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A new model for limb development which incorporates both outgrowth due to cell growth
and division, and interactions between morphogens produced in the zone of polarizing
activity (ZPA) and the apical epidermal ridge (AER) is developed and analysed. The
numerically-computed spatio-temporal distributions of these morphogens demonstrate the
importance of interaction between the organizing regions in establishing the morphogenetic
terrain on which cells reside, and because growth is explicitly incorporated, it is found that
the history of a cell’s exposure to the morphogens depends heavily on where the cell originates
in the early limb bud. Because the biochemical steps between morphogen(s) and gene
activation have not been elucidated, there is no biologically-based mechanism for translating
the spatio-temporal distributions of morphogens into patterns of gene expression, but several
theoretically plausible functions that bridge the gap are suggested. For example it is shown
that interpretation functions based on the history of a cell’s exposure to the morphogens can
qualitatively account for observed patterns of gene expression. The mathematical model and
the associated computational algorithms are sufficiently flexible that other schemes for the
interactions between morphogens, and their effect on the spatio-temporal pattern of growth
and gene expression, can easily be tested. Thus an additional result of this work is a
computational tool that can be used to explore the effects of various mutations and
experimental interventions on the growth of the limb and the pattern of gene expression. In
future work we will extend the model to a three-dimensional representation of the limb and
will incorporate a more realistic description of the rheological properties of the tissue mass,
which here is treated as a Newtonian fluid.
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1. Introduction

1.1.    


Limb development is a model system for the
study of tissue growth, pattern formation and
differentiation, both from the experimental and

theoretical viewpoints. Limb development in
birds (primarily chick), mammals (primarily
mouse) and amphibians has been studied
extensively for over 70 years, and in chick there
is a substantial base of experimental information
on which to build mathematical models [re-
viewed in Maini & Solursh (1991), Tickle &
Eichele (1994) and Duprez et al. (1996)]. To
indicate what a model of the type we develop
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must eventually incorporate, we discuss chick
limb development in some detail in the
remainder of the Introduction. However,
the model we present does not incorporate all
these details, since much of what is known
about spatio-temporal patterns of gene ex-
pression in this system is still very qualitative.
Thus the model we develop later should be
viewed as the first step in an evolutionary
process, and one of our long-range objectives is
to develop a computational model for growing,
deforming tissues in which species are produced
and diffuse about. Our aim is to provide a
computational tool that can be used to do
numerical experiments both on chick limb
patterning and in other contexts where growth
and patterning occur simultaneously. We begin
with a two-dimensional model in this paper,
but will extend it to three space dimensions in
future work.

In chick, the wing site in the flank of the
embryo is determined by Hamburger–Hamilton
stage 8 (26–29 hours of incubation*), the
anterior–posterior orientation of the bud is
determined by about stage 11 (Hornbruch &
Wolpert, 1991), limb outgrowth is visible by
stage 17, and the first skeletal element is visible
at stage 24. Pattern formation, by which we
mean the establishment of spatial differences in
gene expression and cell differentiation, is
described relative to three axes, the proximo-
distal (PD) axis, which extends from somites
to wing tip, the anterior–posterior (AP) axis

and the dorsal–ventral (DV) axis [cf. Fig. 1(a)].
The skeletal elements [humerus, radius and
ulna, wrist, and digits; cf. Fig. 1(b)] form
in a proximal–distal and posterior–anterior
sequence. Fate maps show that the anterior half
of the limb bud gives rise to part of the humerus,
the radius, and digit 2, while the posterior half
gives rise to part of the humerus, the ulna, and
digits 3 and 4 (Stark & Searls, 1973).

