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Abstract. In this paper we study the diffusion approximation to a transport equation that
describes the motion of individuals whose velocity changes are governed by a Poisson process. We
show that under an appropriate scaling of space and time the asymptotic behavior of solutions of
such equations can be approximated by the solution of a diffusion equation obtained via a regular
perturbation expansion. In general the resulting diffusion tensor is anisotropic, and we give necessary
and sufficient conditions under which it is isotropic. We also give a method to construct approxi-
mations of arbitrary high order for large times. In a second paper (Part II) we use this approach to
systematically derive the limiting equation under a variety of external biases imposed on the motion.
Depending on the strength of the bias, it may lead to an anisotropic diffusion equation, to a drift
term in the flux, or to both. Our analysis generalizes and simplifies previous derivations that lead
to the classical Patlak–Keller–Segel–Alt model for chemotaxis.
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1. Introduction. There are two major approaches used to describe the mo-
tion of biological organisms: (i) a space-jump process in which the individual jumps
between sites on a lattice, and (ii) a velocity-jump process in which discontinuous
changes in the speed or direction of an individual are generated by a Poisson process
[36]. The former leads to a renewal equation in which the kernel governs the waiting
time between jumps and the redistribution after a jump and determines the type of
partial differential equation that describes the asymptotic behavior of the evolution
[36]. In this paper we analyze the diffusion approximation to the transport equation

∂

∂t
p(x, v, t) + v · ∇p(x, v, t) = −λp(x, v, t) + λ

∫
V

T (v, v′)p(x, v′, t)dv′(1.1)

describing a velocity-jump process. Here p(x, v, t) denotes the density of particles at
spatial position x ∈ Ω ⊂ R

n, moving with velocity v ∈ V ⊂ R
n at time t ≥ 0 [36].

Here λ is the (constant) turning rate and 1/λ is a measure of the mean run length
between velocity jumps. In general λ may be space dependent and depend on internal
and external variables as well. The turning kernel T (v, v′) gives the probability of a
velocity jump from v′ to v if a jump occurs, and implicit in the above formulation
is the assumption that the choice of a new velocity is independent of the run length.
The turning kernel may also be space dependent. When applied to the bacterium E.
coli, the kernel T includes a bias, as described later, and the turning frequency must

∗Received by the editors June 23, 1999; accepted for publication (in revised form) March 29, 2000;
published electronically August 29, 2000.

http://www.siam.org/journals/siap/61-3/35816.html
†Department of Mathematics, University of Utah, Salt Lake City, UT 84112 (hillen@math.utah.

edu). This research of this author was supported by the Deutsche Forschungsgemeinschaft.
‡Department of Mathematics, University of Minnesota, Minneapolis, MN 55455 (ohmer@math.

umn.edu). The research of this author was supported in part by NIH grant GM 29123 and by NSF
grant DMS 9805494.

751



752 THOMAS HILLEN AND HANS G. OTHMER

depend on the extracellular signal, as transduced through the signal transduction and
motor control system. When applied to the amoeboid cell Dictyostelium discoideum
(Dd), which uses both run length control and taxis [13], both the turning kernel
and the turning rate must depend indirectly on the extracellular cyclic adenosine
monophosphate distribution. In Part II we show how these can be described by
including dependence on the velocity and external stimuli in the kernel and/or run
length [37].

The backward equation that corresponds to (1.1) has been derived from the un-
derlying stochastic velocity-jump process by Stroock [45] to describe the motion of
bacteria. It has also been derived and analyzed in a more general framework by Pa-
panicolaou [39], and we compare our results with his in detail in the discussion section.
We do not derive (1.1) rigorously as the forward equation of the velocity-jump process,
but instead take it as the starting point of our analysis. From the mathematical point
of view the transport equation (1.1) is similar to the Boltzmann equation, in which
the right-hand side is an integral operator that describes collision of two particles, and
is therefore quadratic in p [4]. The kernel of the integral operator is specified by the
dynamics, and it is known that an appropriate scaling of space and time leads at least
formally to a diffusion process [30, 17]. As we show here, this also holds for velocity-
jump processes as described by (1.1) for one particle and for more general transport
processes which also include acceleration terms and other forces (see also Hersh [22],
Papanicolaou [39], or Patlak [40]). Alt [1] has used Patlak’s approach to relate the
chemotactic velocity to the gradient of an attractant or repellent. Alt’s derivation,
which will be discussed in detail in Part II, is based on a very specific model for the
motion of crawling cells, and a number of assumptions used in the derivation make it
difficult to interpret the equations in other contexts.

The simplest example that illustrates the regime in which a diffusion equation
can be obtained from a velocity-jump process arises in one space dimension. Here a
particle moves along the x-axis at a speed s, taken to be constant for simplicity, and
at random instants of time it reverses direction according to a Poisson process with
constant intensity λ. Let p±(x, t) be the density of particles that are at (x, t) and are
moving to the right (+) and left (−). Then p±(x, t) satisfy the equations

∂p+

∂t
+ s

∂p+

∂x
= −λp+ + λp−,

(1.2)
∂p−

∂t
− s

∂p−

∂x
= λp+ − λp−.

The density of particles at (x, t) is p(x, t) ≡ p+(x, t) + p−(x, t), and the particle flux
is j ≡ s(p+ − p−). These satisfy the equations

∂p

∂t
+

∂j

∂x
= 0,

(1.3)
∂j

∂t
+ 2λj = −s2 ∂p

∂x
,

and the initial conditions p(x, 0) = p0(x), j(x, 0) = j0(x), where p0 and j0 are deter-
mined from the initial distribution of p+ and p−. This system leads to the telegraph
equation

∂2p

∂t2
+ 2λ

∂p

∂t
= s2 ∂

2p

∂x2
(1.4)
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and the diffusion equation results formally in the limit λ → ∞, s → ∞ with s2/λ ≡
D constant. A rigorous justification of this limit can be obtained directly from an
asymptotic analysis of the exact solution or from the more general result stated in
Theorem 4.1.

This process was studied by Taylor [47], Fürth [14], Goldstein [15], and subse-
quently by Kac [28], McKean [32], Segel [43], and Othmer, Dunbar, and Alt [36]. In
Part II and in [26] it is shown that if the speed depends on the signal, then cells
accumulate at the minima of the speed distribution. If the turning rate depends on
the signal distribution, then they can aggregate if the turning rate is not constant and
if it also depends on the direction of motion. However, the reduction of the general
velocity-jump process to a telegraph equation is possible only in one space dimension;
even with two dimensions and four velocities the system does not reduce to a tele-
graph equation in any scaling. However, an alternate approach to transport based
on a theory of mixtures leads to the telegraph equation in any number of dimensions
[35], and these two different approaches have not been reconciled.

Nonlinear versions of the one-dimensional telegraph process, which also include
birth, death, and interactions of particles, have been studied by Dunbar and Othmer
[9], Dunbar [8], Holmes [27], Hadeler [18, 19, 20], Hillen [23, 24, 25, 26], Müller and
Hillen [34], and Schneider and Müller [42]. Asymptotic estimates for classical solutions
have been derived and the upper semicontinuity of the attractor has been proven [42].

