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Abstract Recent experimental work has shown that eukaryotic cells can swim in a
fluid as well as crawl on a substrate. We investigate the swimming behavior of Dic-
tyostelium discoideum amoebae who swim by initiating traveling protrusions at the
front that propagate rearward. In our model we prescribe the velocity at the surface of
the swimming cell, and use techniques of complex analysis to develop 2D models that
enable us to study the fluid-cell interaction. Shapes that approximate the protrusions
used by Dictyostelium discoideum can be generated via the Schwarz—Christoftel trans-
formation, and the boundary-value problem that results for swimmers in the Stokes
flow regime is then reduced to an integral equation on the boundary of the unit disk. We
analyze the swimming characteristics of several varieties of swimming Dictyostelium
discoideum amoebae, and discuss how the slenderness of the cell body and the shapes
of the protrusion effect the swimming of these cells. The results may provide guidance
in designing low Reynolds number swimming models.
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1 Introduction

Cell locomotion is essential throughout the development and adult forms of uni- and
multi-cellular organisms. It is beneficial in various types of taxis, in morphogenetic
movements during development, and in the immune response and wound healing in
adults, but it plays a deleterious role in cancer metastasis. When movement is in
response to extracellular signals, it involves the detection and transduction of those
signals, which can be biochemical, mechanical or of other types, the integration of the
signals into an intracellular signal, and the spatio-temporal control of the intracellular
biochemical and mechanical responses that lead to force generation, morphological
changes and directed movement (Sheetz et al. 1999). Many single-celled organisms
use flagella or cilia to swim, and many mathematical models of swimming in such
organisms have been developed (Lauga and Powers 2009). The movements of eukary-
otic cells that lack such structures fall into two broad categories: mesenchymal and
amoeboid (Binamé et al. 2010). The former can be characterized as ‘crawling’ in
fibroblasts or ‘gliding’ in keratocytes, and involves the extension of either pseudopo-
dia and/or lamellipodia driven by actin polymerization at the leading edge. This mode
dominates in cells such as fibroblasts when moving on a 2D substrate. On flat sur-
faces the predominant protrusions are lamellipodia and these processes suffice, but in
the extracellular matrix (ECM) the protrusions and cell body are more rounded, and
the cells may also secrete matrix-degrading proteases (MMPs) and ‘tunnel’ their way
through the ECM (Martins and Kolega 2006; Mantzaris et al. 2004).

In the amoeboid mode cells are more rounded, and move through the ECM by
avoiding obstacles when possible, rather than removing them. Thus they rely less on
attachment to the ECM and degradation of it, and instead exploit variations in the
ECM to move through it by shape changes. In this mode force transmission to the
ECM depends on shape changes driven by localized remodeling of the cytoskeleton
(CSK) and myosin contraction (Insall and Machesky 2009). Cells such as leukocytes,
which normally use the mesenchymal mode in the ECM, can migrate in vivo in the
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absence of integrins, using a ’flowing and squeezing’ mechanism (Ldmmermann et al.
2008). The human parasite Entamoeba histolytica uses an extreme form of amoeboid
movement called blebbing, in which the membrane detaches from the CSK (Maugis
et al. 2010), whereas zebrafish primordial germ cells and Dictyostelium discoideum
(Dd) cells move using a combination of blebbing and protrusion by spatio-temporal
control of the membrane attachment to the CSK (Blaser et al. 2006; Diz-Muiioz et al.
2010; Yoshida and Soldati 2006; Zatulovskiy et al. 2014). Cells using this mode can
move up to forty times faster than those using strong adhesion (Renkawitz and Sixt
2010). Recent experiments have shown that numerous cell types display enormous
plasticity in locomotion in that they sense the mechanical properties of their envi-
ronment and adjust the balance between the modes by altering the balance between
parallel signal transduction pathways (Renkawitz et al. 2009; Renkawitz and Sixt
2010). Thus crawling and swimming are the extremes on a continuum of locomotion
strategies, but many cells sense their environment and use the most efficient strategy
in a given context.

Heretofore mathematical modeling has focused primarily on either the mesenchy-
mal mode, in which cells crawl via attachments to a substrate (Danuser et al. 2013),
or on microorganisms that swim using flagella or cilia (Suarez and Pacey 2006; Berg
and Anderson 1973; Lowe et al. 1987; Gibbons 1981; Sleigh et al. 1988; Ishimoto
and Gaffney 2014). Here we analyze swimming of larger cells, motivated by recent
experiments which show that both neutrophils and Dd can swim—in the strict sense of
propelling themselves through a fluid using only fluid-cell interactions—in response
to chemotactic gradients (Barry and Bretscher 2010; Bae and Bodenschatz 2010; Van
Haastert 2011). A basic question that arises is what pattern of shape changes are
effective in propelling a cell. It has been reported (Salbreux et al. 2007) that freely
suspended Swiss-3T3 fibroblast cells without cell-substrate adhesion can exhibit oscil-
latory shape dynamics, and some of them may also exhibit periodic bleb dynamics
correlating with the oscillations, where blebs are hemispherical membrane blisters
induced by cortical contraction (Fackler and Grosse 2008; Paluch et al. 2005). The
combination of both dynamics may result in a random oscillation of the cell in space.
In comparison with such random motion, Dictyostelium and neutrophils can utilize the
amoeboid swimming mode in which the cell body is elongated and small protrusions
that provide the momentum transfer needed for motion are propagated from front to
rear (Barry and Bretscher 2010; Bae and Bodenschatz 2010; Van Haastert 2011).

In the following section we formulate the basic problem of swimming by shape
deformations in 2D at low Reynolds number, which is the relevant regime for single
cell movement. In 2D one can introduce a stream function, which leads to a biharmonic
equation, and the general solution of the Stokes problem is expressed in terms of two
analytic functions—the Goursat functions—that are determined by the motion of the
boundary of the swimmer (Bouffanais et al. 2013; Chambrion and Munnier 2011;
Cherman et al. 2000). This in turn leads to an integral equation for one of these
functions, and the second function can then be expressed in terms of the first. In
Sect. 4 we study the motion of Dd in 2D, and approximate the shape changes using
polygonal approximations. Using the Schwarz—Christoffel transformation, we reduce
the problem to the solution of a linear system of equations for basis functions on the
boundary of the unit disk. We show that realistic propagating shapes can produce

@ Springer



Q. Wang, H. G. Othmer

propulsion at speeds in the range observed experimentally using realistic choices of
the parameters.

Since cell movement, whether on a solid substrate, in a fluid, or in a complex
medium such as the ECM, involves the interplay between biochemical and mechanical
processes, dissecting the roles of each is a first step toward an integrated description of
movement. A major objective of our work is to answer a question posed by experimen-
talists, which is ‘How does deformation of the cell body translate into locomotion?’
(Renkawitz and Sixt 2010). A longer-range goal is to produce a unified description for
swimming that integrates signaling and mechanics in viscous and viscoelastic envi-
ronments similar to the extracellular tissue environment. As one experimentalist stated
"the complexity of cell motility and its regulation, combined with our increasing mole-
cular insight into mechanisms, cries out for a more inclusive and holistic approach,
using systems biology or computational modeling, to connect the pathways to overall
cell behavior’ (Insall and Machesky 2009).

2 Low Reynolds number swimming problems
2.1 General description of swimming mechanics at low Reynolds numbers

Recent interest in the motion of biological organisms in a viscous fluid was re-kindled
by Purcell’s (1977) description of life at low Reynolds number (LRN), and a wide vari-
ety of applications have been analyzed since then. A review of some of these is given
elsewhere (Lauga and Powers 2009), and we only describe the relevant background.
We consider motion in an incompressible Newtonian fluid of density p, viscosity wu,
and velocity u, for which the governing equations are

ou
pEer(u-V)u=V~T+f=—Vp+uAu+f, (2.1
V.-u=0 2.2)
where T = —pé + u(Vu + (Vu)T) is the viscous stress tensor. f is the external

force field, which we assume to be zero or include it in the pressure hereafter. This
is appropriate for the experimental configuration described in (Barry and Bretscher
2010), since the fluid had a variable density that allowed cells to find a point of neutral
buoyancy. The Reynolds number based on a characteristic length scale L and speed
scale U is Re = pLU/jt, and when converted to dimensionless form and the symbols
re-defined, the equations read

9
Re - Sza—’; Y Re(w-Vyu=—Vp+ Au 2.3)
V.-u=0.

Here SI = wL/U is the Strouhal number and w is a characteristic frequency of the
shape changes. When Re « 1 the convective momentum term in (2.3) can be neglected,
but the time variation requires that Re - SI = wL?/v < 1. This is not always true,
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even for small swimmers (Ishimoto 2013; Wang and Ardekani 2012), but as we show
next, it applies here.