The avian limb bud stems from a thickening of
the somatic layer of the lateral plate mesoderm,
due to proliferation of mesenchymal cells and
perhaps a localized decrease in the cell
proliferation rate on either side of the site of
future outgrowth (Searls & Janners, 1971; Vogel
et al., 1996). In the early stages mesenchymal
cells provide the signals to initiate the process of
outgrowth, and one or more members of the
fibroblast growth factor family (collectively,
FGFs, principally FGF-1, FGF-2, FGF-4, and
FGF-8) may be a signaling molecule. For
example it has been shown that beads soaked
with FGF-1, FGF-2 and FGF-4 can induce
ectopic limb bud outgrowth when implanted
under the ectoderm (Cohn et al., 1995), but more
recent evidence suggests that these are not the
primary inducers of limb outgrowth in vivo
[reviewed in Vogel et al. (1996)]. Fgf-8
transcripts are found in the prelimb field before
outgrowth in mouse (Crossley & Martin, 1995)
and chick (Crossley et al., 1996), and ectopic
application of FGF-8 to flank tissue induces
ectopic limb formation (Vogel et al., 1996), but
Fgf-10 expression precedes this (Ohuchi et al.,
1997). In addition, production of retinoic acid
(RA) is high in prospective wing bud tissue
(Helms et al., 1994), but whether RA is a

* The average stage length is 4 hours up to stage 23, and
about 6 hours thereafter.

F. 1. (a) The orientation of axes used to describe the limb; (b) a schematic of the adult wing skeleton in chick.
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F. 2. A schematic of the limb bud, showing the AER and ZPA at (a) approximately stage 18 and (b) stage 25 in chick.
At stage 24 the limb is approximately 1 mm long in both the PD and AP directions and 0.5 mm long in the DV direction.

primary inducing molecule or whether it has an
effect on cell–cell communication is not under-
stood. Recent evidence (Ogura et al., 1996; Lu
et al., 1997) suggests that RA is required for the
establishment of the zone of polarizing activity
(ZPA), a specialized group of cells that lies at the
posterior margin of the limb bud (Zwilling, 1961;
Hinchliffe & Griffiths, 1984).

Just as the morphological features can be
described relative to three axes, so also can the
signaling that is thought to control growth and
to determine the spatio-temporal pattern of gene
activation. Continued proliferation and out-
growth proximo-distally depends on interactions
between the mesenchymal cells and the overlying
ectoderm. The ectoderm at the distal tip of the
limb bud forms the apical ectodermal ridge
(AER), which is apparently determined by the
boundary between ectodermal cells which ex-
press the factor radical fringe and those that do
not (Johnson & Tabin, 1997). However early
outgrowth of the limb bud and differentiation of
the AER are independent, since mutations of the
limb deformity (ld) gene disrupt the latter but not
the former (Haramis et al., 1995), but this same
mutant shows that localization of the AER
is also dependent on dorsal–ventral polarity
(Grieshammer et al., 1996; Kuhlman &
Niswander, 1997); see also (Niswander, 1997).
The dorsal–ventral polarity is itself determined
by unknown signals from the somites and the

lateral somatopluere at an earlier stage (Michaud
et al., 1997).

In a normal limb the AER does not extend
over the entire tip, but occupies only the
posterior portion of the tip (cf. Fig. 2). Removal
of the AER between stages 18 and 28
stops outgrowth of the limb and leads to a
truncated limb with distal skeletal deficiencies
(Summerbell, 1974a). Non-AER ectoderm is
necessary for growth in pre-stage 16 wing
mesenchyme, and ectoderm from either stage 16
or 24 inhibits chondrogenesis in stage 24
mesenchyme (Solursh & Jensen, 1988). The
stimulatory effect requires cell contact, whereas
the inhibitor is apparently a diffusible molecule.
In some of the polydactylous mutants such as
talpid3, the AER extends across the entire wing
tip, and transplants of the mutant mesodermal
tissue into a normal ectodermal sleeve induces an
anterior extension of the AER and duplication of
digits (MacCabe et al., 1975; Wolpert, 1976).
The polydactylous mutants produce a limb bud
that is wider in the AP direction than normal
limb buds, perhaps as a result of the extended
AER.

The rapidly dividing mesodermal cells adja-
cent to the AER form the so-called progress zone
(PZ). Recent evidence suggests that a product of
the homeobox gene Msx1 maintains cells in the
progress zone in an undifferentiated, rapidly
proliferating state, while more proximal cells
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begin to differentiate (Robertson & Tickle,
1997). Expression of Msx1 is regulated by a
signal from the AER, probably one of the FGF
family. In addition, the bone morphogenetic
protein Bmp-2 is also localized in the AER (at
least in mouse) and this may inhibit proliferation
(Niswander & Martin, 1993). There is apparently
little influence of more proximal tissue on cells in
the progress zone, for if the tip of an early limb
bud is grafted onto a late stage limb the
proximo-distal sequence of skeletal elements
appropriate to the tip stage is produced by the
graft, while the converse graft produces deletions
of proximo-distal elements (Summerbell et al.,
1973).

