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SUMMARY

Advances in image acquisition and informatics tech-
nology have led to organism-scale spatiotemporal
atlases of gene expression and protein distributions.
To maximize the utility of this information for the
study of developmental processes, a new generation
of mathematical models is needed for discovery and
hypothesis testing. Here, we develop a data-driven,
geometrically accurate model of early Drosophila
embryonic bone morphogenetic protein (BMP)-
mediated patterning. We tested nine different mech-
anisms for signal transduction with feedback, eight
combinations of geometry and gene expression
prepatterns, and two scale-invariance mechanisms
for their ability to reproduce proper BMP signaling
output in wild-type and mutant embryos. We found
that a model based on positive feedback of a
secreted BMP-binding protein, coupled with the
experimentally measured embryo geometry, pro-
vides the best agreement with population mean
image data. Our results demonstrate that using bio-
images to build and optimize a three-dimensional
model provides significant insights into mechanisms
that guide tissue patterning.

INTRODUCTION

In many systems, spatially patterned cellular differentiation is

regulated by signaling molecules called morphogens, which

initiate spatiotemporal patterns of gene expression in a concen-

tration-dependant manner (Turing, 1952; Wolpert, 1969; Driever

and Nusslein-Volhard, 1988; Reeves et al., 2006). In early

Drosophila embryos, a morphogen composed of a heterodimer

of Decapentaplegic (Dpp) and Screw (Scw), two members of

the bone morphogenetic protein (BMP) family (Figures 1A

and 1B), directs patterning of the dorsal ectoderm (Shimmi

et al., 2005; O’Connor et al., 2006). Unlike classical morphogen

systems that rely on the slow spreading of a molecule from
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a localized source to establish a gradient, BMPs in the early

Drosophila embryo are secreted from a broad region making

up the dorsal-most 40% of the embryo circumference. Subse-

quently, they are dynamically concentrated into a narrow region

centered about the dorsal midline that makes up only 10% of the

embryo circumference (Figures 1A and 1B) (Sutherland et al.,

2003; Wang and Ferguson, 2005; O’Connor et al., 2006).

A number of extracellular regulators contribute to the

dynamics and localization of BMP signaling (Figures 1B and

1C). Laterally secreted Short gastrulation (Sog) and dorsally

secreted Twisted gastrulation (Tsg) diffuse from their regions of

expression and form a heterodimer inhibitor (Sog/Tsg) that binds

to Dpp-Scw, preventing it from binding to receptors. The cell

matrix may mediate the formation of this complex, as it has

recently been shown that collagen can bind both BMPs and

Sog, thereby facilitating their association (Figure 1D) (Wang

et al., 2008). The extracellular binding reactions lead to a gradient

of inhibitor-bound Dpp-Scw that is high laterally and low at the

dorsal midline, and an opposing gradient of free Dpp-Scw that

is high at the dorsal midline. The dorsally secreted metallopro-

tease Tolloid (Tld) processes Sog only when Sog is bound to

BMP ligands, and the degradation of Sog by Tld further

enhances both the gradient of inhibitor-bound Dpp-Scw and of

free Dpp-Scw. Thus, extracellular Dpp-Scw is redistributed by

a combination of binding to inhibitor, processing of this complex,

and diffusion.

Simultaneously, receptors and other surface-localized binding

proteins compete with Sog to bind the available Dpp-Scw. Dpp-

Scw activates signaling by binding to and recruiting the

Drosophila type I receptors, Thickveins (Tkv) and Saxophone

(Sax), into a high-order complex containing two subunits of the

type II receptor Punt (Shimmi et al., 2005). The receptor complex

phosphorylates Mad (pMad), a member of the Smad family of

signal transducers, and phosphorlyated Mad binds to the co-

Smad Medea, forming a complex that then accumulates in the

nucleus, where it regulates gene expression in a concentra-

tion-dependent manner (Schmierer et al., 2008).

Although complex formation and transport favor a net move-

ment of ligand toward the dorsal midline of the embryo, positive

feedback in response to pMad signaling is needed to further

concentrate the surface-localized Dpp-Scw at the dorsal midline

(Wang and Ferguson, 2005). A loss of extracellular BMP
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Figure 1. Introduction and Background

(A) Axis and geometry of a Drosophila blastoderm embryo.

(B) Schematic of the BMP DV patterning network (cross-section view; legend at the bottom of the figure). Note the ‘‘?’’ on the diagram for the positive feedback,

which is still unknown.

(C) Alternative positive-feedback mechanisms for signal-induced regulation of extracellular BMPs. (+rec), positive feedback of receptor levels; (+/�end), positive

and negative regulation of endocytosis; (-koff), feedback inhibition of ligand release from receptor; (+/�tld), positive and negative regulation of Tld processing;

(+cooperativity), positive regulation of type I/II/Dpp-Scw complex formation.

(D) Schematic of ligand-inhibitor complex formation in solution and after attached to collagen.
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regulators or positive feedback impedes the attenuation of pMad

laterally as well as the accumulation of pMad signaling at the

dorsal midline. Although feedback, extracellular transport, and

signal transduction each provide a specific mode of Dpp-Scw

signal regulation, it is the dynamic interaction of these regulatory

mechanisms that patterns the dorsal surface of Drosophila

embryos. Not only does the mechanism work under optimal

laboratory conditions, but dorsal surface patterning appears to

be remarkably resilient to nonideal conditions such as tempera-

ture fluctuations, reductions in the level of regulatory factors

such as Tsg, ectopic gene expression, and other perturbations

(Eldar et al., 2002; Umulis et al., 2006). These issues illustrate

the complexity of the problem and suggest that we can no longer

rely solely on genetic and biochemical data to fully explain this

rather simple patterning problem.

To address a number of unanswered questions about

Dpp-Scw-mediated patterning and to take full advantage of

the available data on Drosophila development, we developed
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a methodology that seamlessly integrates biological information

in the form of prepatterns, geometry, mechanisms, and training

data into an organism-scale model of the blastoderm embryo

that is based on a reaction-diffusion description of patterning.

The mathematical model is simulated by using the widely avail-

able computational frameworks Comsol and Matlab (Figure 2;

see Figure S1 available online), which makes extensive use of

the model and methodology feasible.

We developed an image analysis protocol to obtain model

training and initial condition data and to calculate population

statistics for patterns of pMad signaling in wild-type (wt) and

mutant D. melanogaster. We discovered that both the mean

and variability of pMad signaling along the dorsal-ventral (DV)

axis depends on anterior-posterior (AP) position and the specific

choice of threshold. Using mutations previously considered

robust, we were able to detect differences between mutant

and wild-type pMad signaling patterns, which provided an

information-rich data set for model training and for testing the
5



Figure 2. Workflow for the Development of

a Data-Driven, Organism-Scale Model

Mechanism(s), prepatterns, and geometry are

implemented into a 3D geometric representation

of the Drosophila blastoderm embryo. Each model

simulation gives the distribution of all secreted

proteins and complexes along all axes of the

embryo. The model’s results are compared

against the population mean distributions for

pMad signaling in wt and eight additional mutants

used for the model training. Each mechanism is

optimized by comparing the predictions against

image data, and alternative mechanisms can

then be ranked based on their distance between

the best fit and the actual image data.
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contributions of diverse positive-feedback mechanisms and of

proteins that concentrate BMPs at the cell surface. Unexpect-

edly, we found that geometry also has a large impact on the

predicted patterns of BMP-bound receptors, whereas the

prepatterned expression of receptors and other modulators of

signaling did not greatly affect model-data correspondence.

