery, the equations for the Bezprozvanny model become
identical to Eqs. 4 and 5 modulo the change in the
definition of the parameters. The distribution of -sl l
within the two substates, which is needed in the Ca
balance equations, is

S1+1
Sil -I W

* -Silo
s1l 1 + Pt. (12)

De Young-Keizer model

De Young and Keizer proposed the first kinetic model for
IP3P (De Young and Keizer, 1992). In their model, reg-
ulatory factors (1P3 and Ca) can bind to the channel
complex in a state-dependent manner. The proposed
scheme of channel regulation is presented in the follow-
ing notation, with modified symbols for the coefficients
of kinetic transitions to make the symbols used within
this paper consistent:

1-o 1-l

RIC + `o2 RC +
c

14C it 2C It12
1_ 3 I-1

RIC+C- a RC+C- :±
131 IIC

R
12CJ12+
RC I-2

RC-

101

1-o

131

1-3

RI
4C It -4

RIC-

"IC

± RIC
'1-

l4C 1tlic +14It -4

a RIC+C-.
1-i

(13)

For the choice of parameters used in De Young and Keizer
(1992) the binding/release of 1P3 and of positive regulatory
Ca to the channel complex are fast processes compared with
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that of inhibitory Ca binding/release. With this set of kinetic
parameters the channel states can be separated into two
groups: Group I, the uninhibited group sooo, solo, s1l0, s lo
(the top group in Eq. 13), and Group II, the inhibited group
sOOI, si0o, Slill, sol (the bottom group in Eq. 13). Within
each group the transitions among the states are fast. We
assume that on the slow time scale a quasi-steady state has
been reached within each group. Lety = s00l + slo, + s, I +
s0o1; then 1-y= sooo +s010 +s1l0 + s10. Ignoring the slow
transitions between the two groups, the differential equations
for species in the uninhibited group are

dsooo
dt -(4jc + 11CC)Sooo + l_osioo + l_isoio,

d - (l o + 1QCC)s1O0 + 1oICsooo + Ilisiio,dt

dt -(1-I + 1l4)sO10 + liCcsooo + _osiilo,

t110 - (o + L-1)S11o + lJcsolo + lccsloo.dt

By setting 900 Soo= Sol = 0 and using the conserv
equation for this subgroup, which holds exactly whei
rates for the vertical transitions are zero, we get

Po(IJ910 - Y)
O(1 + 130(IJ))(X + 13k)

1(1 -y)
(1 + 10(IC))(x + 11)'

13o(Ic)x( - y)
Solo =(1 + 10(IC))(X + 13i)

x(1 -y)
Silo (1 + o(IC))(x + 11)

where Pi~(i = 0, 1, 2) are as before. Similarly,
quasi-steady-state distribution of the channels in th
hibited group is

133( C)J3IY 13iY
Soo0 I (1 + 133(IQ))(X + 131)' S101 = (1 + 133(Ic))(x +

133(IC)XY xy
5011 = (1 + 133(Ic))(X + 131)' S11 = (1 + 13(IC))(X +
where f33('c) = 1-3'(13'c). The equation for the slow var
of the channel kinetics to within terms that are small

dy
d 1-4(s000+ sOI1)- 12(sI0O+ Siii)

+ l4Cc(sOOO + SO10) + l2Cc(sio0 + s110).

The corresponding dimensionless equation is

dy (1 + 9353(Ic)) (14 + 5100()132)X
dT 1 + 3B(4I) + 12134(1 + O3(I)) ( -

where 14 = -4/(l4CM), 05 = 14/1-2. This reduced form of
the De Young-Keizer model for IP3R differs from the
Li-Rinzel reduction slightly (Li and Rinzel, 1994). In our
reduction, the conservation condition 11k=O Sijk=1 is satis-
fied exactly, whereas in the Li-Rinzel reduction it is satis-
fied only approximately. In fact, the departure from the
conservation equation in their reduction is of order 0(8),
where 8 - 0.1 by their estimate.
One important variation of the De Young-Keizer model

is to assume that the rate of binding is independent of the
state of the channel complex. The resulting scheme is very
similar to that in Eq. 13 but with 13 = lo, 1-3 = 1-0 and
14 = 12, 1U4 = 1_2. This modified model has the same
number of channel states as the original De Young-Keizer
model but has the same number of parameters as the Othmer-
Tang model. To get the simplified kinetic equation, we set
13(4c) = 3o(Ic), 134 = 13p2 and 135 = 1 in Eq. 17 and find that

dy
dT 2 (17)

x(l-y)
1 (1 + 1o(IC))(x + 91),

The most general scheme in which binding/release are state-
dependent is obtained by assigning different kinetic param-
eters to each of the steps in Eq. 13. In addition, the four
subunits within the channel complex of IP3R may interact
with one another cooperatively (Watras et al., 1991). To
study the cooperativity, a more general scheme than Eq. 13
is needed, one example of which has been studied in Tang
(1993).

Atri-Amundson-Clapham-Sneyd model

Atri et al. (1993) studied a phenomenological model based
on a single gating equation for the dynamics of IP3R. As in
the other models, IP3R is assumed to have three regulatory
binding sites, an 1P3 site, a positive regulatory Ca site, and
a negative regulatory Ca site. The binding of the regulatory
factors to their sites is in effect assumed to be state inde-
pendent. Unlike in the foregoing three models, Atri et al.
(1993) assume that the negative site requires the cooperative
binding of two Ca ions to close the channel. Here we
rederive the channel equation based on the following de-
tailed kinetic scheme:

is 1-o lilof

RIC+ Z RC+ Z R Z RI
Ia! liC I-o

,2C2It1-2 1
_0

iC2c2t1-2 1_1hC2 I 21C2 12
+1l-2 l_o +1 l2 Z + l2 is +l-

(16) RIC+(C2)- Z RC+(C2)-Y> R(C2)- Z RI(C2)-
loI lic I-o

lic

T RIC+

lic l2'I-2

T RIC+(C2)-.
(18)
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Here (C2)- corresponds to two Ca ions bound to the inhib-
itory site. Let pi, i = 1, 2, 3 denote the fraction of channels
in the group of states that with 1P3 bound, that with stimu-
latory Ca bound, and that without inhibitory Ca bound,
respectively; then Pi = i,j=OSlij- P2= !,j=0 Silj p3=
E! s1j0, where the usage of Sijk is as before. The differ-
ential equations for the combined subpopulations are

dp1
dt = lolc(1-Pi) -oPi,

dp2
dt = 1Cc(l -P2) --1P2, (19)

d(l -P3)
dt P3= t2C2p3 - 12(1 -p3).

