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Abstract Recent research has shown that motile cells can adapt their mode of propul-
sion depending on the environment in which they find themselves. One mode is
swimming by blebbing or other shape changes, and in this paper we analyze a class
of models for movement of cells by blebbing and of nano-robots in a viscous fluid at
low Reynolds number. At the level of individuals, the shape changes comprise volume
exchanges between connected spheres that can control their separation, which are sim-
ple enough that significant analytical results can be obtained. Our goal is to understand
how the efficiency of movement depends on the amplitude and period of the volume
exchanges when the spheres approach closely during a cycle. Previous analyses were
predicated on wide separation, and we show that the speed increases significantly as
the separation decreases due to the strong hydrodynamic interactions between spheres
in close proximity. The scallop theorem asserts that at least two degrees of freedom
are needed to produce net motion in a cyclic sequence of shape changes, and we show
that these degrees can reside in different swimmers whose collective motion is stud-
ied. We also show that different combinations of mode sharing can lead to significant
differences in the translation and performance of pairs of swimmers.
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1 Introduction

Locomotion of cells, both individually and collectively, is an important process in
development, tissue regeneration, the immune response, cancer metastasis, andwound
healing. The motion of an individual cell is classified as either mesenchymal or amoe-
boid, depending on how it interacts mechanically with its environment (Binamé et al.
2010). The mesenchymal mode is used by cells such as fibroblasts that have a well-
organized cytoskeleton, which comprises the actin filaments, intermediate filaments,
and microtubules, and use strong adhesions to transmit force to their surroundings via
integrin-mediated adhesion complexes. Mesenchymal movement usually involves the
extension of broadflat lamellipodia and/or pseudopodia and is driven by actin polymer-
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ization at the leading edge. Amoeboid motion involves a less structured cytoskeleton
and weaker surface interactions, and leads to speeds up to forty times faster than
those resulting from mesenchymal motion (Renkawitz and Sixt 2010). In this mode
cells may use pseudopodia, but can also use protrusions such as blebs (Fig. 1) which
involve blister-like extensions of the membrane. Leukocytes, which normally use the
mesenchymal mode in the extracellular matrix (ECM), can migrate in vivo in the
absence of integrins, using a ‘flowing and squeezing’ mechanism (Lämmermann et al.
2008). Cells of the slime mold Dictyostelium discoideum (Dd) can move either by
extending pseudopodia or by blebbing, and they monitor the stiffness of their sur-
roundings to determine the mode: pseudopodia in a compliant medium and blebbing
in stiffer media (Zatulovskiy et al. 2014). Furthermore, blebbing cells are efficient
in their chemotactic response to cyclic-AMP, producing nearly all of their blebs up-
gradient. In certain tumor cells, knockdown of secretedMMPs,which are enzymes that
degrade the ECM, produces only a small reduction in speed because cells compensate
for the decreased proteolysis by undergoing a ‘mesenchymal-to-amoeboid transition
(MAT) (Wolf et al. 2003; Friedl and Wolf 2003). The MAT can also be triggered by
changes in the adhesiveness of the ECM (Friedl and Alexander 2011; van Zijl et al.
2011). Moreover, cells such as Dd and neutrophils can swim in a fluid environment
(Barry and Bretscher 2010), and a model of swimming by such cells appears in Wang
and Othmer (2016). In fact, some cells move only by blebbing. Certain carcinoma
cells in suspension spontaneously polarize and forms blebs at the leading edge, and
while they cannot move on 2D substrates, they can move in 3D (Bergert et al. 2012).

Thus numerous cell types display enormous plasticity in the choice of locomotory
mode, in that they sense the mechanical properties of the environment and adjust
the balance between the modes by adjusting the balance between signal transduction
pathways that control the structure of the cytoskeleton (Renkawitz et al. 2009; Bergert
et al. 2012; Fackler and Grosse 2008). Crawling and swimming are the extremes on a
continuum of strategies, but cells sense their environment and use the most efficient
strategy in a given context. While blebbing is frequently thought of as a ‘push–pull’
mechanism in which a cell expands at the front, followed by contraction at the rear,
another type of blebbing called ‘stable-bleb migration’, has recently been observed
in progenitor cells of the gastrulating zebrafish embryo (Maiuri et al. 2015; Ruprecht
et al. 2015). In this mode cells form a balloon-like protrusion at their front, and these
cells can move more rapidly than other cells in the embryo.

The fact that some cells can use very complicated shape changes for locomotion
leads to a question posed by experimentalists, which is ‘How does deformation of the
cell body translate into locomotion?’ (Renkawitz and Sixt 2010). Two examples are
shown in Fig. 1. In (a) is shown a cell that blebs andmoves very little, and in (b) is a Dd
cell that uses a combination of blebs at the front and contraction at the rear to move
in a tissue-like environment. Figure 1c shows the different modes used by cells in
different environments. In this paper we analyze a simple model of the push–pull type
for movement in a fluid by blebbing, motivated by the recent experimental findings
mentioned above. Protrusions and other shape changes require forces that must be
correctly orchestrated in space and time to produce net motion—protrusions on cells
in (a) are not, while those in (b) are—and to understand this orchestration one must
couple the cellular dynamics with the dynamics of the surrounding fluid or ECM.
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1702 Q. Wang, H. G. Othmer

Fig. 1 a Blebbing on a melanoma cell: myosin (green) localizes under the blebbing membrane (red). b
The actin cortex of a blebbing Dd cell migrating to the lower right. Arrowheads indicate the successive
blebs and arcs of the actin cortex (from Charras and Paluch 2008). c A schematic of the various modes of
movement (from Welch 2015) (color figure online)

At the spatial scale of cells and the speeds at which they move, the exterior fluid
problem is a low Reynolds number (LRN) flow. LRN flows have been extensively
studied in the context of bacterial and sperm movement. Taylor Taylor (1952) treated
the flagellum as an infinite cylinder executing small-amplitude oscillations, and Han-
cock Hancock (1953) developed a large-amplitude theory using singular solutions
to the Stokes equations situated along the center line of a flagellum, to describe the
motion in three dimensions. This ‘slender-body theory’ was further developed by Hig-
don (1979) to account for hydrodynamic interactions between the flagellum and the
cell head, and Phan-Thien et al. (1987) used the boundary-element method to allow
for non-spherical heads and non-slender flagella. The current state of knowledge is
reviewed in Lauga and Powers (2009) and Elgeti et al. (2015).

A separate path in cell locomotion at LRN was stimulated by Purcell’s seminal
article (Purcell 1977) and by interest inmini-robots. Severalmodels of LRN swimmers
that do not rely on slender-body theory exist. There is Purcell’s two-hinge swimmer,
the Najafi–Golestanian accordion model in which three spheres of fixed size are
connected by movable links (Najafi and Golestanian 2004; Alexander et al. 2009),
the push-me-pull-you swimmer (PMPY) (Avron et al. 2005), in which two spheres
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that can expand or contract radially are connected by an extensible arm, and a three-
sphere volume-exchange or breather model in which the spheres are linked by rigid
connectors but exchange volume (Wang et al. 2012). In Wang and Othmer (2015)
we compared the performance of these models, and showed that generally the PMPY
model is the most efficient.1

In many earlier analyses of two- or three-sphere models, the spheres are treated as
point particles that generate point forces, which in effect means that the separation
between them is large enough that hydrodynamic interactions between the spheres
can be neglected. Thus the conclusions reached in these analyses are not directly
applicable to models of cells that swim by blebbing, nor to realistic robotic swimmers.
Hydrodynamic interactions between spheres of fixed size have been studied for almost
a century, and analytical results are available for a pair of spheres connected by a
rigid rod (a dumbbell) (Stimson and Jeffery 1926). Approximation methods for other
configurations center on either a truncatedmultipole expansion of theGreen’s function
or on the method of reflections, both described in Kim and Karrila (1991). An analysis
of hydrodynamic interactions as a function of the ratio of the sphere radius to the
separation between spheres, is done for the accordion model in both Newtonian and
non-Newtonian fluids in Curtis and Gaffney (2013).

In this paper we use the basic PMPY swimmer as a model of blebbing or for mini-
robots to study the swimming behaviors of solitary and group swimmers at LRN.
Our objective is to understand the effect of higher-order hydrodynamic interactions
between spheres in a PMPY swimmer, and for this we use the reflection method (Kim
and Karrila 1991). In Sect. 3 we investigate the difference between the higher-order
solution and the asymptotic solution both analytically and numerically, and show
that the asymptotic solution may severely underestimate the effectiveness of a PMPY
swimmer. There we also compare its swimming behavior to existing experimental
data on swimming Dd amoebae. In Sect. 4 we apply the reflection method to a system
consisting of one active PMPY swimmer and a passive buoyant object. We discuss
the hydrodynamic effect of the velocity field generated by the PMPY swimmer on the
passive object and vice versa, we numerically investigate how effectively the swimmer
can pursue the passive object, and we study the higher-order hydrodynamic effects on
a tracer trajectory. In Sect. 5 we apply the reflection method to a system of two PMPY
models, one in which the swimmers are collinear and the other a planar system, andwe
discuss the higher-order hydrodynamic interactions between the two active swimmers.
In Sect. 6 we review the scallop theorem, which is the fundamental principle of LRN
swimming, and discuss how this extends to the hydrodynamic interactions amongst
several swimmers, each unable to swim on its own. We also discuss how different
combinations of shape change modes affect the collective swimming behavior of
such swimmers. Throughout we only consider the regime in which there is sufficient
spacing between units so as to justify the neglect of the lubrication effects that arise
when objects in relative motion are in close proximity. Such effects are discussed by
various authors (Brenner 1961; Cooley and O’Neill 1969a, b) in other contexts.

1 The measures of performance that are used here and in the literature do not include the work needed to
move material between spheres in the PMPY and breather models, and thus the accordion model suffers by
comparison in this respect.
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2 Swimming at low Reynolds number

Hereafterwe suppose that the swimmer is immersed in an infinite, incompressible fluid
of density ρ and viscosity μ, that is at rest at infinity. The Navier–Stokes equations
for the fluid velocity u are (Childress 1977)

ρ
∂u
∂t

+ ρ(u · ∇)u = ∇ · T + fext = −∇ p + μΔu + fext, (2.1)

∇ · u = 0 (2.2)

where

T = −pI + μ(∇u + (∇u)T )

is the Cauchy stress tensor and fext is the external force field. We further assume that
the swimmer is self-propelled and does not rely on any exterior force, and therefore
we require that fext = 0 throughout. Either the swimmer is neutrally buoyant or the
gravitational force is included in the pressure.

When converted to dimensionless form and the symbols re-defined, these equations
read

ReSl
∂u
∂t

+ Re(u · ∇) = −∇ p + μΔu, ∇ · u = 0, (2.3)

where theReynolds number based on a characteristic length scale L and a characteristic
speed scale U is Re = ρLU /μ. In addition, Sl = ωL/U is the Strouhal number and
ω is a characteristic frequency of the shape changes. When Re � 1 the convective
momentum term in equation (2.3) can be neglected, but the time variation requires
that ReSl = ωρL2/μ. When both terms are neglected, which we assume throughout,
the low Reynolds number (LRN) flow is governed by the Stokes equations

μΔu − ∇ p = 0, ∇ · u = 0. (2.4)

Throughout we consider small cells such as Dd, whose small size and low speed
lead to LRN flows (Wang and Othmer 2015), and in this regime time does not appear
explicitly, there are no inertial effects, and bodies move by exploiting the viscous
resistance of the fluid. As a result, time-reversible deformations produce no motion,
which is known as the “scallop theorem” (Purcell 1977). Under the assumptions of
an infinite fluid domain with u = 0 at infinity and the absence of external forces,
there is no net force or torque on a self-propelled swimmer in the Stokes regime, and
therefore movement is a purely geometric process: the net displacement of a swimmer
during a stroke is independent of the rate at which the stroke is executed, as long as
the Reynolds number remains small enough.

Let D(t) ⊂ R
3 be a closed, compact set occupied by the swimmer at time t , and let

∂ D(t) denote its prescribed time-dependent boundary. In reality amoeboid swimming
cells may take up or release fluid, but we assume that the prescribed motion of the
boundary is such that the volume of the swimmer is conserved under all deformations.
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A swimming stroke is specified by a time-dependent sequence of shapes, and it is
cyclic if the initial and final shapes are identical, i.e., ∂ D(0) = ∂ D(T ), where T is
the period. The swimmer’s boundary velocity V relative to fixed coordinates can be
written as a part v that defines the intrinsic shape deformations, and a rigid motion part
U + Ω × x, where U,Ω are the rigid translation and rotation, resp.. If u denotes the
velocity field in the fluid exterior to D, then a standard LRN self-propulsion problem
is: given a cyclic shape deformation specified by v, solve the Stokes equations (2.4)
subject to∫

∂ D
σ · n = 0,

∫
∂ D

x × (σ · n) = 0, u|x∈∂ D = V = v + U + Ω × x,

u|x→∞ = 0

where n is the exterior normal, and the integrals are the force- and torque-free condi-
tions.

3 The solitary PMPY swimmer

The simplest PMPYmodel consists of two spheres that can expand or contract radially,
and an extensible, massless rod connecting them (Fig. 2).

The standard assumptions on the domain and the fluid, which is described by the
Stokes’ Equations (2.4), apply here. Let Ri (t) be the radius of the i th sphere (i = 1, 2)
and l(t) the length of the rod. The prescribed motion of each sphere consists of two
parts: a rigid translation along the x-axis at velocityUi = Uiex , and a radial expansion
or contraction: Ṙi . Thus the no-slip boundary conditions on the surfaces of the two
spheres can be expressed as:

u(ri ; t) = Ui (t)ex + Ṙi (t)r̂i at |ri | = Ri (t), i = 1, 2 (3.1)

where ri is the radius vector with origin at the center of the i th sphere (Fig. 2) and
r̂i is the outward unit vector along the ri direction. The instantaneous velocity of the
swimmer is defined as the average of the velocities of the two spheres

U = U1 + U2

2
= U1 + U2

2
ex , (3.2)

although other measures such as the velocity of the center of mass could also be used.
The instantaneous velocity would change in the latter case, but the net translation
during a cycle would not.

Fig. 2 Geometry of the
pushmpullyou model r1 r2

R1

R2
l

θ1
θ2

ex
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1706 Q. Wang, H. G. Othmer

The rate of change of the length of the connecting rod is l̇(t), and thus the velocities
of the two spheres are related by:

U2 − U1 = l̇. (3.3)

We assume that the total volume V1 + V2 ≡ VT is conserved during the motion, and
thus the radii of the spheres satisfy the constraint

R3
1(t) + R3

2(t) ≡ 3

4π
VT. (3.4)

In addition, the PMPY swimmer is force- and torque-free, and while the swim-
mer’s linear geometry automatically guarantees that it is torque-free in the absence of
asymmetric shear forces, the force-free constraint is non-trivial. LetFi (t) be the hydro-
dynamic force due to drag and expansion exerted on the i th sphere at time t—then the
constraint is that

∑
i=1,2

Fi (t) ≡ 0. (3.5)

It is clear that extension and contraction of the rod produces a direct effect on the
translation of either sphere, whereas the expansion only has an indirect effect. If
sphere 1 expands this has no direct effect on its movement since the expansion is
radially symmetric, but the flow generated affects the second sphere. Simultaneously,
the conservation of volume condition produces a reduction in size of the second sphere,
which induces a flow that affects the first sphere. In the LRN regime these effects are
felt instantaneously.2

The shape changes for a PMPY swimmer are described by l̇, Ṙ1 and Ṙ2, but in
view of (3.4) two degrees of freedom define its motion. A cyclic stroke of a PMPY
swimmer is determined by a periodic profile (l̇(t), Ṙ1(t)) for t ∈ [0, T ], and a solution
of the swimmer problem entails finding the relation between the swimmer’s velocity
U and the controls (l̇, Ṙ1). In the general analysis that follows we assume that the
controls are chosen so that the motion is not time reversible. An example of how the
choice of phase difference between l̇(t) and Ṙ1(t) affects the efficiency when both
vary sinusoidally is given later.

3.1 Scaling the PMPY problem

The PMPY model contains three length scales: the radii of the spheres R1, R2 and
the length of the connecting arm l. The geometry of the model requires that the two
spheres never overlap, hence R1+ R2 < l. As previously defined, Re = ρLU/μ � 1,
and therefore all lengths in the model must be small enough to ensure that

2 The reader can easily show that in the absence of volume exchange the net translation after a periodic
extension and contraction of the rod produces no motion. This provides the simplest example of the scallop
theorem discussed later.
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R1, R2, l � μ

ρU
.

However even if this LRN pre-condition is satisfied, the relations among the lengths
R1, R2, l are also crucial in the swimming problem, and different relations may lead
to different regimes of interaction (Kim and Karrila 1991). We assume that the radii of
the two spheres are comparable, i.e., O(R1) ∼ O(R2), which rules out the possibility
of interactions between a large sphere and a very small one (this case is discussed
in Kim and Karrila (1991)). This leaves three major scenarios: the spheres are in close
proximity in part of the cycle, i.e., R1(t)+ R2(t) ∼ l(t) in part of the cycle; the spheres
arewidely-separated spheres throughout the cycle, where R1(t)+R2(t) � l(t), and an
intermediate regime. In the first regime the flow in the gap region dominates when the
spheres nearly touch in part of the cycle, and the lubrication approximation provides
the leading terms in an asymptotic expansion (Kim andKarrila 1991). If the spheres are
also well-separated in part of the cycle this leads to a difficult matching problem that is
not attempted here. We only consider the intermediate regime in which the separation
never enters the lubrication regime, but is also not in the infinitely-separated regime
throughout the cycle, as this has been studied previously (Avron et al. 2005). Our
objective is to use the reflection method to determine corrections to the problem with
very large separation.

