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Abstract Recent research has shown that motile cells can adapt their mode of
propulsion to the mechanical properties of the environment in which they find
themselves—crawling in some environments while swimming in others. The latter
can involve movement by blebbing or other cyclic shape changes, and both highly-
simplified and more realistic models of these modes have been studied previously.
Herein we study swimming that is driven by membrane tension gradients that arise
from flows in the actin cortex underlying the membrane, and does not involve imposed
cyclic shape changes. Such gradients can lead to a number of different characteris-
tic cell shapes, and our first objective is to understand how different distributions of
membrane tension influence the shape of cells in an inviscid quiescent fluid. We then
analyze the effects of spatial variation in other membrane properties, and how they
interact with tension gradients to determine the shape. We also study the effect of
fluid–cell interactions and show how tension leads to cell movement, how the balance
between tension gradients and a variable bending modulus determine the shape and
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direction of movement, and how the efficiency of movement depends on the properties
of the fluid and the distribution of tension and bending modulus in the membrane.

Keywords Low Reynolds number swimming · Self-propulsion · Membrane tension
gradients · Heterogeneous membrane · Boundary integral method

Mathematics Subject Classification 35Q35 · 49Q10 · 49S05 · 70G45 · 92C10

1 Introduction

Movement of cells, either individually or collectively, plays an important role in
numerous biological processes, including development, the immune response, wound
healing, and cancer metastasis (Nürnberg et al. 2011). Single-cell organisms exhibit
a variety of modes for translocation, including crawling, swimming, or drifting with
a fluid flow. Some prokaryotes such as bacteria use flagella, while eukaryotes such as
paramecia use cilia to swim, but both types can only use one mode. However other
eukaryotes, such as tumor cells, are more flexible and can adopt the mode used to
the environment in which they find themselves. For instance, whether a single-cell or
collective mode of movement is used in tissues can depend on the density of the 3D
extracellular matrix (ECM) in which cells find themselves (Haeger et al. 2015). This
adaptability has significant implications for developing new treatment protocols for
cancer and other diseases, for it implies that it is essential to understand the processes
by which cells detect extracellular chemical and mechanical signals and transduce
them into intracellular signals that lead to force generation, morphological changes
and directed movement.

The two primary modes of eukaryotic cell movement on surfaces or in the ECM
are called mesenchymal and amoeboid (cf. Fig. 1) (Friedl and Wolf 2010; Binamé

Fig. 1 A summary of the different modes of movement in different environments and under different
substrate properties. Modified from Welch (2015)
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Fig. 2 a Blebbing on a melanoma cell: myosin (green) localizes under the blebbing membrane (red). b
The actin cortex of a Dictyostelium discoideum (Dd) cell migrating to the lower right. Arrowheads indicate
the successive blebs and arcs of the actin cortex (Charras and Paluch 2008) (colour figure online)

et al. 2010). The former is used by fibroblasts and tumor cells of epithelial origin, and
typically involves strong adhesion to the substrate. In 2D movement is by extension
of relatively-flat lamellipodia at the leading edge, whose protrusion is driven by actin
polymerization.Growth of this structure is understood in termsof the dendritic network
hypothesis, which posits that filaments are nucleated at the membrane and treadmill as
in solution, and that the densely-branched structure of the network arises via nucleation
of branches on existing filaments mediated by a protein called Arp2/3 (Pollard et al.
2000). Force is transmitted to the environment via integrin-mediated focal adhesions
that are connected to the internal network (the cytoskeleton or CSK) via stress fibers.
Movement frequently involves proteolysis of the ECM to create a pathway (Sanz-
Moreno et al. 2008).

In contrast, the amoeboid mode utilizes a less-structured CSK that lacks stress
fibers, and involves lower adhesion to the substrate. Proteolytic degradation of the
ECM is generally not used, and cells adopt a more rounded cell shape, often with a
highly contractile ‘tail’ called the uropod (Lämmermann et al. 2008). Two sub-types
of amoeboid motion are known. In one, cells move by generating a rearward flow
in the cortex—the cross-linked filamentous actin (F-actin) network that is linked to
the membrane. As described later, the drag force created by the rearward flow leads
to a reactive tension gradient in the membrane that propels the cell forward, and
this is called the ‘tension-’ or ‘friction-driven’ mode. In another type, cells move by
blebbing, in which cycles of extension of the front and retraction of the rear as shown
in Fig. 2b are used. How the spatial localization of blebs shown there is controlled is
not understood, and some cells exhibit random blebs over their surface (cf. Fig. 2a),
which leads to no net translocation. Another variation of blebbing called ‘stable-bleb’
or ‘leader-bleb’ migration is used by certain embryonic cells that form a balloon-like
protrusion at their leading edge (cf. Fig. 1) and can move rapidly (Maiuri et al. 2015;
Ruprecht et al. 2015; Logue et al. 2015).

The amoeboid mode is widely used, and when the environment is less favorable to
mesenchymalmovement, due e.g., to changes in the adhesiveness of the substrate, cells
compensate by undergoing a ‘mesenchymal-to-amoeboid’ transition (MAT) (Friedl
and Alexander 2011; van Zijl et al. 2011). Leukocytes can use the mesenchymal mode
in the ECM, but can also migrate in vivo in the absence of integrins, using a ‘flowing
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and squeezing’ mechanism (Lämmermann et al. 2008). Dd moves in a cyclic AMP
(cAMP) gradient either by extending pseudopodia or by blebbing, and cells monitor
the stiffness of the surroundings to determine the mode: pseudopodia in a compliant
medium and blebbing in stiffer media (Zatulovskiy et al. 2014). Finally, some cells
move only by blebbing. Certain lines of carcinoma cells don’t move on 2D substrates,
but in a confined environment they polarize spontaneously, form blebs, and move
efficiently (Bergert et al. 2012).

A third, less-studied mode of movement is by unconfined swimming in a fluid.
Dd cells and neutrophils both do this (Barry and Bretscher 2010), presumably to
move through fluid-filled voids in their environment. A model of swimming by shape
changes has been analyzed in (Wang and Othmer 2015a), where it is shown that
Dd can swim by propagating protrusions axially. The model gives insights into how
characteristics of the protrusions such as their height affect the swimmer’s speed
and efficiency. Simplified models for movement by repetitive blebbing, using what
can described as a ‘push-pull’ mechanism, have been analyzed and the efficiency of
movement determined (Wang and Othmer 2015b, 2016). However, it is also observed
that Dd cells can swim without shape changes or blebbing for several body lengths
(Howe et al. 2013), and the authors state that ‘Simply put, we do not understand how
these cells swim, and therefore how they move.’ Herein we show how swimming can
arise by maintaining an axial tension gradient in the membrane, and this would be
difficult to detect at the macroscopic level.

Crawling and swimming are the extremes on a continuum of strategies, and the
variety of modes used in different environments raises questions about how mechano-
chemical sensing of the environment is used to control the evolution of the CSK
(Renkawitz and Sixt 2010). Protrusions and other shape changes require forces that
must be correctly orchestrated in space and time to produce net motion—those on cells
in Fig. 2a are not, while those in Fig. 2b are—and to understand this orchestration one
must couple the intracellular dynamics with the state of the surrounding fluid or ECM.
Tension in the membrane and cortex has emerged as an important determinant in the
orchestration, whether in the context of undirected cell movement, or in movement
in response to environmental cues. Experimental observations on several modes of
tension-driven movement are described in the next section.

2 The basis of tension-driven movement

To describe recent experimental results we introduce some terminology.We consider a
cell as a three-layered structure comprised of the plasmamembrane, the cortex, and the
remainder (cytosol, nucleus and other components). The membrane is a lipid bilayer
∼10 nm thick, and the cortex, which is 200-300 nm thick, is composed of an F-actin
network cross-linked by filamin and bound to the motor protein myosin-II (myo-II),
which can confer rigidity to the cortex, but can also contract and exert tension in the
cortex. Membrane-bound proteins such as myo-I—a small motor protein that binds
to both actin and the membrane (Dai et al. 1999)—or linker proteins such as ERMs
(ezrin, radixin, andmoesin), tether the cortex to themembrane and exert a normal force
on the membrane. However the connection is dynamic and when the cortex flows it
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can slide tangentially under the membrane (Hochmuth et al. 1996; Dai and Sheetz
1999) and exert a tangential stress on the membrane. A detailed force balance done
later shows how this can lead to swimming without either blebbing or shape changes.

Two recent papers describe a similar phenomenon—tension-driven motion of cells
in confined environments—using human dermal fibroblast cells (Liu et al. 2015),
or zebrafish germ-layer cells (Ruprecht et al. 2015). Liu et al. (2015) identify two
morphologies, one type—A1—has a rounded body and a small leading edge, and the
other—A2—has a more ellipsoidal body with a large uropod (Fig. 1). They showed
that slow mesenchymal cells undergo the MAT when the adhesion is low and the
cells are confined between plates, and this leads to two distinct shapes and two types
of fast migration. The first (A1) involves low contractility of the cortex and a local
protrusion, and the second (A2), is a ‘stable-bleb’ type that involves high myo-II
activity and involves a strong retrograde actin flow. Type A1 appears to require an
external signal to polarize, whereas type A2 can appear spontaneously, as has been
shown for other cell types as well (Lorentzen et al. 2011; Bergert et al. 2012). The
authors suggest that the type A2 system may be bistable.