The AER is maintained by a factor produced
either in the progress zone or in a specialized
group of cells, the zone of polarizing activity
(ZPA), that lies at the posterior margin of the
progress zone (Zwilling, 1961; Hinchliffe &
Griffiths, 1984). At the onset of outgrowth the
ZPA is located near the flank on the posterior
margin of the bud [Fig. 2(a)], but as outgrowth
proceeds the region of maximal ZPA activity
moves progressively forward [Fig. 2(b)]. Thus the
‘‘ZPA-ness’’ of tissue depends in part on
proximity to the AER. Transplants of the ZPA
to the anterior margin of the limb usually lead to
duplication of skeletal elements, the pattern of
which depends on the location of the transplant
relative to the ZPA and the AER (Wolpert, 1987;
Tickle et al., 1975). Only cells in the progress
zone can respond to the polarizing action of the
ZPA (Summerbell, 1974b), and functional gap
junctions are required for communication
between ZPA cells and anterior mesenchyme,
since blocking antibodies to gap junctional
proteins prevent ZPA-induced limb duplications
(Allen et al., 1990). In light of the fact that ZPA
can induce extra digits, one might suppose that
the polydactylous mutants contain additional
ZPA tissue in the anterior part of the limb, but
this has been ruled out (Tickle, 1980). Instead it
is the response of mesenchymal cells to the
normal ZPA signal, rather than the presence of
additional ZPA tissue, that is altered in these
mutants (Tickle, 1980). In ld mutants the

polarizing activity of the ZPA is reduced, the
AER cells fail to differentiate into their typical
columnar shape, and there are truncations in the
autopod region (Haramis et al., 1995).

The polarizing activity of the ZPA is in turn
maintained by a factor, probably one of the FGF
growth factors, that may be produced in the
AER. Removal of posterior AER is followed by
a decline in polarizing activity of the ZPA, but
the addition of FGF-4 soaked beads to posterior
tissue in the absence of the ridge maintains
polarizing activity, and outgrowth of the limb
bud continues under these conditions (Vogel &
Tickle, 1993).

In addition to ectodermal tissue, there are
three major cell types present at later stages of
limb development: muscle cells, fibroblasts
(which form the connective tissue, tendons, etc.)
and pre-cartilage cells (chondrocytes). The
muscle cells are known to originate in somitic
tissue and to then migrate into the limb.
However, the chondrocytes and fibroblasts both
arise from determination of mesenchymal cells in
the progress zone. While the emphasis in the
literature is primarily on the spatial pattern of
chondrogenesis, it should be kept in mind that
the spatial pattern formation problem has two
aspects: one is to produce the proper pattern of
cartilage anlage, which then lead to the bones,
but the other is that the correct spatial pattern of
connective tissue must also be produced. If all
mesenchymal cells are destined to become
fibroblasts, and determination of cells as
chondrocytes is merely a derailment of that fate,
then the emphasis on the pattern of chondro-
genesis is justified. However this has not been
demonstrated to date.

1.2.    



Earlier work suggested that retinoic acid (RA)
might be a morphogen* produced in the ZPA
(Smith et al., 1989). An implanted bead which
releases RA at the anterior margin of the limb
produces a digit pattern that is dose-dependent
(Tickle et al., 1985): low concentrations lead to
a normal digit pattern, higher concentrations
produce supernumerary digits, but still higher
concentrations lead to wings in which only the
humerus and a knob of cartilage are formed.

* A diffusible substance that induces a concentration-de-
pendent response at some step in the patterning process.
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Tickle et al. (1985) showed that posterior
implants give rise to anterior concentrations high
enough to specify an additional digit 2, but
despite this the digit pattern is normal. Thaller &
Eichele (1987) showed that the concentration of
RA in vivo is graded in the PA direction. It has
been found that there is also a gradient of a
cytoplasmic RA-binding protein (CRABP)
(Maden et al., 1988) in the AP direction,
opposite that of the RA gradient, the net effect
of which is to steepen the RA gradient. At
present it is also not known whether RA affects
gap junctions in chick limb mesenchyme,
although it is known to have a biphasic effect in
other systems, with enhancement at levels
comparable to those found in chick limb (Mehta
et al., 1989; Allen et al., 1990). As we noted
earlier, recent evidence suggests that RA is
required for the establishment of the ZPA
(Ogura et al., 1996; Lu et al., 1997).