The small size and slow speed of cells considered here leads to LRN flows, and in
this regime cells move by exploiting the viscous resistance of the fluid. For example,
Dd amoebae have a typical length L ~ 25 pm and can swim at U ~ 3 pm/min (Van
Haastert 2011). Assuming the medium is water (p ~ 10> kg m™3, u ~ 1073 Pas),
and the deformation frequency w ~ 1/s, Re ~ ¢/(107°) and SI ~ ¢(10~%). In fact
the experiments are done in oil that is significantly more viscous (Barry and Bretscher
2010). In any case, when both inertial terms on the left hand side of (2.3) are neglected,
which we assume hereafter, the flow is governed by the Stokes equations

pAu—Vp=0, V-.u=0. (2.4)

Throughout we consider the propulsion problem in an infinite domain and assume that
the fluid is at rest at infinity.

Since time does not appear in the equations, a time-reversible stroke produces
no net motion, which is the content of the famous ‘scallop theorem’ (Purcell 1977).
Furthermore, since we assume that there is no inertia in the fluid (momentum transfer
is assumed to be instantaneous), in the Stokes regime there is no net force or torque on a
self-propelled swimmer moving in an infinite fluid that is at rest at infinity. One can see
this by integrating the stress over the boundary of the swimmer and then equating this
via the momentum equation to the stress on a circle at infinity (Shapere and Wilczek
1989b). Therefore movement is a purely geometric process: the net displacement of
a swimmer during a stroke is independent of the rate at which the stroke is executed
when Re = 0, and approximately so as long as Re - S/ remains small enough.

Let £2(t) € R" be the swimmer (a compact set with a sufficiently smooth boundary).
Throughout we consider a fixed global reference frame (x, ¢) and a body frame (X, ¢)
attached to the swimmer, where time is scaled the same in both frames. We use the
notation 082y (¢) and 9£2x(¢) to denote the boundary of £2 in the fixed and body
frames, resp., and when observed from the body frame, the shape deformations of
the swimmer are specified as us(X, t) for X € 982y (¢). Denote the uniform (rigid-
body) translational and rotational velocities of the swimmer when observed from the
fixed frame as U(¢) and o(t), respectively. Then the instantaneous velocity on the
swimmer’s surface 082y (t) is

u(x,t) =U() + o) x x +us(X, 1) 2.5)

where u satisfies (2.4).

A swimming stroke is specified by a time-dependent sequence of shapes, and it is
cyclic if the initial and final shapes are identical (Shapere and Wilczek 1989b). The
canonical LRN self-propulsion problem is—given a cyclic shape deformation speci-
fied by ug, solve the Stokes equations subject to the zero force and torque conditions

F(;)E/ T.n=0, T(t)z/ xA(T-nN)=0 (2.6)
082y (1) 982y (1)
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and the boundary conditions
upo =us+U+ o0 XX, Ulyooo=0 2.7

where N is the exterior normal.

How does the swimmer move if force- and torque-free? It would appear that at best
it can only translate or rotate at a constant rate. However, an arbitrary deformation
of the surface will not satisfy (2.6) in general, and in particular, will generate a flow
at infinity. However, since we assume that the fluid is at rest there this flow must
be counteracted by an imposed flow, which then defines the rigid linear and angular
velocities of the swimmer, and leads to satisfaction of the force-free and torque-free
conditions (Shapere and Wilczek 1989b). Since the shape changes are time-dependent
the counterflow is also, as are the rigid translations and rotations.

Thus the canonical LRN swimming problem is: given a cyclic sequence of shape
deformations by specifying us on the boundary d2x of the swimmer, solve the Stokes
equations (2.4) for a trial velocity field u and then use the force-free and torque-free
conditions to determine U and ® so as to satisfy the boundary conditions at infinity. In
what follows we restrict attention to swimming in two space dimensions, and describe
the problem as the 2D LRN swimming (2DLRNS) problem.

2.2 The 2D swimmer

In two space dimensions techniques from complex analysis can be used to significantly
simplify the problem of computing solutions to the Stokes equations for LRN swim-
ming problems. Two main methods have been developed that can be applied, one that
was first developed by Muskhelishvili to solve problems in elasticity (Muskhelishvili
2013), and another that is essentially a boundary integral method (Pozrikidis 1992)
for 2D problems (Greengard et al. 1996; Kropinski 1999, 2001, 2002; Kropinski
and Lushi 2011). Significant analytical insights can be gained using Muskhelishvili’s
method, including the application of control theory to LRN swimming (Shapere and
Wilczek 1989a,b; Kelly 1989; Kelly and Murray 2000), and we use this method in
this paper.

In 2D the incompressibility condition V - u = 0 in (2.4) can be satisfied by intro-
ducing a stream function A(z, Z; t), which is a real-valued scalar potential such that

Here and hereafter we use u € C to denote the velocity field (denoted by u in Sect.
2.1) in the complex z-plane. Then the Stokes equations (2.4) imply that A satisfies the
biharmonic equation

AZA = 0. (2.8)
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Table 1 Representation of

various physical quantities by Velocity u=¢@ —z20'(2) — x'(2)
the Goursat functions Pressure p = —4uR{$’(2)}
Vorticity ¥ = —43{¢'(2)}
Stress force f=4uR@®)Hn —2u@zd" + xHn

Stress force (differential form) fds = =2ipd (¢ + z? + 7)

The general solution of (2.8) can be expressed by Goursat’s formula (Muskhelishvili
2013)

Az, 7 0) = R[Zp(z 1) + x(z:1)] (2.9)

where for any #, ¢ (z; t) and x (z; t) are analytic functions on the fluid domain C\ £2(¢)
and continuous on C\int§2(z), where int £2 denotes the interior of £2. ¢(z;t) and
x (z; t) are the Goursat functions. To simplify the expression of physical quantities and
the following discussion, we hereafter impose the substitution ¢ — —i¢, x — —ix,
as suggested by Shapere and Wilczek (Shapere and Wilczek 1989b), and Table 1 gives
the expressions of several physical quantities in terms of these functions. In the table
and hereafter we denote 9, by ' for simplicity, n = —idz/ds gives the exterior normal
to 02 (i.e., directed into the fluid domain), and s denotes the arc length, traversed
counterclockwise.

For swimming problems in a 2D Stokes flow in the unbounded domain C/£2(¢),
we require that the stress vanish at infinity, and as a result the Goursat functions must
take the general form (Muskhelishvili 2013; Greengard et al. 1996):

X(1)+iY (1)
27 (14 k(1))

XO = iY® ot T 210
27 (1 4+« (1))

bz, 1) = logz + ¢(z, 1) (2.10)

Uiz, 1) =x'(z,1) =

where 5 (z,t)and 1} (z, t) are single-valued and analytic on @/ £2 (where C= CuU{oo}).
For the self-propulsion problem we must also require that X = Y = 0 to ensure a
bounded velocity at infinity. We then compute the translational and rotational velocity
for a trial pair (55, %), and when these are subtracted from the flow the motion is
force-free and torque-free (Muskhelishvili 2013; Greengard et al. 1996). Thus for 2D
swimming problems, the Goursat functions ¢ (z) and 1 (z) should be single-valued
and analytic on C/£2, and therefore they have Laurent expansions in C/£2 of the
following form.

a0 an®)

d(z,1) = ap(t) + — 2 (2.12)
Yz, t) = bo(t) + b‘;(t) + b‘;z(t) + - (2.13)
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As aresult, the 2DLRNS problem with specified shape changes as described above
can be rephrased as follows—find functions ¢ (z, t) and ¥ (z, t) that are analytic on
C/$2(t) and continuous on C/int §2(t) such that

oz, 1) —z¢'(z;t) =¥ (z, 1) =V(z,2,1) (z€982()). (2.14)

Here V(z,7z,t) for z € 952(¢) is the velocity boundary condition determined by the
shape changes, namely, the complex form of ug as introduced in Sect. 2.1. Equa-
tion (2.14) will be referred to as the boundary condition constraint on ¢ and v in the
study of 2D LRN swimming.