A different, permanently-polarized, stable-bleb shape can be obtained from a stable
non-polarized blebbing cell by increasing the contractility in zebrafish progenitor cells
(Ruprecht et al. 2015). The stable-bleb form involves cortical flow rates of 10’s of
μms/min (Fig. 3a), which would certainly induce an anterior-to-posterior cytoplasmic
flownear the cortex, and thus a posterior-to-anterior flow in the center. The authors also
postulate a high cortical growth rate at the front of a cell and a high disassembly rate
at the rear (cf.Fig. 3b). This hypothesis is supported by the fact that blebbistan (which
inhibits myo-II contractility), latrunculin A (which leads to actin depolymerization),
and jasplakinolide (which stabilizes actin networks) all inhibit polarization and cortical
flow. The authors explain the transition from random blebbing to a stable-bleb shape as
an instability of a spherical shape, which is adopted in the absence of surface contact,
to fluctuations in the membrane. To date only a linear stability analysis of the problem
has been done (Callan-Jones et al. 2016), and the results of that analysis are contrasted
with the results herein in the Discussion section.

Thus there are two ‘stable-bleb’ cell morphologies in which a gradient of cortical
density and myo-II contraction is used to generate a cortical flow and an axial pressure
gradient (cf.Fig. 4). How the flow is initiated, and in particular, whether it arises as an
instability or requires contact with a substrate, is unknown. This mode of movement
has only been demonstrated when cells are constrained to move between two horizon-
tal barriers, and it has been suggested that substrate contact may open stretch-activated
calcium channels and initiate modification of the cortex (Hung et al. 2016). Interest-
ingly, some cells cannot move if they are only in contact with the substrate on the
ventral (bottom) side, but will move when confined in a micro-channel (Bergert et al.
2012). This suggests that cortical flow may not arise when the cell is in contact with
a surface on only one side, and this has been shown experimentally in Dd (Yumura
et al. 2012).

To understand the origin of movement in these cells, recall that the cortex slips past
the membrane, and in a numerous cell types, including Dd (Traynor and Kay 2007),
leukocytes (Lee et al. 1990) and dendritic cells (Renkawitz et al. 2009), the membrane
does not flow in a cell-fixed coordinate frame—it merely translocates with the cell
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Fig. 3 The measured cortical flow (top) (From Ruprecht et al. (2015)), and the postulated intracellular
flows (bottom)

Fig. 4 The two types of
stable-bleb morphology in
which movement in confinement
is driven by tension gradients.
a The Ruprecht-type, and b the
Liu-type A2. Reproduced with
permission from Petrie and
Yamada (2016)
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body. Thus the membrane functions more like an elastic than a viscous material, and
the drag force due to cortical flow creates an opposed tension gradient in the mem-
brane. Back-to-front tension gradients of the order of 5pN/µm2 have been measured
in axons and keratocytes (Lieber et al. 2015), but only on the dorsal membrane of cells
in surface contact on the ventral membrane. When the internal and external fluids are
inviscid and quiescent, as in Sects. 3 and 4, these tensions must be equal and opposite,
and the cell does not translocate. However, when the interior and exterior fluids are
viscous, as in Sect. 5, there can be a non-zero tangential stress on these fluids, and this
may produce motion. We will show that such tension gradients in the membrane can
generate movement without shape changes, and we call this ‘swimming’. The plausi-
bility of such motion is supported by the observed surface-tension-driven Marangoni
propulsion of a fluid droplet on a viscous fluid (Lauga and Davis 2012). In fact, by
cutting the cell in Fig. 3 along the long axis, and opening it up and stretching the
free ends to infinity, the membrane becomes an interface between the interior and
exterior fluids, and one has the configuration of the classical Marangoni problem. Of
course reality is more complex here, since the cortex as described above is a dynamic
structure, thin at the front and thick at the rear,

While the primary experimental evidence of tension-driven movement involves
cortical flows, we show that it is the existence of a tension gradient, whether or not it
involves a cortical flow, that drivesmovement. Thus the results hereinwill be applicable
to a larger class of cells than those used in the experiments described above.

3 The shape problem for cells

3.1 The free energy functional and the shape equations

The observed shapes described above, in particular the stable-bleb types shown in
Fig. 4, raise a number of questions. Since amoeboid cells have a less-structured CSK,
the cell shape is primarily determined by the distribution of internal forces in the
membrane and the forces in the cortex. Thus the first question is what distribution
of forces in the membrane and the cortex is needed to produce the observed shapes?
Secondly, since directed cell movement requires cell polarization and cortical flow,
what balances in the cortex amongst cortical thickness, the level of myo-II for contrac-
tion, myo-I for attachment to the membrane, and other factors, are needed to produce
the cortical flow? Finally, how do the properties of the micro-environment affect the
speed of movement, and whether a cell switches from tension-driven movement to
blebbing-driven movement?

A model that incorporates a detailed description of the cortical network growth,
myo-II, and cortical-network interactions, combined with the transport of actin
monomers and other components in the CSK, will be very complex, and to date
the cortex has been described as an active gel in simplified treatments of cortical flow
(Joanny and Prost 2009; Prost et al. 2015; Bergert et al. 2015). While this produces
some insights, the biochemical details are embedded in an active component of the
stress tensor for the gel, and thus the relative importance of the individual processes
mentioned above cannot be investigated. We also do not attempt to develop a detailed
model here, but rather, we use an alternate high-level description of the cortex to
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investigate how cortical forces and heterogeneity of membrane properties determine
the shape of cells in quiescent fluids, and how these factors determine the shape and
speed of swimming cells. Since the forces are simply specified, we can consider both
the case in which there is a cortical flow that generates stresses, and the case in which
the cortex is under stress but not flowing with this approach.

For this purpose we separate mechanics from the details of the cortical structure
by prescribing a force distribution on the membrane that reflects what is believed to
occur in the cortex in vivo. This allows us to vary the cortical forces directly, whether
they arise from cortical flows or simply from static tension gradients in the cortex. We
do this first for cells in an inviscid quiescent fluid, where there are no shear stresses
due to the fluids, and secondly for swimming cells, in which the interior and exterior
fluids flow freely. The three-fold aim of the latter step is to show that cells can swim
when subject to cortical forces, to determine how much the shape of a moving cell
differs from that of a stationary cell, and to show how the shape differences depend
on cell and fluid properties.

The determination of the steady-state shapes of vesicles and red blood cells has been
thoroughly studied, both in the absence of fluid motion (Seifert et al. 1991; Seifert
1997), and in the presence of fluid motion (Veerapaneni et al. 2009; Zhao et al. 2010;
Li et al. 2014). In the former the shapes are computed as minimizers of the free energy
of the membrane, typically given by a Canham-Helfrich functional described below,
and in the latter they represent shapes that lead to minimum dissipation in the flow.
However, vesicles have no cortical layer and red blood cells have a very thin layer
of spectrin—which contains no molecular motors—attached to the membrane. When
there is a cortical flow and membrane-cortex tethers are actively formed and broken,
there are dissipative processes involved and the membrane-cortex forces are not con-
servative. While one can use a virtual work argument to determine stationary shapes
when there are non-conservative forces, we avoid this as follows. To find the stationary
shapes under prescribed forces, we define a free-energy functional for the membrane,
which we treat as an elastic medium since this conforms with experimental findings
in Dd (Luo et al. 2013), we compute its first variation with respect to a deformation,
which gives the membrane force, and to this we add the cortical forces directly.

The membrane has four modes of deformation: dilatation, shear, bending and tor-
sion, but only the bendingmode is treated in general andwe follow this practice here. In
addition to the bending energy,which to lowest order is proportional to the square of the
local curvature of themembrane, there are contributions to the free energy correspond-
ing to the work associated with area and volume changes when these are conserved.

We let Ω ⊂ R3 denote the volume occupied by the cell and let S denote its
boundary. We assume thatS is a smooth, compact, two-manifold without boundary,
parameterized by the map Φ : D ⊂ R2 → S , defined so that the position vector
x to any point on the membrane is given by x = x(u1, u2) for a coordinate pair
(u1, u2) ∈ D. We let n denote the outward normal onS , and define basis vectors on
the surface via

ei = ∂x
∂ui

i = 1, 2. (3.1)

In general these are not normalized.
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The free energy associated with bending, which was first set forth for membranes
by Canham (1970) and later by Helfrich (1973), has the following form

FB =
∫
S

2kc(H − C0)
2dS +

∫
S

kGKdS. (3.2)

Here κ1 and κ2 are the principal curvatures, H = −(κ1 +κ2)/2 is the mean curvature,
and K = κ1κ2 is the Gaussian curvature.1 C0 is a phenomenological parameter called
the spontaneous curvature, kc the bending rigidity - which may be stress-dependent
(Diz-Muñoz et al. 2016), and kG the Gaussian rigidity, which may also vary over the
membrane.When kG is constant, the integral of theGaussian curvature is constant ifΩ
does not change topological type under deformation, and the integral can be ignored.

Under the constraints of constant surface area A0 and volume V0 of the cell, the
free energy takes the form

F = FB +
∫
D

Λ
(√

g − √
g0

)
du1du2 + P

(∫
Ω

dV − V0

)
, (3.3)

where P ≡ pext − pin is the pressure difference across the membrane, which we
assume is constant over the membrane. Typically pin is a few hundred pascals higher
than pext (Salbreux et al. 2012). The constant term PV0 simply translates the free
energy and can be ignored, since it disappears after the first variation of (3.3) is taken.
In the second-last integral over the boundary, g is the determinant of the metric tensor
g of the surface, whose components are gi j = ei ·e j , and g0 is its value in a reference or
undeformed configuration in which the area is A0. The integral represents the energy
needed to alter the area from its initial value, and Λ is the energy per unit area that
arises when A is changed. Thus Λ has units of force/length, which defines a tension,
but it is not a surface tension in the usual sense. Instead it is an in-plane stress of a
two-dimensional surface, which can be seen as follows.

