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A Continuum Model of Motility in Ameboid Cells
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A continuum model of cell motility in ameboid cells based on a viscoelastic descri-
ption of the cytoplasm and active stress generation controlled by extracellular sig-
nals is developed and analyzed. The characteristics of locomotion depend on the
specific active stress, elastic and viscous properties of the cytoplasm as well as on
the strength of cell–substrate interactions. A one-dimensional version of the model
is applied to describe the motion of a fibroblast. The force balance equation for the
cell is solved together with reaction diffusion equations describing the dynamics of
proteins essential for cell locomotion. The cell deformation is calculated, and the
deformation patterns observed experimentally are reproduced by the model. The
cell velocity as a function of cell–substrate interaction is also computed for various
cell characteristics such as the active stress generated, the cell elasticity and the
coupling between cell–substrate interaction and the ability of the cell to contract.

c© 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

Cell motility is an essential process in the development and maintenance of cells,
tissues and organs (Chicurel, 2002). During embryonic development cells must
translocate to the correct place to form tissues and organs. The immune response
to bacterial invasion or infection includes directed movement of white blood cells
such as neutrophils and leukocytes to the site of the infection, and wound healing
requires movement of epidermal cells such as fibroblasts and keratocytes. How-
ever, there can also be a negative side to cell motility in that it is essential for the
formation of new capillaries during angiogenesis, and during metastisis of tumor
cells. Many other physiological and pathological responses involving cell move-
ment are described in Bray (2001) and Lauffenburger and Horwitz (1996).

There are two major components in the response of ameboid cells to extracellular
signals: determination of the direction in which to move, and the movement itself.
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Many eukaryotic cells can detect both the magnitude and direction of extracellu-
lar signals using receptors embedded in the cell membrane. When the signal is
spatially nonuniform they may respond by directed migration either up or down
the gradient of the signal, a process called taxis. When the extracellular signal
is a diffusible molecule the response is chemotactic, and when it is an adhesion
factor attached to the substrate or extracellular matrix (ECM) the process is called
haptotaxis (Alberts et al., 2002). Movement toward a chemoattractant involves
directional sensing and orientation, assembly of the motile machinery, polarization
of the cell, and control of the attachment to the substrate or ECM.

Movement of ameboid cells involves at least four different stages: protrusion,
attachment to the substrate, translocation of the cell body, and detachment of the
rear (Mitchison and Cramer, 1996; Sheetz et al., 1999). (1) Cells first extend local-
ized protrusions at the leading edge, which take the form of lamellipodia, filopodia
or pseudopodia. Most current models explain force generation at the leading edge
by localized actin polymerization and crosslinking (or gelation) of actin filaments.
Rho family GTPases are involved in transducing signals from surface receptors
to downstream effectors such as the Arp2/3 complex that associate with actin to
nucleate filament assembly (Dumontier et al., 2000). Behind the protrusion there
is a region of actin disassembly, where filaments are disassembled, crosslinks bro-
ken and the actin monomers resulting from disassembly freed to diffuse to the site
of active polymerization (Alberts et al., 2002). In photoactivation experiments with
keratocytes it was found that the rate of depolymerization is more-or-less constant
throughout the cytoskeleton (Theriot and Mitchison, 1991). (2) Not all protrusions
are persistent, in that they must anchor to the substrate or to another cell in order
for the remainder of the cell to follow (Soll, 1995). Protrusions are stabilized by
formation of adhesive complexes, which serve as sites for molecular signaling and
also transmit mechanical force to the substrate. In fibroblasts adhesive complexes
are regions of the plasma membrane where integrin receptors, actin filaments, and
associated proteins cluster together. These adhesion sites include integrin recep-
tors that bind to the ECM proteins and provide direct cell–substrate connections
(Palecek et al., 1996; Cox and Huttenlocher, 1998; Zamir and Geiger, 2001). The
integrin receptors are confined to the cell plasma membrane, where they diffuse lat-
erally. Integrins located on the ventral surface of the cell associate with substrate
ligands and serve as points of cell anchorage, through which force is transmitted
to the substrate. Integrins in turn are connected with other supportive proteins that
mediate connections with the actin cytoskeleton of the cell. Protein clustering plays
a role in creating front/back adhesion asymmetry (Maheshwari et al., 2000). Dur-
ing migration the small nascent adhesive complexes (focal complexes) at the front
of the cell grow and strengthen into larger, more organized focal adhesions that
serve as traction ‘pads’ over which the cell body moves (Small, 1989). More than
fifty proteins have been reported to be associated with focal adhesions or related to
ECM adhesions (Zamir and Geiger, 2001). (3) Next, actomyosin filaments contract
at the front of the cell and pull the cell body toward the protrusion in fibroblasts,
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whereas in other cell types, contraction is at the rear and the cytoplasm is squeezed
forward. (4) Finally, cells detach the adhesive contacts at the rear, allowing the
tail of the cell to follow the main cell body. In Dictyostelium discoideum (Dd) the
adhesive contacts are relatively weak and the cells move rapidly (∼20 µm min−1),
whereas in fibroblasts they are very strong and cells move slowly. Further details
on how these processes produce motion are given elsewhere (Lauffenburger and
Horwitz, 1996; Bray, 2001; Boal, 2002).

To achieve directed motion, as opposed to random searching of the environment,
either the interactions of a cell with the substrate or the active contractile and pro-
trusive forces generated by the cell must display some asymmetry (Cox and Hut-
tenlocher, 1998). This can result from asymmetric affinity/avidity of the recep-
tors along the cell or/and receptor trafficking. Asymmetries between the front and
rear adhesions in fibroblasts have been observed (Munevar et al., 2001a), and the
patterns of traction forces formed on flexible substrate by motile fibroblast have
been studied (Munevar et al., 2001b). It was found that the active extensional
forces were localized near the leading edge, while the trailing edge served more
as a passive anchorage. The mean cell speed exhibits a bell-shaped dependence
on the substrate density or ECM ligand concentration, as well as on mean detach-
ment force (Palecek et al., 1997). It was also influenced by several other vari-
ables related to integrin–ligand interactions, such as ligand level, integrin level and
integrin–ligand binding affinities. These factors define the number of cell–substrate
bonds, which in turn determines cell–substrate adhesiveness and migration speed
(Palecek et al., 1997).