Since the length scales involved are time-dependent, some care is needed in setting
an appropriate scaling for the lengths. The primary criterion that must be met is that
(R1(t) + R2(t))/ l(t) < 1 throughout the cycle. Define

RM = max
t

{Ri (t)}i=1,2, Lm = min
t

{l(t)}

and

δ = RM/Lm,

We then nondimensionalize the radii and rod lengths by RM and Lm , resp.,

R̂i = Ri

RM
≤ 1, l̂ = l

Lm
≥ 1, (3.6)

and we assume that the amplitudes of both rod displacement and radius changes are
of the same order of RM . Thus we let ξ = l̇ and ζi = Ṙi , and apply the following
scaling:

ξ̂ = T

RM
ξ, ζ̂i = T

RM
ζi

Next, we nondimensionalize other length scales by RM as well, and time by the period
T to obtain

x̂ = x
RM

, ∇̂ = RM∇, t̂ = t

T
, û = T

RM
u, Ûi = T

RM
Ui , Ω̂i = T Ωi .
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Finally, the drag force F exerted on a sphere of radius R in a quiescent fluid is related
to the sphere velocity U via F = 6πμRU, which leads to the following scaling for
forces:

F̂ = T

6πμR2
M

F = R̂Û. (3.7)

3.2 The reflection method

In previous analyses of the PMPY swimmer the spheres are infinitely-separated, and
thus treated as the source of point forces. The free space Green’s function, or Stokeslet,
for the Stokes problem is

G(x, x0) = 1

r

[
I + rr

r2

]
= 1

r

[
I + r̂r̂

]
. (3.8)

Here I is the unit second-rank tensor, r = x− x0, r = |x− x0| and r̂ = r/r . Thus the
velocity field generated at a point x by a point force F at x0 is

u(x) = G(x, x0)
8πμ

· F(x0). (3.9)

When combined with the flow field generated by expansion of the spheres (cf.
AppendixA), this leads to the following approximation for the velocity of the swimmer
(Avron et al. 2005).

U = R1 − R2

2(R1 + R2)
l̇ + ( R1

l

)2
Ṙ1 (3.10)

The first and second terms are the leading order terms that result from the cyclic
change of the rod length and the contraction and expansion of the spheres, resp.. If we
nondimensionalize this solution we obtain

Û = R̂1 − R̂2

2(R̂1 + R̂2)
ξ̂ + ( R̂1

l̂

)2
δ2ζ̂1. (3.11)

Thus the effect of changes in the rod length for widely-separated spheres is O(1),
while the leading term of sphere volume change is O(δ2). Thus Eq. (3.10) is only
accurate to O(1), and therefore at least the O(δ) and O(δ2) terms that result from the
movement of the spheres should be taken into account. In regard to higher-order terms,
(3.11) suggests that corrections resulting from rod length change may add O(δ) and
O(δ2) terms, while those from sphere volume change only appear in the O(δ3) terms.
The effect is that higher-order interactions resulting from rod length changes play a
more important role than the volumetric changes for a single PMPY swimmer. As will
be shown later, the relative importance of these factors changes in other situations.
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One approach to obtaining the higher-order effects of the interactions between the
spheres in the PMPY model, both from their relative motion and the volume changes,
is the reflectionmethod (Kim andKarrila 1991). A general description of the algorithm
underlying this method is as follows.

• The 0th reflection The 0th reflection for either sphere is simply the superposition
of this sphere alone in whatever background flow, call it u∞, exists. In other words,
in this step no interaction between the spheres are taken into consideration. We
denote the velocity field that results from translation and expansion/contraction of
the i th sphere by u(0)

i (x), and the sum of these is the new field u(0)(x).
• The 1st reflection However, in the combined field u(0)(x) the no-slip boundary
conditions on each sphere are not met and to correct this one computes a new field
by solving two new Stokes problems: one with the boundary value -u(0)

1 (x) on

sphere 2, and one with the value -u(0)
2 (x) on sphere 1. This leads to two new fields

u(1)
12 (x) and u(1)

21 (x), and the first reflection field is u(1)(x) = u(1)
12 (x) + u(1)

21 (x).

• The 2nd reflection In the second reflection two new corrections that satisfy -u(1)
12 (x)

and -u(1)
21 (x), on sphere 1 and 2, respectively, are computed, and are called u(2)

121(x),

and u(2)
212(x). The resulting second reflection field is u(2)(x) = u(2)

121(x) + u(2)
212(x).• Repeat until the desired accuracy is achieved.

This process has been proven to converge very rapidly for finite domains (Luke 1989).
We denote the translational and rotational velocities of sphere i that result from the

nth reflection as U(n)
i and Ω

(n)
i , resp., and the stress on sphere i by T

(n)
i . To compute

U(n)
i and Ω

(n)
i , we use the reciprocal theorem (Stone and Samuel 1996), which states

that ∇ · (T(n−1)
j · U(n)

i ) = ∇ · (T(n)
i · u(n−1)

j ), and from this and a similar equivalence
for the torques it follows that

U(n)
i = 1

4π R2
i

∫
Si

u(n−1)
j (x) dS(x) (3.12)

Ω
(n)
i = 3

8π R3
i

∫
Si

n × u(n−1)
j (x) dS(x). (3.13)

Since we are considering spheres, equivalent expressions obtained by use of Faxén’s
law (Kim and Karrila 1991) are

U(n)
i =

(
1 + R2

i

6
∇2

)
u(n−1)

j

∣∣∣
x=xi

(3.14)

Ω
(n)
i = 1

2
∇ × u(n−1)

j

∣∣∣
x=xi

(3.15)

In a self-propulsion problem at LRN the flows vanish at infinity, and in this context
the velocity generated by a sphere of radius R centered at x0, subject to the force F,
and ‘expanding’ at the rate Ṙ = dR/dt is (cf.Appendix A):
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u(0)(r; R,F, Ṙ
) = 1

24πμr

[(
3 + R2

r2
)
F + 3

(
1 − R2

r2
)(
F · r̂)̂r] + Ṙ

( R

r

)2
r̂.

(3.16)

The first term and second terms in Eq. (3.16) result from the drag force F and the
radial change Ṙ, resp., and we denote them by u(0){F} and u(0){Ṙ}:

u(0)(r; R,F, Ṙ
) = u(0){F}(r; R) + u(0){Ṙ}(r; R)

u(0){F}(r; R) = 1

24πμr

[(
3 + R2

r2
)
F + 3

(
1 − R2

r2
)(
F · r̂)̂r]

u(0){Ṙ}(r; R) = Ṙ
( R

r

)2
r̂.

For the symmetric geometry of the PMPYmodel, Fi = Fiex . Therefore the angular
velocitiesΩ1 andΩ2 both vanish, while each reflection contributes to the translational
velocity. In the zeroth reflection, i.e., when we consider the i th sphere (i = 1, 2) of
the PMPY model alone immersed in the fluid, the radial expansion will not result in
any rigid motion, but the drag force Fi leads to the translational component

U(0)
i = 1

6πμRi
Fi (3.17)

The first reflection is computed as follows. Given the velocity of sphere j , we have
to find the solution of a Stokes problem with velocity −u(0)

j on the surface of sphere
i and vanishing at infinity, and from that compute the translational and rotational
velocities at the first reflection. Once again, Ω

(1)
i = 0 due to the symmetry of the

model, and by using (3.16) in (3.12), the translational component is

U(1)
i = 1

4π R2
i

∫
Si

u(0)
j dS = 1

4π R2
i

∫
Si

u(0){F}(r; R j ) dS

+ Ṙ j

4π

( R j

Ri

)2 ∫
Si

x − x j

|x − x j |3 dS(x) (3.18)

We denote the first and second terms in Eq. (3.18) asU(1, f )
i andU(1,e)

i , resp., and then
Eq. (3.18) can be written as

U(1)
i = U(1, f )

i + U(1,e)
i

U(1, f )
i is the result of the drag force F j , and it has been well studied. The result

is given by the Rotne–Prager–Yamakawa (RPY) approximation (Yamakawa 1970;
Wajnryb et al. 2013; Zuk et al. 2014; Liang et al. 2013):

U(1, f )
i = 1

8πμl

[(
1 + R2

1 + R2
2

3l2

)
I

+
(
1 − R2

1 + R2
2

l2

) (xi − x j ) ⊗ (xi − x j )

|xi − x j |2
]
F j (3.19)
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and together with the relations U(1, f )
i = U (1, f )

i ex and F j = Fjex , we find that

U(1, f )
i = 1

4πμl

[
1 − R2

1 + R2
2

3l2

]
Fj . (3.20)

U(1,e)
i is due to the expansion Ṙ j , which can be calculated directly (Appendix B)

or by Faxen’s law,

U(1,e)
i = (−1)i Ṙ j

( R j

l

)2
ex (3.21)

which is precisely the radial expansion term inAvron’s solution [Eq. (3.10)]. This com-
pletes the first reflection, and Eqs. (3.17, 3.20, 3.21) give the following approximation
of the translational velocities of the spheres after one reflection

Ui ∼ U (0)
i + U (1)

i = Fi

6πμRi
+ Fj

4πμl

(
1 − R2

1 + R2
2

3l2

)

+ (−1)i Ṙ j

( R j

l

)2
. (3.22)

The nondimensional version of Eq. (3.22) is

Ûi ∼ F̂i

R̂i
+ 3

2
δ

F̂j

l̂

(
1 − δ2

R̂2
1 + R̂2

2

3l̂2

)
+ (−1)iδ2

( R̂ j

l̂

)2
ζ̂ j , (3.23)

and together with the Eqs. (3.5, 3.3) we obtain the following closed system:

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 0
1

R̂1
Γ

0 −1 Γ
1

R̂2
1 −1 0 0
0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

Û1

Û2

F̂1

F̂2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Γ2
−Γ1

−ξ̂

0

⎞
⎟⎟⎠ (3.24)

where

Γ ≡ δ
3

2l̂

(
1 − δ2

R̂2
1 + R̂2

2

3l̂2

)
and Γi ≡ δ2

( R̂i

l̂

)2
ζ̂i .

It is easy to see that thematrix in (3.24) is non-singular and can be inverted explicitly.
Therefore the solution of (3.24) can be expressed as a power series in δ.

To determine the contribution of higher reflections, we compute the second reflec-
tion. The translational velocity that results from drag forces from the 0th through the
2nd reflections for sphere 1 is found to be (Kim and Karrila 1991):
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2∑
n=0

U (n, f )
1 = F1

6πμR1

(
1 − 15R1R3

2

4l4

)
+ F2

4πμl

(
1 − R2

1 + R2
2

3l2

)
+ O

( 1
l5

)
,

(3.25)

and after nondimensionalization this reads

2∑
n=0

Û (n, f )
1 = F̂1

R̂1

(
1 − 15

4
δ4

R̂1 R̂3
2

l̂4

)
+ 3

2
δ

F̂2

l̂

(
1 − δ2

R̂2
1 + R̂2

2

3l̂2

)
+ O

(
δ5

)
.

(3.26)

A comparison of this with the first two terms in (3.23) shows that the translational
velocity from the first reflection is accurate through O(δ4). One can show that a second
reflection for the component due to the radial expansion will lead to the correction
U (2,e)

i of O(δ5) (cf Appendix B), and thus the solution is accurate through O(δ4) after
one reflection.

The perturbation expansions of the solution to Eq. (3.24) to O(δ4) order are:3

U1 ∼ − R2

R1 + R2
ξ + δ

3R1R2(R1 − R2)

2(R1 + R2)2l
ξ

+ δ2

l2

[9R2
1 R2

2(R1 − R2)

2(R1 + R2)3
ξ − R2

2ζ2

]

+ δ3
R1R2(R1 − R2)

2(R1 + R2)4l3

(
25R2

1 R2
2 − R4

1 − R4
2 − 2R3

1 R2 − 2R1R3
2

)
ξ

+ O(δ4) (3.27)

U2 ∼ R1

R1 + R2
ξ + δ

3R1R2(R1 − R2)

2(R1 + R2)2l
ξ

+ δ2

l2

[9R2
1 R2

2(R1 − R2)

2(R1 + R2)3
ξ + R2

1ζ1

]

+ δ3
R1R2(R1 − R2)

2(R1 + R2)4l3

(
25R2

1 R2
2 − R4

1 − R4
2 − 2R3

1 R2 − 2R1R3
2

)
ξ

+ O(δ4) (3.28)

−F1 = F2 ∼ R1R2

R1 + R2
ξ + 3

δ

l

( R1R2

R1 + R2

)2
ξ + 9

δ2

l2

( R1R2

R1 + R2

)3
ξ

+ δ3

l3
(R1R2)

2

(R1 + R2)4

(
25R2

1 R2
2 − R4

1 − R4
2 − 2R3

1 R2 − 2R1R3
2

)
ξ

+ O(δ4) (3.29)

3 In the remainder we omit the ∧ on nondimensionalized quantities for simplicity unless units are given,
but since δ appears in the equations this should not lead to any confusion.
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Finally, the velocity of the PMPY model, correct to O(δ4), and subject to the pair of
controls (ξ, ζ1), is

U = R1 − R2

2(R1 + R2)

[
1 + 3

δ

l

R1R2

R1 + R2
+ 9

δ2

l2

( R1R2

R1 + R2

)2

+ δ3

l3

( R1R2

R1 + R2

)3(
25 − R2

1

R2
2

− R2
2

R2
1

− 2
R1

R2
− 2

R2

R1

)]
ξ

+ δ2
( R1

l

)2
ζ1 + O(δ4). (3.30)

If we compare Eq. (3.30) with Eq. (3.11), we see that the earlier analysis ignores
all effects due to finite separation of the spheres, and thus (3.11) is only valid to the
zeroth-order in δ.

3.3 Power expenditure and the performance of a PMPY

Next we consider the power P(t) required to propel the swimmer. For a PMPYmodel,
the power P comprises two parts: P D that results from the drag force on the spheres,
and PV that results from the radial expansion of the spheres. P D is given by

P D = F1U1 + F2U2

which can be simplified by the force-free condition (Eq. 3.5) and the geometric relation
between the two spheres (Eq. 3.3) to the form

P D = F2
(
U2 − U1

) = F2l̇.

The stress on the surface of a sphere expanding at the rate Ṙ(t) in a Newtonian
fluid is obtained as follows (Brennen 2013). The continuity equation in the exterior
fluid implies that the radial velocity vr = d R/dt has the form

vr = F(t)

r2
.

The forces per unit area on the sphere acting at the sphere-fluid interface are the interior
pressure pi , the fluid stress force

Trr =
(

− p + 2μ
∂vr

∂r

)∣∣∣
r=R

due to the exterior fluid motion, and a tension τ due to interfacial forces equal to

2τ

R
.
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We neglect both the pressure difference across the interface and the interfacial tension,
and therefore the force is

Trr = 2μ
∂vr

∂r
= −4

μ

R

d R

dt
.

Therefore the power required to expand a sphere is

−
∫

S
Trrvr ds = 16πμR Ṙ2

Therefore for the PMPY model we have

PV = 16πμ
(
R1 Ṙ2

1 + R2 Ṙ2
2

)

and thus the power expended to propel a PMPY at time t is

P = P D + PV = F2l̇ + 16πμ
(
R1 Ṙ2

1 + R2 Ṙ2
2

)
. (3.31)

We nondimensionalize P as

P̂ = 1

6πμ

T 2

R3
M

P

so that while P = FU in dimensional form, after nondimensionalization we also have
P̂ = F̂Û . Thus the nondimensional version of Eq. (3.31) is

P = Fξ + 8

3

(
R1ζ

2
1 + R2ζ

2
2

)
(3.32)

with hat notation omitted. While PV is determined, P D depends on the perturbation,
which in turn depends on δ. A first order approximation to P is given in Avron et al.
(2005), which after nondimentionalization reads

P = R1R2

R1 + R2
ξ2 + 8

3

(
R1ζ

2
1 + R2ζ

2
2

) + O(δ), (3.33)

while higher-order approximations can be obtained by using the results for F obtained
from Eqs. (3.24) or (3.29) into Eq. (3.32).

Finally we define the performance P of a stroke as the ratio of the translation per
cycle to the energy expended in a cycle, viz.