The steady state of these equations is

1 I
P i=1 + 13o(Ic)'

x
P2 =

x2

p3= 1 - 2+ (2)2

with P3i, i = 0, 1 defined as before and (A2)2 = 1-2CL/4-
The channel kinetics can be approximated by a single dif-
ferential equation for the slow variable 1 -p3, and, if we
use the same symbol as for the previous models for IP3R
(i.e., T = 1L2t, y = 1 -p3), we find that

dy xy 2
-= ()2 - Y)'(21)

x(l-y)
Silo =(1 + o3(I))(x + 3)

This equation is the same as Eq. 17 for the state-independent
version of the De Young-Keizer model, except that 2 iS
replaced by (p2)2 and x appears quadratically in the y
equation. If only one Ca binds to the negative regulatory site
instead of two, Eqs. 21 and 17 become identical, as do the
kinetic schemes.

Instead of postulating a detailed transition scheme, Atri
et al. (1993) assumed phenomenologically that the fractions
of the channels for the subgroups satisfy

I+LiIkcI'
Pi~A

l c

V1 cc
P2 b+k1 + Cc' (22)

kI + C2,
where kIL, kl, k2 are the dissociation constants, ,ul, V1
the maximal proportion of the ligand binding, and ,uo,
b the rates of basal transition with no ligand binding re-
quired. The dimensional channel dynamics are given by

dYn CC2
dt k22+ C2Y

Si = Ao + k+)IcQb + k1+Cc)(1 Yn),

(23)

where yn is the gating variable and T- is its time constant. Yn
corresponds to 1 - n in Atri et al. (1993). Some symbols are
changed from the original paper for consistency with the
usage in this paper.
The formulas for the subpopulations that we rederive are

similar to the equations postulated in Atri et al. (1993), but
there are some important differences: i) there is no basal
transition between soij and slij and between sioj and si1j. As
a result, for i = 1, 2, pi = 0 when ligand concentrations are
0 and pi = 1 when they are infinity. Those derived by Atri
et al. (1993) do not satisfy these conditions. ii) Equations 16
and 18 for channel gating in Atri et al. (1993) are replaced
by a gating equation (Eq. 21) based on a rigorous reduction.
In making this replacement we find that the time constantTy
for channel inhibition and recovery depends on the Ca
concentration, whereas Atri et al. (1993) assume that Tn is
constant.
The values of the nondimensionalized parameters for the

kinetic models are given in Table 1, and the values for the
corresponding dimensional parameters are given in Table 3.
Table 1 also gives the parameter values for the Bezproz-
vanny scheme based on the symbols used in Eq. 11. For
ease of comparison, the steady-state fractions of activated
and inhibited channels and the relaxation time for the
Hodgkin-Huxley form (Eq. 1) of each model is given in
Table 2. In the following section we study the channel
dynamics, using the Othmer-Tang model for IP3R as the
example.

ANALYSIS OF CHANNEL KINETICS IN THE
SIMPLIFIED MODELS

Steady-state channel behavior

To study the channel dynamics under conditions that sim-
ulate experiments on reconstituted channels in lipid layers,
we assume that the Ca concentration is a given function of
time (Bezprozvanny et al., 1991). The steady-state fraction
of activated and inhibited channels is (cf. Table 2)

02X
5110= x2 + 12X + 132(1 + Io(Ic))'

x2
om X2+2X + 9102(l + Po(Ic))'

(24)

Elementary analysis of these equations shows that

* s110(O) = limX- sI1o(x) = 0;
* s1 Io is a concave function of x with a single maximum

that occurs at X,ax = '\/13 132(1 + 30(Ic)) and at this
value

ma 2( 131132(1 + 13o(h))SI110 201(l + 1o(')) + V9132(1 + 1O(Ic))'
* y0. is a monotonic function of x, y,(O) = 0, 0 ' y0.O < 1,

and limx-. yY-(x) = 1.
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The graph of sl1o versus pCa is a bell-shaped curve that
varies with IP3, as is shown in Fig. 2. It should be noted that
the curves are not symmetric for pCa in the range [-2, 1]:
the fraction of channels open atpCa = -2 is larger than that
at pCa = 1. This agrees with the experimental result of
Bezprozvanny et al. (1991) somewhat better than the
corresponding result for the De Young-Keizer model
(De Young and Keizer, 1992). As the IP3 level increases,
the fraction open at fixed Ca increases, and the concentra-
tion at which the maximum occurs shifts leftward. This is
different from the prediction made by De Young and Keizer
(1992), who state that the peak should shift to the right with
increasing IP3 levels. The Atri-Amundson-Clapham-Sneyd
model predicts that the Ca concentration at which the max-
imum occurs is independent of 1P3 levels. These predictions
can be tested with the experimental protocol of Bezproz-
vanny et al. (1991). Of particular importance is to determine
whether the binding of 1P3 and Ca is sequential.

Further insight into the steady-state channel behavior can
be obtained by fixing Ca and determining the effect of
varying 'P3. As f3B = L-o/(llc/), one sees from Eq. 24 that
the fraction of channels that is activated increases mono-
tonically as the IP3 level increases (cf. Fig. 3 a). An exper-
imental result from Watras et al. (1991) is shown for com-
parison in Fig. 3 b.

Time-dependent responses

Experimentally it is found that a step increase in Cc can
have a predominantly activating effect on IP3R; it can
involve both activation and adaptation; or it can have an
essentially inhibitory effect, depending on the existing
level of Ca and the size of the step increase (Zhao et al.,
1990; Wakui and Petersen, 1990; Parker and Ivorra,
1990; Meyer and Stryer, 1990). As the following com-
putational results show, these effects can be reproduced
by the simplified model. In Fig. 4 a we show the pre-
dicted channel response to the experimental protocol of
step increases of Cc obtained by photolysis of caged Ca
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FIGURE 2 Steady-state fraction of activated channels as a function of
loglo Ca in the Othmer-Tang model for IP3R. IP3 levels are (from the
lowermost curve upward): 0.01 ,uM (solid); 0.1 ,uM (dashed); 0.5 ,uM
(solid); 2.0 ,iM (dashed); and 10.0 ,uM (solid). The maximum fraction of
activated channels is 31%. (b) Experimental result from Bezprozvanny
et al. (1991) (with permission). The IP3 concentration is 2 ,uM, and the
maximum percentage of channels open is 15%.
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FIGURE 3 Predicted steady-state fraction of activated channels as a
function of the 1P3 concentration at different levels of cytoplasmic Ca. Ca
levels are (from lowermost curve at the left upward) 0.01 ,uM (solid), 0.02
,LM (dashed); 0.1 ,LM (solid); 0.2 ,uM (dashed); and 0.5 ,LM (solid). The
maximum fraction of activated channels is 31%. (b) Experimental result
from Watras et al. (1991) (with permission). cis Ca is 0.1 ,uM, and the
maximum fraction of channels open is 14%.