Traction force microscopy has recently been used to measure the cell–substrate
traction field in normal fibroblasts and in H-ras transformed NIH 3T3 cells (Dembo
and Wang, 1999; Munevar et al., 2001a,b). It was shown that individual fibroblasts
display a complex spatial distribution of traction forces throughout the cell. In
normal cells the field of traction forces can be divided into several areas: (i) areas
with large traction forces that are located at the cell front and rear, and (ii) an area
beneath the nucleus in which the traction forces are small. In this central region
traction forces change direction several times, and these sub-regions are separated
by bands of high shear. The authors conclude that the anterior region and remainder
of the cell are two mechanically-distinct domains (Munevar et al., 2001b). The
average cell velocity of a normal cell was ∼0.19 µm min−1.

The amount of force that a cell exerts also depends on the substrate: on a rigid,
adhesive substrate a cell can generate large contractile forces transmitted through
actin bundles and adhesion complexes, but on a more pliable substrate it exhibits
a less-organized actin network and smaller, weaker adhesion complexes (Lo et al.,
2000). Since we ultimately want to describe how a cell interacts with a substrate,
we concentrate our attention here on a feedback between cell–substrate interaction
and cytoskeleton, specifically cytoskeleton contractile ability due to actin–myosin
meshwork contraction and active force generation. There is also a connection
between integrins, which mediate the connection between the cell membrane and
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the ECM, with actin stress fiber formation and contractility through Rho and Pak
(Defilippi et al., 1999; Kaverina et al., 2002). Also, an important experimental
observation has been made recently (Chew et al., 2002), that pointed to the exact
location of activation of myosin II motors in motile cells. The experiments were
done with the help of a novel biosensor allowing determination of local activity
of myosin light chain kinase (MLCK) in motile cells. It has been already estab-
lished that MLCK enzyme activates myosin II causing it to generate force. It was
found (Chew et al., 2002) that MLCK is highly active in the lamella of migrat-
ing cells, but not in the retracting tail. Transient recruitment of diffuse MLCK to
stress fibers before activation was observed. It was concluded that MLCK mediate
myosin contractility in the lamella that serves as a driving force for migration. It is
also known MLCK activation is indirectly influenced by focal adhesion formation
(Martin et al., 2002).

The cytoplasm in many ameboid cells has been characterized as a viscoelastic
material whose properties are dominated by actin filaments, intermediate filaments
and microtubules, collectively termed the cytoskeleton (Janmey, 1991). Actin fil-
aments are organized either as a meshwork in the leading edge, or as transient
bundles of actin filaments that extend along the length of cells. These bundles
may be attached to focal contacts, which anchor the bundles to the plasma mem-
brane. Focal contacts facilitate attachment of the cell to the substratum, and allow
cells to exert traction on the substrate. The elastic modulus of actin solutions
is concentration dependent (MacKintosh, 1998), and they exhibit strain harden-
ing (Xu et al., 2000), a property that may be important in movement of multi-
cellular tissues. The cytoplasm in Dd has been characterized as an ‘active vis-
coplastic’ material (Feneberg and Westphal, 2001), because it exhibits viscoelas-
tic behavior above a yield stress, but little deformation below this level. Several
types of myosin are also important in Dd motility. Type I myosins, especially
Myo A and Myo B, regulate the number and spatial localization of pseudopods
(Gliksman et al., 2001). The cytoplasm of other cell types has similar properties: it
is viscoelastic in leukocytes and neutrophils (Evans and Yeung, 1989; Heidemann
et al., 1999; Yanai et al., 1999), but large regional variations in elasticity and vis-
cosity coefficients are found within a cell (Yanai et al., 1999). Other cells may be
more complex, e.g., endothelial cells have been modeled as hyperelastic materi-
als and the nucleus and cytoplasm treated as distinct phases (Caille et al., 2002).
It was found that the elastic moduli of the former is approximately ten times that
of the latter.

1.1. Models of cell motility. Numerous models of cell motility have been pro-
posed. Lauffenburger (1989) studied a one-dimensional model of the cell, regarded
as three regions corresponding to the lamellipod, the cell body, and the uropod. The
analysis focused on how the cell speed depends on receptor density and affinity.
DiMilla et al. (1991) analyzed a one-dimensional model in which a cell consisted
of discrete subunits, each with an elastic spring, dash-pot and contractile element
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connected in parallel. Interaction with the substrate was modeled by additional
Maxwell elements at the front and rear. The movement cycle was divided into three
parts: the time needed for protrusion, the time of cytoskeleton contraction, and the
time for cytoskeleton relaxation. These authors show that the observed bell-shaped
distribution of the cell speed on the cell–substrate adhesiveness can be explained by
an asymmetry in adhesiveness that results from preferable binding at the cell front
due to increased affinity/avidity of integrin receptors. In this model the contractile
stress does not vary within the cell and the effect of cell–substrate adhesions on
contractile properties of the cell is not included. There are multiple examples of
its influence on cell motility (Chrzanowska-Wodnicka and Burridge, 1996; Howe
et al., 1998; Bershadsky and Geiger, 1999; Defilippi et al., 1999; Felsenfeld et al.,
1999; Kaverina et al., 2002), and it is important to include this aspect in a model.

A 1D model for the steady gliding movement of fish keratocytes was developed
in Mogilner et al. (2000), where it was shown that the dynamics of self-alignment
and contraction of the actin–myosin network can explain forward translocation of
the cell body. A model to describe the crawling movement of the sperm nematode
was also developed recently. The model consists of a system of coupled differ-
ential equations that describe cell protrusion, contraction and adhesion, and under
suitable biochemical regulation it produces steady motion of the cell (Mogilner
and Verzi, 2002). A two-phase flow model of cytoplasm designed to understand
cytoplasmic streaming and oscillations was studied in Alt and Dembo (1999).

A model for the movement of Dd cells, either as individuals or collectively as
aggregates, was developed in Palsson and Othmer (2000). There a cell is modeled
as a deformable ellipsoid of constant volume that contains a nonlinear spring in
parallel with a Maxwell element along each axis of the ellipsoid. Restriction of the
deformations to those that maintain an ellipsoidal shape enables large-scale com-
putations to be done. Cell–cell and cell–substrate interactions, as well as reorien-
tation of cells in response to a chemotactic signal was incorporated into the model.
It was shown that the model can predict much of the behavior observed in two-
dimensional Dd slugs (Bonner, 1998).