We found that if the embryo geometry is perturbed slightly in

the model, then including the prepattern information greatly

enhanced the model’s ability to fit the observed pMad patterns,

which suggests that the prepatterns may mitigate the effects of

slightly misshapen embryos. We further identified conditions in

the model that improve the scale invariance of patterning and

tested the model predictions by staining for pMad in different

species of Drosophila. These studies demonstrate that building

a model based on image data and training the three-dimensional

(3D) model against multidimensional expression data provide

insights into the properties of several important developmental

principles, including positive feedback, biological robustness,

and scale invariance.

RESULTS AND DISCUSSION

Reproducibility of pMad Signaling in Late Cycle 14
Embryos
To begin our study, we first developed an image acquisition,

normalization, and analysis strategy to obtain training and

prepattern data for the model. To minimize errors in mounting

and to normalize embryo geometries within a sample, individual

embryo images were numerically rotated and reprojected into
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an orientation with the dorsal side up

(Figures S2 and S3). To normalize inten-

sity measurements, we extended the

method previously used for analyzing

Bicoid intensity distributions (Gregor

et al., 2007b) (Figures S2 and S3). pMad

signaling distributions between embryos

within a population are highly reproduc-

ible, as shown in Figure 3A. After analysis

within a population, we compared pMad

patterns between D. melanogaster wt

and other perturbed populations, includ-

ing embryos with homozygous and

heterozygous mutations in BMP signaling
components, hypomorphic alleles of pathway members, ectopic

expression of pathway genes, and embryos from different

species of Drosophila (mean distributions for wt and three

heterozygous mutant populations are shown in Figure 3B). First,

for wt embryos, we measured the width and variability of pMad

level sets for different choices of the concentration thresholds

(T). Embryo-to-embryo variability in the mean pMad width (m)

(measured in microns [mm]) for a given T value is quantified by

the coefficient of variation (CV = s/m), a dimensionless quantity

that relates the standard deviation s to the mean along the entire

AP axis (Figure 3C; Figures S4–S6). From T z0.15 to T z0.4, the

CV for width is less than �0.2, which corresponds to �±2 nuclei

in the cross-section. The variability of the CV along the AP axis is

minimized at T z0.2–0.25 (Figure 3C) and increases as the

threshold is increased. Thus, the embryo-to-embryo variability

is minimized at relatively low thresholds of z20% of the

maximum observed pMad signaling amplitude, which defines

the range of thresholds in which we expect to have the greatest

ability to detect differences between populations of wt and

mutant embryos.

Variability of pMad Distributions
Whether or not the pMad distributions in dorsal blastoderm cells

are insensitive to changes in gene copy number is unresolved, as

different groups have arrived at different conclusions (Mizutani

et al., 2005; Wang and Ferguson, 2005; Eldar et al., 2002; Shimmi

et al., 2005; Umulis et al., 2008). To quantify the ‘‘robustness’’ or

insensitivity of the patterns, we measured the difference in width

of normalized pMad between wt and perturbed cases at
5, February 16, 2010 ª2010 Elsevier Inc. 3



Figure 3. pMad Variability and Population Statistics

(A) Normalized wt pMad level versus position y/Lx at the cross-section x/Lx = 0.5. Lx is the mean length of the AP axis. Red dots are the normalized concentration,

the solid blue line is the mean pMad in the cross-section, and the error bars correspond to ±s.

(B) Composite pMad distribution for (beginning at top left) D. melanogaster wt (n = 15), scw+/� (n = 12), sog+/� (n = 9), and tsg+/� (n = 18).

(C) Mean coefficient of variation for pMad width averaged along the AP axis for wt as a function of threshold (CV = s/m: standard deviation/width). Error bars

(standard deviation of CV) provide a measure of CV variability along the AP axis.

(D) Mean pMad distribution along a cross-section at x/Lx = 0.5.

(E and F) Mean width of pMad varies along the AP axis. Thin lines represent the average width for the respective embryos (see legend in the upper-left portion of

the figure). Colored data points are superimposed over the lines for the mean width in regions at which the null hypothesis (mean widths between the mutant and

wt are equal) is rejected with a = 0.05. Threshold values: (E) T = 0.2 and (F) T = 0.4.
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threshold positions up to 40% of the maximum normalized wt

level. Prior analysis that compared the mean width of pMad

signal intensity at different cross-sections chosen along the AP

axes did not take into account embryo-to-embryo variability of

the population (Mizutani et al., 2005; Wang and Ferguson,

2005; Eldar et al., 2002; Shimmi et al., 2005). Furthermore, earlier

studies did not consider the potential differences in pattern vari-

ability between different positions along the AP axis. At 50%

embryo length (x/Lx = 0.5), the relative levels of mean pMad

signaling vary greatly in amplitude near the DV midline (y/Lx = 0),

but it is not clear if there are measurable differences between the

width of the pMad profile for different level sets between T = 0.2

and 0.4 (Figure 3D). Furthermore, Figure 3C shows that the vari-

ability of the width in pMad varies along the AP axis and depends

on the specific T-level used for the comparison of the patterns.
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Given that earlier approaches to investigating the question of

pattern robustness were based on one or two cross-sections

at a single threshold level where there can be substantial vari-

ability, it is easy to see that different conclusions could be drawn

from equivalent data sets, thus leading to debate in regards to

the robustness of patterning.

Before an appropriate measure of robustness for pMad

signaling patterns between different genotypes can be devel-

oped, one must first consider the natural variability that exists

within each population. As a minimal criterion, we propose that

if one cannot reject the null hypothesis in a Student’s t test for

a comparison of widths at a threshold level between two sample

populations, then the patterning mechanism is by default robust.

However, measuring a difference in the width of pMad does not

preclude robustness, because a definition of robustness must
5
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follow, not precede, the measurement of a statistically significant

difference between populations.

To compare pMad distributions between different populations

of embryos that each have a deficiency in the level of at least one

BMP regulator (Figure 3D), we used the Student’s t test of signif-

icance on the width of pMad level sets for specific threshold

concentrations of 20% and 40% of the maximum scaled

concentration (Figures 3D–3F; Figure S4). With an a value of

0.05 as the significance criterion, we found large segments along

the AP axis where the null hypothesis (equal means) was

rejected. This suggests that there are statistically significant,

measurable differences in the width of pMad staining for specific

threshold levels, particularly for the sog and scw heterozygous

mutants. Surprisingly, the ability to reject the null hypothesis

depends strongly on the specific threshold of pMad. For low

threshold values (T = 0.2), the width of pMad in sog+/� embryos

is z2–4 nuclei (cells) wider than wt, but for higher threshold

values (T = 0.4), the width of pMad is virtually indistinguishable

from wt for the majority of the AP length (compare Figure 3E

and Figure 3F, sog+/� line). In D. melanogaster, heterozygous

mutants are viable under standard laboratory nutrient and

temperature conditions of 18�C–25�C, suggesting that the

measurable changes in pMad signaling do not significantly

disrupt development. In the context of dorsal surface patterning

by BMPs, the image analysis data demonstrate that there

are measurable differences between the pMad distributions of

wt and heterozygous mutant embryos, which provide related,

but unique, data sets that can be used for model testing and

optimization.

After the normalization of pMad between populations of wt

and mutant embryos, we extended the methodology to quantify

distributions of gene expression of upstream components

with the principal goal of incorporating quantitative prepattern

information directly into a mathematical model of BMP regula-

tion. Previous work has demonstrated approximate boundaries

of gene expression for dpp, tsg, sog, tld, and tkv based on

alkaline phosphatase staining, but a recent report on the bcd

mRNA distribution demonstrated that detecting mRNA expres-

sion by alkaline phosphatase is much less quantitative than

fluorescent in situ hybridization (FISH) (Spirov et al., 2009). Quan-

titative gene expression patterns for tkv (Fowlkes et al., 2008),

sog, and tld were obtained, but we were unable to quantify

the expression of tsg and dpp by FISH, and boundaries

were approximated from alkaline phospatase-stained images

(Figure 4A).