on the cis side of reconstituted IP3R in lipid bilayers.
Initially the fraction of activated channels is at the
steady-state level for Cc = 0.01 ,uM and Ic = 0.1 AM.
When Cc is stepped up to 0.1 ,AM, the fraction of chan-
nels activated increases significantly, and the adaptation,
which we define as the fractional return of the open
channels to the prestimulus level, is minimal. As Cc is
further increased to 0.5 AM, the steady-state incremental
increase in activation is small, whereas the effect of
adaptation is more prominent. Furthermore, the rate at
which activated channels make the transition to the in-
hibited state is much higher than in the previous step.
When Cc is further increased to 1 ,juM at 10 min, the
inhibitory effect of Ca on the channels becomes domi-
nant, although a small increase in the fraction of activated
channels is seen in the first few seconds of the response.
The temporal signature of the response to a step in Cc

represents a balance between activation and inhibition of the
channels. At low Cc the former dominates, but at higher Cc
inhibition dominates. An increase of Cc to levels higher than
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FIGURE 4 Temporal behavior of the fraction of activated channels in
response to step changes in cis Ca and the IP3 concentration in the
simplified Othmer-Tang model. (a) Channel activation, adaptation, and
inhibition in response to multiple step increases in cis Ca. Ca levels are
0.01 ,tM for t E [0, 2], 0.1 ,LM for t E [2, 6], 0.5 ,uM for t E [6, 10], and
1.0 ,uM thereafter. IP3 is fixed at 0.1 ,uM throughout. (b) Incremental
increases in the fraction of activated channels in response to stepwise
increases in IP3. IP3 levels are 0.01 ,uM for t E [0, 2], 0.1 ,uM for t E [2,
6], 0.5 ,uM for t E [6, 10], and 2.0 ,uM thereafter. cis Ca is fixed at 0.1 ,uM
throughout.
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CM * xm" will always have an inhibitory effect on the
fraction of channels opened, because of the bell-shaped
nature of the steady-state fraction of channels open as a
function of Cc. The steady-state levels of the activated
fractions in Fig. 4 a correspond to discrete points on the
bell-shaped curve in Fig. 2 a with Ic = 0.1 ,uM and Cc =
0.01, 0.1, 0.5, and 1 ,M.

Another aspect of IP3R dynamics, incremental Ca re-
lease, is revealed under step increases of 1P3 (Fig. 4 b). As
Ic is increased the fraction of channels activated increases.
This incremental increase with increasing 1P3 stimuli has
been observed in various experiments and has been labeled
quantal Ca release (Irvine, 1990; Oldershaw et al., 1991).
Inasmuch as there is no experimental evidence of a mini-
mum or quantal Ca-releasing vesicle inside either the ER or
SR, the terminology seems inappropriate. The incremental
release that is due to additional IP3 has a dynamic and a
steady phase, and in the latter the steady state corresponds
to a unique point in Fig. 3 b.

Experiments on Ca release through intact IP3R have
also been done with Ca-ATPase inhibited and Cc and Ic
controlled (Taylor and Potter, 1990; Hirose and Iino,
1994). Under these conditions, the foregoing results sug-
gest that Ca release from the Ca store will be biphasic
following a step increase in Ic. If we suppose that the
leakage from the store is negligible and that the step
increase of 1P3 is at t = 0, then the Ca concentration in
the store at time t, Cr(t), is

Cr(t) = C. + (Cr(0) - Cc)exp(rPrhsji0(t) t), (25)

where prchan is a constant determined by IP3R density and
the conductance of open channels. Because s110(t) under-
goes a step increase followed by exponential decay to a
higher steady state (cf. Fig. 4 b), Cr(t) - Cc will decrease at
a nonexponential rate in the initial phase, as is observed
(Taylor and Potter, 1990). As t increases, s110 relaxes to a
new steady-state level, and as a result the difference be-
tween ER and cytoplasmic Ca decays exponentially in the
second phase. In this phase the slope of a semilogarithmic
plot of Cr(t) - Cc versus t can be used to estimate prChaf if
s110 can be determined by other methods. For example,
prchan can be estimated at -1.04 s-1 for Ca stores in vas-
cular smooth muscle cells under the assumption that sI10I-
1% for Ic = 0.1 ,uM and a very low Cc (cf. Fig. 4 of Hirose
and lino (1994), where Cc is strongly buffered). Of course
prchan varies between cell types because of differences in
channel density and the channel subtype. The speed of the
transition from the first phase to the second phase is deter-
mined by both the 1P3 and the Ca level in the medium.
Increasing either Cc or Ic will shorten the duration of the
first phase. Increasing Ic will also decrease t1/2, the time for
half-depletion of the store, whereas increasing Cc can either
increase or decrease it.
The simplified equations for channel dynamics predict

both the qualitative and quantitative behavior of the other
transition schemes as well. Thus these simplifications can

be used to test experimentally the applicability of each
scheme. The various shifts of x'" on the bell-shaped curve
predicted in response to IP3 changes is one example, but
there are additional differences. For example, the indepen-
dent-binding version of IP3R kinetics predicts that the off
rate of channel gating (x/932 in the independent scheme with
only one Ca bound to the inhibitory site on IP3R, or x2/,2)2
in the Atri-Amundson-Clapham-Sneyd scheme with the
cooperative binding of two Ca to this site) is independent of
the IP3 level, whereas the sequential binding scheme (Oth-
mer-Tang model) predicts that it should depend on the 1P3
level in the form x2/(132[x + 131(1 + go(I()]). The depen-
dence ofTy on Cc as shown here for the Atri-Amundson-
Clapham-Sneyd model, which contrasts with the assumed
Ca independence of Tn in Atri et al. (1993), can also be
tested.
The simplified models also provide an avenue for easier

parameter estimation. For example, 1o, 013, and 932 in the
Othmer-Tang model for IP3R can be estimated based on the
measurement of x'" and s" and the dependence of s110 on
IP3. The parameter l2 can then be determined based on the
dynamical response of channel adaptation to a single-step
Ca increase. Alternatively, 132 and l2 can be estimated from
data on sequential-step Ca increases.