There are several other approaches to modeling cell deformations using a contin-
uum description. The most widely-used is the ‘cortical shell-fluid core’ (CSFC)
model (Yeung and Evans, 1989; Skalak et al., 1990; Schimd-Schönbein et al.,
1995), in which the cortex is treated as a prestressed elastic medium and the core
is treated as a fluid. This has been successful in explaining aspiration experi-
ments (Yeung and Evans, 1989) and large, axisymmetric deformations of leuko-
cytes (Dong and Skalak, 1992), but to date there is no 3D model based on the
CSFC model of a cell that incorporates active forces and arbitrary shape changes.

More recently a method based on Voronoi diagrams for solving reaction–diffu-
sion equations on irregularly-shaped, deforming domains has been developed and
applied to a 2D model of nematode sperm (Bottino et al., 2002). The mechanical
framework consists of a 2D mesh of nodes connected by edges that contain elastic
elements in parallel with a contractile element. The interaction between the cell
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and substrate was modeled by a viscous drag between cell body nodes and the
substrate. Formal rules were applied to model actin polymerization at the leading
edge and disassembly of the actin network at the rear of the cell, and the model
was applied to both single cells and interacting cells. This approach was used in
a new model developed recently to describe the crawling movement of the sperm
nematode. This model consists of a system of coupled differential equations that
describe cell protrusion, contraction and adhesion (Mogilner and Verzi, 2002). The
above mentioned stages were biochemically regulated, and when solved together
gave steady motion of the cell.

These models, with the exception of Mogilner and Verzi (2002), which is essen-
tially a model of a single lamellipodial bundle, treat the cell body as a collection of
a (usually) small number of springs and dashpots, and solve the resulting force bal-
ance equations at each node. While this approach provides qualitative insight into
some features of the cell’s motility, the cell body is more accurately described as a
possibly multi-phase continuum, and therefore it is appropriate to model motility
of cells by means of the continuum model. In the present paper we develop a con-
tinuum model of a cell as a viscoelastic material. Spatial variability in viscosity
and elasticity coefficients along the cell body, together with a gradient in phys-
ical properties of the cell substratum attachments can be readily included in the
model. This allows us to model different types of cells: for example, one choice
of mechanical parameters exhibits features of a crawling fibroblast with elongation
and release of the cell’s tail (a ‘pulsatile’ motion), while another set of parame-
ters can describe the steady gliding motion of a keratocyte. The nucleus can also
be treated as another viscoelastic or purely viscous substance embedded in the
cell body.

The objectives here are twofold.
(1) To develop a one-dimensional cell model that includes essential components
of motility such as the actin cytoskeleton, myosin II-based contraction of the actin
cytoskeleton, and cell–ECM adhesion. The model cell that we consider consists of
a viscoelastic cytoskeleton that can produce an active protrusive force due to actin
polymerization and a contractile stress due to myosin II motors. The cell interacts
with the substrate by means of adhesion mediated by integrin receptors.
(2) To use this model to interpret experimental results on the motion of certain cell
types. A one-dimensional model with active force production is not suitable for
the description of all cells: for example, keratocyte movement is inherently two-
dimensional because on average this cell generates active forces orthogonal to the
direction of motion. On the other hand, a fibroblast is known to generate myosin
II-powered contraction aligned with the direction of locomotion (Munevar et al.,
2001a,b). Thus, we shall apply the model to a fibroblast cell and in particular,
we shall explain the traction patterns observed experimentally (Dembo and Wang,
1999; Munevar et al., 2001a,b). We also study the dependence of the cell velocity
v on the substrate ligand concentration ns , and compare it to the experimentally-
observed ‘bell-shaped curve’ (Palecek et al., 1997), and we make predictions on
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Figure 1. Schematic of the one-dimensional model cell. Actin polymerization occurs in
the cell lamellipodium. f (t) denotes the position of the leading edge and r(t) the position
of the trailing edge of the cell.

how cell properties may change the bell-shaped curve of v(ns); to discuss the
model consequent results for ‘bistability’—stimulus induced switching of station-
ary cell into the locomoting one (Verkhovsky et al., 1999).

The paper is organized as follows. In the following section we develop the con-
tinuum model of cell motion. In Section 3 we apply it to fibroblasts and compare
our results with available experimental data on the distribution of traction forces
and cell velocity curves. In Section 4 we discuss future applications of the model.

2. CELL MODEL

2.1. The equations of motion. We consider a one-dimensional viscoelastic cell
with initial length L in contact with a viscous substrate, as shown in Fig. 1. Define
a coordinate system that is attached to the stationary substrate, and denote the initial
position of the cell by a set of points with coordinates 0 ≤ x ≤ L . Further, denote
the position of the cell front (rear) by f (t) (r(t)), so that at any time t a cell is
represented by a set of points that belong to the interval r(t) ≤ x ′(x, t) ≤ f (t)
(Fig. 1). The displacement u of the cell from the configuration x is defined as [see,
e.g., Landau and Lifshits (1965) for details]

u(x, t) = x ′(x, t)− x . (1)

In formulating the equation of motion we neglect inertial effects and body forces.
The former may be important during the brief, rapid acceleration and deceleration
that occur during lamellipod extension (Felder and Elson, 1990), but are otherwise
negligible. Then the forces on a cell are the internal active and passive stress, and
the frictional force due to the repetitive formation and breaking of attachments
to the substrate. Let σ denote the Cauchy stress, i.e., the stress in the present
configuration: then the evolution of the deformation is governed by the equation
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∂σ

∂x
= β(x)

∂u

∂t
(2)

where the right-hand side of the equation describes the viscous interaction of the
cell with the substrate and β(x) is the friction or drag coefficient, with units of
M/L3T .

We describe the cytosol, including the actin filaments, microtubules and interme-
diate filaments, as a linear viscoelastic material that gives rise to a passive stress,
an active protrusive stress due to actin polymerization concentrated at the leading
edge, and an active stress generated by the interaction of myosin II motors with the
cytoskeleton. Then the total stress σ is the sum of a passive stress (elastic stress
plus viscous stress) and the active stress τ(x), and can be written∗

σ = E(x)ε + µ(x)
∂ε

∂t
+ τ(x), (3)

where ε = ∂u/∂x is the small-deformation strain, and E(x) and µ(x) are the elas-
tic modulus and the viscosity coefficient, respectively. If the viscoelastic material
is considered to be fluid-like (corresponding to the Maxwell fluid model rather than
the Kelvin–Voight model that is equivalent to our formulation), another constitutive
equation must be used.