Comparison of BMP-Mediated Feedback Mechanisms
There are three general issues that can be addressed by using

a 3D model that cannot be addressed by 1D models. The molec-

ular mechanisms of BMP patterning have been inferred, in part,

from the pMad distribution in embryos in which DV patterning

genes are ectopically expressed along the AP axis, either by

using the Gal4-UAS system or by injection of mRNA. Although

pMad dynamics suggest a role for positive feedback, additional

evidence for positive feedback is based on nonuniform AP distri-

butions of pMad, pMad signaling losses, and the distribution of

surface-bound Dpp in embryos injected with activated tkv

mRNA on the dorsal surface (Wang and Ferguson, 2005).

Thus, any model that postulates the molecular nature of the
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positive feedback must be able to reproduce the observed AP

pMad signaling profile and the pattern of surface-bound Dpp

(Wang and Ferguson, 2005). Second, earlier models were devel-

oped and tested against 1D data, which greatly reduced the

information density used for model optimization and hypothesis

testing. Building a mathematical model based on quantitative

biological images and training the model against multidimen-

sional image data introduces additional constraints without

increasing the number of unknowns. This should increase our

ability to compare alternative, plausible mechanisms that could

provide new insight into the regulation of BMP signaling. Finally,

by using a 3D model, one can determine the sensitivity of pMad

signaling and/or other patterns of activity to perturbations in

geometry, size, and gene expression prepatterns.

To measure the relative contributions of (1) embryo geometry,

(2) upstream gene expression, and (3) the specific choice of

positive-feedback mechanism, we developed several different

versions of the embryonic patterning model. To measure the

role of geometry in patterning, we constructed two different

model geometries of the embryo: (1) an embryo in the shape of

a symmetrical prolate ellipsoid; and (2) a reconstruction of an

experimentally determined nonsymmetric embryo derived from

the VirtualEmbryo (Fowlkes et al., 2008). To avoid excessive

computational time, we separated the analysis of positive feed-

back from the analysis of gene expression and embryo shape.

First, we investigated alternative positive-feedback mechanisms

by using only the realistic embryo shape with constant tkv and

tld, and after a positive-feedback mechanism was selected,

we used it for all further studies to determine the dependence

of the model results on embryo shape and upstream gene

expression patterns. For each different geometry and gene

expression scenario, we allowed the parameters for the

‘‘winning’’ positive-feedback mechanism to be reoptimized to

remove any bias toward a specific geometry and/or gene

expression pattern.

To investigate the role of feedback, we developed nine

versions of the model that differed in the specific molecular

mechanism of feedback (Figure 1C). (Equations and parameters

are provided in the Supplemental Experimental Procedures.) The

models for the test were selected based upon the idea of ‘‘mech-

anism’’ conservation. Whereas the core signal transduction

pathway for BMP signaling is widely conserved, the mechanisms

of extracellular regulation vary greatly depending on context,

and many secreted molecules such as Crossveinless-2 (Cv-2)

and Sax play diverse roles in different environments (Bangi and

Wharton, 2006; Serpe et al., 2008). Thus, whereas Drosophila

DV patterning does not rely on HSPGs, Sizzled-like molecules,

or ADMP, other molecules like Cv-2, Viking, and Sax may play

novel mechanistic roles. The feedback mechanisms we selected

for the screen are functionally equivalent to those involved in

other BMP signaling contexts (Ambrosio et al., 2008; Kelley

et al., 2009; Fujise et al., 2003; Wang and Ferguson, 2005; Mur-

aoka et al., 2006). The nine models tested were (1) no feedback,

(2) positive feedback of receptor levels, (3) inhibited endocytosis,

(4) enhanced endocytosis, (5) inhibited Tld processing, (6)

enhanced Tld processing, (7) positive feedback of a surface-

bound BMP-binding protein (SBP), (8) decreased release of

ligand from ligand-receptor complexes, and (9) enhanced forma-

tion of type I-type II-Dpp-Scw complexes (Figure 1C).
1835
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Figure 4. Mechanism Comparison

(A) Prepattern distributions as they appear in the 3D model. The Tld distribution and Sog secretion distribution were determined by fluorescent in situ hybridization

of tld and sog mRNA (method described in [Lecuyer et al., 2007]). The Bicoid distribution was determined by solving a simple reaction-diffusion equation in the

periphery of the embryo (Umulis et al., 2008).

(B and C) Box-and-whisker plots of minimum of CV(rmsd) (rmsd/m) found in the full 3D model for different feedback mechanisms. 50% of all solutions fall within the

boxed areas, whereas the whiskers encompass all values within�2.7 standard deviations of the mean. (B) Contributions of Tkv and Tld nonuniform distributions;

(C) embryo shape. The upper and lower limits of the box represent the upper and lower quartile, respectively, and the red line is the median CV(rmsd) value for the

series of embryos tested. In (B), the cases compared are: no positive feedback, positive feedback of receptors, negative and positive feedback on endocytosis

rates, positive and negative feedback of Tld processing, positive feedback of a BMP-binding nonreceptor, feedback inhibition of ligand release from receptors,

and enhanced formation of ligand-type I/II receptor complexes (Wang and Ferguson, 2005; Umulis et al., 2006). In (B), all models were solved with uniform levels

of Tkv and Tld. (C) Case 1: uniform Tkv and Tld, Case 2: uniform Tld, nonuniform Tkv, Case 3: uniform Tkv, nonuniform Tld, and Case 4: nonuniform Tld, nonuni-

form Tkv for the real embryo geometry (first four) and ellipse approximation of embryo geometry.

(D) Typical residual result for the difference between the model result and the mean pMad distribution.

(E) BMP-bound receptor levels begin broad and low and contract in time to produce the nonuniform distribution of occupied receptors.

(F) BR levels at x/Lx = 0.5.
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The ‘‘core’’ reaction-transport equations, which contain no

feedback, for dorsal surface patterning are:

ligand :
vB

vt
= DBV2B + fBðxÞ � k3I$B + k�3IB + lTld$IB

� k5B$R + k�5BR; (1)

Sog :
vS

vt
= DSV2S + fSðxÞ � k2S$T + k�2I; (2)
DEVCEL 183
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Tsg :
vT

vt
= DT V2T + fTðxÞ � k2S$T + k�2I + lTld$IB� dTT ; (3)
Sog=Tsg :
vI

vt
= DIV

2I + k2S$T � k�2I� k3I$B + k�3IB; (4)

Sog=Tsg=BMP :
vIB

vt
= DIBV2IB + k3I$B� k�3IB� lTld$IB; (5)
5
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Receptors :
vBR

dt
= k5B$R� k�5BR� dEBR; (6)
Rtot = R + BR: (7)

Equations 1–7 make up the ‘‘no-feedback’’ model for BMP

patterning, and specific equations for each positive-feedback

mechanism are provided in Section 3 of the Supplemental Infor-

mation. Here, x is the position in Cartesian coordinates; Di is the

diffusion coefficient for species i; kj and k�j are the forward and

reverse kinetic rate constants, respectively, for reaction j; de is

the endocytosis rate; and 4ij(x) is the production rate as a func-

tion of position for species i. In addition to Equations 1–7, we

specify the initial and boundary conditions as determined from

image analysis and embryo geometry. The model was solved

by using the finite element method.