Consider a small x–y section of a thin flat plate of thickness h, and suppose there are
no normal stresses to the section in the z-direction, which is orthogonal to the plate.
Suppose the plate is an elastic material and let T be the stress tensor and let ε be the
strain relative to a reference configuration. For small, uniform strains in the x–y plane
on the four faces of the section one has

εx = 1

E
(T xx − νT yy), (3.4)

εy = 1

E
(T yy − νT xx ), (3.5)

where E is Young’s modulus and ν is the Poisson ratio of the material. From these it
follows that

1 This definition of the mean curvature is predicated on choosing the outward normal as the normal to the
surface.
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T xx = E

1 − ν2
(εx + νεy), (3.6)

T yy = 1

1 − ν2
(νεx + εy). (3.7)

If the stress and strains in the x and y directions are equal and uniform in the z-direction,
one can define a tension T as

T = (T xx + T yy)h = Eh

1 − ν
ε

where ε = εx + εy . Experimental results are usually reported in terms of a tension,
but the foregoing shows that this assumes a local isotropy of the stress and strain.
Evans and Needham (1987) define the tension as the average of the stresses along the
principal directions of the surface, but these are rarely available. It is shown later that
in the absence of imposed forces Λ is constant, and therefore the constant area term
can be ignored as well.

In the absence of external forces, a stable equilibrium shape of a cell is a minimizer
of F , and thus a solution of δ(1)F/δx = 0 for any infinitesimal deformation x =
x0 + φ + ψn, where φ = φi ei , ofS . This leads to the following shape equations for
the normal and tangential components of the membrane force.2

Fn = −δF

δψ
= { − Δs [kB (2H − C0)] − kB (2H − C0)

(
2H2 + C0H − 2K

)

−Δs kG + 2ΛH − P
}

(3.8)

Ft
i = −δF

δφi
=

{
1

2
(2H − C0)

2 ∇i kB + K∇i kG + ∇iΛ

}
i = 1, 2. (3.9)

Here Δs and Δ̄s are surface Laplacians (cf. “Appendix A”), and the ∇i are the
components of the surface gradient, resp. In the first equation one sees thatΛ enters the
normal component via the term 2ΛH , which couples areal distension to the curvature
in the normal component of the force. In light of how the variation is defined, the
resultant forces are defined per unit area.

To simplify the equations we assume hereafter that C0 = 0, which reduces the
foregoing to

Fn = −δF

δψ
= −2Δs(kBH) − 2kBH

(
H2 − K

)
− Δs kG + 2ΛH − P

(3.10)

Ft
i = −δF

δφi
= 2H2∇i kB + K∇i kG + ∇iΛ i = 1, 2. (3.11)

2 See “Appendix A” for a sketch of the derivation of these equations. When the bending and Gaussian
moduli are constant the equation for the normal deformation has been derived by Ou-Yang and Helfrich
(1989); Capovilla et al. (2003); Tu and Ou-Yang (2004) and others.
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When the bending and Gaussian rigidities are constant these simplify to

Fn = −δF

δψ
= −2kBΔs H − 2kBH

(
H2 − K

)
+ 2ΛH − P (3.12)

Ft
i = ∇iΛ i = 1, 2. (3.13)

In any case the forces vanish at critical points of the energy, and stable shapes corre-
spond to local minima of the free energy.

When written in (u1, u2) coordinates, the first term in Fn defines a fourth-order
differential operator, and the critical points of the energy cannot in general be found
analytically. Since the membrane is embedded in an inviscid quiescent fluid, we define
a fictitious relaxation process for the evolution of the shape from its initial values in
which we suppose that the dominant force is a fictitious drag, and we neglect inertial
effects. This leads to the system

μd
dψ(u1, u2)

dτ
= Fn(H, K , P,Λ, kB , kG , u1, u2) (3.14)

μd
dφi (u1, u2)

dτ
= Ft

i (H, K , P,Λ, kB , kG , u1, u2) i = 1, 2 (3.15)

where μd can be thought of as a drag coefficient with the dimension of the viscosity
per unit length.

3.2 The shape equations under cortical forces

To incorporate cortical forces, which are non-conservative,we add these to the intrinsic
membrane forces as prescribed normal and tangential forces per unit area, the com-
ponents of which are denoted f n and f ti , i = 1, 2. Thus the equations to be solved
for a 3D shape are

μd
dψ(u1, u2)

dτ
= Fn(H, K , P,Λ, kB , kG , u1, u2) + f n (3.16)

μd
dφi (u1, u2)

dτ
= Ft

i (H, K , P,Λ, kB , kG , u1, u2) + f ti i = 1, 2. (3.17)

Since the normal force is directed inward and the normal vector is directed outward,
f n < 0. When the cortical forces are incorporated the resulting evolution is no longer
a gradient flow, and one simply looks for steady states of (3.16) and (3.17), which in
general are not minimizers of the membrane free energy.

The equations can be cast into non-dimensional form by defining the * variables
H∗ = HR0, L∗ = L/R0, Δ∗

s = R2
0Δs, k∗

B = kB/k̄, k∗
G = kG/k̄, Λ∗ =

R2
0Λ/k̄, P∗ = R3

0P/k̄, f n∗ = f n R3
0/k̄ , f t∗i = f ti R

3
0/k̄ and τ ∗ = τ/τm,

where R0 and k̄ are the characteristic length and energy, resp., which we set equal to
1. Therefore, τm ≡ μR4

0/k̄ defines a characteristic time unit scaled by a constant char-
acteristic bending rigidity unit k̄. The resulting forms of (3.16) and (3.17) in unstarred
variables are then
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dψ(u1, u2)

dτ
= Fn(H, K ,C0, P,Λ, kB , kG , u1, u2) + f n (3.18)

dφi (u1, u2)

dτ
= Ft

i (H, K ,C0, P,Λ, kB , kG , u1, u2) + f ti i = 1, 2.

(3.19)

4 2D shapes

4.1 The evolution equations for 2D shapes

In order to understand the effects of membrane and cortical forces in determining the
shape in the simplest possible context, we first perform an analysis of the cell shapes
in two dimensions. In this case the domain is a 2D area, the boundary S is a closed
curve, and the area and volume constraints become perimeter and area constraints.
The energy functional now reads

F 2D =
∫
S

kB
2

κ2ds +
∫
S

Λ
(√

g − √
g0

)
ds + P

(∫
Ω

d A − A0

)
, (4.1)

where κ is the curvature and s arc length on the boundary. The normal and tangential
forces arising from the bending energy and constraints reduce to

Fn = −δF 2D
B

δψ
= −Δs(kBκ) − kB

2
κ3 + Λκ − P (4.2)

Ft = −δF 2D
B

δφi
= κ2

2
∇kB + ∇Λ, (4.3)

and the evolution equations (3.18) and (3.19) now read

dψ(s)

dτ
= Fn + f n = −Δs(kBκ) − kB

2
κ3 + Λκ − P + f n (4.4)

dφ(s)

dτ
= Ft + f t = κ2

2
∇kB + ∇Λ + f t . (4.5)

4.2 The numerical algorithm for solving the evolution equations

As a characteristic length scale of the problem we use an effective 2D cell size R0,
which is defined via

A = πR2
0 (4.6)
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where A is the specified area enclosed by the cell contour, which has total fixed length
L . The cell shape can then be characterized by the reduced area

Γ = A

π
( L
2π

)2 = 4π A

L2 , (4.7)

which is an intrinsic dimensionless parameter that expresses the ratio of the area of a
given 2D shape to that of a circle of circumference L and a larger area.

To solve the 2D Eqs. (4.4) and (4.5), the boundary curve is discretized into N seg-
ments (Wu and Tu 2009) and we assume a ‘time’ step, τ0 and label the time sequence
as τ0, 2τ0, . . . , jτ0. The vectorial form of Eqs. (4.4) and (4.5) can be concisely trans-
formed into

rkj+1 − rkj = fkj τ0, (4.8)

where fkj is the discrete form of the dimensionless force surface density. The geometric
quantities in this equation can be discretized as:

[ds]kj = |rk+1
j − rkj |, [t]kj = rk+1

j − rkj
[ds]kj

[n]kj = − tk+1
j − tkj
[κ ds]kj

, (4.9)

[κ]kj =
√

(xk+1
j − 2xkj + xk−1

j )2 + (yk+1
j − 2ykj + yk−1

j )2

{
[ds]kj

}2 . (4.10)

[Δsκ]kj = κk+1
j − 2κk

j + κk−1
j{

[ds]kj
}2 . (4.11)

where rkj = xkj ex + ykj ey and nk
j can also be obtained by rotating tkj in 90◦ counter-

clockwise.
The local invariance of the boundary length is treated using a spring-like penalty

method instead of introducing a spatially variable Lagrange multiplier, but our method
is equivalent to it, as shown in “AppendixB”.One can re-define the areal energy density
via an harmonic spring-like potential, which leads to a simple implementation. Let

Λ = Λ0

(√
g

g0
− 1

)
,

where Λ0 is a constant penalty factor. Then

fT(s) = ∂

∂s

[
Λ0

(√
g

g0
− 1

)
t(s)

]
, (4.12)

which can be rewritten as

fT(s) = Λ0

ds0

∂

∂s
[(ds − ds0) t(s)] . (4.13)
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Equation (4.13) can be discretized as

fT,k
j = NΛ0

L

[(ds − ds0) t]k+1
j − [(ds − ds0) t]kj
[ds]kj

, (4.14)

where ds0 = L/N and L is the total contour length of the 2D cell.
Because Λ0 can be considered as a membrane tension, one can define a new time

scale τT = μoR0/Λ0. This is to be compared to the membrane bending time scale
τm defined earlier, and must be taken small enough in comparison to τm to ensure
invariance of the boundary length on the membrane time scale. For most practical
purposes τT = 10−5 − 10−4τm has proven to be sufficiently small (Wu et al. 2015,
2016).

One could treat Λ0 as a true Lagrange multiplier, and develop a scheme to simulta-
neously solve for the shape and multipliers, but we simply fix a large Λ0 and check en
passant that the arc length is conserved to the desired precision. The area constraint
is treated as described in “Appendix C”. The stopping condition of the time-stepping
calculation in (4.8) is

∑N
k=1 |rkJ+1 − rkJ | < ε for a large enough integer J and a small

enough number ε (ε = 10−6 is used here).
A summary of the computational procedure is as follows. First, the force distribution

along the cell membrane is computed based on the current configuration of the cell.
Second, the evolution equations (4.4) and (4.5) are used to obtain the new position in
terms of the normal and tangential force distributions. Third, the first two steps are
repeated until the stopping criterion has been satisfied, indicating that the steady state
has been reached.