To complete the formulation of the problem, we specify boundary conditions for
(2) which represent force balances at the leading and trailing edges. The former
equates the internal stresses to the force due to actin polymerization, which is con-
centrated at the leading edge, while the latter stipulates that the internal stresses
vanish at the trailing edge. Thus we specify that

[
E(x)ε + µ(x)

∂ε

∂t
+ τ(x)

]∣∣∣∣
f (t)

= F f , (4)

[
E(x)ε + µ(x)

∂ε

∂t
+ τ(x)

]∣∣∣∣
r(t)

= 0, (5)

where Ff is the force due to the actin polymerization. This force is estimated in
the Appendix B.

2.2. Constitutive assumptions

2.2.1. Actin dynamics and viscoelastic properties. The elastic modulus and
viscosity of the cytosol depend on three factors: the actin network, the micro-
tubules, and the intermediate filaments. The actin network is a main component
of cytoskeleton, with microtubules and intermediate filaments providing the addi-
tive constants to the overall cytoskeleton elasticity. While the overall processes

∗In this formulation the additivity of the component stresses corresponds to a discrete model in
which the elastic elements (springs) and viscous elements (dashpots) are connected in parallel.
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Figure 2. (a) The assumed cell elasticity E(x), (b) the computed active stress τ(x), and
(c) the cell–substrate drag coefficient β(x), as functions of position x along the cell. The
computed form of the contractile stress τ(x) is similar to that observed in Munevar et al.
(2001a), where most of the cell motors are activated at the front of the cell. The choice
of cell elasticity E(x) is motivated by the presence of the nucleus in the middle of the
cell and a denser actin-based network in the lamellipodium. The calculated cell–substrate
interaction β(x) exhibits the axial asymmetry seen experimentally. The distributions are
shown for t = 0 min. κs = 0.05, and other parameters are given in Tables 1 and 2.

involved in forming the network by actin polymerization are known, many details
of the control of these processes are not. Many auxiliary proteins are involved,
in capping of barbed actin filamental ends as well as in WASP/Arp2/3-mediated
branching of actin filaments. We do not incorporate a detailed description of the
dynamics of actin network formation here, but the reader can find a detailed model
for actin polymerization in Mogilner and Edelstein-Keshet (2002). We assume
that the spatial distribution of actin network density is time-independent, and we
represent the elasticity as

E(x) = E0a(x), (6)

where a(x) is the actin network density and E0 is a proportionality constant. We
use the specific form of E(x) that is shown in Fig. 2(a). This choice is motivated
by the observation that the central region of the cell (the nuclear region) seems
to have more rigid properties than the cell rear, due to the denser cytoskeleton.
The leading edge also may be softer then the surroundings, in particular in a thin
lamellipodial strip of 1–5 µm width where the actin is polymerized, but we do not
incorporate this here. We also do not consider the spatial variation of viscosity µ.
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2.2.2. Integrin dynamics. The force on the right-hand side of (2) describes the
cell–substrate interaction, which arises from adhesion via, e.g., integrins.
A molecular-level analysis of the forces involved and the lifetime of individual
bonds was done by Bell (1978), and since then there have been many models of
the adhesion process. Usually a cell has a small number of adhesion sites, of the
order of a hundred to a thousand, each of which can be described as a viscoelastic
element that connects the cell with the substrate (Ragsdale et al., 1997; Heidemann
et al., 1999), and which can be modeled as a viscoelastic slip element. In a dis-
crete mechanical model each element will consist of a spring with spring constant
E0 and zero equilibrium length (the elastic element) and a dashpot with viscosity
β (the viscous element) connected in parallel. However, in the continuum model
developed here we describe the effect of the cell–substrate adhesion sites through
an effective drag coefficient β as a linear function of the attached integrin density
nb(x), i.e.,

β(x) = β0nb(x), (7)

where β0 is a time-averaged drag created by one integrin receptor bound to the
substrate.

Let n f be the density of free integrins in the membrane and let nb be the density
of integrins bound to the substrate ligands. Suppose that bonds form with a rate
k f and dissociate with a rate kr0 f1(x) that varies with position along the cell. The
ligand concentration in the substrate ns is taken to be uniform, and large enough
to ignore depletion due to binding of ns . Suppose that the total number Ntotal of
integrin receptors in the cell is constant and that diffusion of receptors is negligible.
Then at steady state the density of free integrins n f is a constant that is determined
from the conservation condition, and

nb(x) = k f ns

kr0 f1(x)
n f = κs

f1(x)
n f , (8)

where κs = k f ns/kr0 is a dimensionless coefficient for cell–substrate interaction.
Then the drag coefficient is

β(x) = β0nb(x) = β0
κs

f1(x)
n f , (9)

and we further assume that

f1(x) = ψ1 + (1 − ψ1)
x − r

f − r
, (10)

where ψ1 ≥ 1 describes the linear increase of dissociation rate towards the rear.
Consequently, f1 = 1 at the front of the cell and f1 = ψ at the rear of the cell. The
x-dependence of the drag coefficient used later is shown in Fig. 2(c).
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2.2.3. Contractile stress due to myosin II. Next we consider the contractile
stress generation in more detail. The contractile component describes the tension
in the actin–myosin network that is regulated by different proteins. For example,
an increase of the protein Rho is followed by an increase in cell tension (Hollen-
beck, 2001). Another protein, Rac, regulates production of pseudopodia, in part
via regulation of actin polymerization: an increase in Rac production leads to an
increase in pseudopodia formation. Interaction of Rac and Rho also affects micro-
tubule growth, and thereby tension in the cell cortex (Hollenbeck, 2001; Kaverina
et al., 2002; Wood and Martin, 2002).

Let m f denote the concentration of free myosin II, mb the concentration of inac-
tive bound myosin II in the cytoskeleton, and m+

b the concentration of active bound
myosin II. We assume that τ(x) is proportional to the concentration of the bound
active myosin II m+

b (x). The latter increases in response to extracellular signals,
release of bound myosin into free myosin, and activation of myosin II. The total
amount of myosin II Mtotal in a cell is conserved.

It has been shown that propulsive forces for cell migration are concentrated at the
leading edge in the cell lamellipodium (Munevar et al., 2001a). The authors con-
clude that the anterior region of the cell and the remainder of the cell are mechan-
ically distinct domains. These experiments also showed that forces near the tail
of a locomoting fibroblast are of a passive type; in other words the cell tail serves
only as a site of passive anchorage. They proposed that the leading lamellipodium
consists of one or more ‘towing zones’, connected to the cell body via an elas-
tic transition zone, and generation/transmission of contractile forces in the towing
zones provides the forces responsible for towing the cell body and passive trailing
end (Munevar et al., 2001b).