P =
∣∣ ∫ T

0 U (t) dt,
∣∣

∫ T
0 P(t) dt

. (3.34)

which has the units of f orce−1. P measures the energy required for the PMPY to
swim a certain distance in a cycle, and a large value ofP indicates an energy-saving
stroke. The nondimensional form ofP is
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P̂ = 6πμR2
M

T
P = | ∫ 1

0 Ûdt̂ |∫ 1
0 P̂dt̂

3.4 A comparison of the solutions

Next we compare the asymptotic solution given by Eq. (3.10), the solution obtained by
the reflectionmethod [Eq. (3.24)] and the solution given by Eq. (3.30), for a prescribed
loop in the control space described by (l̇, Ṙ1). We use the sinusoidal circuits

R1(t) = (2 + sin 2π t)µm, R2(0) = 3µm, l

= (l0 + cos 2π t)µm, for 0min ≤ t ≤ 1min (3.35)

with typical length unit µm and time unit min—these set the length and time scales
for a realistic biological LRN swimmer, such as Dd amoebae (Van Haastert 2011), as
will be seen later in this section. For this protocol one finds that

RM ∼ 3.24µm, Lm = (l0 − 1)µm, δ ∼ 3.24

l0 − 1
, T = 1min .

Since the radius of sphere 2 is maximum when R1 = 1µm at t = .75min, RM is
achieved at this time. The results for scaled translation X (t) = ∫ t

0 U dt and scaled
power P(t) in a period for different values of l0 are shown in Fig. 3a–e , and the
relation between the scaled performance P and l0 is given in Fig. 3f.

One can check that the spheres never touchunder theprotocol at (3.35) by computing
the minimum of the gap l − (R1 + R2), which is ∼ 0.9µm at t = 0.45min for l0 =
7µm, and larger for larger l0’s. InFig. 3we see that both the scaled translation X and the
power P computed via the first reflection and its O(δ3) approximation (black dots and
red solid lines, resp.,) agree verywell.On the other hand, the asymptotic approximation
for the translation given by Eq. (3.10) and shown in Fig. 3a–c, (blue lines) deviates
from them significantly when l0 is small. In contrast, the scaled power of the Avron
approximation coincides closelywith that of the higher-order approximations (Fig. 3d–
e), becausemost of the time, PV > PD , yet the higher-order corrections only contribute
to PD [Eq. (3.31)]. Computations that show the separate contributions of PV and PD

are given in Appendix C. Finally, the scaled performance deviates from the reflection
results significantly when the spheres are relatively close (Fig. 3f).

When the minimal gap between the spheres is small (large δ), the first reflection
adds a significant correction to the asymptotic solution, as shown in Fig. 3a, d, and
the effect of additional reflections should be checked. In the simulation of Fig. 3a,
d, δ4 = 8.5 × 10−2, which is comparable to the net translation, which suggests that
a second reflection may be necessary to guarantee the accuracy of the system. We
compare the results obtained with the first reflection to those with the leading order
term (i.e., δ4 term) from the second reflection included, in Appendix C. Simulation
results shown in Fig. 4 show that under the protocol given by Eq. (3.35) and with
l0 = 7, δ = 0.54, the difference between the net translation X (1) computed by the
foregoing two approximations is 8.9×10−3, smaller than either δ4 or the net translation
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Fig. 3 A comparison of the asymptotic Avron solution (blue lines), the solution obtained by the reflection
method (1Ref, black dots) and its perturbation analysis up to O(δ4) order (1Ref-3, red lines). a–cThe scaled
translation X (t) = ∫ t

0 U dt within a period for l0 = 7, 12, 60µm. The initial profile of the swimmer is
shown in the box. d, eThe scaled power P(t)within a period, with l0 = 7, 60µm. fThe scaled performance
P of PMPY with respect to l0 (color figure online)
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Fig. 4 A comparison of the solution obtained with the first reflection only (black dots) and with the leading
order term from second reflection included (green crosses). a The scaled translation X (t) = ∫ t

0 U dt within
a period. b The scaled power P(t) within a period (color figure online)

X (1). This indicates that even for a PMPY swimmer with a relatively small separation
of the spheres (δ = 0.54), the first reflection gives a solution with acceptable accuracy.
In the following sections (Sects. 4–6), all solutions are obtained with the first reflection
and we restrict the system to the regime δ ≤ 0.54.

As pointed out earlier (Wang and Othmer 2015), PMPY adopts a mixed control
strategy in (l̇, Ṙ), which makes it superior to other linked-sphere models that adopt
combinations of a single type of control. In fact, PMPY is the only model studied there
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for which the net translation X = ∫ 1
0 U dt ∼ O(1) over a period. This can be seen in

Fig. 3a–c, in that the net translation X does not vanish as the length of the connecting
rod increases. For l → ∞, we have δ → 0, and Eq. (3.30) gives the estimate

lim
δ→0

U = R1 − R2

2(R1 + R2)
ξ ∼ O(1), lim

δ→0
X = lim

δ→0

∫ T

0
U (t) dt ∼ O(1)

For the stroke prescribed by Eq. (3.35), we have the estimate X ∼ −0.17 as l0 →
∞, δ → 0. On the other hand, the power P does not change much as l0 changes,
and taken together, we have the estimate for the performance of PMPY in the limit
l0 → ∞, δ → 0 of about P ∼ 0.03.

As a final check on the validity of the solutions, we determine whether the flow
regime for the PMPY model computations satisfies Re � 1 and ReSl � 1, which is
required for a LRN swimmer. We assume that the medium is water (ρ ∼ 103kg ·m−3,
μ ∼ 10−3Pa · s), and test two sets of L and U from our simulations (L = 6µm, U ∼
−1.2µm/min from Fig. 3a, or L = 60µm, U ∼ −0.6µm/min from Fig. 3c). In
either case we have Re � 1 and ReSl � 1 (Re ∼ O(10−6), ReSl ∼ O(10−6) in
Fig. 3a, and Re ∼ O(10−6), ReSl ∼ O(10−5) in Fig. 3c).

The foregoing results are for a fixed phase difference, and next we investigate the
effect of changing the phase difference between the two controls l̇ and Ṙ1.We consider
the following class of sinusoidal cycles

R1(t) = (2 + sin 2π t)µm, R2(0) = 3µm,

l = (l0 + sin(2π t + φ))µm, for 0 min ≤ t ≤ 1 min,

where φ ∈ [0, 2π ] is the phase difference. The scaled net translation and performance
with respect to φ is shown in Fig. 5, from which we see that the maxima of both scaled
net translation and performance are reached at a phase difference of φ = kπ + π/2,
k ∈ Z. In contrast, when φ = kπ, k ∈ Z, the net translation after one cycle equals
zero, which naturally leads to zero performance as well. This stems from the fact that
in these cases the shape deformation become time reversible, and according to the
scallop theorem, no net translation results.

To compare our analysis with experimental observations, we use the data on swim-
ming amoebae from Van Haastert (2011), where it is reported that Dd amoebae move
in a fluid environment by side protrusions. Typically the cell body is elongated, and
single or multiple protrusions cyclically propagate along the cell (Wang and Othmer
2016). Although the shape deformation mode of these amoebae cell is not exactly the
same as a PMPYmodel, however similar to a PMPY, such a traveling protrusion mode
does exploit mass transfer along an elongated body. It is reported that amoebae using
this swimming mode have maximum cell body length ∼ 25µm, average cell body
width ∼ 6µm, a typical stroke has period ∼ 1min, and a typical swimming velocity
∼ 3µm/min. Using this data, we approximate

L ∼ 25µm, T ∼ 1min, R ∼ 6µm, U ∼ 3µm/min
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Fig. 5 The scaled net translation (a) and performance (b) with respect to phase difference between the two
controls l̇ and Ṙ1, with l0 = 12, computed using the first reflection

thus δ ∼ R/L ∼ 0.24, Û ∼ T U/R ∼ 0.5 and the scaled net translationwithin a period
X̂ = X/R ∼ 0.5, which is about the same scale as for a PMPY swimmer. In fact, as
can be seen from Fig. 3a, if the spheres are not too separated in the model, the scaled
net translation of a PMPY can reach X ∼ 0.3. On the other hand, other linked-sphere
models that also have elongated shape and adopt large-scale shape deformations can
only result in X ∼ O(δ2) (Wang and Othmer 2015), which is far less than a PMPY or
a swimming amoebae as observed. This suggests that the PMPY model merits further
investigation.

We summarize our results in this section as follows.

1. The first reflection adds a significant correction to the order-one asymptotic solu-
tion for the net translation when the minimal gap between the spheres of a PMPY
swimmer is small.

2. A comparison of the solution that includes the leading order terms from the second
reflection with the solution for only one reflection shows that the latter provides
sufficient accuracy even for relatively small separations.

3. PMPY adopts a mixed control strategy, which leads to an O(1) net translation.
Therefore, it can swim even with widely separated spheres.

4. The LRN approximation is appropriate for the foregoing computations, and the
behavior of the PMPY is comparable to that of a swimming amoebae.

5. The translation and performance of the PMPY swimmer are maximized when the
stroke controls l̇ and Ṙ1 have a phase difference of φ = kπ + π/2, k ∈ Z; while
there is no net translation if the controls are in phase, i.e., φ = kπ, k ∈ Z;

4 A PMPY swimmer in the presence of a passive buoyant obstacle

In an extension of the previous results that leads to several interesting applications, we
next analyze a PMPY swimmer that interacts with an untethered, passive, neutrally-
buoyant object nearby. To simplify the computation of the interaction, we suppose
that this object is a rigid sphere, and that there is no external force or torque imposed
on it. The geometry of the system is shown in Fig. 6, where one sees that there
are six characteristic lengths: the radius of each sphere (Ri , i = 1, 2, 3) and the
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Fig. 6 The geometry of the
system of a PMPY swimmer and
a passive, neutrally-buoyant
spherical object

R1

R2

l12

R3

l23l13
z

x

y

lengths between any pair of spheres: (li j , i, j = 1, 2, 3). For scaling purposes we
define

RM = max
t

{Ri (t)}i=1,2,3, Lm = min
t

{l12(t)}, δ = RM

Lm
.

To apply the reflection method to this system, we require that δ < 1 as before, and in
addition, we only consider the regime l13, l23 > Lm . Thus all non-dimensionalization
relations in Sect. 3.1 apply. The following discussion is similar to that in Sect. 3.2,
except that one more sphere is now involved in the system. We assume that the
centers of all three spheres lie in the xy-plane, and that the active swimmer moves
along the x-axis initially (Fig. 6). In this configuration the torque and angular veloc-
ities must be taken into account unless the three spheres are co-linear. However,
the motion of the spheres will remain in the plane defined by their initial posi-
tions since the axis of rotation of a sphere is orthogonal to that plane. Thus the
problem remains effectively two-dimensional, but this plays no role in the analy-
sis.

4.1 The linear and angular velocities after the first reflection

At the zeroth-order reflection, in which no hydrodynamic interactions between the
spheres are considered, the results for the swimmer are the same as in the absence of
a passive object, and the velocity field for each sphere is given by Eqs. (3.16, 3.17).
At this order the linear and angular velocities of sphere 3 are

U(0)
3 = Ω

(0)
3 = 0, u(0)

3 ≡ 0 (4.1)

At the first reflection, each sphere is subject to the flows generated by the other spheres.
Since u(0)

3 ≡ 0, the calculation of rigid motions for sphere 1 and 2 in the first reflection
are identical to Sect. 3.2 – thus we have:

U(1)
1 =

(
1 + R2

1

6
∇2

)(
u(0)
2 + u(0)

3

)∣∣∣
x=x1

= F2

4πμl12

(
1 − R2

1 + R2
2

3l212

)
− Ṙ2

( R2

l12

)2

123

Author's personal copy



1720 Q. Wang, H. G. Othmer

Ω
(1)
1 = 1

2
∇ × (

u(0)
2 + u(0)

3

)∣∣∣
x=x1

= 0

U(1)
2 =

(
1 + R2

2

6
∇2

)(
u(0)
1 + u(0)

3

)∣∣∣
x=x2

= F1

4πμl12

(
1 − R2

1 + R2
2

3l212

)
+ Ṙ1

( R1

l12

)2

Ω
(1)
2 = 1

2
∇ × (

u(0)
1 + u(0)

3

)∣∣∣
x=x2

= 0.

From this one sees that at the first reflection, the presence of the passive sphere at
a sufficient distance does not affect the swimmer, but the converse is not true—the
effect of the swimmer on the passive sphere is non-zero after the first reflection. Its
translational velocity U(1)

3 is given by the sum of the contributions from translation
and expansion of the swimmer’s spheres, viz.,

U(1)
3 =

∑
i=1,2

U(1, f )
3,i + U(1,e)

3,i (4.2)

where

U(1, f )
3,i =

(
1 + R2

3

6
∇2

)
u{Fi }

∣∣∣
x=x3

= 1

8πμli3

[(
1 + R2

i + R2
3

3l2i3

)
Fi

+
(
1 − R2

i + R2
3

l2i3

)(
Fi · di3

)
di3

]
(4.3)

U(1,e)
3,i = 1

2
∇ ×

(
R2

i Ṙi
x − xi

|x − xi |3
)∣∣∣

x=x3
= Ṙi

( Ri

li3

)2
di3 (4.4)

and

di3 = x3 − xi

|x3 − xi | , li3 = |x3 − xi |.

Although sphere 1 and 2 are rotation-free after the first reflection, one finds that the
translation of sphere 1 and 2 contributes to the rotation of Ω

(1)
3 , while their expansion

has no effect on Ω
(1)
3 . The detailed calculation of Ω

(1)
3 is straightforward and is given

in Appendix D. The result is that

Ω
(1)
3 =

∑
i=1,2

Fi

8πμl3i3

[(
x3 − xi

) · ey

]
ez . (4.5)

To summarize the analysis for the first reflection, we first solve for the motion of
the swimmer and the forces it exerts using the system (3.24), and use the results in
Eqs. (4.2, 4.5) to obtain the motion of sphere 3.
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4.2 Accuracy of the system

For the PMPY, as we mentioned earlier, up to the first reflection, the passive buoyant
sphere 3 has no effect on the PMPYmodel. It follows from Sect. 3.2, that after the first
reflection the translational velocities of the two spheres of the PMPY(U1, U2), together
with the translational velocity of the PMPY(U), are accurate up to δ3 order. The leading
order of U is of O(1), as shown by Eq. (3.30). Because Ω

(0)
i = Ω

(1)
i = 0, i = 1, 2,

we neglect the rotation effect of the PMPY.
Similar to the analysis of the PMPY, neglecting the second and higher reflections

for the passive sphere 3 results in the translational velocityU3 ∼ U(0)
3 +U(1)

3 accurate
up to order δ3. Moreover, the effects from the self-deformable PMPYmodel on sphere
3 starts to show up from the first reflection (U(0)

3 = 0), thus an estimate of the leading
term of U3 is

∑
i=1,2

3

4

Fi + (
Fi · di3

)
di3

li3
δ ∼ O(δ)

For the angular velocity we have Ω3 ∼ Ω
(0)
3 + Ω

(1)
3 = Ω

(1)
3 , and thus the leading

order of Ω3 can be estimated as follows:

∑
i=1,2

3Fi

4l3i3

[(
x3 − xi

) · ey

]
ezδ

3 ∼ O(δ3)

In the wide-separation regime, i.e., when δ � 1, it is clear that the angular velocity
of the passive sphere 3 (Ω3 ∼ O(δ3)) can be neglected compared to its translational
velocity U3 ∼ O(δ) or the translational velocity of PMPY (U ∼ O(1)).

To investigate the second reflection, we must first compute all the velocities — u(1)
i j

for i, j = 1, 2, 3, i �= j—that result from putting sphere j into the flow u(0)
i . Since

u(0)
3 ≡ 0 [Eq. (4.1)], we have u(1)

3 j ≡ 0 for j = 1, 2. On the other hand, when we put

sphere 2 or 3 into u(0)
1 , the resulting flow u(1)

1 j is a superposition of two parts:

u(1)
1 j = u(1)

1 j {F1} + u(1)
1 j {Ṙ1}

where u(1)
1 j {F1} results from the drag force F1 exerted on sphere 1, and its leading term

is of the order δ4 (Kim and Karrila 1991); u(1)
1 j {Ṙ1} results from the radial deformation

of sphere 1, and its leading term is of the order δ5. Hence u(1)
1 j ∼ O(δ4) and similarly,

u(1)
2 j ∼ O(δ4) as well. Thus for sphere 1:

U(2)
1 =

(
1 + R2

1

6
∇2

)(
u(1)
12 + u(1)

13 + u(1)
23 + u(1)

32

)∣∣∣
x=x1

+ O(δ4)

Ω
(2)
1 = 1

2
∇ × (

u(1)
12 + u(1)

13 + u(1)
23 + u(1)

32

)∣∣∣
x=x1

+ O(δ5)
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with similar results for sphere 2 and 3 as well. In conclusion, the results we obtained
from Sect. 4.1 are accurate up to the δ3 term.