In the following section we state the general assumptions on the turning kernel
T which ensure that the turning operator defined there is positive in an appropriate
sense (see Definition 2.1). The positivity in turn guarantees that a diffusion limit of
the jump process exists. In section 3 we introduce the parabolic scaling and formally
derive the parabolic limit equation. Since the parabolic limit is the outer solution in
singular perturbations terms, these higher approximations depend only on the initial
values for the parabolic limit problem, which is also true for the Chapman–Enskog–
Hilbert expansion of Boltzmann’s equation, and which is known as Hilbert’s paradox
in that context [12, 30, 17]. We also derive several equivalent conditions on the turn
angle distribution under which the diffusion matrix is a scalar multiple of the identity.
It turns out that the diffusion constant depends on the second eigenvalue of the turning
operator defined later (cf. Theorem 3.5). In section 4 we first study the limit equation
itself and then use general properties of such equations to prove the approximation
result stated in Theorem 4.1. In the discussion section we compare our approach
and results with a number of previous analyses of this problem. We also briefly
describe the important aspects of the application of this approach to chemotaxis,
which are developed fully in Part II. In Part II we systematically analyze signal-
dependent turning rates and redistribution kernels. We give an example of an order
one, anisotropic perturbation of the redistribution kernel that nonetheless leads to a
scalar (hence isotropic) diffusion matrix. We also analyze O(ε) perturbations of the
turning kernel and turning rate and show how the chemotactic velocity and sensitivity
are obtained from more fundamental and measurable properties of the motion. This
leads to a variety of different types of signal dependence of turning rates and kernels
for which the jump process is asymptotically described by the Patlak–Keller–Segel–Alt
(PKSA) equation.

2. The mathematical setup.

2.1. Properties of the turning operator. In the following we deal primarily
with the case Ω = R

n, since our interest lies in understanding how the properties of the
turning kernel are reflected in the parabolic limit equations. Boundary conditions for
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transport equations of the form (1.1) in bounded domains have been studied previously
[3], and it is known which conditions are sufficient to produce Neumann boundary
conditions in the diffusion approximation. We also suppose that the velocities lie in a
compact set V ⊂ R

n and that V is symmetric with respect to the origin, which is no
restriction for the applications. In many applications it is assumed that the kernel T is
symmetric or that it is continuous (see, e.g., [1]). While the symmetry condition may
be appropriate in a homogeneous, isotropic environment, we can relax this condition
with very little effort and still obtain a parabolic equation in the diffusion limit.

Let K denote the cone of nonnegative functions in L2(V ), and for fixed (x, t)
define an integral operator T by

T p =

∫
V

T (v, v′)p(x, v′, t)dv′.(2.1)

Its adjoint is given by

T ∗ p =

∫
V

T (v′, v)p(x, v′, t)dv′.(2.2)

We make the following assumptions about the kernel and the integral operator.
(T1) T (v, v′) ≥ 0,

∫
V
T (v, v′)dv = 1, and

∫
V

∫
V
T 2(v, v′)dv′dv <∞.

(T2) There are functions u0, φ, and ψ ∈ K with the properties that u0 ≡ 0 and φ
and ψ vanish at most on a set of Lebesgue measure zero, and such that for
all (v, v′) ∈ V × V

u0(v)φ(v
′) ≤ T (v′, v) ≤ u0(v)ψ(v

′).(2.3)

(T3) ‖T ‖〈1〉⊥ < 1, where 〈1〉⊥ is the orthogonal complement in L2(V ) of the span
of 1.

(T4)
∫
V
T (v, v′)dv′ = 1.

The first two conditions in (T1) imply that T (·, v′) is a nonnegative probability
distribution on V , and together with the third condition in (T1) guarantee that T
and its adjoint T ∗ both map K → K. We will use condition (T2) to show that
T ∗ is u0-positive, as defined below, and as a result, we can show that T ∗ has a
simple dominant eigenvalue equal to one with a corresponding positive eigenfunction
identically constant. Finally, we use condition (T3) to show that the limiting equation
indeed is of parabolic type (Lemma 3.3).

It follows from (T1) that for every fixed (x, t), both T and its adjoint are Hilbert–
Schmidt operators (hence bounded and compact) on L2(V ) (see [10, 21] for general
definitions). Therefore both T and T ∗ have a pure point spectrum and their nonzero
eigenvalues have finite multiplicity. However, more can be said, since T and T ∗ map
K into itself. To make this precise we need the following definitions.

Definition 2.1.
1. Let X be a Banach space and K the positive cone in X. Let L : X −→ X;

then L is positive if L : K −→ K, i.e., φ ∈ K;φ ≥ 0 implies that Lφ ≥ 0.
2. Let L be positive. Then L is u0-bounded from below (above) if there is a fixed

u0 ∈ K, u0 = 0 such that for every φ ∈ K there exists an n and α > 0 (m
and β > 0) such that

αu0 ≤ Lnφ, (Lmφ ≤ βu0).

If L is u0-bounded above and below then L is u0-positive.
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3. K is reproducing if for all φ ∈ X there exist u, v ∈ K such that φ = u− v.
The following theorem gives the general Perron–Frobenius property of u0-positive

operators that is needed later.
Theorem 2.2 (see Krasnosel’skii [29]). Let K be the nonnegative cone in X, let

K be reproducing, and let L be u0-positive. Let ϕ0 ∈ K and suppose that ϕ0 is an
eigenfunction of L. Then

(i) if Lϕ0 = µ0ϕ0, then µ0 is a simple eigenvalue;
(ii) ϕ0 is a unique eigenfunction in K to within a scalar factor;
(iii) |µ0| is greater than the magnitude of the remaining eigenvalues.
The cone K is reproducing, because for any φ ∈ L2(V ) we can write φ(v) =

φ+(v)− φ−(v) where

φ+(v) =

{
φ(v) if φ(v) ≥ 0,
0 otherwise,

φ−(v) =
{

0 if φ(v) ≥ 0,
−φ(v) if φ(v) < 0.

If T is continuous on a compact set it has a maximum and minimum there, and
therefore we can find a nonnegative function u0 and a sufficiently large constant γ > 0
such that (2.3) holds with φ = 1 and ψ = γ. In general we have the following result.

Lemma 2.3 (see Krasnosel’skii [29]). If T (·, ·) satisfies (T1) and (T2), then T ∗

is u0-positive.
We can apply Theorem 2.2 to the adjoint T ∗ as follows. The preceding lemma

and (T1) show that T ∗ is u0-positive and has an eigenvalue equal to 1. Therefore
the theorem shows that φ ≡ 1 is the unique (to within a positive scalar factor)
positive eigenfunction and that all other eigenvalues are less than 1 in magnitude.
The operators T and T ∗ have the same spectral radius which is 1. Assumption
(T4) implies that the operator T has a positive eigenfunction corresponding to the
eigenvalue 1 and that the corresponding eigenfunction can be chosen as φ ≡ 1. The
second condition of (T1) implies that the forward jump process conserves particles,
and (T4) implies that the same is true for the adjoint evolution equation.

Remark 2.1. It is clear that we could allow λ and or T to depend on x and/or
t parametrically and the same conclusion would hold pointwise in x and t.

To simplify the notation later we define the turning operator

Lp(v) = −λp(v) + λT p(v)

and its adjoint

L∗p(v) = −λp(v) + λT ∗ p(v).

Then the foregoing can be restated in terms of the spectrum of L∗ as follows: zero is
a simple eigenvalue of L∗ with a unique positive eigenfunction φ(v) = 1, and all other
eigenvalues µ have −2λ < Re µ < 0.1

Remark 2.2. Since T is real and compact, L and L∗ have the same spectrum
[46], and it follows that zero is a simple eigenvalue of L. This fact is essential for the
perturbation analysis done later.