In accord with this description, we assume that the rate of activation of bound
myosin II, k+

Reg, is position dependent and is given by the linear function

k+
Reg(x) = k+

Reg f2(x) = k+
Reg

/[
ψ2 + (1 − ψ2)

x − r

f − r

]
, (11)

where ψ2 ≥ 1. Therefore k+
Reg( f ) = k+

Reg at the front and k+
Reg(r) = k+

Reg/ψ2 at the
rear of the cell. The kinetics of activation are assumed to be fast and therefore

mb(x) = k+
m

k−
m

a(x)m f , (12)

m+
b (x) = k+

Reg f2(x)

k−
Reg

[Reg]mb(x). (13)

Here k+
m is rate of myosin binding, k−

m is the rate of decay of bound myosin, k+
Reg

is the rate of activation of myosin II due to a regulatory protein of concentration
[Reg], and k−

Reg is rate of deactivation of myosin II.



178 M. E. Gracheva and H. G. Othmer

We assume that the formation of adhesion sites influences active stress genera-
tion through this regulatory protein, and its ‘production’ is related to the integrin
concentration via

[Reg] = [Reg]0
nαb

nαb0 + nαb
= [Reg]0 f (nb), (14)

where [Reg]0 is maximum level of regulatory protein, nb0 is typical concentra-
tion of bound integrins and α is a degree of coupling between regulatory protein
and integrins. Finally, we assume that the active stress tensor τ depends linearly
on m+

b

τ(x) = −τ0m+
b (x), (15)

where τ0 is magnitude of the stress generated by one acto-myosin bundle. The
x-dependence of the active stress used later is shown in Fig. 2(b). The asym-
metry in active force generation postulated is supported by experimental results
(Munevar et al., 2001a), where release of posterior adhesions resulted in no signif-
icant decrease of traction forces, whereas release of the frontal lamellipodial region
resulted in a dramatic decrease of traction forces. This effect may be explained as
follows. Since contractile stress is concentrated in the cell front and there is no
active stress at the anterior end, the release of the rear has no effect on average
active stress, but the release of the anterior part, where most of the active stress
is concentrated, is followed by a decrease in active stress, and as a result, the cell
average traction stress decreases dramatically. This experiment shows that not only
is the cell–substrate interaction asymmetry important, but also an asymmetry of the
cell contractile stress generation is needed.

3. APPLICATION OF THE CONTINUUM MODEL TO A FIBROBLAST CELL

In this section we apply the general model to fibroblasts, which are a widely-
studied type of motile epidermal cell. Fibroblasts are slowly-moving cells that
move with an average velocity of about 0.5 µm min−1 (Lo et al., 2000; Munevar
et al., 2001a,b; Wang et al., 2001). One objective is to understand from a a simple
model how fibroblasts interact with the substrate and how specific traction patterns
are formed (Lo et al., 2000).

We compare results of our model with experimental data of Dembo and Wang
(1999) and Munevar et al. (2001a,b), where the mechanical interaction of the cell
with a substrate was studied using traction force microscopy. This allows visualiza-
tion of the deformations in the substrate that result from mechanical forces exerted
by the fibroblasts on it [see Fig. 1 in Munevar et al. (2001b)]. The experiments
were done on fibroblast cells deposited on a polyacrylamide substrate embed-
ded with fluorescent beads. First cells were allowed to attach and spread on the
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Figure 3. (a) The calculated positions of the leading and trailing edges of the cell, together
with the positions of internal marker particles as functions of time. A stable cell length
∼55 µm and a cell velocity v = 0.19 µm min−1 are established after an initial period.
(b) The cell length as a function of time. At t = 150 min the contractile stress τ(x) is set to
zero [dashed vertical line in (a)] to simulate cell relaxation experiments, and by t =∼ 300
min the original cell length 50 µm is reached. Here κs = 0.05 and other parameters are as
given in Tables 1 and 2.

substrate and then were micro-injected with Gc-globulin, an actin cytoskeleton
inhibitor that relaxes the cytoskeleton and prevents force generation by cells.
Deformation of the substrate was determined by comparing the distribution of
microspheres before and after cell force relaxation. The traction field can be com-
puted knowing the displacements by solving an inverse problem.

3.1. Fixed substrate density. Cell motion entails variations in the length of the
cell, its velocity, areas of cell cytoskeletal stretch or compression, and a field of
traction forces generated by the cell. Variations in these output characteristics of
the model can be achieved by (i) exploring different initial lengths of the cell, (ii)
varying the elastic and contractile properties of the cell (the magnitude and distri-
bution throughout the cell), (iii) variation of substrate properties, and (iv) chang-
ing the boundary conditions at the front and rear of the cell. The computational
details for solution of equations (2)–(5) and equations (6), (9) and (15) are given in
Appendix A.

Fig. 3(a) shows the distance traveled by the model cell as a function of time,
beginning with a length of L = 50 µm. In this plot the top line represents the
position of the front and the bottom line the rear of the cell. Thin lines between
them represent the positions of marker particles in the cell. In Fig. 3(b) we see
that after t ∼ 70 min the length of the cell reaches a steady-state value. In this
example the steady-state cell speed is 0.19 µm min−1 and the corresponding cell
length is approximately 55 µm, which compares well with experimental obser-
vations (Lo et al., 2000; Munevar et al., 2001a,b; Wang et al., 2001). To model
the experimentally-induced relaxation of the cytoskeleton, we set the active stress
τ(x) = 0 at t = 150 min (see Fig. 3). With no active force generation (or more
generally, no asymmetry in active force generation), motion ceases and the cell
relaxes to its initial length of 50 µm [see Fig. 3(b)].
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Figure 4. (a) The computed cell strain ε = ∂u
∂x as a function of the marker position in the

cell body. The first (last) marker coincides with the posterior (anterior) edge of the cell.
(b) The computed value of ∂

2u
∂x2 as a function of the marker position in the cell body. Both

graphs are calculated at t = 150 min and κs = 0.05, and other parameters are as given in
Tables 1 and 2.

The calculated deformation gradient (strain) of the cell ε = ∂u/∂x at t = 150
min (just prior to turning off the active force) is shown in Fig. 4(a). The maxi-
mum deformation shown there has a magnitude ∼0.15, and if a nonlinear strain
tensor is used the next term is ∼(0.15)2/2 ∼ 0.01, which is small compared to
deformation itself. This provides a posteriori justification for the use of the linear
approximation for the strain in the model.