Each model was trained by optimizing the spatial distribution

of BMP-bound receptors (BR) predicted by the model against

the population mean pMad distribution in wt embryos. To

measure the best model fit to the experimental data, we calcu-

lated the root-mean-square deviation (rmsd) version of the

coefficient of variation (CV [rmsd] = rmsd/m) (Fomekong-Nanfack

et al., 2007). The rmsd is a measure of the distance between the

normalized model results for the BMP receptor (BR) distribution

and the corresponding pMad distribution. Here, m is the average

normalized concentration for each image. To remove nonem-

bryo regions from the calculation of CV/rmsd, each image was

masked by the x-y orthogonal projection of the mean embryo

shape. Typical model results, residuals for the difference

between the orthogonal projection of the model against the

mean pMad levels, and model dynamics are shown in Figures

4B–4F.

After a base case for each feedback mechanism was deter-

mined by optimizing the positive-feedback module against wt

pMad data, each model was optimized against eight additional

mutant data sets by varying a single parameter that corresponds

to the respective experimental perturbation. For instance, after

a parent parameter set was found for the model that incorpo-

rates positive feedback of receptors, the model was then

optimized against bcd > dpp embryos by changing a single

parameter that corresponds to the strength of the bicoid

driver and expression of the BMP ligand from the anterior end

of the embryo. The mutant data sets used for training correspond

to the following genotypes: scw+/�, sog+/�, tsg+/�, bcd > dpp,

bcd > 2Xdpp, bcd > sog, bcd > dpp,sog, and tsg-; bcd >

dpp,scw. To compare alternate feedback mechanisms, we

used two measures: (1) comparison of median and upper/lower

quartiles for rmsd/m values (Figure 4B); and (2) comparison of

the mean using a t test of significance with a = 0.05. The box

plots in Figure 4B suggest that the positive-feedback modules

that (1) inhibit endocytosis, (2) increase the Tld processing

rate, (3) produce an SBP, (4) slow the release of ligand from

receptors, and (5) enhance the formation of ligand-active type

I/II receptor complexes have a smaller median CV(rmsd) value

than the model with no feedback. However, only the SBP model

has a statistically lower mean (p = 0.044) when compared to the

model with no feedback. If the significance criterion is relaxed

slightly to a = 0.1, receptor cooperativity (p = 0.082) emerges

as a good candidate mechanism, whereas the next best feed-
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back model has a p value of 0.28. A statistically significant

difference means that, on average for a given criterion (e.g.,

a = 0.05), but not for all the training sets, the model with positive

feedback of an SBP produced lower rmsd/m values when

comparing the model and mean population data for each geno-

type. In some positive-feedback cases (e.g., +rec), the best

model fit for a number of the mutant cases was worse than the

fit achieved with no feedback, because each mutant case is

constrained by the parent set of parameters determined for wt

embryos.

The SBP positive-feedback model achieves the best overall

fit by increasing the binding site density dynamically in response

to prior pMad signaling. Here, positive feedback produces a

nonsignaling complex that is endocytosed. The increase in

binding site density over time dynamically shortens the length

scale for BMP transport by increasing the probability of binding

to a surface-localized molecule and being endocytosed.

Contributions of Geometry and Prepatterns to Predicted
Distributions of BMP-Receptor Complexes
To determine the relative contribution of upstream gene expres-

sion and embryo geometry on pMad signaling, we extended

the SBP positive-feedback model to include the embryonic

prepattern for the relative gene expression of the secreted

factors Sog, Tld, and Tkv (Figure 4A) (Fowlkes et al., 2008). For

each measured mRNA distribution, we tested a number of

different scenarios to calculate the benefit of including expres-

sion pattern data as opposed to approximating the distributions

by a constant. The expression patterns of dpp and tsg were

approximated from alkaline phosphatase images available in

the literature and online (Berkeley Drosophila Genome Project)

(Mason and Marsh, 1998; Shimmi et al., 2005). To incorporate

the imaging data directly into the model, each mean expression

pattern is fit to a 2D Fourier sine series and reprojected onto the

3D embryo geometry (Figure 4A; Figure S3). Boundaries from

alkaline phosphatase images were approximated by measuring

the extents of gene expression for a single embryo.

The sensitivity of the model to the geometrical approximation

and upstream gene expression is shown in Figure 4C. For each

test, we used the sog mRNA distribution as determined by image

analysis, and we calculated four different cases for both the real

geometry and the ellipsoidal model. Case 1 is uniform Tld and

uniform receptors; Case 2 is uniform Tld, nonuniform receptors;

Case 3 is nonuniform Tld, uniform receptors; and Case 4 is

nonuniform Tld, nonuniform receptors. Surprisingly, the addi-

tional biological data did not lead to a substantial reduction in

the CV(rmsd) values, but, in the ellipsoidal model, the addition

of the nonuniform distributions of Tkv and Tld reduced the

CV(rmsd) values by z25%. When both nonuniform Tld and

Tkv distributions are used in Case 4 of the ellipsoidal model,

the CV(rmsd) is nearly equivalent to that in Case 4 in the model

with the real embryo geometry. These data suggest that the

nonuniform distributions may provide a more reproducible

pMad pattern and buffer the system against individual variability

in embryo geometry. Additionally, the model not only captures

the nonuniform AP distribution of pMad, but also captures the

sharpening and contraction of BR that correspond well with

the observed pMad dynamics (Figures 4E and 4F) (Umulis

et al., 2006).
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Figure 5. Role for Type IV Collagen in Regulating the Kinetics of

BMP-Mediated Patterning of the Dorsal Surface

(A) Decreasing the diffusion coefficients of Sog and Dpp-Scw by 10%–20%

decreases the rmsd/m, but large reductions in the diffusion coefficients lead

to progressively higher rmsd/m values. Inset: model results for the model

that includes collagen-mediated formation of Sog/Dpp-Scw complexes.

Kinetics are kept constant in (A), and diffusion parameters are kept constant

in (B). See the Supplemental Information for parameter values.

(B) rmsd/m versus the forward binding rate for Dpp-Scw + Sog/Tsg in the

original model given by Equations 1–7 ($) or Dpp-Scw + Sog in the modified

model (+) (Equations 85–91 in the Supplemental Information). The vertical

green, shaded region corresponds to the measured dissociation constant

for Chordin + BMP-2. The blue, shaded region depicts the diffusion-limited

regime for dimerization in solution, and the red, shaded region gives an

approximate range for acceptable binding parameters.
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Potential Roles of Type IV Collagen in BMP-Mediated
Dorsal Surface Patterning
Although feedback of a ‘‘nonreceptor’’ mechanism is a prediction