If the kernel is symmetric L has a complete orthogonal set of eigenfunctions [46],
even if T has finite rank (in that case T has an infinite dimensional null space and
we can take any orthonormal basis of N (T ) as a complement to R(T )). For the

1As we shall see in the following section, one cannot obtain diffusion equations in the time
and space scalings used here unless L has a v-independent eigenfunction corresponding to the zero
eigenvalue, and thus the conservation property for both forward and reverse processes is essential.
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general theory developed here we do not assume that the kernel is symmetric, but we
may have a complete set nonetheless. Since T is a Hilbert–Schmidt operator, general
conditions are known under which the eigenfunctions are complete (cf. [10, p. 1099,
et seq.])

The second condition in assumption (T1) implies that any eigenfunction of L
corresponding to a nonzero eigenvalue has mean zero over V , and therefore L2(V ) =
〈1〉 ⊕ 〈1〉⊥. Condition (T3) implies that for all ψ ∈ 〈1〉⊥

∫
ψLψdv ≤ −µ2‖ψ‖2L2(V ),(2.4)

where

µ2 ≡ λ
(
1− ‖T ‖〈1〉⊥

)
.(2.5)

We collect all the above properties together in the following theorem.
Theorem 2.4. Assume (T1)–(T4); then
1. 0 is a simple eigenvalue of L and the corresponding eigenfunction is φ(v) ≡ 1.
2. All nonzero eigenvalues satisfy −2λ < Re µ ≤ −µ2 < 0, and to within a

scalar factor there is no other positive eigenfunction.
3. There is a decomposition L2(V ) = 〈1〉 ⊕ 〈1〉⊥ and estimate (2.4) holds.
4. ‖L‖L(L2(V ),L2(V )) ≤ 2λ.

5. L restricted to 〈1〉⊥ ⊂ L2(V ) has a linear inverse F with norm

‖F‖L(〈1〉⊥,〈1〉⊥) ≤
1

µ2
.(2.6)

If T is normal in addition to being compact, which requires that
∫

T (v, v′′)T (v′, v′′)dv′′ =
∫

T (v′′, v)T (v′′, v′)dv′′ for all (v, v′) ∈ V × V,(2.7)

then L has a complete set of eigenfunctions since I−T is normal and has a pure point
spectrum. As a result there is an orthogonal decomposition of L2(V ) into eigenspaces
of L (cf. [6]). In this case (T3) is unnecessary, and L has the spectral representation
given in the following theorem.

Theorem 2.5 (cf. Conway [6, p. 55 et seq.]). Assume that condition (T1)
holds and that T is normal. Then L has a countable number of distinct eigenvalues
{0, µ2, µ3, . . .} with µj = 0 for j ≥ 2. Associated with each µj there is a spectral
projection Pj : V → V such that L has the representation

L =

∞∑
j=2

µjPj .

As we will see in the following section, it is particularly simple to evaluate certain
solvability conditions that arise in the perturbation analysis when such a spectral
representation exists.

2.2. The shift operator A = −v · ∇. The shift operator A = −(v · ∇) with
domain

D(A) = {φ ∈ L2(Rn × V ) : φ(., v) ∈ H1(Rn)}
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is skew adjoint in L2(Rn × V ). Hence it is dissipative in the sense of Pazy [41]. Then
the linear transport equation defines a strongly continuous semigroup on L2(Rn×V ).
Since the turning operator L is linear and bounded we have the following existence
result (see [41, Chapter 3, Theorem 1.1]).

Theorem 2.6. Assume (T1). For each initial condition p0 ∈ D(A) there exists
a unique solution of the transport equation (1.1) in

X = C1([0,∞), L2(Rn × V )) ∩ C([0,∞),D(A)).

3. The formal diffusion approximation. One can only expect to obtain a
diffusion process as an asymptotic description of the velocity-jump process if there
are time and space scales on which there are many velocity jumps in order one time,
but a small net displacement on this time scale. For the purpose of identifying these
scales, we assume that λ and T are independent of the spatial position and that λ is
independent of velocity. To motivate the appropriate scaling of space and time, we
first identify a length scale L that is characteristic of the macroscopic evolution. For
instance, this may be the size of the domain on which an experiment is done, or, if
there is an external field S to which the organisms respond, one may choose

L = max
S

|∇S| ,

where the maximum is taken over Ω̄ and a suitable compact time interval. Other
functionals of this ratio, as well as other characteristic lengths, may be appropriate,
but whatever the choice we assume that L is a fixed constant.

Define the dimensionless velocity, space, and time variables

u =
v

s
, ξ =

x

L
, τ =

t

σ
,

where s is a characteristic speed and σ is as yet undetermined. Then (1.1) can be
written

1

σ

∂p̃

∂τ
+
( s

L

)
u · ∇ξp̃ = −λp̃+ λ

∫
T (u, u′)p̃(ξ, u′, τ)du′,(3.1)

where ∇ξ is the gradient in ξ coordinates, and p̃(ξ, u, τ) ≡ p(ξL, us, στ). We have
used the fact that T is a probability kernel in applying the coordinate change.

We can estimate a diffusion coefficient as the product of the characteristic speed
times the average distance traveled between velocity jumps, which gives D ∼ O(s2/λ),
as in the example given in the introduction. From this we obtain the characteristic
diffusion time for diffusion on the length scale L (i.e., ξ ∼ O(1)) as

τDIFF ∼ L2

D
=

L2λ

s2
.

We can also define a characteristic drift time as

τDRIFT =
L

s
,

and we assume that the space scale L is such that the time scales are related as
follows:

τRUN ≡ λ−1 � τDRIFT � τDIFF .(3.2)
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For example, a characteristic speed for bacteria such as E. coli is 10 − 20µ/sec,
and λ−1 ∼ O(1) second. On a length scale of 1 mm, τDRIFT ∼ 50 − 100 seconds and
τDIFF ∼ 2500−104 seconds. Therefore we have τRUN ∼ O(1) on the dimensional scale,
and

τDRIFT ∼ O(1/ε),

τDIFF ∼ O(1/ε2),

where ε ∼ O(10−2). We can ensure that this hierarchy holds in general by assuming
that the time scale is such that λ ∼ O(1) and that L is chosen so the L ∼ O(s/ε).

If we now set σ = τDIFF , use the fact that τDRIFT ∼ O(1/ε), and revert to v for
the scaled velocity, we can write (3.1) as

ε2 ∂p

∂τ
+ εv · ∇ p = −λp+ λ

∫
V

T (v, v′)p(ξ, v′, τ)dv′(3.3)

with τ = ε2t, ξ = εx/s, v ∈ V , and ξ ∈ Ω̃ with Ω̃ = εΩ/s. Here and hereafter we drop
the subscript on ∇ and the tilde on p. In view of the space and time scalings chosen,
we assume that λ ∼ O(1). Since

∫
T (v, v′)dv = 1, it follows that the right-hand side

of (3.3) is O(1) compared with the left-hand side, whatever the magnitude of p. As
we show next, this leads to a diffusion equation for the lowest order term of an outer
expansion.

Since we are only interested in the solution of (3.3) on the diffusion time scale,
we assume the regular perturbation expansion

p(ξ, v, τ) =

k∑
i=0

pi(ξ, v, τ)ε
i + εk+1pk+1(ξ, v, τ).(3.4)

This ansatz gives the “outer” solution in the sense of singular perturbations and is
similar to what is used in the context of the Boltzmann equation, where it is called
a Hilbert expansion (see, e.g., [12, 30, 17]). Comparing terms of equal order in ε, we
obtain the following system of equations:

ε0 : Lp0 ≡ −λp0 + λ

∫
V

T (v, v′)p0(ξ, v
′, τ)dv′ = 0,(3.5)

ε1 : Lp1 = v · ∇p0,(3.6)

ε2 : Lp2 =
∂p0

∂τ
+ v · ∇p1,(3.7)

...