In the experimentally-inferred traction field of the fibroblast (calculated from the
displacement of marker beads embedded in the substrate), the lamellipodial region
can be divided into multiple domains separated by regions of high shear (Munevar
et al., 2001b) in which the traction force changes direction. The computed traction
forces were low in the middle of the cell, beneath the nucleus, while large mag-
nitudes were observed in lamellipodium (in a band of ∼15 µm in width), where
forces were oriented opposite to the direction of the cell locomotion, and at the tip
of the cell’s tail where they were aligned in the direction of locomotion.

In the model the displacement of the marker particles in the cell is large at the
front of the cell, changes sign three times (shown by circles) and becomes large
again at the cell rear (Fig. 4). These changes coincide with the regions of rapid
change in either the elastic coefficient or the drag coefficient. This is similar to the
experimentally-observed changes in the substrate displacement but cannot be com-
pared directly because under steady-state conditions it follows from the equation of
motion that the force exerted by the cell on the substrate is a linear function of posi-
tion along the cell. The pulsatile motion more characteristic of fibroblast motion
is discussed later. The experimentally-observed region of small traction stresses is



A Continuum Model of Motility in Ameboid Cells 181

located in the vicinity of the nucleus (Munevar et al., 2001b). Note that to obtain
more pronounced regions of small traction forces with opposite directions of trac-
tion vectors in the middle of the cell (in the vicinity of the nucleus), one could
model the nucleus as an incompressible or a very stiff material. It is known that
the elastic modulus of the nucleus is nearly ten times higher that the cytoskeleton
(Janmey, 1998). On the other hand, recent experiments show (Nagayama et al.,
2001) that nucleus stiffness decreases dramatically in locomoting cells, whereas in
stationary cells it remains larger than the stiffness of the surrounding cytoskeleton.
It is possible to incorporate this in our model.

It can be concluded from our calculations, that distinct regions in the field of
traction stresses that were experimentally observed (Munevar et al., 2001b) depend
on local interplay between elastic and contractile properties of the cell cytoskeleton
at a given location inside the cell as well as cell–substrate interactions.

It was also found that although forces generated by H-ras transformed 3T3 cells
become radially symmetric, these cells retain the ability to locomote with aver-
age velocities greater that those of normal fibroblast cells (Munevar et al., 2001b).
As it was suggested in that work, this can be explained by the disruption of focal
adhesion kinase (FAK) in the transformed cell. Increased motility of the cells with
disrupted adhesions (weaker cell–substrate adhesion) can be explained in the
frames of our model. Our simulation results suggest that significant disruption
of cell–substrate adhesions is necessary for the model cell to retain the ability to
move. The disruption of the adhesions, in turn, leads to a significant reduction
of the active stress magnitude, followed by reduction of traction forces and more
compact cell shape. This will be considered further in the following section.

Because we have modeled the cell substrate interactions as a viscous interaction,
there is no variation in the cell length after the cell reaches a steady motion regime,
in contrast with the experimentally-observed motion of fibroblasts, which move in
a pulsatile manner. This can be easily remedied by including discrete adhesion
sites throughout the cell, with a threshold force for release at an adhesion site. To
demonstrate this effect we added to the original model one elastic element with a
threshold for detachment at the rear. In Fig. 5 we show the front and rear positions
of the cell computed using the continuum model [arrows (1)], and the front and
rear positions of the cell with an additional elastic element with a threshold for
breakage [arrows (2)]. The addition of this elastic element gives rise to cycles of
sticking and slipping at the rear, according to whether the local force is below or
above threshold. The average cell speed remains constant, but the rear goes through
repeated cycles of zero/nonzero speed values (see Fig. 5).

3.2. The effect of varying parameters in the model. Palecek et al. (1997) mea-
sured the dependence of cell speed on a variety of properties that characterize the
cell–substrate interaction. Different expression levels of integrin receptors were
studied, as well as integrin–ligand affinities, and it was shown that cell speed is a
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Figure 5. The calculated positions of the posterior and anterior of two model cells as
functions of time: (1) in the continuum model with viscous cell–substrate interaction at
steady state; (2) in the continuum model with viscous cell–substrate interaction and an
elastic element with a threshold at the posterior end. The threshold for release in the
attachment is adjusted to obtain the typical duration of a fibroblast cycle, which is 30 min.
The presence of this additional element leads to the appearance of pulsatile cell elongation
and retraction, as observed in fibroblast cells. Here κs = 0.05, and other parameters are as
given in Tables 1 and 2.

bell-shaped function of fibronectin coating concentration. It was also found that
maximum attainable cell speed is not a function of integrin expression or ligand
affinities. These experiments suggested that integrin coupling with intracellular
motors remains unaltered. These results are in qualitative agreement with the
model due to DiMilla et al. (1991) discussed earlier.

The dependence of the cell velocity v as a function of cell–substrate interaction
parameter κs predicted by the present model is shown in Fig. 6. This function
has a bell-shaped form similar to those observed experimentally (Palecek et al.,
1997). On substrates with small κs the cell cannot effectively transmit force to
the substrate, and the speed tends to zero. In the limit of large κs the contractile
force cannot overcome the strong cell–substrate interaction and the cell remains
stationary. Since the speed is nonnegative there must be at least one intermediate
value of κs at which the speed is a local maximum. Our computations show that
there is only one such point, and there the contractile force is comparable to the
cell–substrate interaction, which results in optimal cell motion. Figure 6 also shows
how cell length changes with value of κs . We note that there is no significant
extension of the cell at small κs , it extends rapidly over a small range of κs , and
finally, at large values of κs , stretching changes little with further increases in κs

because the cell cannot overcome the strong adhesion forces. This behavior is also
seen in experiments (Palecek et al., 1997).

Since κs ≡ k f ns/kr0, the effects of changing either of the on rate or the off
rate, or of varying the density of adhesion sites on the substrate can be inferred
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Figure 6. (•) The calculated cell speed v as function of the strength of cell–substrate
interaction as measured by κs . The cell moves more efficiently at intermediate val-
ues of cell–substrate interaction. This bell-shaped distribution is similar to the one seen
experimentally (Palecek et al., 1997). (◦) The calculated cell length as a function of
cell–substrate interaction κs . The model cell has compact shape and small speed at small
cell–substrate interaction. At average κs the cell stretches and moves with maximum speed.
Finally, at large κs the cell cannot stretch any more and movement ceases. Parameters are
given in Tables 1 and 2.

from Fig. 6. For example, increasing the off rate from low levels at fixed values of
the other parameters corresponds to decreasing κs in Fig. 6.