of the modeling analysis, it has recently been shown that ubiqui-

tous type IV collagen binds Dpp-Scw and may act as an

exchange factor that partially regulates ligand-receptor complex

formation (Figure 1D) (Wang et al., 2008). Thus, an equivalent

positive-feedback mechanism to the SBP model could locally

modify the binding affinity between Dpp-Scw and collagen,

thereby increasing the binding site density. It has also been sug-

gested that type IV collagen regulates the assembly of the Sog/

Dpp-Scw complex, but it is not clear how this impacts the model

of BMP patterning (Wang et al., 2008). Type IV collagen is ubiq-

uitously expressed in the blastoderm embryo and binds both

Dpp-Scw and Sog. Because the role of secreted binding

proteins in the regulation of BMP-receptor interactions has

been analyzed elsewhere (Serpe et al., 2008), we focus on

mechanisms of collagen-mediated formation of Sog/Dpp-Scw

complexes and transport. We developed a modified version of

Equations 1–7 to account for the different order of complex

formation suggested by Wang et al. (2008). Rather than Sog

binding to the cofactor Tsg to form the complex Sog/Tsg, we

assumed that Sog and Dpp-Scw bind to collagen, and then

bind to each other while attached to collagen. In this scenario,

the Sog/Dpp-Scw complex remains bound to the collagen

matrix until Tsg binds to Sog/Dpp-Scw to form Sog/Tsg/Dpp-

Scw, which is then released from the collagen matrix and there-

after does not rebind. (Equations are given in Supplemental

Experimental Procedures.) To keep the model as simple as

possible, we made the following assumptions: (1) the binding

and release of Dpp-Scw and Sog to collagen is rapid relative

to other processes such as production and diffusion and can

be treated as having equilibrated (Umulis, 2009); (2) the total

amount of collagen does not change in time; and (3) the

binding of Sog and Dpp-Scw to collagen is weak. (Biacore

binding assays in Wang et al. (2008) support this assumption:

for Dpp + Viking, binding KD = 746 nM.) Other balances between

the rates of transport to and reaction on an immobile surface are

analyzed elsewhere (Othmer, 1976).

To investigate the impact of reduced diffusion rates, we coor-

dinately lowered the diffusion of both Sog and Dpp-Scw and

compared the model predictions to the mean distribution of

pMad for wt embryos. A decrease in the diffusivity of Sog and

Dpp-Scw first decreases the rmsd/m value to a minimum and

then increases it again as the effective diffusivity is decreased

further (Figure 5A). To investigate whether changing the order

of Sog/Tsg/Dpp-Scw complex formation affects the model fit

to the data, we measured the rmsd/m values for two models

that differ in the order of ligand-inhibitor complex formation.

We observed a moderate increase in the rmsd/m value in the

model in which Sog binds to Dpp-Scw before binding to Tsg,

but both models require the rapid formation of the ligand-inhib-

itor complex (Figure 5B). Earlier 1D models also require the rapid

formation of the complex, tight binding, or both and have disso-

ciation constants of 0 nM (irreversible binding) (Eldar et al., 2002),

0.01 nM (binding between Sog/Tsg and ligand) (Mizutani et al.,

2005), and 0.03 nM (binding between Sog/Tsg and ligand) (Umu-

lis et al., 2006). Independent of the order of complex formation,

when a lower kinetic constant for binding between Sog/Tsg
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and Dpp-Scw (or for binding between Sog and Dpp-Scw) is

used in the 3D model, the distribution of BR does not agree

well with pMad distributions in wt embryos (Figure 5B).

The reported kinetics from Biacore analysis for binding

between the Sog homolog Chordin (perfused) and the Dpp

homolog BMP-2 (immobilized) gives koff = 3.4 $ 10�3 s,

kon = 0.28 $ 10�3 nM�1 s, and a dissociation constant of

KD = koff/kon z 12 nM (Rentzsch et al., 2006). As shown in
5
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Figure 5B, if the measured forward rate of kon = 0.28 $ 10�3 nM�1 s�1

is used in the model, results do not correspond well with

observed pMad distributions (Figure 5B).

Many estimates for effective kinetic rates have been devel-

oped for ligand-receptor systems by considering the contribu-

tions of diffusion-limited transport for molecules to come into

contact with each other and the reaction rate of complex forma-

tion once the molecules meet (Lauffenburger and Linderman,

1993). There are similar estimates for processes on membranes,

where the diffusion coefficients are usually three or more

orders of magnitude less (Lauffenburger and Linderman, 1993;

Kholodenko et al., 2000). The measured forward rate constant

for Chordin binding to BMP-2 (kon = 0.28 $ 10�3 nM�1 s�1)

depends on two factors: the diffusion/transport-limited rate

constant (kdiff) and the intrinsic reaction rate constant (kr), as

shown by Equation 8:

1

kon

=
1

kdiff

+
1

kr

: (8)

The diffusional contribution, kdiff, can be approximated by

4pDs, where D is the sum of the diffusion coefficients of

the components (zO[10]ms�1) and s z 5–10 nm (5 is used) is

the encounter radius (Lauffenburger and Linderman, 1993).

This leads to the estimate kdiff z 0.76 nM�1 s. For BMP-2 +

Chordin binding, the measured effective rate constant is

kon = 0.28 $ 10�3 nM�1 s�1 (Rentzsch et al., 2006), and using

kdiff and kon in Equation 8 to solve for kr gives kr z
kon = 0.28 $ 10�3 nM�1 s. This means that, in solution, the binding

between Chordin and BMP-2 is reaction limited, and only

a small fraction of collisions lead to complex formation.

However, as shown in Figure 5B, the model requires forward

binding rates that approach the diffusion limit, and not the

reaction limit, for binding reactions in solution. If the model

requires much tighter and faster binding than the in vitro-deter-

mined kinetics for Chordin + BMP-2, how can the model predic-

tions be reconciled with the binding data? Clearly, other factors

must be involved, but identifying them is a complex issue that

requires a detailed model of all the processes involved, and, to

date, this has not been done. Here, we simply suggest how

a protein scaffold might influence the formation of multiprotein

complexes, and we suggest a scenario in which the rate of

formation of Sog/Dpp-Scw may be enhanced by the presence

of collagen.

Three basic issues related to transport and reaction kinetics

in the presence of collagen can be summarized as follows:

(1) How important are crowding effects in solution, on scaf-

folds, and on membranes? In particular, how does one

correctly describe the transport of molecules along a scaf-

fold or membrane; Is Fick’s law appropriate, or does

molecular crowding and volume exclusion (Grasberger

et al., 1986) require a more detailed constitutive relation?

A recent prediction concerning crowding is that, for a fixed

number of reacting particles, there is an optimal density of

obstacles in solution that minimizes the time needed for

a random walker to find a target (Schmidt et al., 2009). If

the density is too low, the particles cannot find each other,

whereas if it is too high, diffusion limits impede the rate of

formation.
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(2) If localized collagen leads to local increases in the

concentration of both Sog and Dpp-Scw, can this lead

to a sufficient increase in the rate of complex formation

on collagen?

(3) How do the free-energy changes of bimolecular interac-

tions change on a surface, as compared with solution?

Can one predict with sufficient accuracy the relationship

between the kinetic constants for reactions on the surface

knowing kinetic constants measured in well-mixed solu-

tions? This involves steric factors, such as better align-

ment on the surface, that will usually change from solution

to surface, as well as differences in the internal energy of

the molecules in the two environments.

While crowding effects, free-energy changes, and local

increases in concentration can affect dimerization and complex

formation once attached to collagen, little data are available

regarding the first and third factors, and we focus solely on the

second: how collagen may increase the formation rates by

concentrating Sog and Dpp-Scw.

Once bound to collagen, the diffusion of Sog and Dpp-Scw

molecules would be greatly reduced, and the rate of the forma-

tion of Sog/Dpp-Scw complexes may well be transport limited.

To determine how collagen modifies the rate of the formation

of complexes, we investigated two possibilities: (1) collagen is

tightly localized to the inner membrane of the PV space, and

(2) collagen extends a distance, h, into the PV space, which

has overall height Lz (Section 4 of the Supplemental Information).

If collagen is localized tightly near the surface of the cells that line

the PV space, we can approximate the collagen matrix as a thin

sheet (2D) and use the diffusion limit k2D z 2pD/ln(b/s), where

b is one-half the mean distance between molecule on the

surface, D is the diffusion coefficient for molecules attached to

collagen on the surface, and s is the encounter radius (Lauffen-

burger and Linderman, 1993). (For the derivation of the equations

relating to collagen-mediated complex formation, see Section 4

of the Supplemental Information.) A typical value for the

diffusion-limited binding reactions in 2D is k+ z 3 * 10�1 m2 s�1

(Lauffenburger and Linderman, 1993).