Finally, it is easily seen that the results obtained in Sect. 4.1 can be applied to a
system consisting of a PMPYmodel and N passive neutrally-buoyant spheres, as long
as the spheres are separated sufficiently. We number the two spheres in the PMPY
model as sphere 1 and 2, as usual, and the others from sphere 3 to sphere N + 2. For
each of the N passive spheres, u(0)

i ≡ 0 (i = 3, 4, . . . , N +2) in the zeroth reflection,
from which we conclude that: up to the first reflection,

1. The PMPY model does not “see” the other spheres:

Λ
(1)
i = Λ

(1, f )
i, j + Λ

(1,e)
i, j +

N+2∑
n=3

(
Λ

(1, f )
i,n + Λ

(1,e)
i,n

)
= Λ

(1, f )
i, j + Λ

(1,e)
i, j

where i, j = 1, 2, i �= j and Λ stands for U or Ω .
2. Each passive sphere only “sees” the PMPY model and “sees” no other spheres:

Λ(1)
n =

∑
i=1,2

(
Λ

(1, f )
n,i + Λ

(1,e)
n,i

)
+

m �=n∑
3≤m≤N+2

(
Λ

(1, f )
n,m + Λ(1,e)

n,m

)

=
∑

i=1,2

(
Λ

(1, f )
n,i + Λ

(1,e)
n,i

)

where n ∈ 3, 4, . . . , N + 2 and Λ stands for U or Ω .

4.3 Chasing an object

The scenario of a micro-swimmer swimming with a passive object has many appli-
cations. For example, can a microorganism that locates a target object (nutrient, a
bacterium, etc.), capture the object within a reasonable time period? To be specific,
the micro-swimmer should be able to swim fast enough to reach the target object, and
the object, as it is passive, should not be pushed away faster than the micro-swimmer
swims, especially when they are close.

We consider a scenario in which a PMPY swims toward a passive sphere directly
in front of it, in simulating a microorganism chasing an object. As we discussed in
Sect. 3.4, a PMPY is an effective swimmer—with a translational velocity U scaled
as O(1)—and approximates the swimming behavior of Dd amoebae (Van Haastert
2011), which feed on bacteria. This indicates that a PMPYcan swim a distancewithin a
reasonable time period by consuming a reasonable amount of energy.Aswas discussed
in Sect. 4.2, the leading order term of U3 for the movement of the passive sphere 3
that results from the hydrodynamic interaction with the PMPY is

U3 ∼ U(1)
3 ∼

∑
i=1,2

3

4

Fi + (
Fi · di3

)
di3

li3
δ (4.6)
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Since the spheres are collinear we have d13 = d23, and the force-free constraint of the
PMPY gives F1 = −F2, both of which lie along d13. Therefore we have the following
estimate of the translational velocity U3:

U3 ∼ −3

2
F1

( 1

l13
− 1

l23

)
δ = −3

2
F1

l12
l13l23

δ,

and by using Eq. (3.29) we have

U3 ∼ 3

2

l12
l13l23

R1R2

R1 + R2
δξ. (4.7)

From Eq. (4.7) we see that when the passive sphere 3 is far from the PMPY, i.e.,
l13 � 1, l23 � 1, U3 scales much less than O(δ), and only when the PMPY is close
to the target canU3 increase to O(δ). Therefore, with the estimates of the translational
velocities of the PMPY and the passive sphere giving U ∼ O(1) and U3 < O(δ), we
confirm that a PMPY can easily catch up with its passive target. Moreover, we note
that although in problems like nutrient supply, the target objects are likely to be much
smaller than the microswimmer, this size relation is not required here. As we can see
from the Eq. (4.7), the size of the passive sphere (R3) does not enter the leading order
term of U3. In fact, from Eqs. (4.3, 4.4), R3 only shows up in the O(δ3) term, and as
long as R3/ li3 ∼ O(1), i = 1, 2, the above analysis and conclusions still hold.

To numerically investigate the effects of the PMPY on the passive sphere 3, we
consider the following system (Fig. 7a). At t = 0 the passive sphere 3 is at a distance
d0 from the leading sphere (i.e., sphere 2), and for t > 0 the PMPY swimmer executes
the following cyclic deformations.

R1(t) = (2 − sin 2π t)µm, R2(0) = 3µm, R3 ≡ 2µm, l12
= (l0 + cos 2π t)µm (4.8)

for 0 min ≤ t ≤ 1 min. With this stroke the PMPY swimmer moves in the pos-
itive x direction and pushes the passive sphere in that direction. We take l0 =
12µm, d0 = 20µm, which allows the PMPY swimmer to execute a few cycles
before it gets too close to sphere 3, that is, when l23 ≤ Lm . The system profile
gives RM ∼ 3.24µm, Lm = 11µm, δ ∼ 0.29. The translation of the PMPY is
computed by Eq. (3.24), while that of sphere 3 is computed from Eqs. (4.3, 4.4),
therefore δ4 ∼ 7E − 3. After 13.5 cycles, the PMPY model swims a scaled distance
of XPMPY ∼ 3.13, while the passive sphere only moves a scaled distance X3 = 0.29
(Fig. 7b, c). Thus X3/XPMPY ∼ 0.087, which is even less than the estimated ratio
U3/U ∼ O(δ). One sees in (b) that the trajectory of the passive sphere (blue solid
line in Fig. 7b) is only slightly tilted as compared to that of the PMPY swimmer (red
solid line in Fig. 7b). This reflects the fact that sphere 3 oscillates back and forth, and
the oscillations grow as the swimmer approaches the sphere, as seen in Fig. 7c. Thus
the swimmer can easily catch up with the passive object.
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Fig. 7 Simulation of a PMPY swimmer and a passive sphere, arranged collinearly. a Initial and final profiles
of the system. b Translation of all components in the 13.5 cycles. c Translation of S3 within 13.5 cycles
(color figure online)

4.4 Tracer trajectories

Another important applicationof this swimmer-object interactionproblem is swimmer–
tracer scattering, inwhich the swimmingofmicro-organisms stirs the surroundingfluid
(Dunkel et al. 2010). This is important in controlling and enhancing nutrient uptake,
and leads to enhanced tracer diffusion observed in swimmer suspensions (Wu and
Libchaber 2000; Leptos et al. 2009; Sokolov et al. 2009; Kurtuldu et al. 2011; Miño
et al. 2011). Experimental observations show that trajectories of tracers in a suspen-
sion of swimmers are often nearly-closed loops (Leptos et al. 2009), and theoretical
arguments and simulation predictions have emerged to elucidate this phenomenon
(Underhill et al. 2008; Rushkin et al. 2010; Ishikawa et al. 2010; Lin et al. 2011; Zaid
et al. 2011). In particular, the PMPY model has been used in the study of swimmer–
tracer scattering, where an asymptotic analysis based on the stroke-averaged behavior
of the PMPY, together with some simulations, illustrate the near closed-loop of a tri-
angular shape of the tracer (Dunkel et al. 2010). In this section we apply the reflection
analysis elaborated in Sects. 4.1 and 4.2 to further investigate the tracer trajectories
induced by a PMPY swimmer.

4.4.1 The instantaneous velocity of the tracer sphere

The swimmer–tracer interaction is easily found by asymptotic analysiswhen the swim-
mer and the tracer are far apart (Dunkel et al. 2010; Pushkin et al. 2013; Yeomans et al.
2014). As is the case for a PMPY swimmer, when a spherical object is far away from
it, i.e., l13, l23 � 1, the asymptotic estimate is given by Eq. (4.6), and the instantanta-
neous velocity of the tracer sphere as a function of its location is shown in Fig. 8. In
this case the velocity field is the same as the asymptotic behavior of the velocity field
generated by a single PMPY (Dunkel et al. 2010).

In this snapshot the connecting rod is expanding (l̇ > 0), and one sees that the
velocity field is divided into four domains. A tracer sphere located in the two shaded
domains will be attracted to the PMPY and repulsed if it is located in the two unshaded
domains.

The reflection analysis allows us to observe the situation when the PMPY and the
tracer sphere get close to each other, as long as δ < 1 still holds. Moreover, as we
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Fig. 8 A snapshot of the instantaneous velocity field generated by a PMPY swimmer and felt by a tracer
sphere when the latter is far away from the swimmer. In this simulation the PMPY is located at the origin,
with an instantaneous profile R1 = R2 = 2µm, l = 6µm, the connecting rod is expanding (i.e., l̇ > 0),
and the expansion/contraction of the spheres in the PMPY is neglected as it only generates O(δ2) order
terms. The tracer sphere has radius R3 = 2.5µm. Arrows only show the direction, not the magnitude, of
the velocity

showed in Sect. 4.1, the velocity of the tracer sphereU3 consists of two parts:U
( f )
3 that

results from the drag forces on the two spheres in the swimmer [Eq. (4.3)], and U(e)
3 ,

which results from the radial changes [Eq. (4.4)]. To further investigate the separate
effects of drag and expansion when the tracer sphere is close to the PMPY, we show
the instantaneous velocity of the tracer sphere in different stages of movement of the
swimmer in Fig. 9. Figure 9a, b show the velocity field when the PMPY connecting
rod is expanding without radial changes, and the spheres of the PMPY are either of
unequal sizes (a) or equal sizes (b). Comparing Fig. 9a, b with Fig. 8 we see that even
at small separations, the local velocity varies little from the far-field behaviors. The
reason for this similarity is that other than the leading O(1) term, the next term in
U( f )
3 [Eq. (4.3)] is an O(δ3) term, which decreases very rapidly as l13 and l23 increase.

However, a blown-up view of the velocity fields shows that the O(δ3) term does give
rise to a tangential velocity when the tracer sphere is close to the swimmer, as it
must. This is clear at the border of the shaded and unshaded regions shown in Fig. 8
(shown by arrows in the green boxes in Fig. 9c, d). This rotation of the velocity filed
is larger when the PMPY has unequal-sized spheres and the tracer sphere is near the
larger one (Fig. 9c). Figure 9e, f show the velocity field when the PMPY undergoes
radial changes without changes in the length of the connecting rod. Again we consider
unequal-sized spheres (Fig. 9e) and equal-sized spheres (Fig. 9f) at one instant. In
the asymptotic analysis (Fig. 8) the effects on the tracer sphere that result from radial
changes in the swimmer are not considered, as they only give rise to O(δ2) terms
[Eq. (4.4)]. However, as we can see from Fig. 9e, f, expansion and contraction of the
swimmer have significant effects on the tracer sphere, and therefore should be taken
into account.
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Fig. 9 The instantaneous velocity of a tracer sphere that results from a swimming PMPY, when the tracer
sphere is close to the PMPY. The arrows in all panels are scaled uniformly, thus arrows show both direction
and magnitudes. a, b The connecting rod is instantaneously expanding at l̇ = 2π µm/min, and there is no
expansion/contraction in the PMPY. c, d A blown-up view of panel a, b near sphere 1 in the PMPY. e, f
Sphere 1 is instantaneously shrinking at Ṙ1 = −2π µm/min while sphere 2 is expanding. The connecting
rod is neither expanding nor contracting in the PMPY (color figure online)

Finally, when the two shape changes governed by l̇ and Ṙ1 are combined, as occurs
in most of the simulations, the O(δ2) term in the tracer’s velocity clearly gives rise
to a large change from the asymptotic solution when the tracer is close to the PMPY
(compare Fig. 8 and 10). In particular, depending on the instantaneous system profile,
the effects resulting from the sphere expansion/contraction might overcome that from
the rod length changes (Fig. 10a), and therefore an asymptotic analysis is not sufficient
for the study of swimmer–tracer interactions when they are close together.

4.4.2 The long-term behavior of the tracer

As we mentioned earlier, experimental observations show that trajectories of tracers
in a suspension of swimmers often look loop-like (Leptos et al. 2009), but a loop-
like trajectory will not enhance nutrient supply. In fact, simulations of Rhodobacter
sphaeroids (Shum et al. 2010) have shown that when the tracer is far away from
the straight path of the swimmer, the loop-like trajectory is approximately true with
the net displacement between the initial and final locations considerably shorter than
the characteristic trajectory size. On the other hand, when the tracer is close to the
swimmer path, it is clearly pulled forward by the swimmer (Pushkin et al. 2013;
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Fig. 10 The instantaneous velocity of a tracer sphere that results from a PMPY swimmer when the tracer
sphere is close to the PMPY and higher-order effects are included. The arrows in all panels are scaled uni-
formly, thus arrows showboth direction andmagnitude.aThe connecting rod is instantaneously expanding at
l̇ = 2π µm/min and sphere 1 is shrinking at Ṙ1 = −2π µm/min. b l̇ = 2π µm/min, Ṙ1 = −2π µm/min.
c l̇ = 2π µm/min, Ṙ1 = 2π µm/min

Yeomans et al. 2014). Here we ask the question: how can the tracer scattering, i.e., the
net displacement of the tracer, be improved as a swimmer passes?

We first repeat the swimmer–tracer simulation using a PMPY swimmer and a rigid
sphere as a tracer. The results—again with the translation of the PMPY computed by
Eq. (3.24) and that of sphere 3 by Eqs. (4.3, 4.4)—are given in Fig. 11a, where the
system profiles are:

l(t) = (20 + cos(2π t))µm, R1 = (2 − sin(2π t))µm,

R2(0) = 3µm, R3 ≡ 0.5µm,

The PMPY swims along the x-axis, from x = −1000µm to x = 1000µm, and the
tracer sphere 3 is initially located at (0, Y0), where 6µm ≤ Y0 ≤ 20μm. In order to
compare different trajectories, in this part we set Lm = min{Y0,mint {l12(t)}} and we
give the values of δ for some of the trajectories in Fig. 11a, and the simulation results
(Figs. 11 and 12) are dimensional ones. The result is qualitatively similar to what is
obtained from the simulations of Rhodobacter sphaeroids (Shum et al. 2010), that is,
the tracer is pushed backwards slightly when more distant from the PMPY swimming
path, and clearly pulled forward when close to the path. Its trajectory has three distinct
branches, and a close-up view of a part of the trajectory (Fig. 11a′) shows that the tracer
undergoes a spiral oscillatory motion, which is qualitatively similar to existing results
(Dunkel et al. 2010; Pushkin et al. 2013; Yeomans et al. 2014). The blow-up in Fig. 11c
shows the position of the tracer sphere relative to the swimmer’s position in the upper
panels and the corresponding position along the quasi-loop in the lower panels. While
the net translation direction of the tracer per swimmer cycle is determined by its relative
position to the swimmer (tracer movement: forward/downward/backward ∼ location:
in front of/above/behind), the amplitude of the tracer oscillations is determined by its
distance to the swimmer, as can be expected.

According to an asymptotic analysis (Pushkin et al. 2013), the tracer trajectory
should approximate a closed loop, but simulation results show that when the tracer
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Fig. 11 The tracer loop when a PMPY swimmer moves in a straight line. The green lines give the starting
points of the tracer while the red lines give the end points. These curves are computed at increments of
ΔY0 = 1µm, and the black lines show the tracer trajectories. a–a′ The tracer loop of sphere 3, computed

with U3 = U( f )
3 + U(e)

3 . b–b′ The tracer loop of sphere 3, computed with U3 ∼ U( f )
3 only. c Snap-shots

of the system in a with the tracer initially located at (0, 6) and the enlarged view of sphere 3 showing its
location in the loop (color figure online)
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 Tracer trajectory resulting from U3 =U3       with L0=50, Y0 =6, δ=0.54 and 
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Fig. 12 a The tracer sphere’s starting (green dashed line) and ending points (solid lines) when a PMPY
swims along the x-axis, with L0 = 8, 12, 20, 50µm (blue, red, magenta, and black solid lines). The
lines are computed with ΔY0 = 1µm. The translational velocity of the tracer sphere is calculated as

U3 = U( f )
3 +U(e)

3 . b U3 ∼ U( f )
3 . c The tracer trajectory with L0 = 12µm, Y0 = 10µm and U3 ∼ U( f )

3
only. Snap-shots of the system at the turning points of the tracer trajectory. d As in c but with L0 =
50µm, Y0 = 6µm (color figure online)

is close to the PMPY path, its trajectory is not fully closed (Shum et al. 2010 and
Fig. 11a). This indicates that the scattering is primarily determined by higher order
terms in the hydrodynamical interaction between the PMPYand the tracer. Simulations
of the instantaneous profile of the system (Figs. 9 and 10) show that when the tracer is
close to the PMPY, the O(δ2) term resulting from sphere expansion and contraction
induces a significant distortion to the instantaneous velocity field of the tracer. To
compare the effects of rod length changes versus volume changes on the long-term
behavior of the tracer, we ran the long-term swimmer–tracer simulation again with
the same strokes but with the translational velocity of the tracer computed from the
flow generated by rod length changes only, i.e., U3 ∼ U( f )

3 [Eq. (4.3)]. The result is
shown in Fig. 11b, from which we see that the tracer is still pushed backward slightly,
even when close to the PMPY swimming path. A comparison of Fig. 11a, b shows that
the effect of the drag force, which is O(δ) at leading order, [Eq. (4.3)], produces an
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essentially closed loop-like trajectory of the tracer, and thus makes little contribution
to tracer scattering. On the other hand, the forwardmotion of the tracer is primarily due
to the sphere expansion/contraction with a leading term O(δ2) [Eq. (4.4)]. Moreover,
a close-up view of the trajectory (Fig. 11b′) shows that the tracer still undergoes an
oscillatory motion when subject only to the velocity field due to rod shortening and
lengthening, but not in a spiral manner.

Next we investigate whether the rod length of the PMPY swimmer also has an effect
on the tracer scattering behavior. In the following simulations we consider the system
profiles

l(t) = (L0 + cos(2π t))µm, R1 = (2 − sin(2π t))µm,

R2(0) = 3µm, R3 ≡ 0.5µm,

with L0 = 8, 12, 20, 50µm. The simulation results, withU3 = U( f )
3 +U(e)

3 calculated
from Eqs. (4.3, 4.4) are given in Fig. 12a. There one sees that the longer the rod is, or
equivalently, the further the two spheres in the swimmer are apart, the more the tracer
is pulled forward, especially when it is close to the swimmer’s path.