Next we investigated the effect of the exponent α that is used in coupling function
[Reg] [equation (14)]. As can be seen, the value of α shows how fast the regulatory
protein concentration rises with the increase in bound integrin concentration. We
found that as α increases, the maximum cell speed vmax attainable increases as well
(Fig. 7). The distribution v(κs) also becomes more narrow with increase of α.

Finally we consider the effect of viscoelastic properties on the cell motion.
According to experiments, the viscosity of a fibroblast is small (see Table 1). In our
model variation of the viscosity does not change results significantly at the moment
of initiation of the motion, but if the model cell is very viscous it may influence cell
behavior, for example, how fast the cell reaches equilibrium. However, changes in
the elastic modulus have a more significant effect (cf. Fig. 8). These curves cor-
respond to two different actin concentrations Atotal = 200 and 400 µM and model
two cells with different density of cytoskeleton. We find that a stiffer cell (with
larger Atotal) shows a larger speed at all values of κs (upper curve in Fig. 8). We
are not aware of experiments in which the stiffness of the cytoskeleton has been
varied, but some measurements of cell stiffness as a function of a position inside
the cell can be found in Nagayama et al. (2001).

In our model, the activation of myosin II is connected with the density of the
actin cytoskeleton, in that dense cytoskeleton promotes activation of myosin II.
However, if the contractile stress generation is independent of cytoskeletal density
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Figure 7. The calculated cell speed v as a function of κs for two different Hill coefficients
α [see equation (14)] with α = 2 (◦) and 4 (•), other parameters as in Tables 1 and 2. An
increase in α from 2 to 4 results in: (1) a shift of the speed distribution in the region of
larger κs , (2) an increase in the maximum cell speed, and (3) a narrower speed distribution.
Other parameters are given in Fig. 6.

Table 1. Cell parameters.

Parameter Definition Value References

L Cell length 50–70 µm (Dembo and Wang,
1999; Lo et al., 2000;
Munevar et al., 2001b)

h Lamellipodium height 1 µm This work
V Cell volume 1000 µm3 This work
µ Cell viscosity 2.0 × 103 dyn s cm−2 (Bausch et al., 1999)
E Cell elasticity 0.1–2.5 × 107 dyn cm−2 (Wakatsuki et al., 2000)
f0 Cell force 500–1000 nN (Wakatsuki et al., 2000)
Scross Cell cross area 30–50 µm2 (Dembo and Wang,

1999; Lo et al., 2000;
Munevar et al., 2001b)

Atotal Total actin in
polymerized form 200 µM (Mogilner and

Edelstein-Keshet,
2002)

Mtotal Total myosin II 20.0 µM This work
Ntotal Total integrin 105 receptors/cell (DiMilla et al., 1991)
kr0 Dissociation constant 0.67 s−1 (DiMilla et al., 1991)

or cell–substrate interaction, the cell velocity depends only on the ratio of contrac-
tile cell stress to cell–substrate interaction β(x), as shown in Appendix C.

The maximum speed of the cell increases when the contractile force increases,
as expected. This result is shown in Fig. 9, where the cell speed as a function of
cell–substrate interaction parameter κs is shown for two different levels of contrac-
tile stress: τmax = 1.0 and 2.0 Mdyn cm−2. Not only does the maximal attainable
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Figure 8. Cell speed as a function of κs for two model cells with two total actin den-
sities Atotal = 400 µM (◦) and Atotal = 200 µM (•); other parameters are given in
Tables 1 and 2.

speed grow with the increase of τ , but the width of the distribution increases as
well. This means that a cell with greater cell contractility may crawl over a wider
range of substrates.

4. CONCLUSION

We have developed a continuum model describing the motion of a single cell that
consists of a mechanical cell model regulated by the essential cell motility proteins.
In this model the mechanical properties of the cell, such as the cell elasticity, con-
tractile ability and cell–substrate interaction are governed by the distributions of
the corresponding proteins. Thus, cell elasticity is primarily controlled by the actin
cytoskeleton, the cell contractile force generation is connected to myosin II motors,
and the cell–substrate interaction is mediated by integrin dynamics.

The continuum model is applied to describe the motion of a fibroblast. The
model introduces a feedback mechanism between cell–substrate interaction and
contractile force generation. It is assumed that strong cell–substrate adhesion at
the cell frontal part promotes activation of myosin II. This assumption is supported
by experimental observations of traction stresses in fibroblasts (Munevar et al.,
2001a), as well as experimental observation of MLCK activation in the lamella
(Chew et al., 2002). It is most likely that in live cells the ‘asymmetry’ much
needed for cell motility arises from both discussed factors: cell–substrate adhesion
asymmetry and cell contractile ability, which in turn is influenced by cell–substrate
interaction.

The solution of the model equations allows us to obtain the cell deformation,
speed and strain. According to our calculations, the model cell has several areas
of cell stretch and compression. We also simulated the experiment of Munevar
et al. (2001b) to obtain traction stress. In agreement with the experimental data,
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Figure 9. Two velocity vs. κs curves for two different maximum levels of contractile stress:
τmax = 1.0 Mdyn cm−2 (◦) and τmax = 2.0 Mdyn cm−2 (•), other parameters are given
in Tables 1 and 2.

the calculated traction stress is large and negative at the cell front and large and
positive at the cell rear.

In addition, we were able to obtain the bell-shaped distributions of the cell speed
as a function of cell–substrate interaction similar to those experimentally observed
(Palecek et al., 1997). Corresponding cell stretch calculated as a function of the
cell–substrate interaction is also in agreement with experimental situation. The
model cell does not stretch much at small values of cell–substrate interaction, it
stretches more at intermediate values and reaches maximum length at large values
of cell–substrate interaction.