2.3 Pull-back of the problem to the disk and derivation of the Fredholm integral
equation

As we mentioned earlier, there are two main methods for solving the 2D LRN
problem—which is to say to solve (2.14)—Muskhelishvili’s method and the integral
equation method. In the integral equation method the velocity boundary condition leads
to an integral operator defined on the swimmer’s boundary, while in Muskhelishvili’s
method the approach is to first pull back the z-plane to a fixed complex computational
¢-plane, on which the integral operator is applied. In the first case one deals with a
moving boundary whose stress field is specified, while in Muskhelishvili’s method we
consider velocity boundary condition and the problem can be pulled back into a fixed
boundary problem. Generally speaking, the integral equation method is useful when
the stress field along the boundary is known or multiple bodies are involved. On the
other hand, for a single deformable swimmer it is easier to treat a sequence of shape
deformations using Muskhelishvili’s method, which also facilitates the use of control
theory to 2D LRN swimming systems and simplifies the design and study of micro
aquatic robots. Hereafter we focus on the use of Muskhelishvili’s method.

Suppose that the cell occupies an open, simply-connected, bounded region £2(¢) in
the complex z-plane at time 7 (Fig. 1). Let D = {¢ € C : [¢| < 1} be the unitdisk in the
computational ¢ -plane. The regions exterior to D and to £2(¢) in the extended complex
planes, i.e., C/D and C/$2(t), are both simply-connected as the infinity point oo is
included in C. The Riemann mapping theorem (Ahlfors 1978) ensures the existence of
a single-valued analytic conformal mapping z = w(¢; t) which maps C/D one-to-one
and onto C/2(r), and preserves the correspondence of infinity, i.e., w(co; 1) = oo.
Moreover, this mapping can be extended continuously to C/D (Younes 2010), and w
maps 9(C/D) = S to 982(z).

We assume that the mapping preserves the point at infinity, and then have the
following result regarding the form of its Laurent expansion (Ahlfors 1978).

Lemma 1 Suppose that §2(t) is a non-empty open bounded simply-connected domain
in C, and that z = w(¢; t) is a conformal mapping from the exterior of the unit disk
D to 2€ that preserves the point at infinity. Then w(¢; t) has a Laurent expansion of
the form
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z-plane
>
Fig. 1 The conformal mapping from C/D to C/£2
—1(r —2(t —_n(t
w(Z: 1) = a1 (D + ao(t) + = ;() a;z() -~-a§"n()+-~- 2.15)

where a1 (t) # 0and |¢| > 1.

When we consider in the body frame, £2(¢) gives the configuration of the swimmer,
in which case we require «gp = 0 and «_; € R in (2.15).

Hereafter w(¢; t) is the conformal map which maps C/D onto C/£2(¢) such that
w(00; t) = 0o, extended to the boundary of the swimmer, which is given by 02 (¢) =
{z(t) = w(o;t);0 € S'}. We impose a no-slip condition on the boundary, and
therefore

0
u(w(a))(t) = Ew(o; ). (2.16)

Suppose that ¢(z, t) and ¥ (z, t) are the solutions to the boundary condition con-
straint given by (2.14). Let

Pst) =Qw:n);0), V) =y (=1
thus @(¢;t) and W (¢; t) are functions on ¢-plane which are analytic on (C/B and
continuous on C/D at any time 7. Hence on || > 1, we have Laurent expansion for

@ and ¥ given by

A Ao |

D(&;t) = Aot) + : 2 (2.17)
w1 = Bo(ry + 2210 4 B‘;z(t) (2.18)

where Ay, By (k =0, —1, —2, ---) are continuous functions from [0, co] to C.
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If we substitute these expressions into (2.14) and omit the time index ¢, then the
velocity field can be expressed as a function on the ¢-plane as

1,0 =u(w@), w@) = ‘1’(4)—%‘1’(() () (2.19)

where ’ represents ;. If we let V (o'; t) denote the boundary condition of the velocity
in general, then the boundary condition constraint (2.14) can be generalized to the
condition

&(0) — w(o )(b’( Y—W(o)=V() (ceSh. (2.20)

w’ (o)

In the 2DLRNS problem the boundary condition is given as in (2.16), i.e., V(o; t) =
d;w(o; t), but in the discussion below we will adopt the more general form V (o; t) =
Do Ao

Equation (2.20) involves both @ and ¥, but this can be reduced to an integral equa-
tion in @ alone using a technique developed in Muskhelishvili (2013), where it was
originally developed for the solution of problems in elasticity rather than the Stokes
flows, and the resulting integral equation is the same. We present the precise state-
ment here for completeness. The reduction relies on a decomposition of the boundary
condition V (o) derived from the following Plemelj formula (Sokhotskii 1873; Cima
et al. 2006; England 2012).

Theorem 1 (Plemelj formula) Suppose V (o) is continuouson S' = {o € C; |o| = 1}
and, for a particular oy € S', satisfies the Hilder condition

V(o) = V(op)| < Clo —ap|*, oeS! (2.21)
for some positive constants C and «. Let

1 V(o)
27i slo—¢

V) = do (2.22)

for ¢ € C/S'. Then the limits

V= (09) := lim V(rog) and V*(oo) := linlli V(oo/r) (2.23)

r—1-

exist and moreover, V=~ (c9) — V¥ (00) = V(09). Furthermore, the Cauchy principal-

value integral
1% 14
P.V./ @) 45 = 1im/ @ 45
st o — o) =0 Jig—gg|>e O — 00

exists and

V(o) J

1
V¥ (o0) + V (0p) = —_P.V./
Tl sl o —0)
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We assume that the boundary condition V (¢) in the swimming problems satisfies
the Holder condmon as in (2.21) for any opg € S". ! For the function V(g“ ) defined in
(2.22),let VT (¢) = V({) for|¢| > l,and V™ (¢) = V({) for |¢| < 1,then V7 (¢) is
analytic for |¢| < 1, while V7 (¢) is analytic for || > 1 with VT (¢) — Oas ¢ — oo.
Moreover, according to the Plemelj formula, both V™ and V™~ can be continuously
extended to S! by (2.23), and we have the decomposition V =V~ — V* on S'.

To continue, we first introduce some notation. For an analytic function f(¢), we
define f(¢) as f(¢) = f(¢) (Muskhelishvili 2013). With this notation, suppose that
f(¢) is analytic on |¢| = R for some R > 0, then f(1/¢) is analytic on [¢| < R.
The proof of this is straightforward. Without loss of generality we assume that f(¢)
is analytic on |[¢| > R, and then on |{| > R we have the following Laurent expansion

for f(¢)

o =for Ly 2y Sy

¢ 2 ¢

Hence
1
f(z)=f0+f1§+f2§2+~-~+fn§"+~“

which is easily seen to be analytic on |¢| < R. By definition of the function f, we
have

?(%)=f(%)=fo+f12+szz+~-+ﬁ£"+m

= fot Fie+ ot 4o fal"

which is easily seen to be analytic on |{| < R as well. This establishes the assertion.
To derive an integral equation for @, let |¢| > 1 and apply the functional operator

1 °

2mi SIO'—C

do

to both sides of (2.20). @ (¢) is analytic on |¢| > 1, and continuous on [¢| > 1, so

1 @ (0)

2 Jo g =0T 70O

for |¢| > 1. Moreover, ¥ (1/¢) is analytic on |¢| < 1 and continuous on |¢| < 1, and
thus

v, 1 (o)

2ri Jg1 0 —¢ 2ni Js1 0 —¢
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On the other hand, for the right-hand side of (2.20) by Plemelj formula we have

1 Vie)
i Jgo—c 0 =VT@)

Thus the final result is Fredholm integral equation

do ==V Q) (¢l=1 (2.24)

1 w(o) @'(0)
(o] — —
(§)+27Tl Al w/(g)a—g

where —V 1 (¢) is the analytic part of V(¢) when |¢| > 1, namely, —V*(o;1) =
> n<0Mn(t)a”. This equation has only one unknown function @ and once it is known
¥ can be obtained from (2.20). The joint solution is unique in the sense that the
constant terms Ag and By of @ and ¥ in Egs. (2.17, 2.18) may vary, but the difference
Ao — By is uniquely determined.