4.3 Computational results for 2D shapes

In this section we investigate the effects of spatial variations in the imposed cortical
forces and in the bendingmodulus. Figure 5a shows representative shapes as a function
of the magnitude of the dimensionless tether force f ∗

n and the reduced area Γ , while
Fig. 5b shows the shapes as a function of the dimensionless tangential force f ∗

t and
Γ . In this figure and the following one, the property in question varies linearly from
right to left of the shapes, with a minimum of zero at the left and the maximum given
by the value on the x-axis. As a point of reference, if Γ = 1 all shapes are disks,
irrespective of the variation of other properties. In both panels one sees that there is
little effect on the shape when either force is less than 0.1, but a very strong effect
for either force greater than 1. Shapes in the gray zone on the left are stable, but no
stable shapes were found in the light yellow zone due to numerical difficulties. Stable
shapes are found for the entire range of the tangential force on the right.

The normal force (a) leads to pear-shaped cells at large Γ and shapes with two
lobes connected by a narrow ‘bridge’ at Γ ∼ 0.45, the latter somewhat similar to the
Ruprecht ‘stable-bleb’ type shown in Fig. 4a. This shape only exists at a sufficiently
small reduced area, when the shape under a small force is biconcave, and stems from
the large normal force at the right end of the cell. A variety of other shapes can be
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Fig. 5 a A phase diagram showing cell shapes as a function of the dimensionless normal force f ∗
n and the

reduced area Γ . b A similar diagram for the dimensionless tangential force f ∗
t and the reduced area Γ .

The dimensionless range 0.1 ∼ 100 in the x coordinate corresponds to the dimensional forces in the range
0.01 ∼ 10 nN/µm for the chosen cell size and bending rigidity

obtained under different variations of the tether force. In particular, a symmetric two-
lobed shape can be obtained by concentrating the normal force force at the center of
the cell.

At f ∗
t ∼ 1 and small and intermediate Γ in the panel on the right, one sees that

the large tangential component at the right end leads to a smaller lobe there, while the
small tangential force at the left end leads to a larger lobe. These are again similar to
the stable-bleb type observed experimentally, where it is suggested that the cortical
tension is lowest at the front of the cell (the left end in the figure) and highest at
the rear. Clearly the curvature is highest on the small lobe, which can be understood
from the fact that a high tangential tension enters into the normal component of the
membrane force equations. While the stable shapes are not necessarily minimizers of
the area, the membrane-derived component of the forces drives the evolution toward a
minimum. The tension energy is highest at the right end of the cell while the bending
energy dominates the rear. Since the tension is lowest at the left end, the evolution
there is driven by a tendency toward local energy minimization, which leads to larger
radii to minimize the local curvature. If the magnitude of the tension increases further,
the pear-like shape becomes unstable and evolves into a kidney shape with a shallow
indentation or a kidney shape with a deep one, the latter shown in the light orange
zone, depending on the applied magnitude and the reduced area. The kidney shape
cannot be attained at low Γ due to the narrow neck that occurs around f ∗

t ∼ 1, which
precludes the shape changes involved in the transition to the kidney shape. The kidney
shapes have been extensively found in the biophysical experiments of giant vesicles
(Lipowsky 2014) as well as some chemically treated erythrocytes, such as cupped red
cells (Brailsford et al. 1980).

Experimental measurements of cortical tensions fall in a wide range, from
0.02pN/µm for neutrophils to 4.1 pN/µmforDd (Winklbauer 2015). Estimates based
on the number of linker proteins give a tether force of about 1 pN/µm (Diz-Muñoz
et al. 2010). Our model predicts a reasonable experimental range 0.01 ∼ 10 nN/µm
for the chosen cell size R0 = 10μm. The results in Fig. 5 are given in dimensionless
terms, and a comparison of them with the experimental results requires the bending
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Fig. 6 The dependence of shape
on the magnitude of the variation
in kB . The shape changes from
biconcave to the pear shape as
the axial variable bending
rigidity increases. Γ = 0.6
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rigidity of a curve. Since the bending rigidity of a bar scales differently than that of a
plate, one cannot use the latter—which is experimentally measured—to estimate the
former. Thus a comparison of the model predictions with experimental results must
await 3D computations of the shapes as a function of the applied forces.

To investigate the effect of a variable bending modulus, we vary it axially using the
hyperbolic tanh function

kB = k̄ + ΔkB
2

[
1 + tanh

( s

w

)]
, (4.15)

where s is the length of the half contour measured from the rightmost end of the cell, k̄
is the uniform component of the bending energy,ΔkB is the bending rigidity difference
between the right and left ends of the cell, andw is the width of the transition zone. In a
thin-shell description of a material the Young’s modulus varies as the thickness cubed,
and hence the axial variation imposed here could arise from the axial variation of the
cortical thickness. It might also reflect a distribution of adsorbed or transmembrane
proteins, and of glycolipids (Wu et al. 2013). Figure 6 shows that in an inviscid
quiescent fluid a cell undergoes a shape transition from the biconcave shape to the
pear shape induced by the variable bending rigidity. Since there are no imposed forces
here the shapes are minimizers of the free energy. One sees that the cell ‘expands’ in
regions of large rigidity since a region of higher kB offsets the lower curvature in the
free energy F .

5 Tension-driven swimming at low Reynolds number

5.1 The boundary integral equation

When the cell is submerged in a fluid and free to move, it generates extra- and intra-
cellular flows, and here we assume that both the extra- and intracellular fluids are
Newtonian, of density ρ and viscosity μ. In reality both fluids are undoubtedly more
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complex, but to demonstrate that movement ensues under tension gradients in the
membrane it suffices to consider Newtonian fluids.

The Navier–Stokes equations for the intra- and extracellular fluid velocities u are
(Childress 1981)

ρ
∂u
∂t

+ ρ(u · ∇)u = ∇ · σ + f ext = −∇ p + μΔu + f ext, (5.1)

∇ · u = 0 (5.2)

where

σ = −pδ + μ(∇u + (∇u)T )

is the Cauchy stress tensor and fext is the external force field. We assume that the
intra- and extracellular densities are equal, and thus the cell is neutrally buoyant, but
allow for different viscosities in the two fluids. We further assume that there are no
additional body forces and thus set f ext = 0.

When converted to dimensionless form and the symbols re-defined, these equations
read

ReSl
∂u
∂t

+ Re(u · ∇) = −∇ p + Δu, ∇ · u = 0, (5.3)

where the Reynolds number Re based on a characteristic length scale L and a charac-
terisic speed scaleU is Re = ρLU /μ. In addition, Sl = ωL/U is the Strouhal number
and ω is a characteristic rate at which the shape changes. When Re � 1 the convec-
tive momentum term in Eq. (5.3) can be neglected, but the time variation requires
that ReSl = ωρL2/μ � 1, which implies that the initial shape changes must be slow
enough.When both terms are neglected, which we assume throughout, a lowReynolds
number (LRN) flow is governed by the Stokes equations, now in dimensional form,

μΔu − ∇ p = 0, ∇ · u = 0. (5.4)

Here we consider small cells such as Dd, whose small size and low speeds lead
to LRN flows (Wang and Othmer 2015a), and in this regime time does not appear
explicitly, there are no inertial effects, and bodies move by exploiting the viscous
resistance of the fluid. In the absence of external forces on the fluid and acceleration
of the swimmer, there is no net force or torque on a self-propelled swimmer in the
Stokes regime, and therefore movement is a purely geometric process.

The solution of the Stokes equations via the boundary integral method is a well-
studied problem for red blood cells or vesicles in a pressure-driven flow (Zhao et al.
2010; Veerapaneni et al. 2011; Rahimian et al. 2015), but here the tension that arises
from the active contraction of the cortex drives the flow. In the boundary integral
method (BIM) one uses an Eulerian description for the velocity field of the fluid and
a Lagrangian description for the configuration of the membrane. We assume that the
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interior and exterior viscosities are equal and that the velocity at infinity vanishes, and
therefore the solution has the representation (Pozrikidis 1992, 2003)

u(x) = 1

4πμ

∫
S (t)

G(x, x0) · Fm(x0)ds (5.5)

where

Gi j (x, x0) = −δi j ln |x − x0| + (x − x0)i (x − x0) j
|x − x0|2 (5.6)

is the Green’s function in two space dimensions and Fm is the force exerted by the
membrane on the fluid. We assume continuity of the velocities across the membrane,
and mechanical equilibrium at the membrane, and therefore the force balance reads

Fm ≡ [
(σ in − σ ext ) · n

]
m = f m . (5.7)

The right-hand side of (5.7) is the force on themembrane given by Eqs. (4.4) and (4.5),
and thus one has to solve the integral equation, the shape equation, and the tangential
force balance to determine the interior, exterior and boundary velocity fields.