Because we found earlier that the PMPY sphere expansion/contraction contributes
significantly to the movement of the tracer, we repeat the simulations in Fig. 12a but
with U3 ∼ U( f )

3 computed by Eq. (4.3) only, which approximates the asymptotic
behavior. The results are shown in Fig. 12b, from which we see that even without
the sphere expansion/contraction, the tracer is still clearly dragged forward when it
is close to the swimming path of a long PMPY (L0 = 50µm). To understand this
behavior, we compare two tracer trajectories, both of which result from U3 ∼ U( f )

3
only. One starts with L0 = 12µm and Y0 = 10µm (Fig. 12c), i.e, the PMPY spheres
are not far apart and the tracer is not very close to the swimmer’s path, and the other
starts with L0 = 50µm and Y0 = 6µm (Fig. 12d), i.e, the PMPY spheres are far apart
and the tracer is close to the swimmer’s path. In Fig. 12c the trajectory of the tracer
approximates an isosceles triangle and the base (side 2 in the figure) corresponds to
the part of the trajectory in which the tracer is essentially directly over the swimmer.
On the other hand, when L0 is large, as in Fig. 12d, the trajectory of the tracer is very
different, and in particular, we see that side 2 of the triangle-like trajectory is stretched
horizontally, which reflects an enhanced pulling effect on the tracer. In either case,
side 2 of the trajectory loop essentially reflects the tracer motion when it is above
the swimmer, and therefore the comparison between Fig. 12c and d indicates that the
separation of spheres in the PMPY results in an increased pulling effect on the tracer
if it is close enough to the swimmer’s path.

The foregoing results when a tracer is close enough to the infinite PMPY swimming
path can be summarized as follows.

1. Despite having a leading O(δ) term, rod length changes of the PMPY swimmer
lead to an essentially closed-loop trajectory of the tracer, and thus contribute little
to tracer scattering, i.e., to the long-term net displacement of the tracer. Thus the
scattering is primarily induced by the sphere volume changes with leading O(δ2)

term.
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2. Increasing the sphere separation in a PMPY swimmer will enhance the tracer
scattering.

These findings have implications for strategies for how to improve tracer scattering.
The first suggests that to induce scattering, transporting mass between different parts
of the body is more efficient than expending energy on extending/contracting body
length. The second suggests that a longer, more slender swimmer gives rise to a
larger amplitude of scattering than shorter ones. However, we should point out that
(a) changes in body length may be coupled to mass transport, and (b) it may require
more energy to transport mass through a long body. Thus further investigation of shape
and stroke design of the micro swimmer are needed, but this is the subject of future
research.

5 Swimming with a friend

In this section we consider the hydrodynamic interactions between two PMPY swim-
mers in an infinite fluid domain, as shown in Fig. 13. To fix the geometry, we introduce
a fixed Cartesian frame and we assign a body frame to each swimmer. {0; ex , ey, ez}
is attached to PMPY I and has its origin 0 at the center x1 of sphere 1, and has ex

along the direction of the connecting rod; while {0′; ex ′ , ey′ , ez′ } is attached to PMPY
II and has its origin 0′ at the center x3 of sphere 3, and ex ′ along the direction of its
connecting rod. The relationship between the two frames is given by

⎧⎨
⎩
ex ′ = cosφex + sin φey

ey′ = − sin φex + cosφey

ez′ = ez

where φ is the angle between the two connecting rods: φ = arccos(d12 · d34) and
di j = (x j − xi )/|x j − xi |.

5.1 Analysis of the two-swimmer system

The basic steps in the analysis of the two PMPY swimmer system are the same as in
previous sections, and therefore we only sketch the analysis up to the first reflection.
In the zeroth reflection, no hydrodynamic interactions are considered, and therefore

U(0)
i = 1

6πμRi
Fi , Ω

(0)
i = 0. (5.1)

The translational velocities after the first reflection are given by

U(1)
i =

∑
j �=i

[
U(1, f )

i, j + U(1,e)
i, j

]
(5.2)

U(1, f )
i, j = 1

8πμli j

[(
1 + R2

i + R2
j

3l2i j

)
F j +

(
1 − R2

i + R2
j

l2i j

)(
F j · d j i

)
d j i

]
(5.3)
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Fig. 13 The geometry of two
PMPY swimmers in R3
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PMPY II

0’

0

U(1,e)
i, j = Ṙ j

( R j

li j

)2
d j i (5.4)

where li j = |xi − x j | and d j i = (xi − x j )/ li j . The corresponding angular velocities
are

Ω(1)
α =

∑
i=1,2

Fi

8πμl3iα

[(
xα − xi

) · ey

]
ez for α = 3, 4 (5.5)

Ω
(1)
i =

∑
α=3,4

Fα

8πμl3αi

[(
xi − xα

) · ey′
]
ez′ for i = 1, 2. (5.6)

In addition, the system should satisfy the volume conservation condition

∑
i=1,2

R3
i (t) ≡ 3

4π
VI ,

∑
α=3,4

R3
α(t) ≡ 3

4π
VI I (5.7)

and the force- and torque-free conditions

Force-free: F1 + F2 = 0, F3 + F4 = 0

Torque-free: x1 × F1 + x2 × F2 = 0, x3 × F3 + x4 × F4 = 0.

The latter constraints require that

Fi = Fiex (i = 1, 2), Fα = Fαex ′ (α = 3, 4)
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and

∑
i=1,2

Fi =
∑

i=1,2

Fiex ≡ 0,
∑

α=3,4

Fα =
∑

α=3,4

Fαex ′ ≡ 0. (5.8)

Finally the rigid motions of the spheres in each PMPY should satisfy:

(
U2 − U1

) · ex = l̇12,
(
U4 − U3

) · ex ′ = l̇34 (5.9)

Equations (5.1–5.9) define the system that determines the swimming of the two PMPY
models.

We set

RM = max
t

{Ri (t)}i=1,2,3,4, Lm = min
t

{li j (t)}i, j=1,2,3,4, δ = RM

Lm
,

and we use the nondimensionalization given in Sect. 3.1. A simple analysis similar to
that in Sect. 4.2 gives the following leading order estimate

U(0)
i ∼ O(1), U(1)

i ∼ O(δ), Ω
(1)
i ∼ O(δ3)

From this we see that when δ � 1, the rotational effect of the PMPYs is much smaller
as compared to the translational effect.

5.2 Hydrodynamic interactions between two PMPY swimmers in a line

To proceed further we must specify how the pair moves, and we first consider the
configuration in which they lie in the same line, specifically, suppose that the centers
of all spheres lie along the x-axis. In addition, we place PMPY II in front of PMPY
I, hence from negative to positive direction along the x-axis, the spheres are ordered
from sphere 1 to sphere 4 (Fig. 15il).

Equations (5.2, 5.3) show that the hydrodynamic interactions between the two
PMPYs arise at O(δ). A simple perturbation analysis gives the non-dimensionalized
forces exerted on the spheres (again with hat notation omitted):

−F1 = F2 ∼ R1R2

R1 + R2
ξI + 3

δ

l12

( R1R2

R1 + R2

)2
ξI

+ 3

2
δ

R1R2R3R4

(R1 + R2)(R3 + R4)

( 1

l23
− 1

l24
− 1

l13
+ 1

l14

)
ξI I + O(δ2)

−F3 = F4 ∼ R3R4

R3 + R4
ξI I + 3

δ

l34

( R3R4

R3 + R4

)2
ξI I

+ 3

2
δ

R1R2R3R4

(R1 + R2)(R3 + R4)

( 1

l23
− 1

l24
− 1

l13
+ 1

l14

)
ξI + O(δ2)
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and the translational velocities of the spheres:

U1 ∼ − R2

R1 + R2
ξI + δ

R1R2(R1 − R2)

2(R1 + R2)2l12
ξI

− 3

2
δ

R3R4

(R1 + R2)(R3 + R4)
ξI I

[
R1

( 1

l13
− 1

l14

)
+ R2

( 1

l23
− 1

l24

)]
+ O(δ2)

U3 ∼ − R4

R3 + R4
ξI I + δ

R3R4(R3 − R4)

2(R3 + R4)2l34
ξI I

− 3

2
δ

R1R2

(R1 + R2)(R3 + R4)
ξI

[
R3

( 1

l13
− 1

l23

)
+ R4

( 1

l14
− 1

l24

)]
+ O(δ2)

where ξI , ξI I are l̇ I , l̇ I I after non-dimensionalization. Reference to Eqs. (3.27, 3.28),
and taking into consideration the geometric condition at Eq. (5.9), leads to the follow-
ing estimate of the hydrodynamic interaction effects on the velocities of the PMPYs.

U hydro
I I→I = −3

2
δ

R3R4

(R1 + R2)(R3 + R4)
ξI I

[
R1

( 1

l13
− 1

l14

)

+ R2

( 1

l23
− 1

l24

)]
+ O(δ2) (5.10)

U hydro
I→I I = 3

2
δ

R1R2

(R1 + R2)(R3 + R4)
ξI

[
R3

( 1

l23
− 1

l13

)

+ R4

( 1

l24
− 1

l14

)]
+ O(δ2) (5.11)

The geometric relations give

1

l13
− 1

l14
,

1

l23
− 1

l24
,

1

l23
− 1

l13
,

1

l24
− 1

l14
> 0

and thus the leading order of U hydro
I I→I has the opposite sign of ξI I while that of U hydro

I→I I
has the same sign as ξI :

U hydro
I I→I ξI I < 0, U hydro

I→I I ξI > 0

This can be understood as follows. Since PMPY II is leading, when it lengthens it
impedes the swimming of PMPY I, which follows; on the other hand, when PMPY I
lengthens, it enhances the swimming of PMPY II in front of it.

The full expressions of the O(δ2) term of U hydro
I I→I , U hydro

I→I I are lengthy, however,
by taking ξI = ξI I = 0, we can easily obtain the hydrodynamic interactions on the
sphere velocities that result from the sphere expansion/contraction of the other PMPY
only (Appendix F.2):

U hydro
I I→I {Ṙ} = −R2

3ζ3δ
2
[ R1

R1 + R2

( 1

l213
− 1

l214

)
+ R2

R1 + R2

( 1

l223
− 1

l224

)]
+ O(δ3)
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U hydro
I→I I {Ṙ} = −R2

1ζ1δ
2
[ R3

R3 + R4

( 1

l223
− 1

l213

)
+ R4

R3 + R4

( 1

l224
− 1

l214

)]
+ O(δ3)

The geometry of the system also dictates that the leading order term of U hydro
I I→I {Ṙ} has

the opposite sign of ζ3, while that of U hydro
I→I I {Ṙ} has the opposite sign of ζ1:

(
U hydro

I I→I {Ṙ})ζ3 < 0,
(
U hydro

I→I I {Ṙ})ζ1 < 0

The first relation is easy to understand: the expansion of sphere 3, which is the closer
of 3 and 4 to PMPY I, will impede the swimming of PMPY I, which follows PMPY II.
For the second relation, recall that the volume conservation constraint gives R2

1ζ1 =
−R2

2ζ2, thus we have
(
U hydro

I→I I {Ṙ})ζ2 > 0, that is, the leading order of U hydro
I→I I {Ṙ} has

the same sign as ζ2. In other words, the expansion of sphere 2, which is the sphere in
PMPY I that is near PMPY II, will enhance the swimming of PMPY II.

When δ � 1 thehydrodynamic effect that results fromsphere expansion/contraction
(U hydro{Ṙ} ∼ O(δ2)) can certainly be neglected compared to the total hydrodynamic
effect due to expansion/contraction of the rod, which is U hydro ∼ O(δ). Here we
consider the hydrodynamic effects when the spheres are allowed to come closer, i.e.,
δ < 1 but not too small.We first consider the instantaneous behavior of the system, and
then the period-average behavior. For example, we consider an instantaneous system
configuration in which R1 = R2 = R3 = R4 = R and l12 = l23 = l34 = L , and for
this we have for the leading order terms

∣∣U hydro
I I→I

∣∣ = R

4L
δ|ξI I |,

∣∣U hydro
I I→I {Ṙ}∣∣ = 4R2

9L2 δ2|ζ3|.

Recalling that the non-dimensionalization of our systemguarantees that R ≤ 1, L ≥ 1
[Eq. (3.6)], in the case of R = L = 1, we have the relation

∣∣U hydro
I I→I {Ṙ}∣∣∣∣U hydro

I I→I

∣∣ ∼ 16

9
δ

∣∣∣ ζ3

ξI I

∣∣∣.

For a system with δ ∼ 0.5 where the spheres are close to each other, the coefficient of
the above equation is 8/9, and in this case the hydrodynamic effects that result from
sphere expansion/contraction must be included, together with higher order terms in
U hydro.

Figure 14 gives the instantaneous fluid velocity field around a system of two linear
PMPYs, where the instantaneous system profile is R1 = R2 = R3 = R4 = 2µm,
l12 = l34 = 6µm, l23 = 8µm. Figure 14a, b give the velocity fields when only
the rod lengths vary, while in Fig. 14c–f we include both rod and sphere changes. A
comparison of the two cases shows that for a linear system in which δ is not too small,
the O(δ2) terms that result from the sphere changes give rise to a large perturbation
of the surrounding fluid near the swimmers.

To obtain some insight into the swimming behavior of a linear systemof twoPMPYs
over a period, we consider the following two systems.
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(a) PMPY I: l12>0, R1=0
     PMPY II: l34>0, R3=0

(b) PMPY I: l12>0, R1=0
     PMPY II: l34<0, R3=0
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(c) PMPY I: l12>0, R1>0
     PMPY II: l34>0, R3>0
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(e) PMPY I: l12>0, R1>0
     PMPY II: l34>0, R3<0
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(d) PMPY I: l12>0, R1>0
     PMPY II: l34<0, R3>0
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(f) PMPY I: l12>0, R1>0
     PMPY II: l34<0, R3<0

Fig. 14 The instantaneous fluid velocity field around two linear PMPYs, with R1 = R2 = R3 = R4 = 2,
l12 = l34 = 6, l23 = 8. a Both swimmers undergo expansion and contraction of their connecting rods, but
no volume changes. For I, l̇12 = 2π, Ṙ1 = 0, and for II, l̇34 = 2π, Ṙ3 = 0; bAs in a, but with l̇34 = −2π ;
c For I, l̇12 = 2π, and Ṙ1 = 2π , and for II, l̇34 = 2π, Ṙ3 = 2π ; d As in c, but with l̇34 = −2π ; e For I,
l̇12 = 2π, Ṙ1 = 2π , and for II l̇34 = 2π, Ṙ3 = −2π ; f As in e but with l̇34 = −2π, Ṙ3 = −2π . The
system is with classic units µm and min

– System i:

PMPY I: R1(t) = 2 − sin 2π t, R2(0) = 3, l12 = l0 + cos 2π t

PMPY II: R3(t) = 2 − sin(2π t + ψ0), l34 = l0 + cos(2π t + ψ0)

– System ii:

PMPY I: R1(0) = 3, R2(t) = 2 + sin 2π t, l12 = l0 + cos 2π t

PMPY II: R4(t) = 2 + sin(2π t + ψ0), l34 = l0 + cos(2π t + ψ0),

both with the following constraint and initial condition:

Equal volume conservation:
4π

3

(
R3
1 + R3

2

) = 4π

3

(
R3
3 + R3

4

) ≡ Const.

Initial distance between the two PMPY models: l23(0) = d0
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and the system is with classic units µm and min. In either system the two PMPYs
undergo the same loop in the control space (l̇, Ṙ1) except for a phase difference ψ0.

We solve the linear system Eqs. (5.1–5.9), with Eqs. (5.5, 5.6) for the angular
motions removed due to the linear geometry (Appendix E). We take l0 = 8µm, thus
RM ∼ 3.24µm, lm = 7µm, δ ∼ 0.46 and with δ4 ∼ 4.5E − 2. Simulation results
of the two systems for the translation and performance are shown in Fig. 15, and for
comparison we show the results for a single swimmer undergoing the same cyclic
deformations (black dotted line in Fig. 15a–f, j, k, and black solid line in Fig. 15g, h).
From these results we can draw the following conclusions.

1. Figure 15a–c show that in system i the one in front (PMPY II) gets pushed forward
(red line), while the one that follows (PMPY I, blue line) gets pushed backward,
and Fig. 15d–f show that the performance of the PMPY in front increased while
that of the one that follows is decreased. On the other hand, in system ii we observe
the reverse effect: the one in front gets pulled back and its performance decreased,
while the one that follows gets pushed forward and its performance enhanced
(Fig. 15j, k). Therefore we see that in system i the two PMPYs are repelling one
another, while in system ii they are attracting each other. In short,when two PMPYs
that are identical except for a phase difference in their shape deformations swim
in a line, they may repel or attract each other with a small amplitude, depending
on their initial configuration and shape deformations.