Our model can be easily applied to simulate locomotion of different cells and
accounts for a variety of cell motion types. In order to describe the desired cell, it is
necessary to incorporate the appropriately defined elastic and viscous properties as
well as active contractile stress specific to a given cell type. The discussed model
may be applied to study motility of different cell types (fibroblasts, neutrophils,
epithelial cells and others); to study the movement of the ameboid cells and cell
aggregates (such as slug movement of Dd); to study mechano-transduction (such
as stretch-activated calcium channels in different cell types, integrin dynamics and
mechano-sensing at the adhesion sites), and so on. The work on a two-dimensional
model is currently underway.
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APPENDIX A: COMPUTATIONAL DETAILS

We compute protein concentrations by setting f = f (0) = L and r = r(0) = 0
in corresponding equations, assuming that the cell deformation has little influence
on the protein dynamics.

According to our model cell elasticity E(x) is proportional to bound actin density
in the cytoskeleton, cell active stress τ(x) is proportional to bound active myosin
II density and cell drag coefficient β(x) is proportional to bound integrin density.
A typical result is presented in Fig. 2 where the dependencies of the cell elasticity,
cell active stress and cell drag coefficient are shown as functions of position inside
the cell. Note, that the calculated bound active myosin II density is qualitatively-
similar to the observed activity of MLCK in Chew et al. (2002). Using these mate-
rial properties, equations (2)–(5) are solved for the displacement u(x, t). The posi-
tions of the leading edge f (t) and the rear of the cell r(t) at the next moment of
time are determined from the following conditions on the speed of the cell at the
front and rear:

f (t)= L + u, (A.1)

r(t) = u. (A.2)

Equations (2)–(5) were numerically integrated using an explicit scheme in time
and generalized Gaussian method to solve for the displacements u(x, t) on the
grid with initial spacing δ = 0.5 µm (Samarsky, 1983; Sod, 1985). We took the
time step to be small enough (typically 
t = 10−3 s) to maintain stability. Initial
displacements u(x, t = 0) were assumed to be zero, cell rear boundary is at the
origin of coordinate system r(0) = 0 and cell front is at f (0) = L .

We discretize equation (3) in the following way, where indexes i and j signify
the discretization in space and time correspondingly:
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Table 2. Cell model parameters.

Parameter Definition Value

κs Cell–substrate interaction 10−4–102

ψ1 Front–rear dissociation asymmetry 3.33
κ+

m /κ
−
m Association/dissociation rate ratio 0.3

κ+
Reg[Reg]0/κ−

Reg Association/dissociation rate ratio 0.1

α 2.0
ψ2 Front–rear myosin II activation asymmetry 10.0
E0 Cell elastic constant 0.42 × 10−8 dyn µm−1

τ0 Active stress constant 4.2 × 10−8 dyn µm−1

µ Cell viscosity constant 10−11 dyn · s µm−1

β0 Drag constant 5 × 10−10 dyn s µm−3

µ
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APPENDIX B: MODEL PARAMETERS

Recently-developed experimental techniques such as magnetic traps, magnetic
tweezers (Bausch et al., 1999), micromachinery devices (Galbraith and Sheetz,
1997) and others (Wakatsuki et al., 2000) have facilitated measurement of cell
properties such as cell elasticity, viscosity and cell contractile force became avail-
able. The model parameters that we use together with sources are summarized in
Tables 1 and 2. According to published data a fibroblastic cell possesses significant
elasticity. Its viscosity, on the other hand, is not very large. The large value of cell
elasticity arises from the large density of actin in fibroblast cytoskeleton that is also
enhanced by bundling. Large cell elasticity of fibroblast and small cell viscosity
together with significant contractile force generation allow for fast compression of
cytoskeleton when cell adhesions are released. Visually it is observed as ‘jerky’
fibroblast motion at the moment of adhesion release.

A variation of elastic and viscous properties over the cell length was observed
in neutrophils (Yanai et al., 1999). It was found that the protruding edge of a
neutrophil has reduced stiffness and viscosity, that seems to be needed in order to
form a protrusion. We do not account for this local event. However, we incor-
porate in our model that a cell may have spatial variation of elastic properties.
Similar findings are made for fibroblasts (Nagayama et al., 2001). Again, that
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central region of the cell is found to be stiffer then the rest of the cell. The soft-
ening of the cell edge as well as nuclear region is observed when a stationary cell
begins to move, however the cell maintains the relatively stiffer central part of the
cytoskeleton. Cell elasticity is measured to be from 0.1 × 107 dyn cm−2 for the
cell cortex (Bausch et al., 1999), to 2.5 × 107 dyn cm−2 for the cell cytoskeleton
(Wakatsuki et al., 2000). We use values 1.0–5.0 Mdyn cm−2. The fibroblast vis-
cosity was reported to be small, with an approximate value of 2.0×103 dyn s cm−2

(Bausch et al., 1999).
We estimated the parameter τ that is the contractile stress in the cell as a ratio of

the cell contractile active force to the cell cross-sectional area τmax ≈ f0/Scross. The
area is calculated as Scross = 1 µm × 30 µm = 30 µm2. Typical contractile force
generated by a fibroblast is reported to be 500–1000 nN (Wakatsuki et al., 2000).
We use 1000 nN in our model. Then τ is estimated to be ∼0.3 × 105 dyn cm−2.

We estimate the maximum value of drag coefficient as µ ∼ ∂τ
∂x · 1

v
= 0.03

Mdyn cm−2 × 60 s/0.2 µm ∼ 10 Mdyn s cm−2 µm−1/1 µm = 10 Mdyn s cm−4.
We use similar values in the model calculations.

We estimate the actin polymerization stress at the front of the model cell as
Fpoly = 10−4 Mdyn cm−2. We calculate this number by taking the number of
actin at the front of ∼107, single filament force of F1fil ∼ 10−4 pN and cell lamel-
lipodium cross-sectional area of Scross = 30 µm2.

APPENDIX C: ANALYTICAL SOLUTION

The analytical solution of the problem equations (2) and (3), for the case of small
cytoskeletal viscosity µ(x) = 0, can be written as follows

u(x, t) = w̃(x, t)+ [τ( f )− τ(r)]∫ f
r dxβ(x)

t +
∫ x

r

τ(y)+ f (y)

E(y)
dy, (C.1)

f (x) = τ(r)+ [τ( f )− τ(r)]
∫ x

r dyβ(y)∫ f
r dyβ(y)

, (C.2)

where w̃(x, t) is a solution of the following problem
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In the limit of large times t → ∞, the term w̃(x, t → ∞) → constant, and the
linear in time term dominates, so that

u(x, t) = τ( f )− τ(r)∫ f
r dxβ(x)

t (C.5)

and cell velocity is

vcell = τ( f )− τ(r)∫ f
r dxβ(x)

. (C.6)
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