When x → x0 ∈ S (t), the Green’s function in (5.6) diverges, but it is a weak
singularity, and can be removed by using the singularity subtraction transformation
(SST) (Farutin et al. 2014), which is based on the integral identities

n(x) · ∫
S G(x, x0) · n(x0)ds = 0, (5.8)

t(x) · ∫
S G(x, x0) · t(x0)ds + n(x)

2π

∫
S

(x − x0) [(x − x0) · n(x0)]
|x − x0|2 ds = 0

(5.9)

where t is the tangent vector to the contour S . The first identity follows from the
divergence theorem and the second from Stokes’ theorem. The SST technique for the
single-layer kernel G(x, x0) can be applied as follows. Rewrite the integral in (5.6) as

∫
S

G(x, x0) · f(x0)ds

=
∫
S

[G(x, x0) · f(x0) − fn(x0)n(x) · G(x, x0) · n(x0)

− ft (x0)t(x) · G(x, x0) · t(x0)]ds
− ft (x)

2π

∫
S

[(x − x0) · n(x)] [(x − x0) · n(x0)]
|x − x0|2 ds, (5.10)

where f(x0) = fn(x0)n(x0) + ft (x0)t(x0) and fn(x0) = (f(x0) · n(x0))n(x0) and
ft (x0) = (f(x0) · t(x0))t(x0) are the normal and tangential parts of the force f(x0).
Both integrals on the RHS of (5.10) have no singularities, that is they both go to zero
when x approaches x0 along the contour S . The second term in (5.10) tends to zero
when x0 approaches x along the contour because (x0 − x) · n ≈ O(|x0 − x|2).
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5.2 The numerical algorithm for cell swimming

Step 1: Following the dimensionless quantities denoted with a star symbol in
Sect. 3.2, the dimensionless surface force in unstarred variables f (x0) can be
expressed in the component as the right hand side (RHS) of Eqs. (4.4) and (4.5)
in terms of the current configuration of the cell.

Step 2: By substituting the instantaneous surface force distribution into the dimen-
sionless boundary integral in unstarred variables along the cell shape contour, we
can obtain the velocity of each material node on the membrane

u (x) = 1

4π

∫
S

G (x, x0) · f (x0) ds (x0) (5.11)

Step 3: The motion of cell membrane is obtained by solving the dimensionless
time evolution equation in unstarred variables

dx
dτ

= u (x) (5.12)

for each material node x lying on the membrane and the new cell configration is
updated at each time step using an explicit Euler scheme:

x(t + dτ) = x(τ ) + u (x(τ ), τ ) dτ. (5.13)

Step 4: Repeat the former three steps until the stopping criterion has been satisfied,
indicating that the steady shape and swimming velocity have been obtained.

The discretization procedure and validation of the method can be found in
“Appendix D”.

5.3 Computational results for cell swimming

To compute the velocity field in the interior and exterior fluids we introduce a square
Eulerian grid with a specified degree of refinement—themesh size can be taken signif-
icantly smaller than ds according to the accuracy required. Since the Green’s function
is singular when the target point coincides with the source point, a small strip (of order
ds around the boundary is excluded from computation of the velocity field. The Eule-
rian lattice grid points do not coincide with the Lagrangian nodes on the membrane in
general, and we need only to evaluate the distance between the source point (lying on
the membrane) and the target point (lying on the square lattice grid). For each point x,
the velocity field is evaluated by using (5.11), where the integral along the membrane
is performed exactly. A simple but accurate algorithm to judge the cellular interior
and exterior is given in “Appendix E”.

Figure 7 shows the velocity field outside the swimming cell in a cell-fixed frame.
The interior flow (not shown) indicates that tension driven swimming can form a
microcirculation flow inside the cell, which is consistent with the biological conjecture
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Fig. 7 The velocity field inside
and outside the swimming cell in
cell-based coordinates
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Fig. 8 The swimming velocity as a function of the applied forces. The gradient of the forces is reversed
from earlier figures, and the cells move to the right. In the both diagrams the cell has a reduced area Γ = 0.6

shown inFig. 3. Figure 8a shows that the swimmingvelocity as a function of the applied
forces is linear for all normal forces (a), and linear for small tangential forces (b). For
large tangential forces, the speed drops abruptly in the transition to a kidney shape.
The plateau shown in Fig. 8b is not precisely flat, but the values are close.

Figure 9 shows the velocity and evolution of cell shape as a function of time. Initially
the shape is biconcave, but evolves to the pear shape induced by the variable bending
rigidity, and the corresponding swimming velocity changes with time. As in Fig. 6,
the lobe size depends on the bending rigidity difference between the front and the rear
of the cell—the larger the difference, the larger the difference in lobe size. The inset
shows the force distribution on the boundary, where one sees that stress concentrates
on the large lobe.

6 Discussion

Metastasis of a cancerous growth,which involves development of secondarymalignant
growth distinct from the primary tumor, accounts for the poor prognosis inmany cancer
types, and thus understanding how cells move in various environments is an important
step toward devising medical treatment strategies for inhibiting metastasis. Because
many cell types can use different modes ranging from crawling to swimming, it is
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Fig. 9 The velocity, shape and
surface force distribution on the
cell. The cell shape has a
reduced area Γ = 0.5 with
ft = 0.0, fn = 0.0, and
ΔkB = 6.0. The cell moves in
the direction of the large lobe

important to understand how the micro-environment a cell finds itself in influences
the mode it chooses. The shape a cell adopts in different environments is dependent on
both intra- and extracellular forces on the membrane, and the balance between them
can in turn determine the mode of movement via feedback of mechanical forces on the
structure of the cytoskeleton and cortex. Earlier we described how certain cell types
generate cortical flows that can produce motion, but there is little understanding of the
quantitative relationships between the various forces, cell shape and movement.

Recently Callan-Jones et al. (2016) addressed the question of how cortical flows
affect the shape of cells analytically, via a perturbation analysis of a spherical cell. They
find that for small perturbations of a sphere the cortical force is the primary determinant
of the shape, and showed that the flow can lead to axial asymmetries of the shape,
similar to those observed. However a complete treatment of the control of cell shape
and movement is currently beyond reach, either analytically or computationally, and
in this paper we have addressed several simpler questions, which are (i) how do the
shapes adopted by cells constrained in quiescent fluids depend on prescribed cortical
forces, and (ii) how does a cortical tension gradient affect the shape and speed of
movement when it is unconstrained.

A primary objective of this work was to demonstrate that cells could swim without
any shape changes, simply by using tension gradients in the membrane. To show this,
we developed a two dimensional mechanical theory that captures the necessary cortex-
membrane and fluid-membrane interactions. This enabled us to analyze the range of
steady state shapes that could be adopted by membranes under tension distributions
and whether these distributions could lead to swimming via an interaction with the
fluid.We found that the resulting shapes closely resemble some of the shapes observed
experimentally. Several new features of cell deformation and microswimming have
emerged, including the following. (1) The pear shapes can be replicated by both the
normal and tangential applied tension gradients, as well as by a variable bending rigid-
ity. As the force or modulus variation is increased, the imposed asymmetry produces
the transition from the non-polar bi-axial-symmetry (biconcave shape) to the polar uni-
axial symmetry (pear shape or kidney shape). (2) The cell swimming velocity is linear
as a function of either the normal or tangential forces, but the strong tension gradient
in the tangential direction can further lead to a kidney shapes and cause the swimming
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velocity to abruptly decrease. (3) The velocity field within the cell forms two circulat-
ing loops which provide a mechanism for shuttling actin monomer from the rear to the
front, as has been postulated by experimentalists, and is shown schematically in Fig. 3.

Future work on 2D cells using the current model will focus on the interactions
between the different factors with a view toward more accurately replicating the
observed shapes and further investigating fluid effects such as differences in the inte-
rior and exterior viscositites. We believe that we will be able to obtain most of the
shapes that are observed with proper modification of the parameters in the model.
For example, some shapes probably arise via highly localized force distributions, and
can probably be obtained by suitable modification of the applied tension distributions.
Another aspect for study concerns movement in confined spaces, which can be done
with the present methods if the boundaries are not to close to the cell, but which will
require new methods when the cell is in direct contact with the substrate.

Although the present studyprovides afirst step for themodeling of non-adhesive cell
movement, several other questions deserve future consideration in order to capture a
more realistic picture of tension driven swimming. For example,in the presentwork,we
assumeda single layer integratingboth effects ofmembrane and cortical layerswhereas
real cells are endowed with one lipid membrane layer and a separate cortical layer,
and a nucleus that makes deformations more difficult. It will be of great importance to
include the two separated layers and celluar nucleus inmodeling for better comparison
with experimental systems. Another future issue is to study the environment effects on
cell migration, for example, what is the spatial confinement effect on cell swimming
velocities and trajectories and what is the cell dynamics in a viscoelastic fluid. The
last issue is that in nature cells migrate in a 3D environment, thus a more realistic
model would incorporate the effect of the second principal curvature on the migration
phenomena of interest in this paper. A 3Dmodel would also allow for a more accurate
description of the cortex-membrane and fluid-membrane interactions. For example,
applying an anisotropic force distribution could lead to more realistic steady state
shapes. A complete investigation of this effect will be reported in future work. Some
preliminary results indicate that the cross section along the longest axis of the 3D
shapes adopted by cell membranes under tension coincide with the two dimensional
results shown here. Figure 10 below shows the equilibrium shapes of a membrane
with and without an external tension gradient.

Fig. 10 Here we exhibit the equilibrium shapes adopted by a cell membrane assumed to have an initial
shape of a 3x1x1 ellipsoid shown at the left. The figure in the center is the typical biconcave shape adopted
by a membrane in the absence of cortical forces. At the right we can see the asymmetric final shape that
is adopted when the membrane is under a linear tension gradient, going from 10 pN/µm2 in the back to
0 pN/µm2 in the front. The numerical method used to produce these shapes is based heavily on that of
(Bonito et al. 2010). The computations were performed using the finite element software FELICITY due
to Walker (2017)
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Appendices

Appendix A: An outline of the derivation of the shape equation

In 1989 Ou-Yang and Helfrich (1989) computed the first, second and third order
variations of the Helfrich energy under normal deformations of the membrane by
using the traditional tensor analysis. Later Capovilla et al. (Capovilla et al. 2003)
applied the covariant geometry and Tu and Ou-Yang (2004) applied Cartan’s moving
frame method to recalculate the variation of the original Helfrich free energy in both
normal and tangential directions, respectively. Here, we extend these calculations to
include a heterogeneous bending and Gaussian modulus.