2. Regarding the phase difference, in the repelling system i, when ψ0 = 0, PMPY
II gets the maximum increase while PMPY I gets the minimum decrease in both
net translation and performance; on the other hand when ψ = π , PMPY II gets
the minimum increase while PMPY I gets the maximum decrease in both net
translation and performance (Fig. 15a, d). In the attracting system ii we observe
the similar effect (Fig. 15j, k).

Nextwe compute the scaled distance change l23(1)−l23(0) between the twoPMPYs
after one period for systems with different values of l0 and d0, the initial rod length and
the distance between spheres 2 and 3, resp. Thismeasures the drag/propulsion between
the two PMPYs due to hydrodynamic interaction: if there is no hydrodynamic inter-
action between them, l23(1) − l23(0) is identically zero, but otherwise the difference
will generally be non-zero, and will reflect the strength of the interaction. This raises
the question as to how accurately the asymptotic approximation can capture this inter-
action. In simulations to examine this, we allow l23 < Lm as long as all spheres are
always kept separated. Figure 16 shows the results for l0 = 8µm, and different values
of d0, with the translation either calculated up to the first reflection [Eqs. (5.1–5.4),
Fig. 16 blue lines], or with leading terms from the second reflection included (Fig. 16
black dots, for computation details, see Appendix E), or by asymptotic approximation
to O(δ) (Fig. 16 green lines). From this we see that when l0 and d0 are both small, i.e.,
the spheres are close, there is a clear difference in magnitude between the asymptotic
solution and the solution that results from the first reflection or the second reflection
but only with the leading terms, although they are qualitatively similar.
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Fig. 15 Two PMPYs swim in a line. In panels a–f and j, k the dashed black line gives either the scaled
net translation X or the scaled performance P of a single PMPY undergoing the same sequence of shape
changes. a–i Simulation results for system i, j–l simulation results for system ii. a–c, j The relation between
the scaled net translations of the two PMPYs (X I , PMPY I, blue line; X I I , PMPY II, red line) and the phase
difference Ψ0 for d0 = 10, 20, 50µm and l0 = 8µm. d–f, k The relation between the scaled performance
of the two PMPYs (PI , PMPY I, blue line; PI I , PMPY II, red line) and the phase difference Ψ0 for
d0 = 10, 20, 50µm and l0 = 8µm. g The scaled trajectory X I (0min ≤ t ≤ 1min) of PMPY I with
l0 = 8µm, d0 = 10µm and phase difference Ψ0 = 0 (blue solid line) or π (blue dashed line), comparing
to the scaled trajectory of a single PMPY undergoing the same sequence of shape deformations (black solid
line). h As in g, but for PMPY II. i, l The initial profile of the system with l0 = 8µm, d0 = 10µm, Ψ0 = 0
(color figure online)
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Fig. 16 Scaled l23(1) − l23(0)
for system i, with different
values of l0 and d0, where the
translation is either calculated up
to the first reflection (blue lines),
or with leading terms from the
second reflection included
(black dots), or by asymptotic
approximation to O(δ) (green
lines) (color figure online)
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6 Extended scallop theorem and mixed controls

A widely-quoted principle in LRN swimming is that any reciprocal stroke gives no
net motion, which is known as the “scallop theorem” (Purcell 1977). An immedi-
ate corollary of this theorem is: if a self-propelled swimmer has only one degree of
freedom in its shape deformations, any cyclic stroke must be reciprocal and hence it
cannot swim at LRN. However, a group of reciprocal swimmers, none of which can
swim in isolation, may coordinate their shape deformations such that the aggregate
shape deformations of the group are not reciprocal. Thus, by taking advantage of the
hydrodynamic interactions, they may swim. This phenomenon is referred to as “no
many scallop theorem” in the existing literature (Koiller et al. 1996; Lauga and Bar-
tolo 2008; Alexander and Yeomans 2008; Lauga 2011). We quote from (Lauga 2011):
“Although a body undergoing reciprocal motion cannot swim, two bodies undergoing
reciprocal motion with nontrivial phase differences are able to take advantage of the
unsteady hydrodynamic flows they create to undergo nonzero collective and relative
dynamics; there is thus no many-scallop theorem.”

In previous sections eachPMPYcould swimby itself, but herewemodify thePMPY
model into a scallop-type swimmer and study the collective behavior. In particular,
we focus on how well the collection can swim by taking advantage of hydrodynamic
interactions. As we discussed earlier, a PMPY has two degrees of freedom in its shape
deformations, namely l̇ and Ṙ1, and to make it a scallop-type swimmer, we can disable
either of them. Thus for two hobbled PMPYs swimming together, there are three pos-
sibilities for their controls: (l̇ I , l̇ I I ), (ṘI,1, ṘI I,1), or a mixed control (l̇ I , ṘI I,1). The
first case, i.e., (l̇ I , l̇ I I ), in which each PMPY is a simple dumb-bell with an extensi-
ble connecting rod, has been studied previously (Lauga and Bartolo 2008; Alexander
and Yeomans 2008), while the other combinations of controls have not. Recall that
for a single active LRN swimmer, three linked-sphere models have been designed
according to these three different combinations of controls: Najafi–Golestanian three-
sphere model in (l̇1, l̇2) (Alexander et al. 2009; Najafi and Golestanian 2004), PMPY
in (l̇, Ṙ1) (Avron et al. 2005) and the three-sphere volume-exchange model (Ṙ1, Ṙ3)

(Wang et al. 2012). It was shown that a PMPY adopting the mixed control is superior
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Table 1 Simulation results of scaled net translation X and performance P of the three systems of two
degraded PMPYs

X I X I I PI PI I

System A −0.8 × 10−3 −1.1 × 10−3 5.25 × 10−4 6.94 × 10−4

System B 3.3 × 10−3 4.0 × 10−3 6.66 × 10−4 7.84 × 10−4

System C 0.5 × 10−3 −17.5 × 10−3 3.39 × 10−4 34 × 10−4

than the other two by order O(L2) in both net translation and performance, where
L is the typical length of the swimmers (Wang and Othmer 2015). Here we ask the
question: will a mixed control strategy of deformations lead to better LRN swimming
for two hobbled PMPYs, as it does for a single active swimmer?

Again we consider two PMPYs lying along the x-axis, with PMPY II in front. We
design three systems according to different types of controls, again with classic units
µm and min.

– System A in (l̇ I , l̇ I I ) (two dumb-bells):

R1 = R2 = R3 = R4 = 3.24, l12 = l0 + cos(2π t), l34 = l0 + sin(2π t)

– System B in (ṘI,1, ṘI I,1):

R1(t) = 2 + cos(2π t), R2(0) = 2, R3(t) = 2 + sin(2π t),

R4(0) = 3 l12 = l34 = l0 − 1

– System C in (l̇ I , ṘI I,1):

R1 = R2 = 3, R3(t) = 2 + sin(2π t), R4(0) = 3,

l12(t) = l0 + cos(2π t), l34 = l0

– Initial condition: l23(0) = d0

Therefore the three systems have the same scales: RM ∼ 3.24µm, Lm = (l0−1)µm.
We perform simulations with l0 = d0 = 12µm, which gives δ ∼ 0.29, and the scaled
net translations X I , X I I and scaled performances PI ,PI I are given in Table 1.

First, from Table 1 we see that all three systems can swim, although none is as
effective as a single active PMPY, which typically swims a scaled net translation of
X ∼ O(10−1) and with a scaled performance of P ∼ O(10−2) under this protocol
(see Sect. 3.4). Next, we find that the swimming behaviors of systems A and B, i.e.,
the two with the same type of shape deformations, are quite similar: both PMPYs
in both systems have scaled net translations and scaled performances of the orders
X ∼ O(10−3) and P ∼ O(10−4). On the other hand, system C, which adopts the
mixed controls, behaves very differently. The PMPY with shape deformations in l̇
(i.e., PMPY I) swims much less effectively than the one using an Ṙ control (PMPY
II) , with scaled net translations and scaled performance ratios X I I /X I ∼ 35 and
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PI I /PI ∼ 10. Also, PMPY II in system C clearly swims better than either of the
two PMPYs in system A or B, while the poorer one (PMPY I) swims slightly worse
than the two PMPYs in system A or B . A detailed asymptotic analysis of the three
systems is given in Appendix F.

The reasons for this difference in outcome for different control choices are: (1) l̇
gives rise to lower-order terms in the translational velocity than does Ṙ [Eq. 3.23]; (2)
to guarantee that the lower-order terms resulting from l̇ do not vanish in the net trans-
lation, it is necessary that the coefficients that depend on the radii be time-dependent,
otherwise the temporal integral will be path-independent, or at best only result in
higher order terms. To be more specific:

1. Controls in (ṘI,1, ṘI I,1) will result in terms no lower than O(δ2) in velocity and
net translation.

2. Controls in (l̇ I , l̇ I I ) will result in leading order term of O(1) or O(δ) in velocity,
depending on the geometry of the model. However, their coefficients are either of
the form Φ(R1,2,3,4) or Φ(R1,2,3,4)/ l(t), where the radii are all constants. In the
former case, it gives rise to a path-independent integral when computing the net
translation; in the latter case, when integrated, it only gives higher order terms.
For details, see the discussion in Appendix F.1.

3. Only with mixed controls in (l̇ I , ṘI I,1) and for the PMPYwith shape deformation
Ṙ, the leadingorder in velocity is of O(δ)order andof the fromΦ(R1,2,3,4(t))/ l(t),
which neither vanishes nor degrades when integrated.

Finallywe summarize previous studies on the scallop theorem (Purcell 1977; Lauga
2011) together with our discussions from Sects. 4 and 5 as follows. In an LRN New-
tonian flow,

1. a scallop cannot swim (Purcell’s scallop theorem);
2. a living scallop surrounded by a few dead scallops cannot swim;
3. a group of living scallops can swim, but in an energy-inefficient manner.

The precise mathematical interpretation of the above generalization is as follows. At
low Reynolds number,

1. a self-deformable swimmer with only one degree of freedom cannot swim—which
is the statement of the original scallop theorem.

2. A self-deformable swimmer with only one degree of freedom cannot swim effi-
ciently in the presence of passive rigid objects. This can be seen from Sect. 4, as the
presence of a rigid object that cannot deform itself has no effect on the swimmer
up to the first reflection. When further reflections are considered, the presence of
the rigid objects nearby will indeed affect the swimmer, but the effect would be
too small to have a significant effect on the swimmer.

3. A group of self-deformable swimmers, all with only one degree of freedom, can
swim by taking advantage of hydrodynamic interactions. However, both the trans-
lation and performance are much worse than one swimmer with multiple degrees
of freedom.
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7 Discussion

Herein we used a basic PMPY model to study the LRN swimming characteristics of
both single and multiple swimmers, so as to understand the effect of hydrodynamic
interactions on the translation and performance of such swimmers. One significant
result is that the PMPYmodel is an efficient LRN swimmerwhose swimming behavior
approximates that of swimming Dd amoebae. This suggests that the PMPY model
may provide a good first-order model for the study of microorganisms swimming at
LRN. As was shown, to better approximate the characteristics of LRN swimming
microorganisms one must allow the spheres to approach more closely than in previous
analyses, in which case the asymptotic solution for δ ∼ 0 is inadequate and higher-
terms in the interactions must be included. When a PMPY is swimming with a passive
object, the swimmingPMPYhas a clear effect on the passive object,while the existence
of the latter has little effect on the PMPY, as long as the size of this object is comparable
to or less than the spheres in the PMPY. If the passive object is directly ahead of the
PMPY, the PMPY can catch up with it within a few cycles, using a reasonable amount
of energy. If the freely buoyant object is not directly in the PMPY’s path, its long-
term trajectory approximates a closed-triangle when it is far away from the PMPY’s
swimming path, or it will be pushed forward if it is close to the PMPY’s swimming
path. In this case the higher-order terms in the solution of the translational velocity of
the PMPY contribute significantly to this entrainment effect, and again, an asymptotic
solution does not capture this effect. Moreover, a longer PMPY will enhance the
entrainment effect.

When there are twoPMPYs swimming together collinearly, the hydrodynamic inter-
actions among themmay cause some attraction or repulsion between them, depending
on the stroke. However, this effect is small compared with the net translation of the
PMPYs, but again, higher-order terms should be taken into consideration, particularly
if one is interested in either the instantaneous or long-term behavior of the system.
A scallop-type swimmer cannot swim at LRN on its own or in the presence of non-
deformable buoyant objects, but with an intricate coordination of their strokes, two or
more of them can swim by taking advantage of hydrodynamic interactions. Although
swimming in this manner is generally not efficient, a pair of scallop-type swimmers
that use a mixed (l̇, Ṙ) control may enhance the swimming of one of the pair as
compared to pairs in which both use either a pure (l̇) or (Ṙ) control.

Computationally, we use the reflection method, which is shown to be an efficient
computation method for linked-sphere type of LRN swimmers, in particular, PMPY.
Although an approximation approach, we show that when the spheres are not touching,
the reflection method is quite accurate. In some of our simulations, we can push the
system to δ ∼ 1/2, yet by comparing with the results obtained with the leading terms
from the second reflection included, we show that the results are still trustworthy,
at least for qualitative results. However, if the spheres are drawing even closer or
even touching each other, the lubrication effect becomes dominant and the validity of
the reflection method is greatly limited. Other computational approaches should be
adopted in this regime.
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In the biological context the surrounding material may be non-Newtonian, and in
particular, is often viscoelastic. Some results for this case are known (Qiu et al. 2014;
Curtis and Gaffney 2013), but much remains to be done.

Appendices

A Newtonian flow produced by the translation and radial expansion of a
sphere

Here we derive the velocity field u(x) of a LRN flow produced by a sphere of radius
R, pulled by a force F and expanding radially at a rate Ṙ = dR/dt . Due to the linearity
of LRN flows, the velocity field is the sum of two terms: that resulting from the drag
force—u{F}, and that resulting from the radial expansion—u{Ṙ} :

u = u{F} + u{Ṙ} (A.1)

The flowproduced by the translation of a solid sphere is a classical result (Pozrikidis
1992). It can be represented in terms of a Stokeslet and dipole with poles at the center
of the sphere that are given by

G = I
r

+ rr
r3

(A.2)

D = − I
r3

+ 3
rr
r5

(A.3)

where x0 is the center of the sphere, r = x − x0 and r = |r|. G is called the Oseen
tensor. The velocity field is then

ui (x) = Gi j (x, x0)
(3
4

RU j

)
− Di j (x, x0)

(1
4

R3U j

)
. (A.4)

Here U is the translational velocity of the sphere, i.e., U(t) = ẋ0(t). The relation
between the drag force F and U is

F = 6πμRU (A.5)

Using the above one obtains the fluid velocity

ui = 1

24πμ

[
3
(δi j

r
+ rir j

r3

)
Fj −

(
− δi j

r3
+ 3

rir j

r5

)
R2Fj

]

= 1

24πμ

[
3
( Fi

r
+ (F · r)ri

r3

)
+

( Fi

r3
− 3

(F · r)ri

r5

)
R2

]

= 1

24πμr

[(
3 + R2

r2

)
Fi + 3(

1

r2
− R2

r4
)(F · r)ri

]
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or alternatively

u{F} = 1

24πμr

[(
3 + R2

r2

)
F + 3

(
1 − R2

r2

)
(F · r̂)r̂

]
(A.6)

where r̂ = r/|r|.
The velocity field u{Ṙ} of the flow produced by a radially expanding sphere can

be represented by a point source with pole at the center x0 of the sphere, and thus has
the form

u = α
r̂
r2

(A.7)

where the strength of the source (α) is a constant to be determined. The no-slip bound-
ary condition on the sphere surface implies that

u(x) = dR

dt
r̂. (A.8)

From (A.7, A.8) we find that α = Ṙ R2, and therefore

u{Ṙ} = Ṙ
( R

r

)2
r̂. (A.9)

If we represent it in terms of the sphere volume v = 4π R3/3 this reads

u{Ṙ} = v̇

4πr2
r̂ (A.10)

This leads to the combined flow Eq. (3.16):

u
(
r; R,F, Ṙ

) = 1

24πμr

[(
3 + R2

r2
)
F + 3

(
1 − R2

r2
)(
F · r̂)̂r] + Ṙ

( R

r

)2
r̂.

B Accuracy of U (e)
i after incorporating the second reflection

Next we determine how a second reflection contributes to the rigid motions of two
radially expanding spheres.

0th reflection We consider two spheres with radii R1(t) and R2(t) resp., centered
at x1(t) and x2(t) so that x2 − x1 points in the ex direction. The radial expansion of
the i th sphere alone generates a flow

u(0)
i (x) = R2

i Ṙi
x − xi

|x − xi |3 (B.1)
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and the rigid motion of the sphere vanishes

U(0)
i = 0, ω

(0)
i = 0. (B.2)

1st Reflection. Next we put sphere 1 into the flow u2 generated by the radially
expanding sphere 2. We calculate the resulting translational velocity U(1)

1 , angular

velocity ω
(1)
1 , and the stresslet S(1)

1 , from which we obtain the velocity field u21(x).

Translational velocity U(1)
1 .