SIMPLIFIED MODELS FOR INTRACELLULAR
Ca DYNAMICS

A mathematical model for Ca, dynamics in cells having
IP3R, based on the components shown in Fig. 1, was pro-
posed in Othmer and Tang (1993). We denote by Jr and Jm
the Ca fluxes across the ER and cytoplasmic membranes,
respectively. Jr has several components that are indicated
with the superscripts leak, chan, and pump to denote Ca
leakage, the channel flux, and the flux that is due to the
active pump. Under the assumption that both the cytoplasm
and the ER are homogeneous media, the differential equa-
tions for the calcium concentrations are

dt = Vr(Jleak + jchan - jpump) + Jm

dCr jleak _ Jchan + Jpump
dt r r r 9

(26)

where vr is the ratio of the ER volume to that of the
cytoplasm. The ATP-dependent pump that moves cytosolic
Ca into the ER can be modeled by JPUmP - pm (Cc/Cn +
(KmY)'), where Pr"' is the maximal pumping rate, Kr the
Michaelis-Menten constant, and n the Hill coefficient. Be-
cause the ER membrane is very permeable to sodium and
potassium ions, it is reasonable to assume that it does not
support a potential difference. Thus the leakage rate of Ca is
simply Jleak = Preak (Cr - C), where Preak is the leakage
permeability coefficient. The IP3R-mediated Ca flux from
the ER to the cytoplasm should also be proportional to the
concentration of channels that are in the open state; thus,
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jchan = pchans (C - Cc, where Pch, is the channel
r r 11

permeability coefficient. Depending on the specific cell
type, Jm may include components that are due to leakage, to
a channel-mediated flux, and to an active transport process
mediated by the Ca pump and the Na/Ca exchanger. The
active flux driven by Ca-TAPase in the cytoplasmic mem-
brane is similar to that in the ER membrane (Gmaj and
Murer, 1988). Other fluxes in the cytoplasmic membrane
are more complicated because of the involvement of the
membrane potential and ionic species other than Ca, a
detailed description of which can be found in Tang and
Stephenson (1995).

Let CM denote the mean Ca concentration in the cell,
which is defined by VrCr + Cc = (1 + Vr)CM. The differ-
ential equations for intracellular Ca dynamics can be written
in the form

dCM Jm

dt 1 +vr

dCc (1
+ Vr)(Pleak + pchanS0)(CM C_) (27)

prmax r
CC+(K) m

For the study of Ca excitability, oscillations, and traveling
waves in many cell types, such as deutosome eggs, hepa-
tocytes, endothelial cells, and kidney cells, Ca exchange
with the extracellular medium is relatively small. Most of
the experiments exploring the intracellular Ca dynamics in
these cell types can be carried out in Ca-free media or with
high extracellular EGTA concentrations, at least for an

initial period of several minutes. In these cells, blocking
PLC or applying thapsigargin completely blocks the Ca.
response to stimulatory hormones (Koster et al., 1993;
Thastrup et al., 1990). These findings suggest that the ex-

change of Ca with the extracellular medium is much smaller
than the Ca flux across the ER membrane; thus this ex-

change is not essential for the short-time Ca dynamics as

long as the change in CM on this time scale is small. For
these cell types we can drop the term Jm in the second
equation of Eq. 27 and treat the contribution of Ca exchange
across the cytoplasmic membrane as a slow change in CM
on the time scale of the fast Ca response. As a result we
assume hereafter that CM either is a fixed constant or is a

parameter whose value can vary as the result of Ca ex-

change with extracellular medium but that it is not a dy-
namical variable.

In dimensionless variables we have the following system
for Ca and channel dynamics:

dT (1 2x + 0( + PO(IJ))( x) + an,

dy x2(1-y) (28)

dT Y +2[X + p1(1 + 1o(Ic)]

Here e = 2 s, a, = (1 + V)Plek s, a2 = (1 +
Vr)Pch * s, a3 = VrP:a,/CM, a4 = Ks/CM, and s is a scale
factor for the time, which we set equal to 1 second. The
parameter values for this reduced form of Othmer-Tang
model are given in Table 1, and the values of the dimen-
sional parameters are given in Table 3.
The treatment of intracellular Ca dynamics in the

De Young-Keizer model is very similar to the foregoing,
except that jch,l = PrChaSl30(Cr .-Ce) This form is based
on the assumption that IP3R is a tetramer composed of four
identical subunits and that the tetramer is in the conducting
state only when three of its subunits are in the activated
state, irrespective of the state of the fourth subunit. An
alternative version of this scheme results from the assump-
tion that the channel is in the conducting state if three of its
subunits are in the activated state and the fourth subunit is
not in the inhibited state. The open probability is then (1 -

si I )s310. It is known experimentally that the subunits in
IP3R interact cooperatively (Watras et al., 1991), but
whether the De Young-Keizer model addresses cooperativ-
ity adequately should be investigated further. The dimen-
sionless equations for the De Young-Keizer model are

dx X3(1_-y)3 a3xn
Et actl a2 (1 + I30(Ic))3(X + -X)- n,

dy (1 + I5133())Y (f34 + 30o(IC)132135)X(1- )

dT 1 + P3(Ic) 132134(1 + (3(YM))
(29)

The values of the dimensionless parameters that appear in
these equations are given in Table 1, and the values of the
dimensional parameters are given in Table 3.

TABLE 3 Values of the dimensional parameters

Parameter B-E DeY-K O-T

CM 1.688 ,LM 1.56 ,uM
Kr 0.1 ,AM 0.5 ,uMpchan 6.0 s-1 20.5 S-
preak 0.11 s 1 0.1 S1
prmax 4.86 (,UM * s) 8.5 (1UM * S)-1
n 2 4
Vr 0.185 0.185

10 Unknown 400 (,UM - s) 12.0 (,UM * s)
11 Unknown 20 (,LM S)- 1 15.0 (,UM 1)-1
12 4puM-' S-1 0.2 (,UM 1S)-1 1.8 (,UM * s)-
13 400 (KM * S)-1
14 0.2 (,UM * s)-1
_o0 Unknown 52 s-' 8.0 s-1
l-1 0.2piMl1 1646.8 s-1 1.65 s-1
1-2 0.8 s-I 0.21 s-1 0.21 s-1
1-3 3.7736x 105s-1
1_4 28.9 s- 1
ir 183 S'
It 25.2s -1
_-t 224 s-1

B-E stands for the Bezprozvanny-Ehrlich model, DeY-K the De Young-
Keizer model, and O-T the Othmer-Tang model.
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For the alternative form of the De Young-Keizer model,
i.e., assuming independent binding of the regulatory factors,
the governing equations are

dx x3(1-y)3
E d-= al(I - x) + a2(1 - x) (1 + O(IC))3(x + 1)3

a3xn
X + a°2 (30)

dy x
d =-y+- (l-y).
The original model by Atri et al. is already in the two-

equation format, but it can also be rederived by use of the
new channel gating equation.