F =
∫
S

1

2
kB (2H − C0)

2 dA +
∫
S

kGK dA +
∫
S

Λ dA + P
∫

Ω

dV (A.1)

Note that the Gauss-Bonnet theorem is only valid for a constant Gaussian modulus,
kG . If kG is variable, then one cannot ignore the second term in the energy when
performing the first order variation.

For the derivation we introduce the following symbols and definitions. The unit
normal vector n points outward. g is the surface metric tensor, and L is the extrinsic
curvature tensor. ψ, j ≡ ∂ jψ , so ∇iψ, j = ψ,i j − Γ k

i jψ,k = ∂iψ, j − Γ k
i jψ,k where Γ k

i j
is the Christoffel symbol of the second kind, which is symmetric. H = −(κ1 + κ2)/2
is the mean curvature, K = κ1κ2 is the Gaussian curvature, where κ1 and κ2 are the
principal curvatures. The surface Laplacian is Δs ≡ ∇2

s ≡ (
√
g)−1∂i (

√
ggi j∂ j ) and

Δs = ∇2
s ≡ (

√
g)−1∂i (

√
gK Li j∂ j ) and i, j = 1, 2, throughout.

Wewill use the following identities of first order variations taken in both the normal
and tangential directions,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δx = φiei + ψn,

δei = (∇iφ
k − ψLk

i

)
ek + (

φk Lki + ψ,i
)

n,

δn = − (
φk Li

k + ∇ iψ
)

ei ,
δgi j = ∇iφ j + ∇ jφi − 2ψLi j ,

δgi j = −∇ iφ j − ∇ jφi + 2ψLi j ,

δLi j = (∇i∇ j − 2HLi j + Kgi j
)
ψ + Lik∇ jφ

k + Lkj∇iφ
k + φk∇k Li j ,

δg = g
(
2∇iφ

i − 4Hψ
)
,

δ
√
g = √

g
(∇iφ

i − 2Hψ
)
,

δH = (
2H2 − K

)
ψ + 1

2Δψ + φk∇k H,

δK = Δsψ + 2HKψ + φk∇k K .

(A.2)
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We can calculate the general variation of the modified Helfrich free energy as
follows:

δF =
∫
S

[(
δ
√
g
) 1
2
kB (2H − C0)

2 + 2
√
gkB (2H − C0) (δH)

]
d2u

+
∫
S

[(
δ
√
g
)
kGK + √

gkG (δK )
]
d2u +

∫
S

[(
δ
√
g
)
Λ

]
d2u

+ P

3

∫
S

[(
δ
√
g
)
(x · n) + √

g (δx) · n + √
gx · (δn)

]
d2u

=
∫
S

{√
g

(
∇iφ

i − 2Hψ
) 1

2
kB (2H − C0)

2 + 2
√
gkB (2H − C0)

[(
2H2 − K

)
ψ + 1

2
Δψ + φk∇k H

] }
d2u

+
∫
S

[√
g

(
∇iφ

i − 2Hψ
)
kGK + √

gkG
(
K Li j∇iψ, j + 2HKψ + φk∇k K

)]
d2u

+
∫
S

[√
g

(
∇iφ

i − 2Hψ
)

Λ
]
d2u

+ P

3

∫
S

{√
g

(
∇iφ

i − 2Hψ
)

(x · n)

+ √
g

(
φiei + ψn

)
· n − √

gx ·
[(

φk Li
k + ∇ iψ

)
ei

] }
d2u

=
∫
S

{ (
∇iφ

i − 2Hψ
) 1

2
kB (2H − C0)

2 + 2kB (2H − C0)

[(
2H2 − K

)
ψ + 1

2
Δψ + φk∇k H

] }
dA

+
∫
S

[ (
∇iφ

i − 2Hψ
)
kGK + kG

(
K Li j∇iψ, j + 2HKψ + φk∇k K

)]
dA

+
∫
S

[(
∇iφ

i − 2Hψ
)

Λ
]
dA

+ P

3

∫
S

{ (
∇iφ

i − 2Hψ
)

(x · n) +
(
φiei + ψn

)
· n − x

·
[(

φk Li
k + ∇ iψ

)
ei

] }
dA

=
∫
S

{
Δ [kB (2H − C0)] + kB (2H − C0)

(
2H2 + C0H − 2K

)

+ Δ kG − 2ΛH + P
}
ψ dA

−
∫
S

{
1

2
(2H − C0)

2 ∇i kB + K∇i kG + ∇iΛ

}
φi dA (A.3)

123



Getting in shape and swimming: the role of cortical… 619

Thus, the two first functional derivatives (force components) in the normal and
tangential directions are as follows:

Fn = −δF

δψ
= { − Δs [kB (2H − C0)] − kB (2H − C0)

(
2H2 + C0H − 2K

)

−Δs kG + 2ΛH − P
}

(A.4)

Ft
i = −δF

δφi
=

{
1

2
(2H − C0)

2 ∇i kB + K∇i kG + ∇iΛ

}
(A.5)

Appendix B: Area and arc length conservation via an harmonic potential

There are several ways in which the area conservation term in the free energy (3.3)
can be written, and here we show one which has a simple interpretation in terms of
springs between nodes and is equivalent to the form given in (3.3) under an appropriate
definition of Λ. This method has been used by numerous authors (Henriksen and
Ipsen 2004; Finken et al. 2008; Freund 2007; Wu et al. 2015, 2016), and previous
implementations of it have shown that the precision of this method depends on the
choice of the coefficientΛ0(u, v). The area or arc-length can be conserved as precisely
as desired by making Λ0(u, v) large enough, with the disadvantage that this may
require taking a small time step in the numerical algorithm.

The method is based on the following formulation of the area constraint,

1

2

∫
Λ0(u, v)√

g0

(√
g − √

g0
)2 dudv = 1

2

N∑
i=1

[
Λi

(Ai − A0)
2

A0

]
(A.1)

whereΛ0(u, v) is fixed in the original reference frame. g is the metric on the deformed
surface and g0 is the metric fixed in the original surface.

The equivalence between the spring-like penalty method and the Lagrange multi-
plier method is as follows. The variation of the areal energy under a perturbation can
be written as

FΛ (x + εxA) =
∫

Λ0(u, v)

2|x0u × x0v|
(| (x + εxA)u × (x + εxA)v | − |x0u × x0v|

)2dudv
(A.2)

Therefore the first variation can be written

δFΛ

δε

∣∣∣∣
ε→0

=
∫

Λ0(u, v)

|x0u × x0v|
(| (x + εxA)u × (x + εxA)v | − |x0u × x0v|

)
ε→0

· (x + εxA)u × (x + εxA)v

| (x + εxA)u × (x + εxA)v |
·[xA,u × (x + εxA)v + (x + εxA)u × xA,v

]
ε→0dudv,

=
∫

Λ0(u, v)

( |xu × xv|
|x0u × x0v|

− 1

)
xu × xv

|xu × xv| · (
xA,u × xv + xu × xA,v

)
dudv,
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=
∫

Λn · (
xA,u × xv + xu × xA,v

)
dudv,

=
∫

Λ
[
(xv × n) · xA,u + (n × xu) · xA,v

]
dudv,

= −
∫ {

[Λ (xv × n)]u + [Λ (n × xu)]v
} · xAdudv, (A.3)

where

Λ ≡ Λ0(u, v)

( |xu × xv|
|x0u × x0v|

− 1

)
= Λ0(u, v)

(√
g

g0
− 1

)
.

By using the vector product formula a × (b × c) = (a · c) b − (a · b) c, we obtain

xv × n = xv ×
(

xu × xv

|xu × xv|
)

,

= (xv · xv) xu − (xv · xu) xv

|xu × xv| ,

= Gxu − Fxv√
EG − F2

. (A.4)

Similarly,

n × xu =
(

xu × xv

|xu × xv|
)

× xu,

= (xu · xu) xv − (xu · xv) xu
|xu × xv| ,

= Exv − Fxu√
EG − F2

, (A.5)

where E , F and G are the coefficients of the first fundamental form.
The surface divergence of a vector field is

∇s · us = Gxu − Fxv

|xu × xv| · us
u + Exv − Fxu

|xu × xv| · us
v (A.6)

(do Carmo 1976), and the surface gradient of a scalar field is

∇sΛ = Gxu − Fxv

|xu × xv| Λu + Exv − Fxu
|xu × xv| Λv. (A.7)

From theWeigarten equation,ni = ∇in = −L j
i x j , we have that, xv×nu = Lu

u (xu × xv)

and nv ×xu = Lv
v (xu × xv), where we are assuming the Einstein summation convention.

Because the mean curvature H = −Tr
(
Li
i

)
/2, we can further obtain

xv × nu + nv × xu = −2H (xu × xv) = −2Hn|xu × xv|. (A.8)
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From equation (A.7) and equation (A.8), we easily have

∇sΛ − 2ΛHn = [Λ (xv × n)]u + [Λ (n × xu)]v
|xu × xv| . (A.9)

Therefore, Eq. (A.3) can be further calculated as

δFΛ

δε

∣∣∣∣
ε→0

= −
∫

(∇sΛ − 2ΛHn) · xA|xu × xv|dudv,

= −
∫

(∇sΛ − 2ΛHn) · xA
√
gdudv,

= −
∫

(∇sΛ − 2ΛHn) · xAdA,

= −
∫

fT · xAdA. (A.10)

Thus, the spring-like penalty method is equivalent to the Lagrange multiplier method for
the appropriate definition of Λ.

Appendix C: A global area or volume conservation condition

There is no Lagrangemultiplier needed for the volume conservation in an incompressible
fluid—the volume is automatically conserved if the divergence-free condition is met.
However, in practice there is still some deflation in the process of numerical calculation.
Thus a volume correction must be executed at each step, in order to precisely conserve
the initial volume.