εi : Lpi = ∂pi−2

∂τ
+ v · ∇pi−1, 3 ≤ i ≤ k + 1.(3.8)

The first equation and (T4) imply that p0 is independent of v. Since L is singular
the right-hand side of (3.6) must satisfy a solvability condition. The eigenfunction
corresponding to the eigenvalue µ = 0 of L∗ is φ0 ≡ 1, and therefore this condition is∫

V

(v · ∇p0)dv = 0,(3.9)

which can be written alternatively as

∇ · j0 = 0,(3.10)



DIFFUSION LIMIT OF TRANSPORT EQUATIONS 759

where the flux ji of pi for i = 1, . . . , k + 1 is defined as

ji =

∫
V

v pi dv.(3.11)

Since V is symmetric and p0 is independent of v, (3.9) is satisfied.
It remains to solve (3.6) subject to (3.9) or (3.10). Since the total number of

particles is conserved, the solution must satisfy

∫
Ω̃

∫
V

p(ξ, v, τ)dξdv =

∫
Ω̃

∫
V

(p0(ξ, v, τ) + εp1(ξ, v, τ) + · · ·)dξdv = N0,

where N0 is a constant. We can stipulate that all the mass is in p0, and that

∫
V

pjdv = 0(3.12)

for j ≥ 1. Since L is a Fredholm operator, (3.6) can be solved via a generalized or
pseudoinverse [46]. Then the solution can be written

p1 = F (v · ∇p0) ,

where

F =
(L|〈1〉⊥)−1

is a linear functional on 〈1〉⊥ ⊂ L2(V ) defined by the pseudoinverse of L.
Fortunately it is possible to calculate the pseudoinverse F explicitly in many cases.

For example, if L is normal the construction of the inverse reduces to a computation
of eigenvalues and eigenvectors, since F has a spectral representation in that case.

Lemma 3.1. Under the conditions of Theorem 2.5 the inverse F of L on 〈1〉⊥
has the representation

F =

∞∑
j=2

Pj

µj
.(3.13)

The evolution equation for p0 is obtained from the solvability condition at O(ε2),
which is given by

∫
V

[
∂p0

∂τ
+ v · ∇ (F (v · ∇p0))

]
dv = 0.(3.14)

Since p0 is independent of v we can write this as

∂p0

∂τ
−∇ · (D∇p0

)
= 0,(3.15)

where the diffusion tensor is defined as

D ≡ − 1

ω

∫
V

vFv dv.(3.16)
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Is is also clear from the definition (3.16) that D is symmetric if F acts on v by scalar
multiplication, and the positivity ofD follows from the positivity of T and the location
of its spectrum. This is shown in Lemma 3.3.

Remark 3.1. If we allow λ and/or T to depend on x and/or t, then the pseu-
doinverse does also and the diffusion tensor and the chemotactic velocity defined later
may depend on x and/or t as well. We can also allow a space-dependent speed if the
jump process only changes the direction of the particle.

Example 3.1. Suppose that V = sSn−1 and T (v, v′) = 1/ω, ω = |V |, i.e.,
that the redistribution is uniform in velocity space, and that λ is a constant. One
finds that the pseudoinverse F for this kernel is simply multiplication by −λ−1, and
therefore, under the condition (3.12) we have

p1 = − 1

λ
(v · ∇p0).

As a check we note that ∫
V

p1dv = − 1

λ
∇ · j0 = 0

by (3.10), and we find that the diffusion tensor is given by

D =
1

ω

∫
V

vv

λ
dv =

s2

λn
I(3.17)

which is clearly positive definite and isotropic.2

3.1. The parabolic limit equation. We next prove that the initial value prob-
lem

∂p0

∂τ
−∇ · (D∇p0

)
= 0,

(3.18)

p0(ξ, 0) =

∫
V

p(ξ, v, 0)dv

is genuinely parabolic for any D defined by (3.16) if (T1)–(T4) hold true.
Theorem 3.2. Assume (T1)–(T4) and let p(., v, 0) ∈ L2(Ω̃) for each v ∈ V .

Then there exists a unique global solution p0 of (3.18) with the following properties:

(i) p0 ∈ C([0,∞), L2(Ω̃)),

(ii)
∂p0

∂τ
∈ C∞(Ω̃) for each τ > 0,

(iii) ‖p0(., τ)‖C∞ is decreasing as a function of τ.

Proof. We show that the differential operator in (3.18) is strictly elliptic on L2(Ω̃).
Then it generates a contractive analytic semigroup and the above statements follow.
This is immediate, using (3.17), when T (v, v′) = 1/ω, since then solutions p0 of this
equation exist globally and are smooth for each τ > 0.

In general the operator ∇ · D∇ defines an unbounded differential operator on
H2(Ω̃), and it generates an analytic semigroup if the quadratic form generated by the
matrix D : R

n → R
n is coercive.

2By isotropic we mean as usual that D is invariant under all orthogonal transformations. It is
well known that the only isotropic second-rank tensor is a multiple of the unit tensor [5].



DIFFUSION LIMIT OF TRANSPORT EQUATIONS 761

Lemma 3.3. There exists a positive constant κ > 0 such that

ϕ ·Dϕ ≥ κ|ϕ|2

for each ϕ ∈ R
n.

Proof of Lemma 3.3. For ϕ ∈ R
n we consider the quadratic form

ϕ ·Dϕ = − 1

ω

∫
V

(ϕ · v)F(ϕ · v)dv.

The term (ϕ · v) is not constant as a function of v ∈ V , hence we can apply F . There
is a nonconstant function z(v) ∈ 〈1〉⊥ such that Lz(v) = ϕ · v. Then

ϕ ·Dϕ = − 1

ω

∫
V

Lz(v)z(v)dv.

From (2.4) it follows that ∫
Lz(v) z(v) dv ≤ −µ2‖z‖22 < 0.

Then

ϕ ·Dϕ ≥ µ2

ω

∫
V

|z(v)|2dv =
µ2

ω
|ϕ|2

∫
V

∣∣∣∣F
(

ϕ

|ϕ| · v
)∣∣∣∣

2

dv ≥ c0µ2

ω
|ϕ|2

with

c0 := min
|ϕ|=1

∫
V

|F(ϕ · v)|2dv > 0.

Then Lemma 3.3 is proven.
Now ∇·D∇ generates an analytic semigroup and the statements (i) and (ii) follow

directly from semigroup theory (see, e.g., Pazy [41]). Since we have no source term
in (3.18) statement (iii) is also obvious.

Because of regularity properties of parabolic equations we have the following
corollary (see, e.g., Taylor [48]).

Corollary 3.4. For each m ∈ N and each 0 < ϑ < ∞ there is a constant
C0 = C0(m,ϑ, ‖p0(., 0)‖L2(Ω̃)) such that the solution p0(ξ, τ) of the parabolic problem

(3.18) satisfies

‖p0‖Cm(Λϑ) ≤ C0,

where Λϑ = Ω̃× (ϑ,∞).
Remark 3.2. In case of higher regularity of the initial condition, e.g., p(., v, 0) ∈

Cm(Ω), the initial value of the parabolic problem (3.18) is Cm as well. Hence one
could argue that the estimate in Corollary 3.4 holds for all t ∈ (0,∞). However,
since the arguments of p(ξ, τ) are scaled variables the Cm-norm scales as ε−m and
the constant C0 of this corollary would depend on ε > 0. We avoid this scaling by
introduction of the time threshold ϑ > 0. Starting with general L2 initial data for p0

the parabolic regularity gives a Cm-bound independent of ε > 0, but for t > ϑ only.
Note that ϑ is independent of ε as well.