2.4 Expressions of physical quantities by the pull-back of Goursat functions

Given the pull-back of the Goursat functions determined by (2.24), whose Laurent
expansions are in the forms given in Egs. (2.17, 2.18), we can obtain the expressions
of several physical quantities of interest in a typical swimming problem (Shapere and
Wilczek 1989b; Cherman et al. 2000; Shapere and Wilczek 1989a; Avron et al. 2004).
In the following discussion we scale the length by R and the time by 7', where R
usually corresponds to the radius of the cell when it is in the shape of a disk, i.e.,
7 R? = Area of the cell.

1. Rigid motions (I): translation Following the approach ussed in (Shapere and
Wilczek 1989b), let Uy, and woo be the translational and rotational components of
the far field behavior when prescribing boundary condition (2.16), respectively;
then the actual translational velocity U and the rotational velocity w of the swim-
mer are given by

U=-Us, ®=—w (2.25)

as the fluid is static at far field. As shown in Appendix 1, Uy can be computed
from the relation

Uso = ag — by = Ag — By (2.26)

where the ag, by are the leading order terms of ¢ and ¥ as given in Eqgs. (2.12,
2.13), and Ay, By are the leading order terms of @ and ¥ as given in Egs. (2.17,
2.18). Then the net translation of the swimmer at any instant ¢ is given by

t t
Tr(t):/ UL () dt=/ [—Ao(t)+Bo(t)] dr
0 0
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and therefore the average velocity of the swimmer within a period is U =
Tr(T)/T.

2. Rigid motions (Il): rotation The rotational velocity @ can be obtained from the
following relations.

T(V; —Ar uIb_ —AruI(B_1a
w— Vi w) _ ZAmpusboy 7 s( 1 1) (227)
T (V™oL w) T (V™oL w) T (VT w)

Here b_; and B_ are the coefficients of z~! and s -1 resp., in the Laurent expan-
sions of ¥ (z) and ¥ (¢) in (2.13) and (2.18), resp., and « is the coefficient of
the leading order ¢ term in the conformal mapping z = w(¢) in (2.15). Further,
T (V; w) is the torque resulting from the current shape z = w(¢) and deformation
V (o) of the swimmer, while T (V'™; w) is the torque resulted from a rigid rotation
of a swimmer also with shape z = w(¢) but a uniform rotational velocity field
Va; t) = iw(o; t). More detailed analyses of U and w are given in Appendix 1
and Appendix 2.

3. Force distribution From Table 1, we see that fds = —2iud(2¢ — V) on 952. The
pull-back of the force distribution is:

o (2@’(0) — V’(o))

|w'©)]

) , , do
flo) = —21@(2@1) (o)—V (0))£ =2 (2.28)

4. Power expenditure The power expenditure is calculated by integrating the stress
times the velocity on the surface of the swimmer:

P = —snf ufds = —2;&/ V(0)(29' (o) — V'(0))do
082 S!

With boundary condition generally given as V(o) = >, £0 Ano”, together with
the expansion of @ (o) as given in (2.17), we have

2 =4au Y n([aal* +24-00 = [-a) (2.29)

n>1

We define the average power expenditure within a period to be
— 1 (T
P =— / P(t)dt (2.30)
T Jo

5. Performance We define the performance of the swimmer as

=Y _ TTri 2.31)
Z [y Pt

E measures the distance traveled in one period divided by power expended in a
period.
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Table 2 A list of physical

quantities Notation Scale Unit
Length R pm
Area R? umz
Time t T s
Mean velocity U R/T pm/s
Force density f n/T pN/pm
Mean power 7 wR? / T2 pN pm/s
Performance E T/(wR) 1/pN

6. Area of the swimmer We usually require that the total mass of the swimmer be
constant for cells swimming through a fluid by shape changes. For a swimmer of
constant density in 2D this becomes an area conservation constraint. Suppose that
the shape changes of the swimmer are given by (2.15), then the swimmer’s area is

1
Area(t) = Eﬁj{wdw.
By a direct calculation we obtain

Area(t) = 7'[(|a1 |2 — |a_1 |2 — 2|oz_2|2 — = n|oz_,l|2 — ) (2.32)

For incompressible swimmers, we require that Area(r) = Constant.

A list of scales and units of these physical quantities is given in Table 2.

3 Shapes for conformal mappings with finitely many terms

In general the Fredholm integral (2.24) cannot be solved analytically for an arbitrary
conformal mapping w(¢). However when w(¢) has only finitely many terms, we find
that (2.24) can be analytically simplified to a linear relation between the coefficients
of @ and V. In view of the fact that any conformal mapping can be approximated by
truncating its Laurent expansion, this approach is sufficient in the study of 2D Stokes
flow swimming problems.

We consider a sequence of shape changes whose corresponding conformal map-
pings always have Laurent expansions up to (—N)-th order. Then

a1(@) o) a_n(t)

w(&; ) = o1 ()¢ +ao(t) + : 2 + .- o

3.1)

In general, the ¢ ™" term with n > 0 gives n 4+ 1 angles along the periphery of the
swimmer. Figure 2 gives an illustration of the relation between the conformal mapping
and the shape of the swimmer.
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(a) N=3 (b)
;- e t=0.5

time

Fig.2 Therelationship between the conformal mapping and the shape of the swimmer: a shapes determined
by w(¢) =4¢+¢ —N where N = 1 (solid line, ellipse), N = 2 (dashed line, triangle), or N = 3 (dotted
line, quadrilateral). b A sequence of shape changes defined by w(¢; t) = 3¢ +cos(2mt)¢ -1 sin(2mwt)¢ —2

We assume that the boundary condition is in the general form of V(o;t) =
> dn(t)o", and we first prove the following result in some particular cases.

Lemma 2 Suppose that the conformal mapping w(¢) is given by (3.1) and the bound-
ary condition is given as V(o) = >_ A,0™. Let =Vt () be the analytic part of V ({)
when |¢| > 1, which has the form —V*(o;t) = Zn<0 An(t)o™. If there exists a
function fx(¢) analytic on |¢| < 1, continuous on |¢| < 1, and

fuo)| = o2
(XS

sl w'(0)

for some N € Z*, N > 2, then for any —V () with Laurent series such that
Aol =Ap=--=A_(n=2) =0for N > 2 (if N = 2 there are no restrictions on
the coefficients), the solution to the boundary value problem (2.20) is given by

() =-VI(©)
w(l / N
vy = "W yvy v
W)

Jor [¢] = 1.
Lemma 2 can be proved by direct calculation as follows.

Proof The function —V ™ has the representation

A_(N=1) AN An
§N_1 +§N tooet é-n

—V+(§)= + ...

Suppose that @ (¢) = —V 1 (¢). Then on the unit circle S', we have

?'(0) = -l [(N — 1))+ NA o 4 4 nh o N g ]
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and the integral term in (2.24) becomes

1 w(o) @'(0)
a— pr— do
2mi Jg1 w'(o)o —¢

1 Jn(o)

=5 | o g [V = Dheivon + Nooyo - mhoyo ™ 4 Jdo.

Since the function

g(0) = fn(@OI(N — DA_(v_1) + NA_yo + -+ ni_o" N1 4. ]
is analytic on |o| < 1 and continuous on |o| < 1, and since |{| > 1, the integral

1 g(o)

do =0
27i Jst 0 —¢ ’

by the Cauchy integral theorem. Hence the left hand side of (2.24) reduces to @ (¢) =
—V™T(¢). By substituting this result into (2.20), we obtain the expression of ¥ as in
the lemma. O

With w given by (3.1) we have

w(o) 010 +ag t+ajolta 024 +a_yoN

w' (o) o] —a_jo? — 2050 —--- — Na_yoN*t!
hence we may take

vl ragta il a2+ ang N
@ —a1¢? - 2a 507 — Na_ye V!

oy Foa_w-ni 4otV +agrN + o eV )

o —a ¢ —2a5¢3 — - — Na—yeNt!