In the absence of Tsg, the change in the number of Sog/

Dpp-Scw complexes (NSBtot) in time is the sum of the rates

of binding and release of Sog (S) + Dpp-Scw (B) in solution

and the rates of binding and release of collagen-bound Sog

(SCn) and bound Dpp-Scw (BCn), where Cn is collagen. For

simplicity, we only discuss the result for a 2D collagen matrix

layer of area A at the base of the PV space (volume = ALz), and

we assume that the concentration is spatially uniform; the

governing equation is:

vNSBtot

vt
= A$LzðkonB$S� koffSB Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

formation solution

A
�
k+ BCn $SCn � k�BCnSCn

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

formation collagen

:

(9)

The areal concentrations (with units of [mol./area]) of collagen-

bound BMP (BCn) and collagen-bound Sog (SCn) depend on the

total density, CnT, of collagen present and the binding kinetics

between Collagen + Sog and Collagen + Dpp-Scw. If the disso-

ciation constant for Collagen + Sog is KS and for Collagen + Dpp-

Scw is KB, and the surface binding reactions are fast relative to
1835
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other processes, we can determine an effective formation rate

for the 2D reactions. Dividing Equation 9 by the volume (LzA),

defining CnT = CnT/Lz and BCnSCn = BCnSCn/Lz as the volu-

metric concentrations by averaging the surface densities over

the local volume, and simplifying gives:

vSBtot

vt
= konB$S� koffSB + ðk+ LzÞU B$S� k�BCnSCn: (10)

Here, k + Lz is a second-order rate constant for the surface

reaction, with units ([mol./L3time]�1), and the ratio

UhC2
nT=ðKBKSÞ is dimensionless. For a relatively slow 2D diffu-

sion-limited surface reaction, k+ z3 3 10�1m2 s�1 (Lauffenburger

and Linderman, 1993). If the collagen binding site density is of

order 30/m2, if KB and KS are of order 100 nM, and Lz is taken

as the height of the PV space (0.5 mm), then U is on the order

of 1, and this leads to the estimate k + Lz z 0.1 nM�1 s�1. The

collagen-mediated rate of k + Lz z 0.1 nM�1 s�1 is in the range

needed for proper pattern formation in the model (Figure 5B).

This rate is z3203 greater than the binding between free Sog

and Dpp-Scw in solution, but of course it is predicated on the

estimates used. If both binding constants are 1 mM (recall KB

for Dpp + Viking is z746 nM), the estimated rate is only 3.2 times

that in solution. The density of binding sites may be much higher

as well, and U could still be in the range necessary to provide

a substantial boost in the kinetics of Dpp-Scw + Sog complex

formation. If k� z koff and (k + LzU)/kon >> 1, then the effective

dissociation constant for the total concentration of complexes

(SBtot) is KD z koff/(k + LzU) z 0.03 nM, which is exactly in the

range necessary for peak formation by the shuttling mechanism

with freely diffusible Sog and Dpp-Scw. Similar relationships can

also be derived by assuming two different volume fractions in the

PV space; however, in those cases as well, the conclusions are

contingent on estimates of unknown rates. If the above-

described estimates hold, the increase in the apparent kinetic

rate constant in going from solution to the collagen matrix can

be very large and far exceeds the potential reduction in kinetic

constants by slowing the diffusion of binding partners once

attached to collagen.

However, one problem remains: the Sog/Dpp-Scw complex

is still attached to the collagen matrix, which would hinder

transport and potentially the reaction with other regulators.

A possible resolution of this problem was also presented

recently in the context of Drosophila (Wang et al., 2008). Specif-

ically, the results indicate that the cofactor Tsg facilitates

the release of the Sog/Dpp-Scw complex from the type IV

collagen during Drosophila embryonic patterning (Wang et al.,

2008). After release, the Sog/Tsg/Dpp-Scw complex could

then participate in other processes such as Tld-mediated

cleavage of Sog, which would release the Dpp-Scw ligand for

signaling. If Tsg facilitates the release relatively rapidly, the

results presented in Wang et al. (2008) imply an interesting

caveat that should be considered when thinking about mecha-

nisms of BMP regulation. The effective amount of Sog/Dpp-Scw

in solution (the mobile phase) is controlled by processes on the

surface that occur very rapidly and favor the formation of the

complex. The limiting step for the formation of the complex

would be binding to the type IV collagen or other binding site

(perhaps Cv-2).
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Model Results for Ectopic Gene Expression of BMP
Regulators
With the full 3D model, we can calculate the BR distributions for

various Gal4-UAS experiments, determine the relative strength

of the driver-responder combinations, and make predictions to

further elucidate BMP regulation. We calculated the BR distribu-

tion for over 15 Bicoid-Gal4-UAS experiments for which pMad

distributions were available, and although the model captures

many aspects of the experimental images, it does not produce

qualitatively similar results for every combination (Figures 6A–

6V and 6A0–6V0).

In particular, the model captures the expected distributions in

a number of ectopic gene expression experiments, including the

rescue of tsg-;bcd > tsg, the residual pMad signaling in bcd >

tld,dpp,sog and bcd > sog,dpp embryos. Intriguingly, the model

results do not correspond well with the pMad distributions in

Figures 6D, 6E, and 6R. In each of these cases, the predicted

BR levels at the anterior end are higher than the observed

pMad distribution. All three examples correspond with increased

expression of BMP ligands near the anterior end of the embryo. It

is remarkable that pMad signaling is so low in a region in which

there should be a large amount of BMP ligands. In Figure 6R,

the model predicts high levels of BR near the dorsal midline,

whereas the pMad distribution ‘‘splits’’ into two lateral stripes.

(Additional modeling results are given in Figure S5.) The signaling

gaps observed in Figures 6B, 6D, 6E, and 6R are reminiscent of

the pMad signaling gaps observed in embryos with ectopic addi-

tion of activated tkvact mRNA (Wang and Ferguson, 2005)

(Figures 6S and 6S0). To determine if the model could capture

the signaling gap observed in the tkvact mRNA experiments,

we simulated the ectopic addition of a fixed amount of mRNA

at the anterior end and measured two quantities: the expected

level of pMad signaling, which is the sum of Tkvact and BR,

and the total distribution of surface-associated BMP. Remark-

ably, the model captures the observed features in both the

expected pMad distribution and the level of surface-localized

BMP (Figures 6S and 6S0), including the signaling shadow

between the Tkvact pool in the posterior and BR in the anterior

(Figure 6S) and the anterior-facing wavefront of surface-local-

ized BMP (Figure 6S0) (Figure S5). According to the model, the

additional binding of Dpp-Scw to receptors provides a sink

that dynamically lowers the range of Dpp-Scw. The limited distri-

bution of Dpp-Scw affects the distribution of Sog/Tsg/Dpp-Scw

complexes, which ultimately changes the directionality of the

Dpp-Scw flux. The shadows result from the dynamic imbalance

of Dpp-Scw binding and Sog/Tsg-mediated transport.