Remark 3.3. The diffusion equation given by (3.18) cannot lead to aggregation
(i.e., nonconstant steady-state solutions) under Neumann boundary conditions even
if D depends on x through λ (cf. [38]).
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3.2. Structure of the diffusion matrix D. Example 3.1 is the simplest case
in which the diffusion matrix

D = − 1

ω

∫
V

vFvdv

is a scalar times the identity, but we can derive more general necessary and sufficient
conditions under which this is true. For this we fix ξ and define the momentum per
unit mass in the direction v after a jump, assuming a uniform distribution of velocities
before the jump, by

v̄(v) ≡
∫

T (v, v′)v′dv′.(3.19)

For simplicity we later call this the expected velocity. Note the v̄(v) vanishes whenever
T is independent of v′, and that for any T

∫
V

v̄(v)dv = 0,

i.e., v̄(v) has zero mean. This reflects the fact that the total momentum per unit mass
after a jump is zero, since the distribution of velocities before the jump is uniform.
For the analysis of isotropy we assume that the set of velocities V is symmetric with
respect to SO(n). Since directional changes are described by the distribution function
T this assumption is not a restriction. However, if we assume symmetry there is a
constant KV > 0 such that

∫
V

vv dv = KV I.(3.20)

Especially for fixed speed V = sSn−1 we get

KV =
ωs2

n
with ω = |Sn−1|.

Now consider the following three statements.

(St1). There exists an orthonormal basis (ONB) {e1, . . . , en} of R
n such that the

coordinate mappings φi : V → R given by

φi(v) = vi

are eigenfunctions of L with eigenvalue µ ∈ (−2λ, 0) for 1 ≤ i ≤ n.

(St2). The expected velocity v̄(v) satisfies

v̄(v) ‖ v and
v̄(v) · v

v2
= γ

for all v ∈ V and a constant γ ∈ (−1, 1). We call γ the adjoint persistence
for reasons that will be clear later.

(St3). There is a constant d > 0 such that the diffusion matrix has the representation

D = d I.
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Theorem 3.5. Assume (T1)–(T4) and assume that V is symmetric with respect
to SO(n); then we have

(St1) ⇐⇒ (St2) =⇒ (St3).

The constants µ, γ, and d are related as follows. Given µ < 0 then

γ =
µ+ λ

λ
, d = −KV

ωµ
=

KV

ωλ(1− γ)
.

If T also satisfies the condition (T5), there is a matrix M such that v̄(v) = Mv for

all v ∈ V ; then all three statements are equivalent.

Proof.
(St1) ⇐⇒ (St 2). The equivalence of statements 1 and 2 is straightforward:

(St1) ⇐⇒ Lvi = µvi for all 1 ≤ i ≤ n ⇐⇒ −λvi + λ(v̄(v))i = µvi,

⇐⇒ (v̄(v))i = γvi with γ =
µ+ λ

λ
⇐⇒ (St2).

(St1) =⇒ (St3). Assume (St1). Since φi is an eigenfunction of L and φi ∈ 〈1〉⊥ it
is also an eigenfunction of F with eigenvalue µ−1. Then

ekDej = − 1

ω

∫
vkFvjdv = − 1

ω

∫
vkvjdvµ

−1 = − 1

ωµ
ek

∫
vvdvej

= −KV

ωµ
δkj .

(St3) =⇒ (St1) with (T5): Now we assume that (St1) is not valid. Then for any
ONB {e1, . . . , en} there is an index 1 ≤ i ≤ n such that φi is not an eigenfunction
of L with eigenvalue µ. Then either (i) φi is not an eigenfunction, or (ii) φi is an
eigenfunction with eigenvalue µi = µ.

Consider (i): From condition (T5) it follows that the n-dimensional subspace of
functions linear in v is invariant under L, hence it is also invariant for F . Then we
have a representation Fφi(v) = α · v with some α ∈ R

n. Since φi is assumed not to
be an eigenfunction we have at least one k = i with ek · α = 0. Then

ekDei = − 1

ω
ek

∫
vFvidv = − 1

ω
ek

∫
vα · vdv = −KV

ω
ek · α = 0.

Hence D has nonzero off-diagonal entries, which contradicts (St3).
Consider (ii): If φi is an eigenfunction with eigenvalue µi = µ a similar calculation

shows the contradiction

d = −KV

ωµ
= eiDei = −KV

ωµi
.

Remark 3.4.
1. If T has the symmetric form

T (v, v′) = t(|v − v′|),
then the following subspaces of L2(V ) are invariant under L: the constant functions
〈1〉, the v-linear functions 〈v〉, and the orthogonal complement K := 〈1, v〉⊥ (see, e.g.,
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Alt [1]), and (T5) is satisfied in this case. As we will see in a later example, the
spectral problem can easily be solved in this case for two space dimensions, but here
we make one further connection with previous work.

For a fixed incoming velocity v′, the average velocity after reorientation is defined
by

v̂ =

∫
T (v, v′)v dv

and the average speed is defined as

ŝ =

∫
T (v, v′) ‖ v ‖ dv.

The index of directional persistence, which is defined as

ψd ≡ v̂ · v′
ŝs′

,(3.21)

measures the tendency of the motion to persist in the direction of v′. This definition
provides the basis for calling the parameter γ defined earlier the adjoint persistence.
If the speed does not change with reorientation and the turning probability depends
only on the cone angle θ ≡ arccos ((v · v′)/ss′) between v′ and v, then T (v, v′) is
replaced by

h (θ(v, v′)) ,(3.22)

with a suitable change in the measure. Here h is normalized so that

2

∫ π

0

h(θ) dθ = 1 for n = 2,(3.23)

2π

∫ π

0

h(θ) sin θ dθ = 1 for n = 3.(3.24)

In this case ψd in (3.21) is independent of v′ and

v̂ = ψdv
′,(3.25)

where ψd is given by

ψd =




2
∫ π

0
h(θ) cos θ dθ for n = 2,

2π
∫ π

0
h(θ) cos θ sin θ dθ for n = 3.

(3.26)

Since T is symmetric v = v̂, the adjoint persistence γ is equal to ψd, and the diffusion
coefficient is

d =
s2

nλ(1− ψd)
.(3.27)

This result has been derived previously in a variety of ways (cf. [40, 31, 1, 36]). In
general γ and ψd are distinct.
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2. When D is not isotropic there are nonzero off-diagonal elements because some
of the coordinate mappings φi are not eigenfunctions of L. Examples of this are given
in the context of the chemotaxis equations in Part II.

3. We will also see in Part II that (St2) can be used to check the isotropy of the
diffusion matrix and hence of the parabolic limit equation.

Example 3.2. Suppose that the kernel T (v, v′) depends only on the cone angle
θ between v and v′ and consider a kernel with a two-term trigonometric expansion of
the form

T (v, v′) =
1

ω
(1 + a cosα)(3.28)

for a suitable function a = a(x, t). We assume constant speed, i.e., V = sSn−1, with
s > 0, and one can verify that

∫
T (v, v′)dv = 1.

The expected velocity is

v̄(v) =
1

ω

∫ (
1 +

a

s2
v · v′

)
v′dv′ =

a

n
v

and therefore the index of persistence is γ = a/n = ψd by virtue of the symmetry
of T , and to ensure that |γ| < 1 we have to assume that a < n. Then Theorem 3.5
applies and D = dI with diffusion parameter

d =
s2

λ(n− a)

which depends on (ξ, τ) via a(x, t).
Example 3.3. The foregoing analysis can be done completely in R

2. Suppose
that the speed is constant, and write

v = s(cos θ, sin θ).