N@)=¢

If no singularity of fy lies inside the unit disk |¢| < 1, then fy is analyticon [¢| < 1
and we may apply Lemma 2 to obtain the solution of the boundary condition constraint
(2.14).

The Laurent expansion of any function @ (¢) that is analytic on || > 1, continuous
on |¢| = 1, has the form of (2.17). Let . be the set

A_ A_ A_
S =10 =+ S T2 D KA <
¢ ¢ ¢ o1
of all functions @(¢) whose coefficients of the Laurent expansion satisfy

Zkz 1 k|A_g| < oo and vanish at infinity. .%" is a Banach space endowed with
the norm | @ ||= Zkzl k|A_j| (Chambrion and Munnier 2011).
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Now with w given by (3.1), we define a conjugate linear operator K (w) on .% as

1 (ol
(K)o o)) = 5 [ 20 2L

2mi N w/(g)O'—é'

do (3.3)

Let ) = {Ag € C}, then K (w) can be extended to . & . such that K (w)| ¢, = 0
in accordance with (3.3). Now for any @ € .%¥ @ %), (2.24) can be written as

[I+Kw)]o=-V"*

where [ is the identity operator. For n € Z*, let

A [%;r ER] and &) = [%;reR]

It is easily seen that .7"’s and .7,"’s are real 1-dimensional linear subspaces of .7
With fy given by (3.2), by Lemma 2, K (w) vanishes on each .7 and .7, for

n=N-—-1,N,N+1,..., and thus each Y,i“ or Y;‘ is invariant under the operator
I+ Kw),i.e.,

[+ Kw)]|gw =Lon: [T+ EwW)]| 4 =1

Define
—(N=2)
Sy = Spang{¢ " ig "), VP = D D)

n=—1

which is a real 2(N — 2)-dimensional linear subspace of .¥, and

{g‘l, cT Nt L igN‘z}

consists a basis of .. If fy is analytic on |{| < 1, then the action of K (w) on this
basis can be expressed as

N—n—2 (k)

- n Sl 1 n N (0,

K r do =
(K ]o¢ 2ri Jg1 0 — ¢ oN——1 7 gN—n—l1 % o c
. N—n—-2 ,(k)
Lo—ny 1 fn(o) 1 _ n fN 0 k
[K@w)]e (ic™) = 27 Jgi o —¢ oN-—n—147 T T N=a-1 Z(:) Wl

forn =1,2,..., N —2. Notice that the sum in the above equations is simply the first

N — n — 1 terms of the Laurent expansion of fy(¢) at ¢ = 0. It is easily seen that on
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N, the operator K (w) has a matrix representation as

[K(w)] o €72 N gy e L e T
[Kw)]o g™ ic 2, ... ic™ V"7 = —K(w)- G Y g2, ... ig V=27

where K (w) isa (N — 2) x (N — 2) matrix with the form

(N=3) (N—4)

V0 v o L) f0) £y (0)
(N —3)! (N — 4)! 2! 1! 0!
210700 2580 2f40) 2fy(0)
(N — 4)! (N —5)! 1! 0!
3070 300 3O 0
— T
K(w) = . 0 0

(N —3)£40) (N =3)fy(0)

1!
(N =2)fn(0)
0!

(3.4)

This can be summarized as follows.

Lemma 3 Suppose that the conformal mapping w(¢) is given by (3.1) and the bound-
ary condition is given as V(o) = >_ r,0". If there exists a function fy(¢) analytic
on || < 1, continuous on |¢| < 1, and

fuo)| = o2
(XS

sl w'(0)

for some N € 7+, N > 2, then the integral (2.24) reduces to linear relations between
coefficients of @ and V :

1. Forn =00rn>N—1,A_, = A_y;
2. Forl<n <N -2

(In-2+ K@) (RA_1, ..., RA_v—2)" = (Wr_1, ..., Mav—a)”

(Ino2 — Kw))(SA_1, ..., 3A_w-2)" = (3h_1,..., Jhn-2)"

where In—_3 is the (N — 2)-identity matrix, and K (w) is the (N —2) x (N — 2)
matrix given by (3.4).
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Lemma 3 provides an algorithm for solving the Stokes equation of an infinite 2D
Stokes flow when the shape deformations have finitely many terms in the conformal
mapping w(¢). Once we solve for @ according to Lemma 3, ¥ is given by the following
expression.

s == (A= a)e (A= a ) (A - an)

o
?1+HC +aae+ - +aoyeY

A_ 2A_» NA_y
o1 20_o Na_y 2 + o3 +oeet N+
2 o3 o N+
(3.5)

4 Modeling of swimming Dictyostelium amoebae

As mentioned in the Introduction, Dictyostelium amoebae can move in a fluid envi-
ronment by a combination of blebbing and protrusions, either of which involve rapid
shape changes and neither of which require attachment to a substrate. Experimental
observations on the movement of Dd cells reported in Barry and Bretscher (2010); Bae
and Bodenschatz (2010) and Van Haastert (2011) have recorded cell shape changes,
speeds, and periods of the cyclic motion, and we use their data here to compare with
theoretical predictions. The movement usually involves protrusions that are initiated
at the leading edge of the cell and which propagate toward the rear. Typically the cell
body is elongated, and multiple protrusions propagate along the cell. van Haastert (Van
Haastert 2011) reported an average of three protrusions, as illustrated by the cartoon
model in Fig. 3a, while from the experimental images (Fig. 3b) of a swimming Dic-
tyostelium reported in Barry and Bretscher (2010), we see that one protrusion travels
along one side of the cell and disappears at the rear of the cell, then another protrusion
appears on the other side and repeats the process.

Van Haastert (2011) observed that the protrusions travel directly down the cell body
and not in a helical fashion. Thus there is no clear evidence that the cell is rotating

@ (b)
/fll ‘

pseudopods

‘L convert to
rear-ward

¢ moving bumps

li/;, =13 pm/min

4 Vo =~3 pmimin

Fig. 3 Amoebae swim by protrusions: a a swimming cell with 3 protrusions (Van Haastert 2011); b the
shape of an amoeboid as it swims (Barry and Bretscher 2010)
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around its symmetry axis, and as a result we consider the 2D model developed in
the preceding sections to be a reasonable simplification of a 3D swimming cell. In
Sect. 4.1 the numerical scheme used to construct the shape of the cell is developed.
As we see from Fig. 3, swimming by extending protrusions is mostly asymmetric in
that they alternate sides, and thus the motion is not rotation-free and the trajectory of
a swimming cell is snake-like rather than along a straight line. However we begin in
Sect. 4.2 with a simplified symmetric amoeba, where a pair of side protrusions move
down the cell body symmetrically so as to minimize the mechanical effects resulted
from rotation or cell body twisting. In Sect. 4.3 we investigate how different cell and
protrusion shapes affect the swimming ability of such a translational swimmer. Finally,
in Sect. 4.4 we consider an asymmetric swimmer similar to that shown in Fig. 3b and
compare such a snake-like swimming style to the symmetric swimming style.

4.1 Construction of the cell shape

To apply the Muskhelishvili method to a swimming cell we first have to obtain the
conformal mapping w corresponding to the cell shape, and then truncate its Laurent’s
expansion, leaving only N negative order terms for some N. In general it is difficult
to find the conformal mapping analytically that corresponds to a general shape, yet
that of an n-polygon can be found by use of the Schwarz—Christoffel formula (Ahlfors
1978; Driscoll and Trefethen 2002).