The traditional formula, which consists of summing all the volumes of the element
triangular prisms has an obvious disadvantage in that it fails to calculate the volumewhen
the center of mass is sometimes located outside the cell body. To avoid this disadvantage,
we introduce the Minkowski identity for the volume of an N-dimensional geometric
object in the space RN

VN = 1

N

∫
dAN (x · n) = 1

N

∫
dr N−1 (x · n) (A.1)

where N is the dimension of the geometric object. VN and AN are the volume and the
area of the N-dimensional object.

To prevent the accumulation of errors of the area in 2D, or the volume in 3D, we
implement a correction step due to (Freund 2007).We state this correction for the volume
case, the area version is given in (Freund 2007). Suppose we apply a small perturbation
p to the membrane surface. The volume can be precisely conserved as follows. Consider
the functional

SN =
∫

(p · p) dr N−1 + λ

[
1

N

∫
(x + p) · ndr N−1 − V0

]
, (A.2)
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where N is the dimension of the geometric object and λ is a Lagrange multiplier to keep
the volume conserved. A shape which minimizes the action above will satisfy that

δSN =
∫

δp
(
2p + λn

N

)
dr N−1

+δλ

[
1

N

∫
(x · n) dr N−1 + (VN − V0)

]
= 0. (A.3)

By solving Eq. (A.3), we obtain

⎧⎪⎨
⎪⎩

p = − λ
2N n

λ = 2N2(VN−V0)
AN

(A.4)

Thus, the corrected position vector to preserve the volume can be expressed as

xcrt = x + p

= x − N (VN − V0)

AN
n (A.5)

Numerical checks show that that this method can preserve the volume to within
10−3V0.

Appendix D: Discretization and parametrization implementation of the
boundary integral method

The cell boundary curve is discretized into N segments with N points (Wu et al. 2015,
2016). We label the N points in the boundary as 1, 2, . . . , k − 1, k, k + 1, . . . , N . The
discrete form of surface force f ij (bending part and tension part) can be expressed using
the procedures in Sect. 4.2.

The velocity of each node on the cell membrane has the discrete form of the integral
equation (5.11) in terms of the trapezoid rule and can be approximated using a finite
difference scheme

uk
j = u∞,k

j + 1

4π

N∑
i=1

[G]kij f ij [ds]ij , (A.1)

whereu∞,k
j is a constant velocity in the k-th node at the j-th timestep and the bending part

of f ij can be discretized using equation (4.9). The tension part of f ij has been discretized

in Section 4.2. The standard discretization of the free space Green’s function [G]kij can
be found in the book (Pozrikidis 2002).

Assuming the step of evolution time is τ0, the time sequence as τ0, 2τ0, · · · , ( j −
1)τ0, jτ0, ( j + 1)τ0, . . .. Equation (5.13) is transformed into

rkj+1 − rkj = uk
jτ0, (A.2)
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Finally, the new surface force on each node is estimated again from the new cell
configuration rkj+1, and the whole scheme above is repeated for a long time until a the
stationary state is reached.

In this paper, the cell membrane contour is discretized using Nm = 120 nodes whose
positions are updated at each time step of τ0 = 10−4τm. The relative errors correspond-
ing to the area, the perimeter and the reduced area are around 0.0008%, 0.035%, and
0.0009%, respectively. The steady shape of the cell is assumed to be obtained when
the difference |x(τ + 105τ0) − x(τ )| between the positions of the same node on the
membrane at two different moments, separated by 105 timesteps is less than 10−5. The
calculations are performed on a cluster consisting of 24 Intel@Core i5 processors with 16
GB RAM per node. OpenMP directives are used to parallelize the matrix-vector product
computation. Each configuration of the steady shapes is completed via 107 iterations.
It is important to note that some of the cases reported in the phase diagrams in results
section ran over more than 6 hours on a 12-core node since we decided to avoid using
any cutoff or periodic boundary conditions in our system, due to the long-range nature
of the hydrodynamic interaction. The use of the appropriate Green’s function (imposing
the velocity vanishes on the walls) allowed us to avoid finite size effects, since we can
literally consider an infinite domain along the flow direction.

As a validation of our numerical algorithm, the full phase diagram of dynamics of
amoeboid swimming have been obtained by both the boundary integral method and the
immersed boundary method (Wu et al. 2015, 2016). The two methods give the exact
same results. In this paper, we explore the ranges of parameters that result in interesting
cell shapes, such as the the pear and kidney shapes. In order to have a reference for the
conversion of dimensionless units into physical ones, the following dimensional numbers
for cell blebs can be used: R0 = 6µm, μ = 10−3Pa s and κ = 10−18 J. This leads to
a characteristic time of shape relaxation of about τm ≈ 0.2 s, which is consistent with
measured values for some cells, such as the amoeboid cells in (Arroyo et al. 2012).

Appendix E: An accurate algorithm to determine the interior and exterior
of a cell

There are two existing algorithms, the ray casting algorithm and the winding number
algorithm, to judge whether one target point is located inside or outside a 2D polygon.
Here we propose a simpler but equally precise algorithm. The idea is to use the fact that
the sum of all the acute angles formed by the target point and every pair of points that
define a segment on the two dimensional membrane contour is equal to 2π if the target
point is inside the cell, π if the target point is on the smooth boundary and 0 if the target
point is outside the cell. Here we assume that acute angles are calculated by uniting
line elements successively in the clockwise direction. Because the normal vector on the
membrane points outward, if the cross prodcut of two directional neighbor segments is
negative, then the acute angle is positive, vice versa. This 2D directional summation of
the acute angles formed at the target point is equivalent to calculate the winding number.
But our method can be easily generalized to the 3D case, the only change is that the
criterion of 2π rad has to be changed to 4π sr with a summation implemented on all
the solid angles formed by the target point and every three nearest neighbor points on
the triangularized 2D membrane surface. In the 3D case, ones also must pay attention to
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the directional segments of each triangular element in order to determine the directional
steradian. The winding number algorithm cannot be extended to the 3D case.

References

Arroyo M, Heltai L, Millán D, DeSimone A (2012) Reverse engineering the euglenoid movement. Proc
Nat Acad Sci 109(44):17874–17879

Barry NP, Bretscher MS (2010) Dictyostelium amoebae and neutrophils can swim. Proc Natl Acad Sci
107(25):11376–11380

Bergert M, Chandradoss SD, Desai RA, Paluch E (2012) Cell mechanics control rapid transitions between
blebs and lamellipodia during migration. Proc Natl Acad Sci 109(36):14434–14439

Bergert M, Erzberger A, Desai RA, Aspalter IM, Oates AC, Charras G, Salbreux G, Paluch EK (2015)
Force transmission during adhesion-independent migration. Nat Cell Biol 17:524

Binamé F, Pawlak G, Roux P, Hibner U (2010) What makes cells move: requirements and obstacles for
spontaneous cell motility. Mol BioSyst 6(4):648–661

Bonito A, Nochetto RH, Pauletti MS (2010) Parametric fem for geometric biomembranes. J Comput Phys
229(9):3171–3188

Brailsford JD, Korpman RA, Bull BS (1980) Crenation and cupping of the red cell: a new theoretical
approach. Part ii. Cupping. J Theor Biol 86(3):531–546

Callan-Jones A, Ruprecht V, Wieser S, Heisenberg CP, Voituriez R (2016) Cortical flow-driven shapes of
nonadherent cells. Phys Rev Lett 116(2):028102

Canham PB (1970) The minimum energy of bending as a possible explanation of the biconcave shape of
the human red blood cell. J Theor Biol 26(1):61–76

Capovilla R, Guven J, Santiago J (2003) Deformations of the geometry of lipid vesicles. J Phys A Math
Gen 36(23):6281

Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell
Biol 9(9):730–736

Childress S (1981) Mechanics of swimming and flying, vol 2. Cambridge University Press, Cambridge
Dai J, Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophys J 77(6):3363–3370
Dai J, Ting-Beall HP, Hochmuth RM, Sheetz MP, Titus MA (1999) Myosin I contributes to the generation

of resting cortical tension. Biophys J 77(2):1168–1176
Diz-Muñoz A, Thurley K, Chintamen S, Altschuler SJ, Wu LF, Fletcher DA, Weiner OD (2016) Membrane

tension acts through PLD2 andmTORC2 to limit actin network assembly during neutrophil migration.
PLoS Biol 14(6):e1002474

Diz-MuñozA,KriegM,BergertM, Ibarlucea-Benitez I,MullerDJ, PaluchE,HeisenbergCP (2010)Control
of directed cell migration in vivo by membrane-to-cortex attachment. PLoS Biol 8(11):e1000544

do Carmo MP (1976) Differential geometry of curves and surfaces. Prentice Hall, Upper Saddle River
Evans E, Needham D (1987) Physical properties of surfactant bilayer membranes: thermal transitions,

elasticity, rigidity, cohesion and colloidal interactions. J Phys Chem 91(16):4219–4228
FarutinA, Biben T,MisbahC (2014) 3d numerical simulations of vesicle and inextensible capsule dynamics.