Currently it is thought that FGF-4 or another
member of this family is one of the morphogens.
Another is Sonic hedgehog (Shh), a protein
secreted by cells in the ZPA. Shh expression is
first detected at stage 17, during initiation of limb
bud formation (Riddle et al., 1993). Thereafter,
Shh expression matches the location of the ZPA
as determined by Honig & Summerbell (1985),
both in position and in intensity of expression.
Sonic is the probable mediator of polarizing
activity within the limb bud, because in addition
to the fact that its domain of expression
colocalizes with the ZPA, Shh is sufficient to
convey polarizing activity when misexpressed in
the limb bud. Shh may itself be localized near the
ZPA, but its range of influence is not
unequivocally determined. The ‘‘active’’ N-
terminal fragment is tethered to the cell, but
other factors may also be involved. In Drosophila
it has recently been shown that Hh binds to
patched and a newly-discovered receptor tout-
velu, which together determine the range of Hh
signaling (Bellaiche et al., 1998), and a similar
secondary factor may be found in chick limb as
well. When applied to the anterior portion of the
limb Sonic can induce mirror-image duplications
of digits, and Sonic expression can be induced by
RA (Riddle et al., 1993). Members of the Gli
gene family may be involved as downstream
mediators of Shh effects, since Shh downregu-

lates Gli3 and upregulates Gli1 (Marigo et al.,
1996), but little is known about the network of
interactions at this level.

There is also strong evidence for interaction
between Sonic and FGF-4, either (or both) direct
or via intermediaries such as Bmp-2. Some basic
observations that suggest this interaction are as
follows.

, Sonic hedgehog alone is insufficient to induce
expression of Bmp or Hox genes, or mesoder-
mal proliferation in the absence of the AER
(Laufer et al., 1994). Sonic hedgehog virus
injected into the proximal–medial mesoderm
of stage 21 limb buds did not result in ectopic
induction of either Hoxd genes or Bmp-2,
despite the fact that Sonic hedgehog ex-
pression was comparable to that seen in distal
injections (Laufer et al., 1994).

, The influence of the AER on Sonic hedgehog
activity is further demonstrated by the
following experiment. The anterior half of
the AER was surgically removed in stage
20/21 limb buds, Sonic hedgehog virus was
injected into the anterior marginal mesoderm,
and the embryos were allowed to develop
for an additional 36–48 hours. There was
sufficient posterior AER remaining so that
embryos developed almost wild-type out-
growth and patterning on the limb bud. In
the absence of the AER, Sonic hedgehog
does not induce mesodermal proliferation or
the expression of Hox or Bmp-2 genes. Thus
a signal is required from the AER to sustain
proliferation and gene induction induced
by Sonic hedgehog (Laufer et al., 1994). In
the mutants ld FGF-4 is not expressed in the
AER, and Shh expression is activated but not
maintained, which may account for the
decrease in polarizing activity (Haramis et al.,
1995).

, FGFs promote mesodermal competence to
respond to Sonic hedgehog. FGF-4 soaked
beads were stapled to AER-denuded anterior
mesoderm infected with Sonic hedgehog virus.
Hoxd-11, Hoxd-13 and Bmp-2 expression
were induced at expression levels similar to
endogenous expression and to expression
levels seen in the presence of an AER (Laufer
et al., 1994).
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To summarize, Sonic hedgehog plays a role in
patterning of mesodermal tissue and may
regulate FGF-4 expression. FGF-4 induces
mesodermal proliferation and maintains Sonic
hedgehog expression. Both factors are necessary,
because mesodermal tissue can only be patterned
by Sonic hedgehog in association with compe-
tency provided by FGF-4. Patterning and
proliferation are always coincident, and the
current model is that FGF-4 from the AER and
Sonic hedgehog from the ZPA interact to control
the continued outgrowth of the limb bud.
However it is possible that exogenously-applied
FGF-4 mimics the activity of a different member
of the FGF family. In addition, the bone
morphogenetic protein Bmp-2 interacts with
FGF-4, as is summarized in Fig. 3(a). However,
we will not consider the role of Bmp-2 in the first
model, and thus we restrict ourselves to the
scheme shown in Fig. 3(b).