Suppose that we have an n-polygon in the z-plane with vertices zy, . . ., z,, and the
corresponding exterior angles are 07, ..., 0,7 (Fig. 4). Let £2 be the interior region
bounded by the polygon. The conformal mapping from the exterior of the unit disk
D in the ¢-plane to £2€ is given by the following Schwarz—Christoftel (SC) formula
(Ahlfors 1978; Driscoll and Trefethen 2002):

Or—1

I
z=w(§)=A+C/ E—ZH(g—gk) dg 4.1
k=1

where 7z = w(¢) and we call ¢ the prevertex to the vertex z; under the conformal
mapping z = w(¢). Since we are considering transformation from the exterior region
of D to the exterior region of £2, the angles should satisfy > /_, 6x = n + 2. The
prevertices {x can be numerically approached by using the SC toolbox given at http://

Fig. 4 The conformal mapping
for the exterior region of a

polygon from that of the unit
disk
g2 Gs
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Time =0.10 Time = 0.50 Time = 0.80
10 10| 10|
5| 5 5|
-5 -5 =5
-10| -10 -10|
-10 0 10 -10 0 10 -10 -5 0 5 10 15

Vertex, Time =0.10 Vertex, Time = 0.50 Vertex, Time = 0.80
10 10| 10|
5| 5 5|
0| 0 0|
-5 -5 =5|
-10| -10 -10|

-10 0 10 -10 0 10 -10 -5 0 5 10 15

Prevertex, Time = 0.10 Prevertex, Time = 0.50 Prevertex, Time = 0.80
1.5 1.5 1.5
1 e 1 1
0.5 0.5 0.5
0| 0 0|
—0.5| . . -0.5 . -0.5
-1 < -1 et -1
-1.5' -1.5 -1.5

-1 0 1 -1 0 1 -1 0 1

Fig.5 The conformal mapping for the exterior region of a polygon from that of the unit disk. The axes are
in units of um

www.math.udel.edu/~driscoll/SC/. Once we have obtained the Schwarz—Christoffel
transformation wsc(¢) for a given polygon, we truncate its Laurent expansion leaving
only N negative order terms, which then has the form

(o2 | a_N
wSCN(§)=a1§+(Xo+T+"'+€_—N. “4.2)

The image of the unit circle S' under the truncated conformal mapping wscy is a
contour approximating the original polygon.

We approach the construction of the shape of a swimming amoeba as follows.
Instead of using a polygonal discretization with many nodes on the boundary, we first
construct an “inner skeleton” of the cell with only a few nodes (Fig. 5, red contours),
then we obtain its Schwarz—Christoffel transformation and truncate it to obtain wscn.
Finally we smooth the image of the unit circle under wscn by multiplying the amplitude
of 1 in (4.2) by a factor C € R, C > 1, to give

a_y

wy(§) = Cayg +ao+%+--~+§—N. (4.3)
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This will give us a smoothed contour enclosing the “inner skeleton”, and we use it
as the shape of cell (Fig. 5, black contours). Figure 5 illustrates this process, and the
detailed steps of the algorithm are given in Appendix 3. The panels in the top row
give three snapshots within one cycle. The red contours give the “inner skeletons”,
each one is a prescribed polygon, with each of the four semicircle ends having five
nodes. The black contours that are taken as the current cell shapes, are determined by
a conformal mapping of the form of (4.2) with N = 30 and C = 1.05. The panels
in the middle and bottom rows show the distribution of vertices of the polygon (z;
in Fig. 4) and the distribution of prevertices along the unit circle (¢; in Fig. 4), with
the correspondence relation given by the color of the dots. From Fig. 5 we see that
when the two side protrusions are close to either end of the cell body, some prevertices
are crowded and when the side protrusions are near the middle of the cell body, the
prevertices are more scattered.

In the simulations described later we do not require strict area conservation—instead
we require that the area changes be restricted within a small range. We define the ratio
of area change within one period to be

Maximum of area — Minimum of area

Ratio of area change =
Average of area

and we require that the ratio be <0.1.

4.2 Simulation results of swimming Dictyostelium amoebae

We use the data for swimming amoebae from (Van Haastert 2011; Barry and Bretscher
2010). Though they are both Dictyostelium amoebae, they have different sizes. For
simplicity we will refer to them as “van Haastert’s cell” (Fig. 3a) and “Barry’s cell”
(Fig. 3b) hereafter. Their data is shown in Table 3.

We use the numerical methods discussed in Sect. 4.1 to generate sequences of
shapes based on data given in Table 3. The numerical results are presented in Fig. 6.
The shapes of Barry’s cell within a cycle for different values of N are shown in Fig. 6a—
¢, while those of van Haastert’s cell are shown in Fig. 6d—f. Figure 6g—i compare the
mean velocity U, mean power 7 and performance E of the two cells for N € [10, 80].

A number of conclusions can be drawn from these simulations, as listed below.

Table 3 Experimental data for

Van Haastert’s cell (2011) and Van Haastert Barry

?2 %r?(') )and Bretscher’s cell Maximum cell body length ~25 pm ~22 pm
Average cell body width ~6 um ~4 pm
Maximum protrusion height ~2 pm ~4 pm
Average protrusion width ~2 pm ~2 pm
Period of a stroke ~1 min ~1.5 min
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(a) Barry, N=10 (b) Barry, N=50 (c) Barry, N=80

D
s
o
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10|
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igal

=20 =20 =20
-20 -10 0 10 20 30 -20 -10 0 10 20 30 -20 -10 0 10 20 30
um um um
(d) Van Haastert, N=10 (e) Van Haastert, N=50 (f) Van Haastert, N=80

-
-
D)

-20 20 -20 20 =20 20

000
it

um

(g) Mean Velocity (h) Mean Power x 10 (i) Performance
3.5 _ 15000 1.5
0 “"E T — Barry
E 3 £ 3 —VH
& £
3 E 10000 E 1
225 2 %
2 & 5000 E o5
c s 2
3 1.5 o —Barry [
= = —VH <
1 Y 0
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N N N

Fig. 6 a—c The shapes of Barry’s cell within a cycle for different values of N. d—f The shapes of van
Haastert’s cell within a cycle for different values of N. In a—f, the fop rows are the snapshots at the
beginning of a cycle, the middle rows are at half of the cycle, and the bottom rows are at the end of the
cycle. For the periods of the two cells, we have T = 1.5 min for Barry’s cell and Ty = 1 min for van
Haastert’s cell. g-i A comparison of the mean velocity U, mean power & and performance E of the two
cells for N € [10, 80]

1. Protrusion shape First we consider how the number of terms N in the conformal
mappings wy affects the shapes of the swimmers. As we mentioned earlier, in
general the ¢ " term gives n angles along the periphery of the cell. From Fig. 6a—f
we see that swimmers corresponding to wy with larger N have more rounded
heads in the protrusions, while those corresponding to wy with smaller N tend to
have sharper heads; another important difference in the shapes of the protrusions
is that the connecting parts between the cell body and the protrusions are smoother
for smaller N while more abrupt for larger N. Figure 7 gives an enlarged view of
the protrusion regions of both cells with different N.

2. Velocity For either cell, the mean velocity U increases rapidly with N when N
is small, but U does not change much for even larger N >~ 40 (Fig. 6g). For
N > 40, U of van Haastert’s cell fluctuates within a range 2.37-2.52 pm/min
while ~3.30 wm/min for Barry’s cell. Taking into account of our observation of
the relation between N and protrusion shapes, our simulation results indicate that
abrupt protrusions with rounded heads may enhance the swimming speed.

3. Power Unlikqlhe mean velocity U which has a maximum as N increases, the
mean power & continues increasing as N increases (Fig. 6h). In particular, if we
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(a) Van Haastert (b) Barry
6 7
AN
5 4 6 / \
£ g® ' '
4 =, —N=10
N=20
3 N=40
3 N=60
—N=80
2 2
3 4 5 6 7 -2 0 2
um um

Fig. 7 The areas of the protrusions in the models of van Haastert’s and Barry’s cells for different N: a van
Haastert’s cell; b Barry’s cell

observe Fig. 6b, c, e, f, we see that the shapes of the same cell for N = 50 and
N = 80 are quite similar, yet with more terms in w it requires much more power.

4. Performance Figure 6i clearly shows that performance decreases as more terms
N in wy are involved. Incorporating the observation of bump shapes, we find that
smoother protrusions tend to lead to swimming with better performance though it
might be slower.