We write T (v, v′) = h(θ, θ′), where θ, θ′ ∈ [0, 2π] and we assume that h(θ, θ′) =
h(θ′, θ). This ensures normality of the turning operator L and by virtue of Lemma
3.1 we can construct the pseudoinverse F once we know the spectral decomposition
of L. We must first consider the spectral problem

∫
T (v, v′)φ(v′)dv′ =

∫ 2π

0

h(θ, θ
′
)φ(θ

′
)dθ

′
= µ̂φ.(3.29)

We use the orthonormal system {eınθ/√2π}n∈Z and write

h(θ, θ
′
) =

∞∑
n,m=−∞

anmeınθ/
√
2πeımθ

′
/
√
2π.

The symmetry condition then implies that anm = amn. Since we also assume that h
is real we must have that anm = a−n,−m or a−n,−m = an,m.

We can also expand

φ(θ) =
∞∑

k=−∞
bke

ıkθ/
√
2π
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and since φ is real we have b−k = bk. Therefore (3.29) becomes

1

2π

∫ 2π

0

∑
k,n,m

bkanmeınθeımθ
′
eıkθ

′
dθ = µ̂

∑
k

bke
ıkθ,

∑
k,n

bkanke
ınθ = µ̂

∑
k

bke
ıkθ,

∑
n

(Ab)ne
ınθ = µ̂

∑
n

bne
ınθ,

∑
n

(A− µ̂I)bne
ınθ = 0.

Therefore we have that

[(A− µ̂I)b]n = 0, |n| = 0, 1, 2, . . . .(3.30)

We know that A is symmetric and that a−n,−m = an,m.One can obtain the eigenvalues
and eigenfunctions from this equation, analytically in simple cases and numerically if
necessary, and then (3.13) gives the pseudoinverse F .

Example 3.4. We furthermore assume that in the preceding example the kernel
depends only on θ − θ

′
, for then we can assume that

h(θ − θ
′
) =

∞∑
n=0

an cosn(θ − θ
′
) =

∞∑
n=0

an(cosnθ cosnθ
′
+ sinnθ sinnθ

′
).

We already know that a symmetric kernel gives rise to an isotropic diffusion matrix
(Theorem 3.5). However, it turns out to be helpful in understanding the entire ap-
proximation process if for one example we use formula (3.16) to explicitly calculate
D. We may assume that

φ =
∞∑
k=0

ck cos kθ + dk sin kθ,

and then the eigenvalue problem is

µ̂
∑
k

ck cos kθ + dk sin kθ

=

∫ 2π

0

∑
n,k

an(ck cos kθ
′
+ dk sin kθ

′
)(cosnθ cosnθ

′
+ sinnθ sinnθ

′
)dθ

′

=
∑
k

akck cos kθ

∫ 2π

0

cos2kθ
′
dθ

′
+
∑
k

akdk sin kθ

∫ 2π

0

sin2kθ
′
dθ

′

= 2πa0 + π
∑
k≥1

ak(ck cos kθ + dk sin kθ).

Therefore

2πa0 − µ̂0 +
∑
k≥1

(πak − µ̂) (ck cos kθ + dk sin kθ) = 0,
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and this effectively diagonalizes the problem, for now we have

µ̂0 = 2πa0 and µ̂k = πak for k = 1, 2, . . .

and (ck, dk) chosen by normalization. Thus

µ̂0 = 1, µ̂k = πak, and φk = ck cos kθ + dk sin kθ.

For k = 1, 2, . . . each eigenvalue µ̂k has a two-dimensional eigenspace which is spanned
by

φ1
k(θ) =

1√
π
cos kθ, φ2

k(θ) =
1√
π
sin kθ.

Then the orthogonal projections Pk are given by

Pkφ(v) =

∫ 2π

0

cos kθ′√
π

φ(θ′)dθ′
cos kθ√

π
+

∫ 2π

0

sin kθ′√
π

φ(θ′)dθ′
sin kθ√

π
.

From Lemma 3.1 we know that F has a spectral representation. Hence formula (3.16)
reads

D = − s2

2π

∫ 2π

0

(
cos θ
sin θ

) ∞∑
j=1

µ−1
j Pj (cos θ, sin θ) dθ,

where µj ≡ −λ(1− µ̂j). After rearranging we obtain

D = − s2

2π

∫ 2π

0

∞∑
j=1

µ−1
j

(
cos θ(Pj cos θ) cos θ(Pj sin θ)
sin θ(Pj cos θ) sin θ(Pj sin θ)

)
dθ.

Since Pj are projections onto the jth Fourier modes we have

Pj cos θ = cos θδ1,j , Pj sin θ = sin θδ1,j .

Hence we get

D = − s2

2π

∫ 2π

0

µ−1
1

(
cos2 θ cos θ sin θ

sin θ cos θ sin2 θ

)
dθ

= −s2

2
µ−1

1

(
1 0
0 1

)
=

s2

2λ(1− µ̂1)
I.

It follows from (3.26) that µ̂1 = ψd, and therefore the diffusion coefficient reduces to

d =
s2

2λ(1− ψd)

as in (3.27).
Remark 3.5 (elliptic scaling). One can also consider the previous space scale

and the faster time scale given by θ = εt. The transport equation (1.1) reads in this
scaling

ε
∂p

∂θ
+ εv · ∇p = −λp+ λ

∫
V

T (v, v′)p(v′)dv′.
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As before, we assume an expansion in ε of the form

p =
∑
k

εkpk

and find that

ε0 : Lp0 = 0,

ε1 :
∂p0

∂θ
+ v · ∇p0 = Lp1.

It follows that p0 = p0(θ, ξ) and one finds that p0 and

p1 = F(v · ∇p0)(3.31)

are independent of θ ≥ 0.

The O(ε2) solvability condition leads to the equation

∇ ·D∇p0 = 0(3.32)

with the diffusion matrix given in (3.16). Hence p0 has to solve an elliptic problem
(see Lemma 3.3). The same is true at higher orders, and thus the elliptic scaling leads
to a stationary problem.

The elliptic scaling (for a symmetric kernel T ) is also used in [16], but there it
is claimed that the solvability condition leads to a parabolic limit equation for the
lowest-order term in the perturbation expansion, rather than the elliptic equation
obtained above. In our notation (and omitting the advection term) (2.42i) in [16]
reads

∂p0

∂θ
= ∇ ·D∇p0,

where D = Cε2 and C ∼ O(1). In fact, following the arguments in [16] which lead
from (2.40) to (2.41), the diffusion constant must be proportional to ε and not to
ε2. In any case the limiting equation obtained from the solvability condition depends
on ε, which indicates that the matching is not internally consistent. To obtain a
limit parabolic equation which is independent of ε requires use of the time scaling we
defined earlier.

4. The parabolic limit.

Theorem 4.1. Assume (T1)–(T4). For k ≥ 2 define the sequence of functions
(p0(ξ, τ), p1(ξ, v, τ), . . . , pk(ξ, v, τ)) by the following conditions:

(a1) p0 solves the parabolic initial value problem (3.18),

(a2)

∫
V

pj(ξ, v, τ)dv = 0 for all 1 ≤ j ≤ k,

(a3)

∫
V

v pj(ξ, v, τ)dv = 0 for all 2 ≤ j ≤ k,

(a4) p1(ξ, v, τ) := F(v · ∇p0(ξ, τ)),

(a5) pj(ξ, v, τ) := F(pj−2,τ + v · ∇pj−1) for all 2 ≤ j ≤ k,
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and ϑ,C0 are the constants from Corollary 3.4. Then

qk :=

k∑
j=0

εjpj

satisfies for each ϑ/ε2 < t <∞ and each x ∈ Ω

‖p(x, ., t)− qk(x, ., t)‖2L2(V ) ≤ C εk+1,

where the constant C depends on µ2, ω powers of s of highest order 2k and on C0.
Proof. The proof is by induction.