Scale Invariance of BMP-Mediated Signaling
The data presented above clearly indicate that the specific

embryo geometry has a large impact on the ability of the

model to predict levels of BR that are in quantitative agreement

with the observed pMad distributions. Geometry predominately

impacts the distances traveled by BMPs, and thus the range

of ligands and inhibitors will vary along the AP axis. One would

expect that a patterning process dependent on domain

geometry would also depend on the overall size or scale of the

domain. In general, reaction-diffusion equations similar to those

used for BMP patterning are highly dependent on the length-

scale of the system and do not lead to the preservation of
5
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Figure 6. 3D Model Results

(A–S0 ) (A–S) Mean pMad staining for ectopic gene expression experiments and/or mutant alleles. (A0–S0) Levels of BR calculated by using the computational

model. See Section 3 of the Supplemental Information and Figure S8 for additional discussion of the tld7M89 allele.

Developmental Cell

Please cite this article in press as: Umulis et al., Organism-Scale Modeling of Early Drosophila Patterning via Bone Morphogenetic Proteins, Develop-
mental Cell (2010), doi:10.1016/j.devcel.2010.01.006
proportion observed in numerous biological contexts (Othmer

and Pate, 1980).

A recent theoretical study of BMP patterning of Xenopus laevis

embryos suggests that a single-ligand shuttling mechanism

does not lead to scale invariance. In Xenopus, scale invariance

might actually be mediated by the combined action of two types

of ligands: the BMPs and ADMP. However, ADMP is absent in

Drosophila, which suggests one of two possibilities: (1) BMP
DEVCEL
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signaling between different sized embryos is not scale invariant;

or (2) alternative mechanisms to the proposed mechanism

for Xenopus BMP scaling lead to Drosophila BMP patterning

scale invariance. To investigate the question of scaling, we

calculated the distribution of BR in the 3D model by increasing

the size of the embryo while keeping all other quantities

constant. The ‘‘shuttling-only’’ mechanism with fixed production

rates (concentration/time) and fixed receptor concentrations
1835
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Figure 7. Mechanisms of Morphogen Scale Invarience-Calculated BR Levels for D. virilis and D. busckii and Predicted Distribution for

Embryos 750 mm in Length

(A–C0) (A–C) The expected BR levels when conservation conditions are imposed for the total amounts of protein production, and/or protein levels, are shown.

(A0–C0) Same as (A)–(C), except without conservation on the total amount of production/proteins in the system (i.e., the concentrations are constant).

(D and E) Distribution of pMad signaling in (D) D. busckii (n = 14) and (E) D. virilis (n = 18).

(F) Average pMad width along the AP axis is constant between species.

(G) Scale invariance does not occur at all positions along the AP axis because the shape of the pMad distribution is different between species.
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does not lead to scale invariance of the BR distribution. Whereas

the BR distribution is largely unchanged in smaller embryos

(Figure 7A) that correspond roughly with the size expected

for D. busckii (Gregor et al., 2005), the pattern of BR in

embryos z575 mm in length (Figure 7B) is qualitatively different

than the pattern predicted in D. melanogaster (z400 mm in

length). In simulations in which the embryo is slightly larger

than expected for D. virilis or z750 mm in length, the pattern of

BR splits at z25% embryo length and leads to two parallel

stripes that reconverge at the posterior pole (Figure 7). Before

measuring pMad signaling in different size embryos, we tested

how an alternative scale-invariance hypothesis might impact

the model-predicted results.
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Neglecting positive feedback for a moment, Equations 1–7

show that the distribution of BR complexes depends on

a number of linear and nonlinear reactions that occur in the peri-

vitelline space. Specifically, the level of BR depends on the level

of free BMP ligands, which, in turn, depends on four kinetic

processes: (1) production of ligand, (2) binding and release to

the Sog/Tsg complex, (3) receptor binding and release, and (4)

release from the inhibitor complex by the destruction of Sog by

Tld. If we first consider Equations 1–7 with zero production of

Sog, the equation for Tsg becomes decoupled from the equa-

tions for BMP ligands and receptors. In the zero Sog scenario,

the level of BR depends only on interactions between ligand

and receptors. This leads to the simplified set of equations for
5
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BMP-receptor dynamics (Equations 11 and 12) that are similar to

those proposed for dynamic scale invariance of AP patterning of

Drosophila embryos by Bcd (Umulis, 2009; Gregor et al., 2007a;

Umulis et al., 2008):

BMP� ligand :
vB

vt
= DBV2B + fBðxÞ � k5B$Rtot + ðk5B + k�5ÞBR;

(11)

Receptors :
vBR

dt
= k5B$Rtot � ðk5B + k�5 + dEÞBR: (12)

Replacing the V2 by L�2V2, assuming binding equilibration in

the linear range, and adding Equations 11 and 12 make the

requirements for scale invariance of the simplified system

more transparent:

BMP� ligand :
vB

vt
=

DB=L
2

1 + Rtot=Km

V2B +
f�Bð x Þ

1 + Rtot=Km

� dE

Rtot=Km

1 + Rtot=Km

B; (13)

x = x=L: (14)

Previously, we have suggested, for linear morphogen

patterning systems, that scale invariance occurs automatically

if the following conditions are met (Umulis, 2009; Umulis et al.,

2008):

d Patterning occurs along a surface. (Dimensional analysis

suggests that the PV space can be approximated as

a 2D surface wrapped around a 3D core.)

d Proportions are constant between individuals that differ in

size, which means that, for a constant PV space thickness,

the area (A) scales in proportion to the characteristic length

squared (i.e., A f sL2). This is true within a species, and

approximately true between different species.

d The total number of binding sites, decay rates, and other

processes that may naturally scale with size are constant.

This is true, for instance, if receptor levels in the PV space

scale with nuclear density.

d Constant total morphogen production in molecules/time

(Hypothesis).

d Morphogen gradient interpretation by total binding site

occupancy (molecules) and not the total concentration

(molecules/area) of occupied binding sites. (Hypothesis.

This has been demonstrated for receptor occupancy and

Activin signaling, but this has not yet been tested for

BMPs in Drosophila [Dyson and Gurdon, 1998].)

Constancy of total receptor number and total production rates

(molecules/time) leads to Rtot = Ntot/(sL2) and f�Bðx Þ= FBðx Þ=L2.

Imposing these conditions on Equation 13, and defining L = Ntot /

(sKm) leads to Equation 15:

vB

vt
=

1

L + L2
|fflfflffl{zfflfflffl}

fðLÞ

�
DBV2B + FBðxÞ � dELB

�
L�independent

:
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

(15)

In the ‘‘zero Sog’’ case given by Equation 15, the level of free

BMP ligand is automatically scale invariant at steady state and
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may also be scale invariant dynamically during the approach to

steady-state depending on the value of L. With Sog secretion,

the situation is much more complicated, primarily due to the

nonlinear binding steps that occur between Sog, Dpp-Scw,

and Tsg in the PV space. However, the conservation may lead

to some scale invariance, even if it is not ‘‘perfect’’ scale invari-

ance, as can be shown for linear systems. To test the scale

invariance of the full patterning model, we hypothesized that

the secretion of zygotic Dpp-Scw, Sog, Tsg, and the total level

of Tld, receptors, and feedback rates in the PV space scale

with the number of nuclei as outlined above. The model results

deviate less from the D. melanogaster predictions, but the

patterns are not perfectly scale invariant (Figures 7A0–7C0). The

shape of the BR distribution changes in different-sized embryos,

but the difference between predicted patterns in embryos

becomes much more pronounced, as the size is increased

from the 400 mm length used for the D. melanogaster wt base

case. The difference in the patterns between the shuttling-only

model and the model that includes constancy of secretion rates

is also much more pronounced as the simulated embryo size

becomes larger (compare Figures 7B, B0, 7C, and 7C0). Because

there are large qualitative differences between the predictions

made by the two mechanisms, and it was not clear a priori

that dorsal surface patterning is actually scale invariant, we

stained for pMad signaling in D. busckii (z350 mm) and D. virilis

(z575 + mm) (Figures 7D–7G). We found that the ratio of mean

width to embryo length (w/Lx) for pMad (T = 0.2) along the AP

axis is scale invariant, but it is not an example of a ‘‘perfectly’’

scale-invariant system. Instead, whereas w/Lx is constant

between species, the shape of the distribution deviates from

D. melanogaster at different positions along the AP axis. Intrigu-

ingly, pMad staining in D. virilis is more consistent with a mecha-

nism employing conservation conditions than without the

conditions (Figures 7B, 7B0, and 7E). In the model predictions

for embryos 575 mm and 750 mm in length, BR levels begin to

diminish at the poles, the profile bows out near the AP midline,

and the maximum amplitude shifts from the position at approx-

imately one-third the embryo length to approximately one-half

the embryo length. This is consistent with the mean pMad

observed in D. virilis and is also consistent with our preliminary

data for pMad staining in Musca domestica embryos.