5. Comparing with experimental data Van Haastert (2011) reported that the swim-
ming velocity of a typical cell is ~3 pwm/min, while our model predicts
~1.36-2.52 pwm/min. Barry and Bretscher (2010) reported that the linear speed
of the cells has a range of 2—8.4 wm/min with an average of about 4.2 pm/min,
comparing to a range of ~2.63-3.31 wm/min as given by our numerical simula-
tions. So far there are no experimental data regarding the power or performance
of the swimming amoebae, and based on the data of swimming speed collected
from experiments, we believe our model is reasonable.

5. How cell shapes affect the swimming behavior Both cells are the same kind of
Dictyostelium amoebae, but from the above results and observations we clearly
see that different cell shapes and sizes lead to the difference in their swimming
behavior: as compared with van Haastert’s cell, Barry’s cell is more slender, with
higher protrusions, and smaller in size, and the simulation results show that the
average area for van Haastert’s cell ranges within 170—174 wm?, depending on the
value of N, while the average area for Barry’s cell is only within 103-106 jLm?.
Figure 6 indicates that Barry’s cell exhibits faster swimming and better perfor-
mance. This inspires us to study how the sizes of the cell body and the protrusions
affect the swimming behavior of the cell, which will be discussed in detail in the
following section.

4.3 Effects of the protrusion height and cell body shapes on swimming
We first study the effects of the protrusion shape on the swimming behavior of the

Dictyostelium amoebae. As above we use the data for the sizes of different character-
istic features of a cell in Van Haastert (2011) and Barry and Bretscher (2010), which
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(a) Mean Velocity (b) Mean Power x10™ (c) Performance

7, 12000 10
£ ) £t

6| £ =
g E 10000 T s
Ss g E
> 3 8000 ©
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Fig. 8 Effects of the protrusion height on swimming for van Haastert’s and Barry’s cell: a mean velocity
~ maximum protrusion height; b mean power ~ maximum protrusion height; ¢ performance ~ maximum
protrusion height

are presented in Table 3. As for the conformal mappings, we truncate them at N = 30
S0 as to generate protrusions that are neither too smooth nor too abrupt. At each time
step we adjust the cell body length to compensate for the area changes caused by
the emergence and disappearance of the protrusions, so as to control the area change
of the whole cell within a small range. We test for different maximum protrusion
heights, ranging from 1.5-5 pwm. Figure 8 gives the relationship between the mean
velocity, mean power, and performance and the maximum protrusion height for both
Barry’s and van Haastert’s cells. First we see that the mean velocity increases signif-
icantly as the protrusion becomes taller (Fig. 8a). On the other hand the mean power
for Barry’s cell increases steadily as the protrusion height increases, while for van
Haastert’s cell the mean power first increases but for taller protrusions it approaches
a maximum (Fig. 8b). Finally for the performance, it turns out that Barry’s cell,which
is smaller, always performs better than van Haastert’s cell, though it swims slower
than van Haastert’s (Fig. 8c). Moreover, while the performance for van Haastert’s cell
increases as the protrusion grows higher, the protrusion height does not have much
effect on the performance of Barry’s cell.

Next we consider the effects of the cell body shape on the swimming behaviors
of Dictyostelium amoebae by varying the length to width ratio of cells. We consider
protrusions with the same height (~3 pwm) and width (~2 pm) and let the shape
deformations have the same period (= 1 min). Moreover, to reduce the computational
effort we keep the protrusion height constant through the whole cycle, ie, we do not
consider the emergence, growth and disappearance processes of the protrusions as in
previous simulations that led to Fig. 8. To make the comparison fair, we control the
average area of each cell within a certain range (~176-205 pm?).

We define the aspect ratio Ry of the cells as

_ Cell body length
"~ Cell body width

N

so that large (small) Ry corresponds to slender (rounded) bodies. The relations of
mean velocity, mean power and performance to the ratio of the cell body sizes Ry are
given in Fig. 9, from which we see that slender cells swim faster than rounded ones
(Fig. 9a), yet they require more power expenditure (Fig. 9b) and the performance is
worse (Fig. 9c). We should note that although in general Barry’s cell is more slender
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Fig. 9 Effects of the cell body shape on swimming: a mean velocity ~ Rg; b mean power ~ Rg; ¢
performance ~ Ry

than van Haastert’s cell, yet Barry’s cell is much more smaller, thus it swims more
slowly, yet with better performance (Fig. 8).

Based on our observations on the protrusion height and the cell’s slenderness, we
conclude that

1. Within a reasonable range, protrusions with large height will result in faster swim-
ming and better performance.
2. Slender cells swim faster, but their performance is worse than those rounded ones.

4.4 Do asymmetric shape deformations improve swimming?

In Sects. 4.2-4.3 we discussed symmetric shape deformations for amoebae swimming
at LRN, but to date there is no clear evidence which shows that amoebae favor such
symmetric modes. Rather, they seem to prefer asymmetric modes in which the pro-
trusions travel one by one (Fig. 3) (Van Haastert 2011; Barry and Bretscher 2010). In
the 2D model of swimming (Fig. 3b) this means that the protrusions at the two sides
alternate rather than appearing symmetrically, so that the cell swims in a snake-like
trajectory. This raises the question as to why amoebae employ the asymmetric mode—
are there advantages over the symmetric mode or are protrusions constrained by the
internal dynamics?

We design an asymmetric swimmer for which the protrusions alternate sides during
successive cycles, and adapt the previous numerical scheme. Asymmetric swimmers
are not rotation-free, hence we must consider the torque on the swimmer, and the rota-
tional velocity is calculated via (2.27) (Fig. 10, center). We compare the asymmetric
swimmer with two symmetric swimmers whose cell body and protrusion shapes are
identical, and whose conformal mapping is truncated at the same order N. One of
them propagates its pair of protrusions at the same speed as the asymmetric swimmer
(Fig. 10, top), while the other propagates its pair of protrusions at half the speed of
the others (Fig. 10, bottom).

Thered lines in Fig. 10 reflect the trajectories of the center of mass of each swimmer,
and one sees that both symmetric swimmers move in a straight line (i.e., rotation-
free) while the asymmetric swimmer in the center images swims in a slightly snake-
like style. The simulations show that the symmetric swimmer propagating its pair of
protrusions at the same speed (Fig. 10, above) as the asymmetric swimmer travels
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Fig. 10 A comparison of the three swimming amoebae. The top and bottom rows use the same sequence
of shape changes, but protrusions in the bottom row travel at half the speed of those in the fop row. The
asymmetric swimmer in the center row alternates the protrusions on the two sides. The period for the
symmetric swimmers is 1 min, while for the asymmetric swimmer it is 2 min. The axes are in units of um

Time =0.15 Time =14.15 Time = 28.15 Time =42.15

5 5 5 5
=5 -5 =5 =5
=10| =10| -10| -10|
15 15 15| 15|
-20 20 20| 20|
25 25| 25| 25|

20 -10 [) 10 20 T220 -10 [ 10 20 =20 -10 [ 10 20 =20 -10 [ 10 20

Fig. 11 The rotating amoeba. Lengths are measured in microns

a distance of X ~ 30.33 for T = 10, while the asymmetric swimmer travels a
distance of X ~ 15.36 in the same time, which is slightly more than half the distance
traveled by the symmetric swimmer and slightly more than that for the symmetric
swimmer in (Fig. 10, below). The average power of the asymmetric swimmer is again
almost half that of the symmetric one with the same protrusion speed, hence their
performance is the same. Thus we find that rotation that results from the asymmetric
shape deformations does not lead to a reduction of performance, since the swimmer
expends half the energy in swimming half as fast.

Finally we show that when a protrusion always moves along one side, the cell
simply rotates in the long run. In this case the global trajectory of the center of mass
is a circle generated after a sufficient number of cycles (Fig. 11).