This is not the complete story, since patterning
also occurs along the dorsal–ventral axis. Less is
known about this, but it appears that Wnt7a is
the primary factor that controls patterning along
this axis (Johnson & Tabin, 1997). Thus pattern
formation along the three axes of the limb is
controlled by a complex network of signaling
molecules that originate in the AER, the ZPA
and the non-AER ectoderm, and the interactions
between these must be understood before a
detailed understanding of patterning in the
growing three-dimensional limb is possible.
However this does not imply that a model based
on incomplete information about the gene and
morphogen control networks cannot contribute
to our understanding of pattern formation.

1.3.      

 

Wolpert (1969) postulated that the ZPA
produces a morphogen which diffuses through-
out the tissue and is degraded in it. This would
establish a gradient in the PA (posterior–
anterior) direction which could provide pos-
itional information and could lead to a spatial
pattern of differentiation. Tickle et al. (1975)
estimated that such gradients have to be
established within 10 hours across a distance of
500–1000 mm, and concluded that transport by
diffusion is fast enough. If an impermeable

F. 3. (a) A model for the interactions of the three major
putative morphogens, FGF-4, Shh, and Bmp-2, as
proposed by Tickle and co-workers (Duprez et al., 1996);
(b) a schematic of the reduced kinetic interactions between
ZPA, where production of Shh is affected by FGF-4 which
diffuses from the AER, and the reciprocal effect of Shh on
production of FGF-4 in the AER.

barrier is placed along the PD axis, then
skeletal development occurs only on the pos-
terior side of the barrier, which suggests that a
diffusible morphogen is produced at the ZPA
(Summerbell, 1979). The gradient model predicts
that transplants of ZPA at positions along the
AP axis of a stage 16 wing bud should result in
either the elimination of the humerus, or its
duplication, or the formation of a mirror-image
duplicate of a single humerus, depending on the
position of the graft and on the threshold
concentration. However, in no cases is the
humerus eliminated and rarely is it duplicated.
Usually either a normal or a mirror-image
duplicate humerus forms (Wolpert, 1987). The
theory also predicts that multiple ZPA grafts
should lead to fused or abnormally thick
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digits, contrary to observation. Wolpert and
Hornbruch (Wolpert, 1987) conclude from this
that there is another mechanism at work which
controls the thickness of the digits.

The progress zone model, in which differen-
tiation is controlled by the number of divisions
a cell undergoes while in the progress zone, was
proposed to explain pattern formation and
differentiation in the PD direction (Wolpert
et al., 1975). It predicts that removal of the AER
will lead to distal truncation, as is observed,
and it makes other predictions on the outcome
of grafting a donor wing tip onto a host
stump which agree closely with observation
(Summerbell & Lewis, 1975). However, it does
not have any regulative properties and thus
cannot account for the immense capability of the
early limb bud to regulate. For instance, removal
of slices of the early limb bud perpendicular to
the PD axis can lead to normal limbs
(Summerbell, 1977), but according to the model,
this should produce deletions along the PD axis
of the final pattern. Oster et al. (1983) proposed
a different model for pattern formation, one in
which condensation of cells produces the
patterning. However, it has recently been shown
that if two anterior stage 20 limb halves are
combined, the recombinant frequently forms two
humeral elements (Wolpert & Hornbruch, 1990).
This suggests that the anterior half of the limb
contains cells that are already determined at this
stage, yet visible aggregation of cells does not
occur until much later (Wolpert & Hornbruch,
1990). Several other models, including some
based on formal rules of growth and patterning
(Wilby & Ede, 1975), and others based on
the reaction and diffusion of morphogens
(Meinhardt, 1982), have been proposed. Wilby &
Ede (1975) show that formal rules for cell
growth, division and movement can reproduce
the shape of the growing limb bud, but their
model has no morphogens. Meinhardt (1982,
1983) studies reaction–diffusion models of
activator–inhibitor type for patterning along the
AP and DV axes and shows how secondary fields
can be generated by the interaction of the
primary patterns. However these models involve
autocatalytic production of the morphogens
throughout the growing tissue, and there is no
interaction between the ZPA and the AER

morphogens in determining the positional
information along the AP axis. As we indicated
earlier, the preponderance of current experimen-
tal information suggests that the primary
morphogens are produced in specialized regions
on the boundary of the limb bud, and that the
two regions are coupled by diffusion of
morphogens between them.