ANALYSIS OF A SIMPLIFIED MODEL

The generic form for the two-equation system derived in the
previous section is

will use the generic parameter values listed in Table 1 for
the following analysis. The choice of parameter values is
based mainly on the estimates in Othmer and Tang (1993),
with the above-mentioned modification and a change of the
Hill coefficient from 4 to 2 for the Ca-ATPase.

Excitability in response to IP3R and Ca stimuli

To study the calcium dynamics in whole tissue preparations,
we have to analyze the system in Eq. 28. Although the
simplified system has only two equations, the complexity in
the nonlinearity precludes an analytic solution. Thus we will
use numerical methods to solve the equation and analyze its
behavior in the phase plane as some parameters are varied.
The null clines of the system Eq. 28 are given by

y1(x) = 1 +
x + 13i(I + LoIC)

a2
(32)

dx
E- =f(x,y,p),

dy
(31)

where E is a positive dimensionless parameter and p is a
vector that represents the remainder of the dimensionless
parameters. If E is small, Eq. 31 has the generic form of a
nondegenerate system in singular perturbation terminology.
The corresponding degenerate system obtained by setting E
= 0 isf(x, y, p) = 0 and the second equation of Eq. 31. The
parameter E reflects the relative time scale of the channel
regulation to that of another process whose time scale is of
order s. This could for instance be the rate of Ca release or
the Ca-ATPase pumping rate. In the case of RyR, E is
typically not small, because channel adaptation occurs on
the scale of seconds, which is the same time scale as for Ca
release (Gyorke and Fill, 1993). However, in the case of
IP3R, E is small compared with other parameters. For ex-
ample, the typical oscillation peroid in hepatocytes is of the
order of 2-4 min, whereas that for the Ca upstroke is of the
order of a few seconds. This clean decoupling of the two
processes strongly suggests that the rates of channel inhi-
bition and recovery are at least 10-fold slower than the other
components of Ca dynamics. As was suggested earlier, E
can be measured experimentally, and in particular, the chan-
nel adaptation and recovery in response to Ca can be inves-
tigated experimentally by the use of photolysis of caged Ca
(lino and Endo, 1992; Gyorke and Fill, 1993).

All the models for Ca dynamics with IP3R predict that the
temporal period of oscillations is in the range of 10-20 s
(Othmer and Tang, 1993; De Young and Keizer, 1992; Atri
et al., 1993), which is much shorter than the periods re-
ported for hepatocytes and endothelial cells (Jacob et al.,
1988; Woods et al., 1986). The source of this discrepancy
lies in the choice of '-2. Here we choose a different value
for '-2 (E in dimensionless form) for IP3R to produce
oscillations with a period in the physiological range. We

VX (X' + a')(I-x)
2

Y2(X) = x2 +:2+ 1(+ I (33)

We write 13o(I,) = LdII here to exhibit the effect of Ic
explicitly, where Lo = 1 1/10 is the dissociation constant for
IP3 binding. The null clines are shown in Fig. 5. The fast
dynamics of the system are controlled by yl(x), which is a
cubic-shaped curve. It has a single minimum and a single
maximum in the domain of interest (0 < x < 0.8, y > 0).
The minimum and maximum points (xMIN, yMIN) and
(xMAX yMAX) which we label MIN and MAX, respectively,
separate the curve into three branches: the left branch (L),
the middle branch (M), and the right branch (R). The curve
for the slow dynamics is a simple monotonic curve that
passes through (0, 0), and limxO>y(x) = 1. The two null
clines have at least one intersection, but they can have at
most three intersections.
The dynamics of Ca, are determined by the pattern of

intersection of the null clines. When the 1P3 level is lower
than 0.42 ,uM, the curve y = y2(x) intersects the curve y =
y,(x) at three points: one in the L branch and two in the M
branch. The first of these is a stable equilibrium point and

1.2

2 1.0

0.8

204

0.2

~0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Dimensionless Ca conc.

FIGURE 5 Null clines for Eq. 28. The intersection of Yi and Y2 at (x*,
y*) defines the equilibrium solution of the system, which is unstable in this
case. The single intersection point x* is between xMI' and XMAX, and the
system has a stable periodic solution.
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FIGURE 6 (a) Null clines for excitable responses, with Ic = 0.3 JIM.
The graph of yl(x) intersects that of y2(x) three times, but only the
intersection with the lowest x value is stable (x*). (b) Superthreshold (solid
curve) and subthreshold (dashed curve) responses in the time domain with
c = 0.3 AM. A Ca flux of dimensionless amplitude 0.06 (subthreshold)
and 0.07 (superthreshold) is applied for a duration of 0.1 min at 0.2 min.
The superthreshold response is composed of the fast Ca upstroke, the
slowly decaying component, the fast transition to a low level of Ca,, and the
slow recovery.

the Ca, is low, which corresponds to the normal resting state
of the cell. The two equilibrium points on the M branch are

unstable (see Fig. 6 a). At the stable steady state of low Cat,
the system responds to perturbations in IP3 or Ca, as an

excitable system. The threshold value for an excitable re-

sponse is determined by the M branch. If a perturbation
carries the system state to the right of the M branch, then the
solution first travels almost horizontally to the R branch, it
follows the R branch until MAX, and then travels almost
horizontally to the L branch. Once in the neighborhood of
the L branch, it travels downward along the L branch until
it returns to the stable equilibrium. In the time domain, this
corresponds a large excursion in the Ca, before it returns to
the low steady state. If the perturbation is subthreshold, the
solution will return to the steady state without the large
excursion; instead it first moves almost horizontally to the L
branch and then travels to the stable equilibrium point along
the L branch. A comparison of the time-dependent Ca
responses to super- and subthreshold stimuli is shown in
Fig. 6 b. The threshold value decreases as the IP3 level
increases.