5 Discussion

Movement of eukaryotic cells is best-characterized for keratocytes, which use actin-
driven lamellipodia at the leading and myosin-driven contraction at the rear to move
(Keren and Theriot 2008). They move with very little shape change, which simplifies
their description, and several models that reproduce the shape have been proposed
(Herant and Dembo 2010; Rubinstein et al. 2009; Wolgemuth et al. 2011). Under-
standing of the mechanical balances that produce stable gliding motion is emerging,
but the linkage between the biochemical state and the mechanical state is still not
understood. For example, how an initially symmetric cell breaks the symmetry of the
rest state and begins to move, and how the localization of the control molecules and
the properties of substrate affect motion, has not been explained.
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In contrast, other cells are found to use very complicated shape changes for loco-
motion, and this has led to the overarching question posed by experimentalists, which
is ‘How does deformation of the cell body translate into locomotion?’” (Renkawitz and
Sixt 2010). The model and results described herein on swimming by shape changes
was motivated by recent experiments which show that both neutrophils and Dd can
swim—in the strict sense of propelling themselves through a fluid without using any
attachments—in response to chemotactic gradients. Our results for 2D cells show how
the shape and height of a protrusion affect the speed and efficiency of swimming and
may give insights into optimal designs of micro-robots.

The protrusions and other shape changes used in swimming require forces that must
be correctly orchestrated in space and time to produce net motion, and to understand
this orchestration one must couple the cellular dynamics with the dynamics of the
surrounding fluid or ECM. This remains an open problem for future research.

Acknowledgments Supported in part by NSF Grant DMS #s 9517884 and 131974 to H. G. Othmer, and
by a grant from the Simons Foundation.

Appendix 1: Translation of the swimmer: proof of (2.26)

Proof U is defined as the translation part of the velocity field at infinity (Shapere
and Wilczek 1989b),

. do
U = lim —u
R—o0 2

where u is the fluid velocity field in the exterior domain. In 2D it can be expressed by
the complex integral

1 _
Us = lim — uz2)
R—o00 271 |z|=R Z

dz (6.1)

Choose R > 0 large enough so that ¢ and x’ are analytic on |z| > R and continuous
on |z| > R.Let& = z/R and then by (6.1) and Table 1,

U tim [@_R—W@_@}d; ©2)

R—o00 27T HE!
Let
P(E) = ¢'(RE), ¥(&) = x'(RE)

Obviously, 5 J are analytic on |£| > 1 (including at infinity) and continuous on
|&] > 1. Define

$E) =¢E) and ¥(E) =P E)
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Then as functions of &, z(l /&) and E(l /&) are analytic on |§| < 1 and continuous on
€] < 1,and on |£| = 1 we have

= (1 = =1 =
¢(§)_¢($)’ 1#(5)—1#(5)

Therefore by the Cauchy integral theorem

1 [ 1 =(1
— "(R&)dE = — —)dé§ =0
2mwi |§|:1¢( %-) g 2mi §—1¢($) s

1 x'(R§) 1 I=(1 =(1
dE = — =N\ (Y o
2wi feer & 0T 2xi s—léw(é)g w(é))&o x'(00) = bo

For the first term in 6.2, it follows by use of the Residue Theorem that

1 ¢ (RE)

i Jigl=1 €

d%' = dap.

Moreover, since the conformal mapping z = w(¢) has the form (2.15), it is easily
seen that ag = Ao and by = By. Hence we have proven the assertion in (2.26). O

Appendix 2: Rotation of the swimmer: proof of (2.27)

Suppose that the swimmer has the current shape and velocity field given by z = w(¢)
and V (o0), respectively, and denote the resulting torque by 7'(V; w). The resulting
rotational velocity w can be calculated by considering a uniform rotation of a rigid

swimmer with the same shape z = w(¢) and resulting in the same torque. Such a
uniform rotational velocity field can be expressed as

V(o) = iow(o)
Let
Vi t) = iw(o; 1)

ie., V = oV™. To match the torque that results from the two velocity fields, we have
T(V;w) = T(wV™; w). Thus w can be expressed as

T(V;w)
w=————
T(vrot; w)

which gives the first relation in (2.27).
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For the other two relations in (2.27), first we show that b_; = B_j«_; as follows.
From (2.13) it is easily seen that

1
b1 = —/ Y (z)dz.
21i Jyo

Since 382 = {w(o; 1); o € S}, the above equation can be transformed into

b_ = L ¥ (o)w'(o)do. (6.3)
27 sl

Finally from Egs. (2.15, 2.18, 6.3) we have

1 B_ B_» o1 2a_9
b_1=— Bo+7+72+'-~ a) —— — ——5— —+-- Jdo = B_jo
27i Jst o o

Finally we prove the relation 7(V; w) = —4m u3Ib_1 as follows.

Proof The torque associated to the boundary condition V (o) is given by

T(V;w)= lim i‘v%rxfds: lim Tv[/ Zfds]
R—o0 R—o00 |z|=R

From Table 1 we see that f is a sum of two parts: 4 (R¢’)n along the n direction and
—2u(z¢” + x"Hn along the 7 direction, where n = —idz/ds is the exterior normal
on 9£2. When taking the cross product with r, the first part necessarily vanishes since
it is parallel to r. Hence

]{rxfds:—Zi,u/ Z(ZV—%—W)(E
lzI=R

and

T(V;w) =—2u lim ER/ 3(2474-7)612
R lz|=R

— 00

On the other hand we have
W (%)
07

SO

3
T(Viw) =2u lim ER/ 2207 =2, lim 0 [—/ udz]
R lz|=R lz|I=R

— 00 Z R—0o0
1
=47 lim S|:—/ u(z,Z)dZ:|.
R—00 27 |z|=R
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Now we only need to calculate the complex integral in the above equation. We
proceed as in the proof for Us,. For R large enough, we introduce the substitution
& = z/R and then we have

4 R—o0 2mi

TViw) . [R SRR S
— = lim [_'fjg—l (¢(R§) — REQP/(RE) — x’(R&)) d§i|

On |£]| = 1, we have d? = dg—l — _5—2d§, 50

TV R R R
TVEw) i s[——ﬁl ]("’( D Rwe - 52x (Ré‘)) ds].

47T,lL R—o0 2mi 52 %‘
By the Residue theorem
1 R
L D,
2mi |&|=1 «‘;:

and by the Cauchy integral theorem

1 .
— ¢ PREE = — d = $/(00) =0
— g|1§¢($)é 2m7i|ls¢(s)§ "5(5)‘5:0 500)

where ¢’(00) = 0 because of the form of ¢ given in (2.12). Thus the first two terms
vanish, and by the Cauchy Integral Theorem,

1 1 1
R&)dE = — —
2mi |&]=1 %‘2)( ( S) %- 2mi f§|:1 %‘2

By (2.13), on || < 1 we have

(D)=l (P

<
~
o |
N—"

Q.

'™

|

Ml
| —

S

thus

Finally we have that

O
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Appendix 3: Algorithm for the shape changes

The inner skeleton, i.e. the red contour in Fig. 5, is a polygon of cross-like shape, with
a semi-circle at each end of an arm. The polygon in each step consists of 28 vertices,
where each semi-circle end has 6 vertices. The initial shape pO (i.e, shape at t=0) is

generated as follows.

pO(1)=2+2i
p0(7)=17.5-2i
pO(8)=17.5-2.2i
p0(14)=19.5-2i
pO(15)=20-2i
p0(21)=19.5+2i
p0(22)=19.5+2.2i
pO(28)=17.5+2i
for k=1:1:5

pO(1+K) = 2+ 2i*exp(k* 1i*pi/5)
pO(8+k)=18.5-2.2i - *exp(k*1i*pi/5)
pO(15+k)=20-2i*exp(k* 1i*pi/5)

pO(22+K) = 18.5 + 2.2i + I*exp(k*1i*pi/5)

end
p0(29)=p0(1)

For each time step dt, move the two arms (i.e., the blebs) of the cross forward
simultaneously. We change the length of the blebs and the body so as to simulate the
grow and decay of the blebs, and compensate for the resulting area change. Below is
the pseudo-code that generates the inner skeleton p at the kth time step.

@ Springer

for j=1:1:6
p(G) = p0() + 0.5*H*sin(dt*k*pi)
end
p(M=p(7)-0.5
for j=8:1:13
p(G) = p0(j)- 0.5%k - H*sin(dt*k*pi)*1i
end

p(14) =p(14) - 0.5
for j=15:1:20

p(G) = p0(j) - 0.5*H*sin(dt*k*pi)
end

p(21)=p(21)-0.5
for j=22:1:27

p() = p0(j) - 0.5%k + H*sin(dt*k*pi)*1i
end

p(28) = p(28) - 0.5

p(29)=p(1)
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