J Comput Phys 275:539–568
Finken R, Lamura A, Seifert U, Gompper G (2008) Two-dimensional fluctuating vesicles in linear shear

flow. Eur Phys J E Soft Matter Biol Phys 25(3):309–321
Freund JB (2007) Leukocyte margination in a model microvessel. Phys Fluids 19(2):023301
Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell

147(5):992–1009
Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188(1):11–19
Haeger A, Wolf K, Zegers MM, Friedl P (2015) Collective cell migration: guidance principles and hierar-

chies. Trends Cell Biol 25(9):556–566
Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Zeitschrift für

Naturforschung C 28(11–12):693–703
Henriksen JR, Ipsen JH (2004) Measurement of membrane elasticity by micro-pipette aspiration. Eur Phys

J E Soft Matter Biol Phys 14(2):149–167
Hochmuth R, Shao J, Dai J, Scheetz M (1996) Deformation and flow of membrane into tethers extracted

from neuronal growth cones. Biophys J 70:358–369
Howe JD, Barry NP, Bretscher MS (2013) How do amoebae swim and crawl? PLoS ONE 8(9):e74382

123



Getting in shape and swimming: the role of cortical… 625

Hung WC, Yang JR, Yankaskas CL, Wong BS, Wu PH, Pardo-Pastor C, Serra SA, Chiang MJ, Gu Z, Wirtz
D et al (2016) Confinement sensing and signal optimization via piezo1/PKA and myosin II pathways.
Cell Rep 15(7):1430–1441

Joanny JF, Prost J (2009) Active gels as a description of the actin-myosin cytoskeleton. HFSP J 3(2):94–104
Lämmermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Söldner R, Hirsch K, Keller M, Förster R,

Critchley DR, Fässler R et al (2008) Rapid leukocyte migration by integrin-independent flowing and
squeezing. Nature 453(7191):51–55

Lauga E, Davis AM (2012) Viscous marangoni propulsion. J Fluid Mech 705:120–133
Lee J,GustafssonM,MagnussonKE, JacobsonK (1990)Thedirection ofmembrane lipidflow in locomoting

polymorphonuclear leukocytes. Science 247(4947):1229–1233
Li X, Peng Z, Lei H, Dao M, Karniadakis GE (2014) Probing red blood cell mechanics, rheology and

dynamics with a two-component multi-scale model. Phil Trans R Soc A 372(2021):20130389
Lieber AD, Schweitzer Y, Kozlov MM, Keren K (2015) Front-to-rear membrane tension gradient in rapidly

moving cells. Biophys J 108(7):1599–1603
Lipowsky R (2014) Coupling of bending and stretching deformations in vesicle membranes. Adv Colloid

Interface Sci 208:14–24
Liu YJ, Berre ML, Lautenschlaeger F, Maiuri P, Callan-Jones A, Heuzé M, Takaki T, Voituriez R, Piel M

(2015) Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells.
Cell 160(4):659–672

Logue JS, Cartagena-Rivera AX, Baird MA, Davidson MW, Chadwick RS, Waterman CM (2015) Erk
regulation of actin capping and bundling by eps8 promotes cortex tension and leader bleb-based
migration. Elife 4:e08314

Lorentzen A, Bamber J, Sadok A, Elson-Schwab I, Marshall CJ (2011) An ezrin-rich, rigid uropod-like
structure directs movement of amoeboid blebbing cells. J Cell Sci 124(8):1256–1267

Luo T, Mohan K, Iglesias PA, Robinson DN (2013) Molecular mechanisms of cellular mechanosensing.
Nat Mater 12(11):1064–1071

Maiuri P, Rupprecht JF, Wieser S, Ruprecht V, Bénichou O, Carpi N, Coppey M, Beco SD, Gov N, Heisen-
berg CP et al (2015) Actin flows mediate a universal coupling between cell speed and cell persistence.
Cell 161(2):374–386

Nürnberg A, Kitzing T, Grosse R (2011) Nucleating actin for invasion. Nat Rev Cancer 11(3):177–187
Ou-Yang ZC, Helfrich W (1989) Bending energy of vesicle membranes: General expressions for the first,

second, and third variation of the shape energy and applications to spheres and cylinders. Phys Rev A
39(10):5280

Petrie RJ, Yamada KM (2016) Multiple mechanisms of 3D migration: the origins of plasticity. Curr opin
cell biol 42:7–12

Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics
in nonmuscle cells. Annu Rev Biophys Biomol Struct 29(1):545–76

Pozrikidis C (1992) Boundary integral and singularity methods for linearized viscous flow. Cambridge
University Press, Cambridge

Pozrikidis C (2002) A practical guide to boundary element methods with the software library BEMLIB.
CRC Press, Boca Raton

Pozrikidis C (2003) Modeling and simulation of capsules and biological cells. CRC Press, Boca Raton
Prost J, Jülicher F, Joanny J (2015) Active gel physics. Nat Phys 11(2):111–117
Rahimian A, Veerapaneni SK, Zorin D, Biros G (2015) Boundary integral method for the flow of vesicles

with viscosity contrast in three dimensions. J Comput Phys 298:766–786
Renkawitz J, Schumann K,Weber M, Lämmermann T, Pflicke H, Piel M, Polleux J, Spatz JP, Sixt M (2009)

Adaptive force transmission in amoeboid cell migration. Nat Cell Biol 11(12):1438–1443
Renkawitz J, Sixt M (2010) Mechanisms of force generation and force transmission during interstitial

leukocyte migration. EMBO Rep 11(10):744–750
Ruprecht V, Wieser S, Callan-Jones A, Smutny M, Morita H, Sako K, Barone V, Ritsch-Marte M, Sixt M,

Voituriez R et al (2015) Cortical contractility triggers a stochastic switch to fast amoeboid cell motility.
Cell 160(4):673–685

Salbreux G, Charras G, Paluch E (2012) Actin cortex mechanics and cellular morphogenesis. Trends Cell
Biol 22(10):536–545

Sanz-Moreno V, Gadea G, Ahn J, Paterson H,Marra P, Pinner S, Sahai E, Marshall CJ (2008) Rac activation
and inactivation control plasticity of tumor cell movement. Cell 135(3):510–523

Seifert U (1997) Configurations of fluid membranes and vesicles. Adv Phys 46:13–137

123



626 H. Wu et al.

Seifert U, Berndl K, Lipowsky R (1991) Shape transformations of vesicles: phase diagram for spontaneous-
curvature and bilayer-coupling models. Phys Rev A 44:1182–1202

Thiébaud M, Misbah C (2013) Rheology of a vesicle suspension with finite concentration: a numerical
study. Phys Rev E 88(6):062707

Traynor D, Kay RR (2007) Possible roles of the endocytic cycle in cell motility. J Cell Sci 120(Pt 14):2318
Tu Z, Ou-Yang ZC (2004) A geometric theory on the elasticity of bio-membranes. J Phys A Math Gen

37(47):11407
van Zijl F, Krupitza G, Mikulits W (2011) Initial steps of metastasis: cell invasion and endothelial transmi-

gration. Mutat Res Rev Mut Res 728(1):23–34
Veerapaneni SK, Gueyffier D, Biros G, Zorin D (2009) A numerical method for simulating the dynamics

of 3D axisymmetric vesicles suspended in viscous flows. J Comput Phys 228(19):7233–7249
Veerapaneni SK, Rahimian A, Biros G, Zorin D (2011) A fast algorithm for simulating vesicle flows in

three dimensions. J Comput Phys 230(14):5610–5634
Walker SW (2017) FELICITY Wiki documentation. https://github.com/walkersw/felicity-finite-element-

toolbox/wiki
Wang Q, Othmer HG (2015a) Computational analysis of amoeboid swimming at low reynolds number. J

Math Biol 72:1893–1926
Wang Q, Othmer HG (2015b) The performance of discrete models of low reynolds number swimmers.

Math Biosci Eng 12(6):1303–1320
Wang Q, Othmer HG (2016) Analysis of a model microswimmer with applications to blebbing cells and

mini-robots. arXiv preprint arXiv:1610.02090
Welch MD (2015) Cell migration, freshly squeezed. Cell 160(4):581–582
Winklbauer R (2015) Cell adhesion strength from cortical tension-an integration of concepts. J Cell Sci

128(20):3687–3693
Wu H, Farutin A, Hu WF, Thiébaud M, Rafaï S, Peyla P, Lai MC, Misbah C (2016) Amoeboid swimming

in a channel. Soft Matter 12(36):7470–7484
Wu H, Shiba H, Noguchi H (2013) Mechanical properties and microdomain separation of fluid membranes

with anchored polymers. Soft Matter 9(41):9907–9917
Wu H, Thiébaud M, Hu WF, Farutin A, Rafaï S, Lai MC, Peyla P, Misbah C (2015) Amoeboid motion in

confined geometry. Phys Rev E 92(5):050701
Wu H, Tu Z (2009) Theoretical and numerical investigations on shapes of planar lipid monolayer domains.

J Chem Phys 130(4):045103
Yumura S, Itoh G, Kikuta Y, Kikuchi T, Kitanishi-Yumura T, Tsujioka M (2012) Cell-scale dynamic

recycling and cortical flow of the actin-myosin cytoskeleton for rapid cell migration. Biology Open
2(2):200–209

Zatulovskiy E, Tyson R, Bretschneider T, Kay RR (2014) Bleb-driven chemotaxis of Dictyostelium cells.
J Cell Biol 204(6):1027–1044

Zhao H, Isfahani AH, Olson LN, Freund JB (2010) A spectral boundary integral method for flowing blood
cells. J Comput Phys 229(10):3726–3744

123

https://github.com/walkersw/felicity-finite-element-toolbox/wiki
https://github.com/walkersw/felicity-finite-element-toolbox/wiki
http://arxiv.org/abs/1610.02090

	Getting in shape and swimming: the role of cortical forces and membrane heterogeneity in eukaryotic cells
	Abstract
	1 Introduction
	2 The basis of tension-driven movement
	3 The shape problem for cells
	3.1 The free energy functional and the shape equations
	3.2 The shape equations under cortical forces

	4 2D shapes
	4.1 The evolution equations for 2D shapes 
	4.2 The numerical algorithm for solving the evolution equations
	4.3 Computational results for 2D shapes

	5 Tension-driven swimming at low Reynolds number
	5.1 The boundary integral equation
	5.2 The numerical algorithm for cell swimming
	5.3 Computational results for cell swimming

	6 Discussion
	Acknowledgements
	Appendices
	Appendix A: An outline of the derivation of the shape equation
	Appendix B: Area and arc length conservation via an harmonic potential
	Appendix C: A global area or volume conservation condition
	Appendix D: Discretization and parametrization implementation of the boundary integral method
	Appendix E: An accurate algorithm to determine the interior and exterior of a cell
	References