Ca oscillations and frequency encoding

When the 1P3 level exceeds 0.42 ,tM, the leftmost steady
state lies between xmin and xm'1 for IP3 not too large. The
real parts of the eigenvalues of the linearized system at the

steady-states are positive, and the system is oscillatory. The
null clines and a computed trajectory for the periodic solu-
tion are shown in Fig. 7 a. The periodic solution for the
corresponding degenerate system is composed of four seg-
ments: segment I, a rapid horizontal transition from MIN to
the R branch; segment II, a slow solution evolution on the
R branch to MAX; section HI, another rapid horizontal
transition, this time from MAX to the L branch; and section
IV, a slow traversal of the L branch to the MIN point. One
can see that the computed periodic orbit for the nondegen-
erate system depicted in this figure closely matches the
degenerate orbit.

Figure 7 b and c also shows the time-dependent oscilla-
tory solution using the dimensional variable Cc = CMX and
y = slll. By comparing the phase-plane curves of Fig. 7 a
with the ones in the time domain in Fig. 7 b and c, one can
see that, although the opening of channels produces the fast
increase in Ca concentration, the inactivation of the chan-
nels determines the declining phase of the Ca spike. The
time scale of channel closing is that of a single Ca spike.
The slowest process in our model is the recovery of the
channels from the inactivated state (RIC+C-), which is
substantially longer than the time of a single Ca spike.

Bifurcation analysis shows how oscillatory solutions can
arise in this system as IP3 increases. Figure 8 shows the
bifurcation diagram for this system. The periodic solution
emerges by means of a homoclinic bifurcation at IP3 = 0.42
,tM and disappears at a Hopf point for Ic = 1.42 ,M. One
interesting aspect of calcium dynamics is that IP3 stimuli are
frequency encoded, as was discussed earlier. In the oscilla-
tory range of IP3 concentration, the oscillation frequency
increases with increasing IP3, while the change in the am-
plitude is not significant, as can be seen from Fig. 8.
Time-domain responses that exhibit frequency encoding can
be seen in Fig. 9 b. The reduction of the models to two
equations makes the study of frequency encoding possible,
as shown in Tang and Othmer (1995).

Stable elevated Ca,
As the IP3 level is increased further, MIN is shifted upward
(cf. Fig. 9 a) until the single intersection between yl(x) and
y2(x) is on the R branch and the steady state is stable. For
IC > 2.54 ,uM this is the only stable solution of the system.
A perturbation in IP3 or Ca can displace the system from

FIGURE 7 Closed orbit in the
phase plane and a periodic solution in
the time domain. (a) Null clines for a

periodic solution with I4 = 0.5 and the
corresponding phase-plane projection
of the periodic solution. The periodic
orbit for the corresponding degenerate
solution with e = 0 is very close to
this orbit. (b) Cytoplasmic calcium.
(c) The fraction of channels in the
inhibited state (y = RIC+C-).
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FIGURE 8 Effect of 1P3 on the behavior of the system. (a) The amplitude at steady state (solid and dashed curves) and the maximum amplitude of a
periodic solution (open andfilled circles) of Ca as a function of the 1P3 concentration. Solid curves and circles indicate stable solutions; dashed curves and
open circles indicate unstable solutions. (b) The period in minutes of the periodic solutions in (a). These results were obtained with the software package
AUTO (Doedel, 1986).

this equilibrium only temporarily, and the return to the
steady state is rapid. This equilibrium differs from the stable
equilibrium when 1P3 is small in that the Ca, concentration
is much higher. This aspect is shown in the time domain
in Fig. 9 b, where a simulation of several types of
behavior of this system is shown. For comparison, the
experimental results for endothelial cells under similar
stimulus protocol are shown in Fig. 9 c (Jacob et al.,
1988). This simulation shows how this simple model can
simulate complex Ca dynamics quantitatively as well as
qualitatively.

In the experiment, various concentrations of histamine
were applied to the extracellular medium in the specific
time periods shown in the lower trace in Fig. 9 c. One sees
that there is a slight time delay between the Ca response and
the application of histamine that is not captured in the
simulation. This delay may be caused by signal transduc-
tion from the extracellular histamine increase to the in-
crease in intracellular 1P3 in the neighborhood of IP3R,
which involves both the production of 1P3 in the mem-
brane and its diffusion into the cytoplasm (Fig. 1). These
steps are not included in the mathematical description at
present.

Effect of Ca exchange with the
extracellular medium

The effect of slow Ca exchange with the extracellular me-

dium on the intracellular Ca dynamics can be investigated in
the reduced model through a change in CM, the mean Ca
concentration. This corresponds to a change in CM in the
second equation of Eq. 27 or to a proportional change of the
dimensionless parameters in Eq. 28 that are scaled by CM,
i.e., a3, a4, (31, and (32. Fig. 10 shows the bifurcation
diagram with Ic = 0.3 ,uM and CM in the range 0-5 ,uM.

Suppose that initially CM = 0, i.e., that there is no Ca in
the ER-cytoplasm complex. If CM increases slowly with
time, Ca, increases monotonically for CM < 1.90 ,uM.
When CM is close to 1.90 ,uM, the system is excitable and
responsive to both 1P3 and Ca pulses. The threshold for an

excitable response progressively decreases as CM ap-

proaches 1.90 ,uM from below, and at CM = 1.90 ,uM a

stable Ca oscillation ensues. This oscillation results from
the gradual accumulation of intracellular Ca, not from an

increase in 1P3 concentration. The maximal Ca, amplitude
during an oscillation is 1.5 ,uM, which is significantly
higher than that in Fig. 8 for 'P3-induced oscillations. As Ca
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FIGURE 10 Effect of slow Ca ex-
change with the extracellular medium
on intracellular Ca dynamics. (a) Ca,
level (maximal Ca level for periodic
solutions) as a function of CM, the
mean Ca concentration. Solid curves
(circles) denote stable steady states
(periodic solutions), and dashed
curves (circles) denote unstable
steady states (periodic solutions). IP3
is 0.3 ,uM; (b) The corresponding pe-
riod of the oscillatory solution as a
function of CM.
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continues to enter the cell the oscillation increases in both
amplitude and frequency, which is also different from the
situation for 'P3-induced oscillations (Fig. 8), where Ca1
decreases somewhat with increasing IP3. The maximum Ca,
amplitude is 2.7 ,uM and is attained at CM = 3.61 ,tM.
When CM exceeds this value the cell is overstimulated and
a stable elevated Ca level results. In further contrast to
IP3-induced overstimulation, as CM increases further, Ca.
increases proportionally.