U(1)
1 =

(
1 + R2

1

6
∇2

)
u(0)
2

∣∣∣
x=x1

= R2
2 Ṙ2

[ x1 − x2
|x1 − x2|3 + R2

1

6
∇2

( x − x2
|x − x2|3

)∣∣∣
x=x1

]

= R2
2 Ṙ2

[
− ez

l2
+ R2

1

6
∇2

( x − x2
|x − x2|3

)∣∣∣
x=x1

]

Letting r = x − x2 and r = |r|, we must calculate

∇2
( r

r3

)
= ∂k∂k

ri

r3

Since

∂k

( 1

rn

)
= − nrk

rn+2

we have

∂k

( ri

r3

)
= δik

r3
− 3rirk

r5

∂k∂k

( ri

r3

)
= −3δikrk

r5
− 3δikrk

r5
− 3ri∂krk

r5
+ 15ri rkrk

r7
= 0.

Thus

∇2
( r

r3

)
= 0

and

U(1)
1 = − R2

2 Ṙ2

l2
ex (B.3)

Angular velocity ω
(1)
1 .

ω
(1)
1 = 1

2
∇ × u(0)

2

∣∣∣
x=x1

= 0 (B.4)
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Stresslet S(1)
1 . The rate of deformation that results from u2 is

E(0)
2 = 1

2

[
∇u(0)

2 + (∇u(0)
2

)T
]

− 1

3
I
(
∇ · u(0)

2

)

= Ṙ2R2
2

[1
2

(
∇ r̂

r2
+ (∇ r̂

r2
)T

)
− 1

3
I
(
∇ · r̂

r2

)]

where r̂ = r/r . Using spherical coordinates, we have

∇ r̂
r2

=
(
r̂

∂

∂r
+ 1

r
θ̂

∂

∂θ
+ 1

r sin θ
φ̂

∂

∂φ

)( r̂
r2

)
=

( ∂

∂r

1

r2

)
r̂r̂ = − 2

r3
r̂r̂

∇ · r̂
r2

= ∂

∂r

1

r2
+ 2

r

1

r2
= 0.

Thus

E(0)
2 = −2R2

2 Ṙ2

r3
r̂r̂ = −2R2

2 Ṙ2

r5
rr, (B.5)

and the stresslet is given by

S(1)
1 = 20

3
πμR3

1

(
1 + R2

1

10
∇2

)
E(0)
2

∣∣∣
x=x1

= −40

3
πμR3

1 R2
2 Ṙ2

[exex

l3
+ R2

1

10
∇2

(rr
r5

)∣∣∣
x=x1

]

We need to calculate

∇2
(rr

r5

)
= ∂k∂k

(rir j

r5

)

∂k

(rir j

r5

)
= δikr j

r5
+ δ jkri

r5
− 5rir j rk

r7

∂k∂k

(rir j

r5

)
=

(δikδ jk

r5
− 5δikr j rk

r7

)
+

(δ jkδik

r5
− 5δ jkri rk

r7

)

+
(

− 5δikr j rk

r7
− 5δ jkri rk

r7
− 5rir j∂krk

r7
+ 35ri r j rkrk

r9

)
= 2δi j

r5

Thus

S(1)
1 = −40

3
πμR3

1 R2
2 Ṙ2

[exex

l3
+ R2

1

5l5
I
]

(B.6)

Finally, the velocity field u(1)
21 (x) is given by

u(1)
21 (x) =

(
S(1)
1 · ∇

)
· G(x − x1)

8πμ
+ · · · (B.7)
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From Eqs. (B.6, A.2) we have that near x1,

S(1)
1 ∼ O

( 1

l3

)
, G ∼ O

(1
l

)

and thus the velocity near x1 scales as u
(1)
21 ∼ O(l−5).

2nd Reflection. Now we reflect once again and consider sphere 1 immersed in the
flow u(1)

12 . The translational velocity U(2)
1 that results is given by

U(2)
1 =

(
1 + R2

1

6
∇2

)
u(1)
12

∣∣∣
x=x1

(B.8)

From the discussion of the first reflection we know that near x1 the velocity field u
(1)
12

is O(l−5), and thus U(2)
1 ∼ O(l−5) as well.

C Extended analysis and computation of a PMPY of small separation.

C.1 Results with the second reflection involved and accurate up to O(δ5).

From Sect. 3.2, the translational velocities of the spheres after two reflections can be
approximated as:

U1 = F1

6πμR1

(
1 − 15R1R3

2

4l4

)
+ F2

4πμl

(
1 − R2

1 + R2
2

3l2

)
− Ṙ2

( R2

l

)2 + O
( 1

l5
)

U2 = F2

6πμR2

(
1 − 15R3

1 R2

4l4

)
+ F1

4πμl

(
1 − R2

1 + R2
2

3l2

)
+ Ṙ1

( R1

l

)2 + O
( 1

l5
)

After non-dimensionalization, they read:

U1 = F1

R1

(
1 − 15R1R3

2

4l4
δ4

)
+ 3F2

2l
δ
(
1 − R2

1 + R2
2

3l2
δ2

)
− δ2

( R2

l

)2
ζ2 + O(δ5)

U2 = F2

R2

(
1 − 15R3

1 R2

4l4
δ4

)
+ 3F1

2l
δ
(
1 − R2

1 + R2
2

3l2
δ2

)
+ δ2

( R1

l

)2
ζ1 + O(δ5)

and the coefficient matrix in the system Eq. (3.24) becomes

⎛
⎜⎜⎝

−1 0 α1 Γ

0 −1 Γ α2
1 −1 0 0
0 0 1 1

⎞
⎟⎟⎠ (B.1)

where

α1 = 1

R1

(
1 − 15R1R3

2

4l4
δ4

)
,

123

Author's personal copy



1748 Q. Wang, H. G. Othmer

α2 = 1

R2

(
1 − 15R3

1 R2

4l4
δ4

)
,

Γ = δ
3

2l

(
1 − R2

1 + R2
2

3l2
δ2

)

We consider the stroke in Eq. (3.35) again, but with solution obtained with the first
reflection [Eq. (3.24), Fig. 4 black dots] or with both the first and the leading order
term from second reflections [Eq. (3.24) with coefficient matrix in Eq. (B.1), Fig. 4
green crosses]—the former is truncated from the δ4 term while the latter is from the
δ5 term. For small separation of the PMPY with l0 = 7, δ = 0.54, simulation of
the scaled translation and power are shown in Fig. 4, from which we see them match
well. For this system, the first reflection is correct to O(δ4) where δ4 ∼ 8.5E − 2,
while with the leading order term from the second reflection included, it is correct to
O(δ5) where δ5 ∼ 4.6E − 2. However, in the simulation, the difference between the
net translation after one cycle (X (1)) obtained by the two approximations is:

|X1stRef(1) − X2ndRef(1)| ∼ 8.9E − 3

When comparing with δ, this difference gives the estimation of

|X1stRef(1) − X2ndRef(1)| ∼ δ7.7

This implies that with δ as large as 0.54, the solution obtained from the first reflection
is accurate to the order of O(10−3) which approximates O(δ7.7).

C.2 Comparing the contributions of PD and PV to the power P .

As is discussed in Sect. 3.3, the power expended to propel a PMPY consists of two
parts: PD that results from the drag force on the spheres, and PV that results from the
radial expansion of the spheres. In addition, Eq. (3.31) shows that the higher-order
corrections to P only exists in PD . We repeat the simulations in Fig. 3 with different
values of l0 and show the results for PD and PV in Fig. 17, where PD and PV calculated
by the first reflection are shown by green and blue solid lines, resp., and PD calculated
by Avron’s asymptotic approximation is shown by black dots.

D Calculation of Ω
(1)
3,i

The angular velocity of sphere 3 (i.e., the free-floating sphere) Ω
(1)
3,i consists of two

parts: Ω(1, f )
3,i that results from the drag force on sphere i , and Ω

(1,e)
3,i that results from

the expansion of sphere i . Here we calculate them separately.
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Fig. 17 Comparing the contributions of PD and PV to the power P . Simulations are set up the same as in
Fig. 3, with l0 = 7, 12, 60µm (color figure online)

First, Ω
(1,e)
3,i , which results from the flow generated by the expansion of sphere i

is:

u(0,e)
i = R2

i Ṙi
x − xi

|x − xi |3 ,

and therefore

Ω
(1,e)
3,i = 1

2
∇ × u(e)

i

∣∣∣
x=x3

= R2
i Ṙi

2
∇ ×

( x − xi

|x − xi |3
)∣∣∣

x=x3
. (D.1)

Let r = x − xi and r = |x − xi |, then the antisymmetric part in Eq. (D.1) is

∂ j

( rk

r3

)
− ∂k

( r j

r3

)
=

(δ jk

r3
− 3r j rk

r5

)
−

(δk j

r3
− 3rkr j

r5

)
= 0

and therefore Ω
(1,e)
3,i = 0.

Next, Ω(1, f )
3,i , which results from the flow generated by the drag force Fi = Fiex

on sphere i , is given by

Ω
(1, f )
3,i = 1

2
∇ × u{Fi }

∣∣∣
x=x3

= 1

16πμ
∇ ×

[(1
r

+ 1

3r3

)
Fiex +

(1
r

− 1

r3

)
(Fiex · r

r
)
r
r

]∣∣∣
x=x3

= Fi

16πμ
∇ ×

[(1
r

+ 1

3r3

)
ex +

(1
r

− 1

r3

)rxr
r2

]
.

Since

∇ ×
( 1

rn
ex

)
= − nrz

rn+2 ey + nry

rn+2 ez

∇ ×
( rx

rn
r
)

= − rz

rn
ey + ry

rn
ez
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we have

Ω
(1, f )
3,i = Fi

8πμr3

[
− rzey + ryez

]∣∣∣
r=x3−xi

= Fi

8πμl3i3

(
x3 − xi

)
yez (D.2)

and therefore

Ω
(1)
3 =

∑
i=1,2

Ω
(1, f )
3,i + Ω

(1,e)
3,i =

∑
i=1,2

Fi

8πμl3i3

(
x3 − xi

)
yez . (D.3)

E Numerical scheme of two PMPY models

The following numerical scheme is written in terms of unscaled variables.
When the twoPMPYmodels both lie along the x-axis, and the spheres are numbered

1, 2, 3, 4 from the negative to the positive x-direction, the Eqs. (5.1–5.9) reduce to

(
A11 A12
A21 A22

) (
U
F

)
=

(
B1
B2

)
(E.1)

where

U =

⎛
⎜⎜⎝

U1
U2
U3
U4

⎞
⎟⎟⎠ , F = μ−1

⎛
⎜⎜⎝

F1
F2
F3
F4

⎞
⎟⎟⎠ .

Here A11 = −I4, where I4 is the 4 × 4 identity matrix, A12 = (ai j ) is a symmetric
4 × 4 matrix, with

aii = 1

6π Ri
, ai j = 1

4πli j

(
1 − R2

i + R2
j

3l2i j

)
(E.2)

and

(
A21 A22

) =

⎛
⎜⎜⎝
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

⎞
⎟⎟⎠ .

B1 ∈ R
4, is given by

(B1)i = −
∑
j �=i

sign(i − j)Ṙ j

( R j

li j

)2
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and

B2 =

⎛
⎜⎜⎝

−l̇12
−l̇34
0
0

⎞
⎟⎟⎠ .

With the second reflection considered, the leading term inU(2)
i is of order δ4, which

results from the drag forces and can be computed from the following equations:

U(2, f )
i =

(
1 + R2

i

6

)
∇2

k �=i, j∑
j,k

u(1)
jk

∣∣∣
x=xi

where

u(1)
jk = (

S(1)
k, j · ∇) · G(x − xk)

8πμ
+ · · ·

and the stresslet S(1)
k, j is

S(1)
k, j = 20

3
πμR3

k

(
1 + R2

k

10
∇2)E(0)

j

∣∣∣
x=xk

where E(0)
j is the rate of deformation resulting from u j .

To compute U(2, f )
i , we follow the computation framework provided in (Kim and

Karrila 1991), with the algebra reduced from the system geometry. First we have

S(1)
k, j =

[
− 5

2

R3
k

l2k j

+ 3

2

R5
k

l4k j

(
1 + 5

3

R2
j

R2
k

)](
d jkd jk − 1

3
I
)
d jk · F j

− 1

2

R5
k

l4k j

(
1 + 5

3

R2
j

R2
k

)(
F jd jk + d jkF j − 2d jkd jkd jk · F j

)

where

d jk = xk − x j

lk j
= sign(k − j)ex , F j = Fjex

thus

S(1)
k, j = Fj sign(k − j)

[
− 5

2

R3
k

l2k j

+ 3

2

R5
k

l4k j

(
1 + 5

3

R2
j

R2
k

)](
exex − 1

3
I
)
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Let

Λk, j = sign(k − j)
[

− 5

2

R3
k

l2k j

+ 3

2

R5
k

l4k j

(
1 + 5

3

R2
j

R2
k

)]

after some direct calculation, we obtain

u(1)
jk = [

FjΛk, j
(
exex − 1

3
I
) · ∇] · G(x − xk)

8πμ
= FjΛk, j

8πμ

( r
r3

− 3r2x
r5

r
)

thus

(
1 + R2

i

6

)
∇2u(1)

jk

∣∣∣
x=xi

= FjΛk, j

8πμ

[ xi−xk

|xi−xk |3−3
(
(xi − xk) · ex

)2
|xi − xk |5 (xi − xk) + R2

i

6
∇2

( r
r3

− 3r2x
r5

r
)∣∣∣

x=xi

]

∼ Fj

8πμ
sign(k − j)

(
− 5

2

R3
k

l2k j

+ O
( 1

l4k j

))(
− 2sign(i − k)

l2ik
ex + O

( 1

l4ik

))

= Fj

8πμ
sign(k − j)sign(i − k)

5R3
k

l2k j l
2
ik

ex + O
( 1

l6
)

Finally we get

U(2, f )
i =

(
1 + R2

i

6

)
∇2

k �=i, j∑
j,k

u(1)
jk

∣∣∣
x=xi

=
∑

j

Fj

8πμ

∑
k �=i, j

sign(k − j)sign(i − k)
5R3

k

l2k j l
2
ik

ex + O
( 1

l6
)

after non-dimensionalization, it gives

U(2, f )
i =

(
1 + R2

i

6

)
∇2

k �=i, j∑
j,k

u(1)
jk

∣∣∣
x=xi

=
∑

j

15

4
Fjδ

4
∑

k �=i, j

sign(k − j)sign(i − k)
R3

k

l2k j l
2
ik

ex + O
(
δ6

)

Our analysis in Appendix B shows that U(2,e)
i ∼ O(δ5), therefore

U(2)
i =

∑
j

15

4
Fjδ

4
∑

k �=i, j

sign(k − j)sign(i − k)
R3

k

l2k j l
2
ik

ex + O
(
δ5

)
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With the leading terms from the second reflection added to the system, the algorithm
given at the beginning of this part is modified as A12 = (ai j + ãi j ), where ai j is given
by Eq. (E.2) and

ãi j = 5

8π

∑
k �=i, j

sign(k − j)sign(i − k)
R3

k

l2k j l
2
ik

F Asymptotic analysis of the three systems consisting of two hobbled
PMPYs

For simplicity, we denote the distance between any two spheres i and j by li j . For
example, l13 = l12 + l23.

F.1 System A (two dumb-bells) with controls in (l̇ I , l̇ I I )

The asymptotic behavior of the velocity of the spheres is

U1 ∼ F1

6πμR1
+ F2

4πμl12
+ F3

4πμl13
+ F4

4πμl14

U2 ∼ F1

4πμl12
+ F2

6πμR2
+ F3

4πμl23
+ F4

4πμl24

U3 ∼ F1

4πμl13
+ F2

4πμl23
+ F3

6πμR3
+ F4

4πμl34

U4 ∼ F1

4πμl14
+ F2

4πμl24
+ F3

4πμl34
+ F4

6πμR4

with relations and constraints

U2 − U1 = l̇12 = ξI , U4 − U3 = l̇34 = ξI I

F1 + F2 = 0, F3 + F4 = 0.

After scaling with hat notation omitted, the system becomes

U1 ∼ F1

R1
+ 3

2

[ F2

l12
+ F3

l13
+ F4

l14

]
δ

U2 ∼ F2

R2
+ 3

2

[ F1

l12
+ F3

l23
+ F4

l24

]
δ

U3 ∼ F3

R3
+ 3

2

[ F1

l13
+ F2

l23
+ F4

l34

]
δ

U4 ∼ F4

R4
+ 3

2

[ F1

l14
+ F2

l24
+ F3

l34

]
δ

U2 − U1 = l̇12 = ξI , U4 − U3 = l̇34 = ξI I

F1 + F2 = 0, F3 + F4 = 0.
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With F2 = −F1, F4 = −F3, the system is simplified to

U1 ∼ F1

( 1

R1
− 3δ

2l12

)
+ 3

2
F3δ

( 1

l13
− 1

l14

)

U2 ∼ F1

( 3δ

2l12
− 1

R2

)
+ 3

2
F3δ

( 1

l23
− 1

l24

)

U3 ∼ 3

2
F1δ

( 1

l13
− 1

l23

)
+ F3

( 1

R3
− 3δ

2l34

)

U4 ∼ 3

2
F1δ

( 1

l14
− 1

l24

)
+ F3

( 3δ

2l34
− 1

R3

)
.