Start of induction k = 2. Let us denote the approximation constructed above by

q2(x, v, t) = p0(ξ, τ) + εp1(ξ, v, τ) + ε2p2(ξ, v, τ)

for ε > 0. The properties (a1)–(a5) for k = 2 have been derived in the previous
section.

We assume that p = q2 + ε3r3 and show that r3 is bounded pointwise in (ξ, τ)
independent of ε > 0. In light of condition (3.12) it follows that∫

V

r3(ξ, v, τ)dv = 0.

We introduce p = q2 + ε3r3 into the scaled transport equation (3.3) and collect orders
of ε. Since p0, p1, and p2 are solutions of the ε0, ε1, and ε2 equations (3.5)–(3.7),
respectively, it remains to study (3.8) for i = 3. To apply the pseudoinverse F we
have to fulfill a solvability condition

0 =

∫
V

p1,τ + v · ∇p2 dv.(4.1)

Using (a2) and (a3) this condition is satisfied. We can write the solution of (3.8) with
i = 3 as

r3 = F
(
p1,τ + v · ∇p2

)

= F
(
F
(
v · ∇p0,τ

)
+ v · ∇F

{
p0,τ + v · ∇F(v · ∇p0)

})
.

Now we estimate r3 in L2(V ):

‖r3(ξ, ., τ)‖2L2(V ) ≤
2

µ2
2

(
‖F(v · ∇p0,τ )‖2L2(V )(4.2)

+
∥∥∥v · ∇F(p0,τ + v · ∇F(v · ∇p0)

)∥∥∥2

L2(V )

)
.(4.3)

Using Corollary 3.4 we estimate the first term in the brackets of the right-hand side
of (4.2) in detail.

‖F(v · ∇p0,τ )‖2L2(V ) ≤
1

µ2
2

‖v · ∇p0,τ (ξ, v, τ)‖2L2(V )

≤ s2

µ2
2

∥∥∥ ‖p0,τ (ξ, v, τ)‖C1(Ω̃)

∥∥∥2

L2(V )

≤ s2

µ2
2

ω2C2
0
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for ϑ < τ <∞. A similar estimate for the second term in (4.2) leads with the use of
Corollary 3.4 to

∥∥∥v · ∇F(p0,τ + v · ∇F(v · ∇p0)
)∥∥∥2

L2(V )
≤ 2s2

µ2
2

ω2C2
0

(
1 +

s4

µ2
2

)

for ϑ < τ <∞. Hence, all together we have

‖r3(ξ, ., τ)‖2L2(V ) ≤
2s2ω2C2

0

µ4
2

(
3 +

2s4

µ2
2

)
=: C2

for ϑ < τ <∞ and all ξ ∈ Ω̃. Since τ = ε2t it follows that for all x ∈ Ω

‖r3(x, ., t)‖L2(V ) ≤ C for all
ϑ

ε2
< t <∞.

Here C = C(C0, s, µ2).

Induction l → l + 1. Assume the statement of Theorem 4.1 is true for all j <
l + 1 ≤ k and assume (a1)–(a5) for l + 1. We consider

ql+1 =

l+1∑
j=0

εj pj

and define rl+2(ξ, v, τ) by

p = ql+1 + εl+2rl+2.

We show that rl+2 is bounded in L2(V ), pointwise in (ξ, τ), independent of ε > 0.
We use the scaled transport equation (3.3) and collect terms of order εl+2:

Lrl+2 = pl,τ + v · ∇pl+1.

From (a2) and (a3) it directly follows that this equation is solvable, hence

rl+2 = F(pl,τ + v · ∇pl+1).

We estimate rl+2 using property (2.6) of F :

‖rl+2(ξ, ., τ)‖2L2(V ) ≤
1

µ2
2

(
‖pl,τ (ξ, ., τ)‖2L2(V ) + ‖v · ∇pl+1(ξ, ., τ)‖2L2(V )

)
.(4.4)

Lemma 4.2. For each 2 ≤ j ≤ l+1 there is a constant Cj > 0 such that for each
(τ, ξ) ∈ Λϑ and for each derivative Dα with multi-index α ∈ N

n+1, with respect to the
partial derivatives { ∂

∂t ,
∂

∂x1
, . . . , ∂

∂xn
} we have

‖Dαpj‖2L2(V ) ≤ Cj‖p0‖2Cj+|α|(Λϑ).(4.5)

The constant Cj depends on µ2, ω, on powers of s of highest order 2j and of lower
order norms of p0.
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Proof. The proof is by induction.
Start of induction: j = 2. Let D2 denote the total second derivative with respect to
space.

‖Dαp2‖2L2(V ) = ‖F (Dαp0,τ + v · ∇Dαp1)‖2L2(V )

≤ 1

µ2
2

(
‖Dαp0,τ‖2L2(V ) + s2‖∇F(v · ∇Dαp0)‖2L2(V )

)

≤ 1

µ2
2

ω2‖Dαp0‖C1(Λϑ) +
s4ω2

µ4
2

|DαD2p0|
≤ C2‖p0‖C2+|α|(Λϑ),

where C2 depends on s4, ω2 and on µ−4
2 .

Induction j − 1 → j. We assume that the statement of the above lemma is true
for 2 ≤ i ≤ j − 1.

‖Dαpj‖2L2(V ) = ‖F (Dαpj−2,τ + v · ∇Dαpj−1)‖2L2(V )

≤ 1

µ2
2

(
‖Dαpj−2,τ‖2L2(V ) + ‖v · ∇Dαpj−1‖2L2(V )

)

≤ 1

µ2
2

(
Cj−2‖p0‖2Cj−2+|α|+1(Λϑ) + s2Cj−1‖p0‖2Cj−1+|α|+1(Λϑ)

)

≤ Cj‖p0‖2Cj+|α|(Λϑ),

where Cj depends on µ2, Cj−1, Cj−2, on powers of s of maximal order 2j, and on
‖p0‖Cj+|α|−1(Λϑ).

Finally, we estimate the residuum rl+2 : with use of Corollary 3.4 and Lemma
4.2:

‖rl+2‖2L2(V ) ≤
1

µ2
2

(
Cl‖p0‖2Cl+1(Λϑ) + s2Cl+1‖p0‖2Cl+2(Λϑ)

)

≤ C̃‖p0‖Cl+2(Λϑ)

≤ C̃C0.

Note that the constant C = C̃C0 does not depend on ε > 0.
Remark 4.1. Note that in general pk for k ≥ 1 are unique only up to a function

constant in v. However, in (3.12) and in (a2) we stipulated that all mass is carried
by p0. Hence this constant component is zero. If we did not make assumption (3.12),
then for each order of ε a parabolic equation would appear. Its solution would give
the v-constant part of pk (see Alt [2] in the case of a symmetric kernel).

Remark 4.2 (parabolic limit). Note that there is another interpretation of this
result. Consider the linear transport equation with turning rates of order λ = O(ε−2)
and speeds of order s = O(ε−1). Then we introduce s̃ = εs and λ̃ = ε2λ and again we
obtain the scaled transport equation (3.3) with s̃, λ̃ instead of s, λ. Then Theorem 4.1
means that for ε→ 0 the transport equation converges to the parabolic limit (3.18).
The solution p0 of the parabolic limit alone will lead to an approximation that is O(ε).
Here we also use p1 and p2 to get an approximation that is O(ε3).