Fig. 10 can also be viewed from another perspective, i.e.,
when a cell placed in a Ca-free medium slowly loses Ca to
the extracellular medium. If the cell is initially overloaded
with Ca (CM> 3.61 ,uM) the total amount of Ca in the ER-
cytoplasm complex will slowly decrease and Ca. may begin
to oscillate at CM = 3.61 ,uM. During each cycle the basal
level of Ca, will decrease, and the oscillation will decrease
in amplitude and frequency until CM drops below the lower
limit of oscillations. Beyond this point CM will decrease
monotonically until the cell has lost all its Ca.

In both Figs. 8 and 10 there is an interval in which a

stable periodic solution coexists with a stable steady state.
In Fig. 8 the interval is for 1P3 E [1.42 ,uM, 2.54 ,uM] with
CM = 1.56 AM, and in Fig. 10 it is for CM E [2.55 ,uM,
3.61 ,uM] with 1P3 = 0.3 ,uM. Theoretically the cell can

remain in either state, depending on the initial condition, but
this has apparently not been seen in experiments. The nu-

merical simulations always lead to oscillatory solutions in
the above regions, which suggests that the steady-state
solutions have small domains of attraction in the phase
plane, whereas the domains of attraction of the periodic
orbits are large.

Summary

We have studied the current models for the kinetics of
IP3-sensitive intracellular Ca channels. The different chan-
nel regulation schemes are shown to be reducible to a single
gating equation that is linear in the gating variable and that
has coefficients that depend on the IP3 level and the Ca,.
The reduced model can reproduce the experimental data
qualitatively and quantitatively. For example, the channel
opening in response to changes in logj1[Ca] at steady state
is a bell-shaped curve. Dynamically, step increases in Ca
can either activate or inhibit the channel, depending on the

Ca levels before and after the increase. The channel also
opens incrementally in response to step increases in 'P3. The
reduction of different models to the same form makes the
comparison among these models much easier. The form of
the gating equations, which have only two or three param-
eters, can be used to identify the parameter values by fitting
experimental data. Experimental tests to distinguish be-
tween the different schemes are provided.

For intracellular Ca dynamics, it is shown that the De
Young-Keizer model and the Othmer-Tang model can be
reduced to a standard form that involves two equations
under the assumption that the total amount of intracellular
Ca is conserved. Using a generic form based on the reduced
Othmer-Tang model, we show that the simplified model
predicts the excitability to pulse Ca and 1P3 stimuli at low
1P3 levels and results in Ca oscillations when the 1P3 con-

centration lies in a certain range. The oscillations show
frequency encoding as the IP3 concentration varies. The
system responds to very high levels of IP3 with damped
oscillations and returns to a sustained elevated Cai level.
A slow exchange of Ca between the cytoplasm and the

extracellular medium can also be incorporated, and thus the
theory is applicable when Jm is small compared with the
fluxes across the ER membrane. It is also applicable where
a small artificial Ca influx or efflux is induced, as in anterior
gonadotrophs when the membrane potential is clamped
(Keizer and De Young, 1993). However, the theory is not
applicable to certain cell types or certain experimental con-

ditions in which there is significant Ca exchange between
extracellular medium and cytoplasm. For example, in some
neurons and in cardiac myocytes an autocatalytic depolar-
ization of the membrane induces a rapid and massive Ca
entry via Ca-specific or nonspecific channels (Tang and
Othmer, 1994).

Comparison with other simplified models

The Atri-Amundson-Clapham-Sneyd model does not have
an equation for Ca dynamics in the ER because these
authors assume that Ca in the ER is constant (Atri et al.,
1993). In the De Young-Keizer model and the Othmer-
Tang model the decrease in the Ca level in the ER is
substantial; hence it cannot be neglected. Depending on the
cell type in question, the Ca level in the ER can be depleted
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by 10-100% as Ca is released during the spikes. Lo and
Thayer (1993) showed that the Ca store is completely de-
pleted with a single intermediate dosage of IP3. Shuttle-
worth (1992) showed that the Ca leakage from the ER
follows a single linear rate when Ic = 0, which implies that
the driving force for Ca release decreases as Ca is released.
When Ic 0, the release through nonspecific leakage
and IP3R-specific release also follow a linear scheme
(Oldershaw et al., 1991). These experimental data are con-
sistent with the terms for Ca release used here, which are
Preak (Cr -C) for nonspecific release and prChafsi0(Cr-
Cc) for IP3R-mediated Ca release.
Another difference between the Atri-Amundson-

Clapham-Sneyd model and the reduction shown here stems
from our assumption that the time scales for the channel
dynamics and the Ca dynamics are sufficiently separated.
We assume, based on evidence cited earlier, that the channel
inhibition is relatively slow compared with that of the other
Ca components, whereas in their model there is no signifi-
cant difference in the time scales. The termination of Ca
release in their model is caused by the inhibition of elevated
Ca, on IP3R, whereas in ours the major contributing factor
is the decrease of Ca in the ER; the effect of Ca, inhibition
of IP3R is secondary (cf. Fig. 7). We have tested the effects
of decreasing the time scale of channel inhibition by in-
creasing E. For instance, if E = 1 in the generic model, the
inhibitory effect of Ca, on IP3R becomes dominant, as is in
the Atri-Amundson-Clapham-Sneyd model. Although ex-
perimental data suggest a decoupling between the time
scales (see above), the relative importance of these two
factors in terminating of Ca release in a typical excitable
response should be investigated further experimentally. It is
possible that in some systems the inhibition of IP3R by Ca,
occurs on the same time scale as for the other Ca compo-
nents, in which case the reduced two-equation system can
no longer be singularly perturbed. However, the phase-
plane analysis employed here can still be applied.
A difference between the reduced Othmer-Tang model

and the De Young-Keizer model is that the reduced equa-
tions for channel kinetics are different because the original
channel schemes are different. Another important difference
is that we are able to obtain frequency encoding in the
reduced Othmer-Tang model, whereas no such property is
reported for the reduced De Young-Keizer model. The
decoupling of the time scales of channel inactivation and
recovery is essential for achieving frequency encoding. In
the reduced De Young-Keizer model, and in the Atri-
Amundson-Clapham-Sneyd model, the time scale of the
channel inactivation is about the same as for the channel
recovery, which limits the amount of frequency modulation
that can be achieved (Atri et al., 1993; De Young and
Keizer, 1992; Li and Rinzel, 1994). In these two models the
relaxation time of the low Ca state (channel recovery) is
about the same as that for a single Ca spike. However, in
cells showing significant frequency encoding, such as hepa-
tocytes and endothelial cells, the time for a Ca spike is much

et al., 1986; Jacob et al., 1988). In Li and Rinzel (1994) and
Atri et al. (1993) the Ca spikes increase in amplitude as the
IP3 level increases, whereas in our model the change in
amplitude is very small (in fact the amplitude decreases
slightly). To date, frequency encoding has been demon-
strated only for the Othmer-Tang model; but based on the
above analysis, it is possible that the reduced De Young-
Keizer model reported here and that in Li and Rinzel (1994)
may show frequency encoding as well for a different set of
parameter values.