The Relationship between Embryo Geometry and Dorsal
Surface Patterning
Lastly, we were interested in how changes in embryo proportion

impact the model-predicted distributions of BR. To test this, we

scaled the model geometry for the embryo along the x axis only,

keeping the y and z scales constant. Furthermore, we tested

both the shuttling-only and shuttling with conservation condition

models and show the results of the latter here (Figure 8). For

the simulations, we assumed that the mRNA prepatterns were

scaled consistently with the geometric scalings. The predicted

patterns change appreciably as the geometry of the embryo is

changed. In ‘‘short’’ embryos, BR levels bow out and accumulate

at the poles where Sog would be lowest and Tld highest. In

0.753 embryos, BR forms three local maxima at z25%, 33%,

and 75% embryo length, and as embryos are stretched in

the x direction beyond 1.03, pMad signaling is lost at z25%

and 75% embryo length.
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Figure 8. Predicted Relationship between Model-Predicted Distribution of BR and Different Embryo Shapes

(A and B) For each simulation, the mRNA prepattern information was scaled in proportion to the embryo shape changes.
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Future Directions
The model results for mechanisms of scale invariance, collagen,

and the relationship between shape and pattern can be experi-

mentally tested to support or refute the ‘‘predictions’’ made

in this paper. First, to test the relationship between nuclear

density, binding site density (i.e., Tkv and Collagen), and pMad

patterning, one could stain for pMad signaling in embryos in

which the local density of nuclei is disrupted, as was done to

demonstrate the relationship between nuclei and dpERK

patterning (Coppey et al., 2008). To investigate the dependence

of dorsal surface patterning on shape, one could quantitatively

measure pMad signaling in other species of Drosophila such as

D. pseudoobscura, D. erecta, or other Diptera, including Lucilla

sericata, which have embryo shapes that differ significantly

from D. melanogaster (Gregor et al., 2005; Lott et al., 2007).

There are a number of ways to extend the current model to

address new and emerging questions of pattern formation. First,

one could couple the computational modeling framework with

the SpatioTemporal atlases of gene expression to test alterna-

tive mechanisms of AP patterning and crosstalk between the

AP and DV signals (Fowlkes et al., 2008). Numerous genes are

not strictly AP or DV spanning, and their expression is the result

of dynamically integrating signals that originate along orthogonal

axes. 3D spatiotemporal modeling of Drosophila provides a

robust platform on which to investigate the mechanisms of signal

integration.

Another extension of this work is to develop a coupled volu-

metric/surface patterning embryonic model to understand the
DEVCEL 183
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balance of processes for Bicoid transport along the AP axis (Berg-

mann et al., 2007; Gregor et al., 2007a; Umulis et al., 2008; Spirov

et al., 2009). Earlier, we simulated the Bicoid transport problem at

the embryo periphery for the ectopic expression simulations, but

during the last four nuclear division cycles, there is exchange of

Bicoid between nuclei that line the periphery and the embryo

core that conspires to produce a quasi-steady state of nuclear

Bicoid concentration (Gregor et al., 2007a; Coppey et al., 2007).

Furthermore, with the full 3D model, we are not limited to transport

by diffusion, and one could extend AP patterning studies to

include cytoplasmic movement and directed transport (Gregor

et al., 2007a; Foe and Alberts, 1983; Hecht et al., 2009).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

twelve tables, and four figures and can be found with this article online at

doi:10.1016/j.devcel.2010.01.006.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the Rosen Center for Advanced Com-

puting at Purdue University, the Minnesota Supercomputing Institute, National

Institutes of Health Grant GM29123 to H.G.O., and the reviewers’ comments.

M.B.O. is an Investigator with the Howard Hughes Medical Institute.

Received: November 7, 2009

Revised: December 16, 2009

Accepted: January 6, 2010

Published: February 15, 2010
5

.

http://dx.doi.org/doi:10.1016/j.devcel.2010.01.006


Developmental Cell

Please cite this article in press as: Umulis et al., Organism-Scale Modeling of Early Drosophila Patterning via Bone Morphogenetic Proteins, Develop-
mental Cell (2010), doi:10.1016/j.devcel.2010.01.006
REFERENCES

Ambrosio, A.L., Taelman, V.F., Lee, H.X., Metzinger, C.A., Coffinier, C., and

De Robertis, E.M. (2008). Crossveinless-2 is a BMP feedback inhibitor that

binds Chordin/BMP to regulate Xenopus embryonic patterning. Dev. Cell 15,

248–260.

Bangi, E., and Wharton, K. (2006). Dual function of the Drosophila Alk1/Alk2

ortholog Saxophone shapes the Bmp activity gradient in the wing imaginal

disc. Development 133, 3295–3303.

Bergmann, S., Sandler, O., Sberro, H., Shnider, S., Schejter, E., Shilo, B.Z.,

and Barkai, N. (2007). Pre-steady-state decoding of the Bicoid morphogen

gradient. PLoS Biol. 5, e46.

Coppey, M., Berezhkovskii, A., Kim, Y., Boettiger, A., and Shvartsman, S.

(2007). Modeling the bicoid gradient: diffusion and reversible nuclear trapping

of a stable protein. Dev. Biol. 312, 623–630.

Coppey, M., Boettiger, A., Berezhkovskii, A., and Shvartsman, S. (2008).

Nuclear trapping shapes the terminal gradient in the Drosophila embryo.

Curr. Biol. 18, 915–919.

Driever, W., and Nusslein-Volhard, C. (1988). The bicoid protein determines

position in the Drosophila embryo in a concentration-dependent manner.

Cell 54, 95–104.

Dyson, S., and Gurdon, J.B. (1998). The interpretation of position in

a morphogen gradient as revealed by occupancy of activin receptors. Cell

93, 557–568.

Eldar, A., Dorfman, R., Weiss, D., Ashe, H., Shilo, B.Z., and Barkai, N. (2002).

Robustness of the BMP morphogen gradient in Drosophila embryonic

patterning. Nature 419, 304–308.

Foe, V.E., and Alberts, B.M. (1983). Studies of nuclear and cytoplasmic behav-

iour during the five mitotic cycles that precede gastrulation in Drosophila

embryogenesis. J. Cell Sci. 61, 31–70.

Fomekong-Nanfack, Y., Kaandorp, J., and Blom, J. (2007). Efficient parameter

estimation for spatio-temporal models of pattern formation: case study of

Drosophila melanogaster. Bioinformatics 23, 3356–3363.

Fowlkes, C.C., Hendriks, C.L., Kernen, S.V., Weber, G.H., Rübel, O., Huang,
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