5. Discussion. The reader who peruses some of the foregoing literature will be
struck by the plethora of assumptions and the complexity of the analysis that leads
to the diffusion approximation. We believe that our analysis is significantly more
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transparent than many previous analyses, and we hope that the reader is convinced
that there is no mystery behind the diffusion approximation; it can be obtained by
a rather straightforward analysis based on regular perturbation techniques. There
are some essential hypotheses on the turning operator that are necessary in order to
obtain a diffusion approximation, and our derivation provides a clearer insight as to
what a minimal set of hypotheses must contain. While there is intrinsic merit to a
simplified derivation of equations as important as the diffusion equation derived here
or the chemotaxis equations derived in Part II, perhaps more important is that a clear
derivation lays bare the essentials and provides the basis for a more direct interpreta-
tion of the diffusion tensor and chemotactic sensitivity (defined in Part II) in terms
of more fundamental characteristics of the motion.

Two major facts have emerged from the analysis done here. First, the parabolic
limit of the velocity-jump process (3.18) is anisotropic in general, as has been previ-
ously observed by Papanicolaou [39] for the backward equation and in several papers
for the forward chemotaxis transport model, namely, as a special case in Alt [1] and
in Dickinson and Tranquillo [7]. The results of Papanicolaou [39] are closest to those
obtained here, and for comparison we will denote any formula and abbreviation from
that paper with brackets { }. His conditions on {p. 350} on the {“frozen collision
process”} correspond to our conditions on the operator L and T . His condition
{(6.6)} corresponds to our

∫
T (v, v′)dv = 1. The definition of {µ0} in {(6.7)} has

the character of a pseudoinverse F , since {P0} is a solution of a backward equation
{(6.4)}, which defines (roughly) an inverse. However the direct correspondence to our
F is not obvious. Condition {(6.8)} seems to be similar to our spectral gap condi-
tion ||T ∗||〈1〉⊥ < 1. The {“centering”} condition on the field {F}, mentioned on {p.
340, top line}, or on {p. 350, bottom line} corresponds to our symmetry condition∫
vdv = 0, and the diffusion parameters in {(6.13)} define a matrix analogous to

our D. The velocity-jump process studied here is obtained from the jump process
in [39] by choosing the external force field H = 0, which means that the velocity is
constant between jumps, and hence the results in [39] apply to the backward equation
corresponding to (1.1) for a one-particle random walk. On the other hand, there are
several differences. Here we develop a method to generate higher order approxima-
tions, whereas in [39] only the first-order approximation is considered. Moreover, the
notion of the pseudoinverse F gives a clearer insight into the dependencies of parame-
ters like the diffusion coefficient and chemotactic sensitivity (if applied to chemotaxis)
on the model parameters λ and T . In [39] there is a persistent force H that could
incorporate imposed biases, whereas in Part II we systematically classify chemotactic
biases that arise in λ and T from dependence on external fields. Finally, we have
derived necessary and sufficient conditions for isotropy of the limiting equation.

Many previous analyses, including ours, apply only when there is no direct in-
teraction among particles, although they may interact via an external signal. The
rigorous derivation of transport equations as (1.1) or even of diffusion equations from
stochastic processes of interacting populations is currently an active area of research
(see, e.g., Durett and Neuhauser [11], Stevens [44], or Morale and Capasso [33]).
As will be discussed further in Part II, some of these derivations lead to equations
identical to those based on the assumption of no interactions, but this apparent con-
tradiction remains to be resolved.

In Part II we investigate how the classical PKSA chemotaxis equation, which
describes the population-level response to external chemical signals, can be obtained
from a microscopic description of run-length and turning behavior in response to these
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signals. The simplest form of the PKSA equation, coupled with an evolution equation
for the external signal, is

pt = ∇(d∇p− χ(S)p∇S),(5.1)

St = A∆S + f(p, S).(5.2)

Here p(x, t) denotes the population density and S(x, t) denotes the density of the
external signal. In Part II it is shown that the classical PKSA chemotaxis equation
emerges in a very restricted limit, namely, when the bias term is precisely of O(ε) in
the scaling used here. If the bias is too large it either modifies the diffusion tensor or
may preclude a diffusion approximation at all. In Part II we study turning rates and
turning kernels of the form

T (v, v′, S(·)) = T0(v, v
′) + εkT1(v, v

′, S(·)), k = 0, 1, 2, . . . ,

λ(v, S(·)) = λ0 + εlλ1(v, S(·)), l = 1, 2, . . . .

As an example, we briefly describe an application to the slime mold Dd, where the
perturbations have the form λ = λ0+ελ1 and T = T0+εT1. Then the parabolic limit
equation is

∂p0

∂τ
= ∇(D∇p0 − ucp0)

with diffusion tensor D, defined via the pseudoinverse F0 of the unperturbed operator
turning operator, given by

D = − 1

ω

∫
vF0v dv.

In addition, the chemotactic velocity is given by

uc = −λ0

ω

∫
vF0β1(v)dv − 1

ω

∫
vF0(λ1(v, S(·))− λ̄1(v, S(·)))dv,

wherein

β1(v) =

∫
T1(v, v

′)dv′ and λ̄1(v) =

∫
λ1(v

′, )T0(v, v
′)dv′.

If T0 is symmetric then F0 is multiplication with a scalar. If moreover the perturba-
tions T1 and λ1 are linear in ∇S, then the resulting equation is the classical PKSA
equation.

REFERENCES

[1] W. Alt, Biased random walk models for chemotaxis and related diffusion approximations, J.
Math. Biol., 9 (1980), pp. 147–177.

[2] W. Alt, Singular perturbation of differential integral equations describing biased random walks,
J. Reine Angew. Math., 322 (1981), pp. 15–41.

[3] R. Beals and V. Protopopescu, Abstract time dependent transport equations, J. Math. Anal.
Appl., 121 (1987), pp. 370–405.

[4] C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Diluted Gases,
Springer, New York, 1994.

[5] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Cases, Cam-
bridge University Press, Cambridge, 1964.



774 THOMAS HILLEN AND HANS G. OTHMER

[6] J. B. Conway, A Course in Functional Analysis, Springer, New York, 1985.
[7] R. B. Dickinson and R. T. Tranquillo, Transport equations and indices for random and

biased cell migration based on single cell properties, SIAM J. Appl. Math., 55 (1995),
pp. 1419–1454.

[8] S.R. Dunbar, A branching random evolution and a nonlinear hyperbolic equation, SIAM J.
Appl. Math., 48 (1988), pp. 1510–1526.

[9] S. Dunbar and H. G. Othmer, On a nonlinear hyperbolic equation describing transmission
lines, cell movement and branching random walks, in Nonlinear Oscillations in Biology and
Chemistry, H. G. Othmer, ed., Lecture Notes in Biomath. 66, Springer, New York, 1986,
pp. 274–289.

[10] N. Dunford and J. Schwarz, Linear Operators, Part II: General Theory, Wiley-Interscience,
New York, 1964.

[11] R. Durett and C. Neuhauser, Particle systems and reaction-diffusion equations, Ann.
Probab., 22 (1994), pp. 289–333.

[12] R. S. Ellis, Chapman-Enskog-Hilbert expansion for a Markovian model of the Boltzmann
equation, Comm. Pure Appl. Math., 26 (1973), pp. 327–359.

[13] P. R. Fisher, R. Merkl, and G. Gerisch, Quantitative analysis of cell motility and chemo-
taxis in Dictyostelium discoideum by using an image processing system and a novel chemo-
taxis chamber providing stationary chemical gradients, J. Cell Biol., 108 (1989), pp. 973–
984.
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