Applications

The simplified models permit the application of techniques
such as phase-plane analysis, which leads to a more detailed
understanding of Ca dynamics. Theoretical studies on fre-
quency encoding and on the effect of individual parameters
can be carried out much more readily. The conditions for the
existence and stability of traveling Ca waves, i.e., parameter
domains and initiation thresholds, can be determined in the
reduced model, and the relationship between channel prop-

erties and wave speed can be studied rigorously.
The simple model derived here can be used as a prototype

for simulating more complex Ca dynamics in other systems.
For example, Ca dynamics in the principal cells of the
cortical collecting tubule regulate sodium and potassium
transport across the epithelium. Ca is involved in the feed-
back control of the permeability of apical membrane to
sodium and potassium (Taylor and Windhager, 1979; Wang
et al., 1993). In the toad urinary bladder, Ca is involved in
cell volume regulation (Wong and Chase, 1986). By utiliz-
ing the simplified model for Ca dynamics presented here,
further insight into how Ca, is affected by and affects other
factors in a cell can be gained.

In certain cell types there is evidence for the existence of
both IP3-induced calcium release through IP3R and Ca-
induced Ca release through RyR. For example, rat chromaf-
fin cells clearly show the coexistence of two types of
calcium channels in the ER membrane (Malgaroli et al.,
1990). In mouse pancreatic acinar cells, work by Wakui and
others shows such coexistence as well (Wakui et al., 1989,
1990; Nathanson et al., 1992). Even in hepatocytes, Ca-
induced Ca release through RyR may play a role in propa-

gating a traveling calcium wave (Rooney et al., 1991). In the
deutosome oocyte cells of certain species, both IP3R and the
RyR have been shown to be involved in the propagation of
the fertilization wave (Whitaker and Swann, 1993). Else-
where, we will show that an analogous reduction for the
kinetics of RyR can be carried out. Thus, the mathematical
simplification of the kinetics for IP3R and the RyR will
make it possible to study how these two distinct Ca channel
types interact with each other in a propagating Ca wave.

This research is supported in part by NIH grant DK 31550 (to J. Stephen-
son) and by NIH grant GM 29123 (to H. Othmer).shorter than that of the low Ca, recovery phase (Woods
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TABLE 4 Definitions of symbols

Subscripts
ijk IP3R index with (1) or without (0) ligand; left to right

sites; I, C+, and C-
i, r Compartment, i (cytoplasmic); r (ER)

Dimensional Variable
Cc Ca concentration in cytoplasm or on the cis side of a

bilayer, ,uM
Cr Ca concentration in the ER, ,iM
t Time, s

Dimensionless Variables
T Dimensionless time
x Dimensionless cis Ca concentration (channel kinetics)

or Cai
y Fraction of IP3R in the inhibited state

yi(x) Null clines for the Ca dynamics (1) or channel gating
(2) equation

Yn Gating variable (AACS)
Sijk Fraction of IP3R in the ijk state
pi Probability of IP3R with I (1), C+ (2), and (C2)- (3)

bound (AACS)
TY Time scale for gating variable y
yC, Steady state of y

Fluxes
J. Ca flux across the cytoplasmic membrane, ,uM/s
J)PUMP Ca flux carried by the ER Ca-ATPase, jiM/s
jrchan Ca flux across the ER membrane through IP3R, jiM/s
J leak Ca leakage flux across the ER membrane, jiM/s

Kinetic constants
11 Binding rate of 1(0), C+ (1), C- (2) to IP3R,

(/.xM * s)-t
12 Binding rate of (C2)- to 'P3 (AACS), jM-2 _ S-
1_j Off rate of 1(0), C+ (1), C- (2) from IP3R, s'-
13, 14 Binding rates of 1(3) or C- (4) to IP3R (DeY-K),

(AM * s)-l
1-3, 1_4 Off rate of I (-3) or C (-4) from IP3R (DeY-K),

s-i
Ir Rate of R*IC+ -* RIC+C- transition (B-E), s-1
it, 1_t Rate of RIC+ -> R*IC+ transition or its reverse (B-E,

B), s-'
Lo Dissociation constant for IP3 binding (I_JI10), jiM

Other constants
Tn Time constant for gating variable Yn (AACS), s
CM Reference or mean Ca concentration in cytoplasm-ER

complex, ,uM
Ic 1P3 concentration in the cytoplasm, AiM
Krm Michaelis-Menten constant for ER Ca-ATPase, ,iM

preak ER membrane permeability, 1/s
p3max Maximal active Ca flux, jiM/s
n Hill coefficient for the ER Ca-ATPase, dimensionless
Vr Volume ratio of the ER to the cytoplasm,

dimensionless
Zr Molar fraction of Ca inside ER (B-E), dimensionless

Special points
(xm&, slo) Maximal point of steady-state Ca versus RIC+,

dimensionless
(x*, y*) Intersection point of null clines on the phase plane,

dimensionless
(xMIN, yMIN) Minimal point of the null cline y,(x), dimensionless
(xMAX, yMAX) Maximal point of the null cline yl(x), dimensionless

APPENDIX:
VALUES OF DIMENSIONAL PARAMETERS

The values of the dimensional parameters for the Bezprozvanny-Ehrlich
model (B-E), the Othmer-Tang model (O-T), and the De Young-Keizer

model (DeY-K) are given in Table 3, and their definitions and those of the
Atri-Amundson-Clapham-Sneyd model (AACS) are given in Table 4.
Some values for the parameters are recalculated from their original values
to conform to the symbol usage here. For the justification and estimation
of parameter values in these models, the reader should refer to the original
papers.
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