When R1 = R2 = R3 = R4 = R,

ξI = U2 − U1 ∼ −F1

( 1

R1
+ 1

R2

)
⇒ F1 = − R

2
ξI

ξI I = U4 − U3 ∼ −F3

( 1

R3
+ 1

R4

)
⇒ F3 = − R

2
ξI I .

Velocities of the PMPYs:

U I = 1

2

(
U1 + U2

)
= 1

2
F1

( 1

R1
− 1

R2

)
+ 3

4
F3δ

( 1

l13
− 1

l14
+ 1

l23
− 1

l24

)

∼ −3

8
RξI I δ

( 1

l13
− 1

l14
+ 1

l23
− 1

l24

)

U I I = 1

2

(
U3 + U4

)
= 3

4
F1δ

( 1

l13
− 1

l23
+ 1

l14
− 1

l24

)
+ 1

2
F1

( 1

R3
− 1

R4

)

∼ −3

8
RξI δ

( 1

l13
− 1

l23
+ 1

l14
− 1

l24

)

Power of the PMPYs:

PI = F1U1 + F2U2 = F1
(
U1 − U2

) = −F1ξI = R

2
ξ2I

PI I = F3U3 + F4U4 = F3
(
U3 − U4

) = −F3ξI I = R

2
ξ2I I

However, we observe that although U I , U I I scale like O(δ), the net translations
X I , X I I do not. Without loss of generality, we consider the first integral term in X I :

∫
U I dt = −3

8
Rδ

∫ 1

0

ξI I (t)

l13(t)
dt

l13 can be written as l13 = l12 + l23 = 2 + Δl12 + Δl23, where Δl12,Δl23 ∼ O(δ),
thus

1

l13
= 1

2 + Δl12 + Δl23
= 1

2
− Δl12 + Δl23

4
+ O(δ2)
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and

−3

8
Rδ

∫ 1

0

ξI I (t)

l13(t)
dt = −3

8
Rδ

∫ 1

0
ξI I

(1
2

− Δl12 + Δl23
4

)
dt + O(δ3)

= − 3

16
Rδ

∫ 1

0
ξI I dt + 3

32
Rδ

∫ 1

0
ξI I (Δl12 + Δl23)dt + O(δ3).

The first integral vanishes since it is path-independent, the second one is an O(δ2)

term, hence

−3

8
Rδ

∫ 1

0

ξI I (t)

l13(t)
dt ∼ O(δ2).

A similar argument applies to all other integrals in X I , X I I , thus at most X I , X I I ∼
O(δ2).

When the radii are not all equal, the leading order term of U I , U I I scales as O(1),
but this does not contribute to the net translations and we still have X I , X I I ∼ O(δ2).
This is because the leading order terms are of the form Φξ(t), where the coefficient Φ
depends on the radii only, thus

∫
Φξdt is again path-independent. Also in this case,

the O(δ) terms in U I , U I I become more complicated, but they are still of the form
Φξ/ li j , where Φ depends on the radii only, and the same argument above applies,
thus in the end we have X I , X I I ∼ O(δ2).

F.2 System B with controls in (Ṙ1, Ṙ3)

The asymptotic behavior of the velocity of each sphere is

U1 ∼ F1

6πμR1
+

[ F2

4πμl12
−

( R2

l12

)2
Ṙ2

]
+

[ F3

4πμl13
−

( R3

l13

)2
Ṙ3

]

+
[ F4

4πμl14
−

( R4

l14

)2
Ṙ4

]

U2 ∼ F2

6πμR2
+

[ F1

4πμl12
+

( R1

l12

)2
Ṙ1

]
+

[ F3

4πμl23
−

( R3

l23

)2
Ṙ3

]

+
[ F4

4πμl24
−

( R4

l24

)2
Ṙ4

]

U3 ∼ F3

6πμR3
+

[ F1

4πμl13
+

( R1

l13

)2
Ṙ1

]
+

[ F2

4πμl23
+

( R2

l23

)2
Ṙ2

]

+
[ F4

4πμl34
−

( R4

l34

)2
Ṙ4

]

U4 ∼ F4

6πμR4
+

[ F1

4πμl14
+

( R1

l14

)2
Ṙ1

]
+

[ F2

4πμl24
+

( R2

l24

)2
Ṙ2

]

+
[ F3

4πμl34
+

( R3

l34

)2
Ṙ3

]
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with relations

U2 − U1 = 0, U4 − U3 = 0

F1 + F2 = 0, F3 + F4 = 0

R2
1 Ṙ1 + R2

2 Ṙ2 = 0 ⇒ R2
2ζ2 = −R2

1ζ1

R2
3 Ṙ3 + R2

4 Ṙ4 = 0 ⇒ R2
4ζ4 = −R2

3ζ3.

After scaling with hat notation omitted

U1 ∼ F1

R1
+

[3F2

2l12
δ −

( R2

l12

)2
ζ2δ

2
]

+
[3F3

2l13
δ −

( R3

l13

)2
ζ3δ

2
]

+
[3F4

2l14
δ −

( R4

l14

)2
ζ4δ

2
]

U2 ∼ F2

R2
+

[3F1

2l12
δ +

( R1

l12

)2
ζ1δ

2
]

+
[3F3

2l23
δ −

( R3

l23

)2
ζ3δ

2
]

+
[3F4

2l24
δ −

( R4

l24

)2
ζ4δ

2
]

U3 ∼ F3

R3
+

[3F1

2l13
δ +

( R1

l13

)2
ζ1δ

2
]

+
[3F2

2l23
δ +

( R3

l23

)2
ζ2δ

2
]

+
[3F4

2l34
δ −

( R4

l34

)2
ζ4δ

2
]

U4 ∼ F4

R4
+

[3F1

2l14
δ +

( R1

l14

)2
ζ1δ

2
]

+
[3F2

2l24
δ +

( R3

l24

)2
ζ2δ

2
]

+
[3F3

2l34
δ +

( R3

l34

)2
ζ3δ

2
]
.

With F2 = −F1, F4 = −F3, the system becomes

U1 ∼ F1

( 1

R1
− 3δ

2l12

)
+ 3F3

2
δ
( 1

l13
− 1

l14

)

+ δ2
[

−
( R2

l12

)2
ζ2 −

( R3

l13

)2
ζ3 −

( R4

l14

)2
ζ4

]

U2 ∼ F1

(
− 1

R2
+ 3δ

2l12

)
+ 3F3

2
δ
( 1

l23
− 1

l24

)

+ δ2
[( R1

l12

)2
ζ1 −

( R3

l23

)2
ζ3 −

( R4

l24

)2
ζ4

]

U3 ∼ 3F1

2
δ
( 1

l13
− 1

l23

)
+ F3

( 1

R3
− 3δ

2l34

)

+ δ2
[( R1

l13

)2
ζ1 +

( R2

l23

)2
ζ2 −

( R4

l34

)2
ζ4

]
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U4 ∼ 3F1

2
δ
( 1

l14
− 1

l24

)
+ F3

(
− 1

R4
+ 3δ

2l34

)

+ δ2
[( R1

l14

)2
ζ1 +

( R2

l24

)2
ζ2 +

( R3

l34

)2
ζ3

]
.

Expand F1, F3 as

F1 = F0
1 + δF1

1 + δ2F2
1 + O(δ3), F3 = F0

3 + δF1
3 + δ2F2

3 + O(δ3);

then

U1 ∼ F0
1

R1
+ δ

F1
1

R1
− δ

3F0
1

2l12
+ δ2

F2
1

R1
− δ2

3F1
1

2l12
+ 3

2
δF0

3

( 1

l13
− 1

l14

)

+ 3

2
δ2F1

3

( 1

l13
− 1

l14

)

+ δ2
[

−
( R2

l12

)2
ζ2 −

( R3

l13

)2
ζ3 −

( R4

l14

)2
ζ4

]
+ O(δ3)

U2 ∼ − F0
1

R2
− δ

F1
1

R2
+ δ

3F0
1

2l12
− δ2

F2
1

R2
+ δ2

3F1
1

2l12

+ 3

2
δF0

3

( 1

l23
− 1

l24

)
+ 3

2
δ2F1

3

( 1

l23
− 1

l24

)

+ δ2
[( R1

l12

)2
ζ1 −

( R3

l23

)2
ζ3 −

( R4

l24

)2
ζ4

]
+ O(δ3)

U3 ∼ F0
3

R3
+ δ

F1
3

R3
− δ

3F0
3

2l34
+ δ2

F2
3

R3
− δ2

3F1
3

2l34

+ 3

2
δF0

1

( 1

l13
− 1

l23

)
+ 3

2
δ2F1

1

( 1

l13
− 1

l23

)

+ δ2
[( R1

l13

)2
ζ1 +

( R2

l23

)2
ζ2 −

( R4

l34

)2
ζ4

]
+ O(δ3)

U4 ∼ − F0
3

R4
− δ

F1
3

R4
+ δ

3F0
3

2l34
− δ2

F2
3

R4
+ δ2

3F2
3

2l34

+ 3

2
δF0

1

( 1

l14
− 1

l24

)
+ 3

2
δ2F1

1

( 1

l14
− 1

l24

)

+ δ2
[( R1

l14

)2
ζ1 +

( R2

l24

)2
ζ2 +

( R3

l34

)2
ζ3

]
+ O(δ3).

Compare the O(1) terms:

U 0
1 = U 0

2 ⇒ F0
1

R1
= − F0

1

R2
⇒ F0

1 = 0, similarly, F0
3 = 0.
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Compare the O(δ) terms:

U 1
1 = U 1

2 ⇒ F1
1

R1
= − F1

1

R2
⇒ F1

1 = 0, similarly, F1
3 = 0.

Compare the O(δ2) terms:

U 2
1 = F2

1

R1
+

[
−

( R2

l12

)2
ζ2 −

( R3

l13

)2
ζ3 −

( R4

l14

)2
ζ4

]

U 2
2 = − F2

1

R2
+

[( R1

l12

)2
ζ1 −

( R3

l23

)2
ζ3 −

( R4

l24

)2
ζ4

]

U 2
1 = U 2

2 ⇒ F2
1 = R1R2

R1 + R2

( 1

l213
− 1

l223
− 1

l214
+ 1

l224

)
R2
3ζ3

and similarly,

U 2
3 = F2

3

R3
+

[( R1

l13

)2
ζ1 +

( R2

l23

)2
ζ2 −

( R4

l34

)2
ζ4

]

U 2
4 = − F2

3

R4
+

[( R1

l14

)2
ζ1 +

( R2

l24

)2
ζ2 +

( R3

l34

)2
ζ3

]

U 2
3 = U 2

4 ⇒ F2
3 = R3R4

R3 + R4

( 1

l214
− 1

l213
− 1

l224
+ 1

l223

)
R2
1ζ1.

Velocities of the PMPYs:

UI = U1 = U2 = R2
1

l212
ζ1δ

2 + R2
3ζ3δ

2
[ R1

R1 + R2

( 1

l214
− 1

l213

)

+ R2

R1 + R2

( 1

l224
− 1

l223

)]

UI I = U3 = U4 = R2
3

l234
ζ3δ

2 + R2
1ζ1δ

2
[ R3

R3 + R4

( 1

l213
− 1

l223

)

+ R4

R3 + R4

( 1

l214
− 1

l224

)]

Power of the PMPYs:

PI = 8

3

(
R1ζ

2
1 + R2ζ

2
2

) = 8

3
R1

R3
1 + R3

2

R3
2

ζ 2
1

PI I = 8

3

(
R3ζ

2
3 + R4ζ

2
4

) = 8

3
R3

R3
3 + R3

4

R3
4

ζ 2
3
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F.3 System C with controls in (l̇ I , Ṙ3)

The asymptotic behavior of the velocity of each sphere is

U1 ∼ F1

6πμR1
+ F2

4πμl12
+

[ F3

4πμl13
−

( R3

l13

)2
Ṙ3

]
+

[ F4

4πμl14
−

( R4

l14

)2
Ṙ4

]

U2 ∼ F2

6πμR2
+ F1

4πμl12
+

[ F3

4πμl23
−

( R3

l23

)2
Ṙ3

]
+

[ F4

4πμl24
−

( R4

l24

)2
Ṙ4

]

U3 ∼ F3

6πμR3
+ F1

4πμl13
+ F2

4πμl23
+

[ F4

4πμl34
−

( R4

l34

)2
Ṙ4

]

U4 ∼ F4

6πμR4
+ F1

4πμl14
+ F2

4πμl24
+

[ F3

4πμl34
+

( R3

l34

)2
Ṙ3

]

with relations

U2 − U1 = l̇12 = ξI , U4 − U3 = 0

F1 + F2 = 0, F3 + F4 = 0

R2
3ζ3 + R2

4ζ4 = 0 ⇒ R2
4ζ4 = −R2

3ζ3.

After scaling

U1 ∼ F1

R1
+ 3F2

2l12
δ +

[2F3

2l13
δ −

( R3

l13

)2
ζ3δ

2
]

+
[3F4

2l14
δ −

( R4

l14

)2
ζ4δ

2
]

U2 ∼ F2

R2
+ 3F1

2l12
δ +

[2F3

2l23
δ −

( R3

l23

)2
ζ3δ

2
]

+
[3F4

2l24
δ −

( R4

l24

)2
ζ4δ

2
]

U3 ∼ F3

R3
+ 3F1

2l13
δ + 3F2

2l23
δ +

[3F4

2l34
δ −

( R4

l34

)2
ζ4δ

2
]

U4 ∼ F4

R4
+ 3F1

2l14
δ + 3F2

2l24
δ +

[3F3

2l34
δ +

( R3

l34

)2
ζ3δ

2
]
.

With F2 = −F1, F4 = −F3, the system is simplified to

U1 ∼ F1

R1
− 3F1

2l12
δ +

[3F3

2l13
δ −

( R3

l13

)2
ζ3δ

2
]

+
[

− 3F3

2l14
δ +

( R3

l14

)2
ζ3δ

2
]

U2 ∼ − F1

R2
+ 3F1

2l12
δ +

[3F3

2l23
δ −

( R3

l13

)2
ζ3δ

2
]

+
[

− 3F3

2l24
δ +

( R3

l24

)2
ζ3δ

2
]

U3 ∼ F3

R3
+ 3F1

2l13
δ − 3F1

2l23
δ + +

[
− 3F3

2l34
δ +

( R3

l34

)2
ζ3δ

2
]

U4 ∼ − F3

R4
+ 3F1

2l14
δ − 3F1

2l24
δ + +

[3F3

2l34
δ +

( R3

l34

)2
ζ3δ

2
]
.

For PMPY I,

ξI = U2 − U1 ∼ −F1
( 1

R1
+ 1

R2

) ⇒ F1 = − R1R2

R1 + R2
ξI ,
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thus for PMPY II,

U3 ∼ F3

R3
− 3

2

R1R2

R1 + R2
ξI δ

( 1

l13
− 1

l23

)
− 3F3

2l34
δ +

( R3

l34

)2
ζ3δ

2

U4 ∼ − F3

R4
− 3

2

R1R2

R1 + R2
ξI δ

( 1

l14
− 1

l24

)
+ 3F3

2l34
δ +

( R3

l34

)2
ζ3δ

2.

Expand F3 as F3 = F0
3 + δF1

3 + δ2F2
3 + O(δ3),

U3 ∼ F0
3

R3
+ δ

F1
3

R3
+ δ2

F2
3

R3
− 3

2

R1R2

R1 + R2
ξI δ

( 1

l13
− 1

l23

)
− 3F0

3

2l34
δ − 3F1

3

2l34
δ2

+
( R3

l34

)2
ζ3δ

2

U4 ∼ − F0
3

R4
− δ

F1
3

R4
− δ2

F2
3

R4
− 3

2

R1R2

R1 + R2
ξI δ

( 1

l14
− 1

l24

)
+ 3F0

3

2l34
δ + 3F1

3

2l34
δ2

+
( R3

l34

)2
ζ3δ

2

Compare the O(1) terms

U 0
3 = U 0

4 ⇒ F0
3

R3
= − F0

3

R4
⇒ F0

3 = 0.

Compare the O(δ) terms

U 1
3 = U 1

4 ⇒ F1
3 = 3

2

R1R2

R1 + R2

R3R4

R3 + R4
ξI

( 1

l13
− 1

l23
− 1

l14
+ 1

l24

)

Velocities of the PMPYs:

U I = 1

2
(U1 + U2)

= 9

8

R1R2R3R4

(R1 + R2)(R3 + R4)
ξI δ

2
( 1

l13
− 1

l14
+ 1

l23
− 1

l24

)2

+ 1

2
R2
3ζ3δ

2
( 1

l214
− 1

l213
+ 1

l224
− 1

l223

)

U I I = U3 = U4

∼ 3

2

R1R2

R1 + R2
ξI δ

[ R3

R3 + R4

( 1

l23
− 1

l13

)
+ R4

R3 + R4

( 1

l24
− 1

l14

)]

Power of the PMPYs:

PI = F1U1 + F2U2 = F1(U1 − U2) = −F1ξI = R1R2

R1 + R2
ξ2I
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PI I = 8

3
(R3ζ

2
3 + R4ζ

2
4 ) = 8

3
R3

R3
3 + R3

4

R3
4

ζ 2
3
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