1.4.       

    

Thus there is currently no model that can
successfully explain the experimental obser-
vations, and we believe that there are several
reasons for this. Firstly, existing models assume
that patterning occurs separately in the AP and
PD directions, but transplant results show a
dependence on the distance between the ZPA
and the AER (Wolpert, 1987), and on the
position along the PD axis at which the graft is
implanted in the host (Javois & Iten, 1981).
Evidence cited previously gives the biochemical
basis of the interaction between the AER and the
ZPA. Secondly, none of the existing models
incorporate interactions between morphogens
and growth, and thus none can adequately
represent the effect of growth on the spatio-
temporal patterns of the morphogens. Finally,
none account for the role of the non-AER
ectoderm in patterning, nor do they incorporate
any control of cell–cell communication in the
patterning process. As we stated earlier, our
long-term aim is to develop a model that will
enable us to test various hypotheses concerning
pattern formation in the limb, and to develop a
computational model useful for understanding
growth and patterning in other contexts. A
minimal limb model involves at least two space
dimensions, boundary conditions that vary with
position on the boundary, and a domain of
variable shape. To assist readers in understand-
ing the biological basis of the model, without
necessarily understanding the mathematical
implementation of it, we first give a detailed
verbal description of the model.

In the model we treat the growing limb as a
two-dimensional region which begins as a
truncated disk, but whose shape is determined by
the forces exerted by the growing tissue. This can
be thought of as a section through the limb taken
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at the centerline in the DV direction. Although
this precludes analysing transplants in which the
DV polarity is altered (Javois & Iten, 1986), it is
an essential first step, given the complexity of the
system. It is essential that growth be included in
a model, for the length increases from 00.25 to
01.75 mm in the 36 hours between stage 18 and
stage 25, and patterning occurs in this interval*.
Differential or localized growth such as occurs
after a ZPA transplant (Summerbell, 1981), is
included in the model.

The model involves two diffusible morphogens
that are produced in specialized regions near the
periphery of the limb and diffuse throughout the
interior of it. The AER is modeled as a distinct
region on the distal boundary that serves both as
the source of a substance that maintains cells in
the undifferentiated state and as the source of
one of the morphogens. The first assumption will
be that the maintenance factor and the
morphogen are identical, but that can be
modified in later versions.

We model the AER as a specialized region at
the distal end of the limb that serves as a
morphogen source, the strength of which
depends on the ZPA factor. The size of the AER,
and hence the total amount of morphogen
released, can be dynamically adjusted to
conform with the observed changes of its size
from stage 17 onward. The existing one-
dimensional models assume that the concen-

tration, rather than the flux, is specified at the
boundary. However, our assumption seems more
appropriate because a constant concentration
requires a mechanism by which the concen-
tration is sensed and the production and/or
release rates adjusted to maintain the concen-
tration constant. In contrast, we simply prescribe
a certain capacity for producing the morphogen
in the AER region.

The ZPA is the source of the second
morphogen. It is located on the posterior
boundary near the distal end of the limb, and as
with the AER, we assume that it has a given
capacity to produce the morphogen. It is known
that the ZPA originates at the flank but moves
distally as the limb grows, and we incorporate
this in the model by specifying that the ZPA
remain within a fixed distance of the AER. Also,
the ZPA is restricted to interior tissue near the
boundary. All ectoderm is assumed to be
impermeable to both morphogens, and both
morphogens are degraded in the interior of the
region. Initially we will assume that the
concentration of the morphogens satisfies a zero
flux condition at the proximal boundary, where
the limb attaches to the flank in vivo, but other
types of boundary conditions will be tested in
later work†.

There are numerous questions that can be
studied through use of the computational model,
including the following.

, What is the spatial distribution of the
morphogens, assuming that they are only
produced in a zone near the boundary, and
how does their distribution depend on
parameters such as the production rates and
diffusion coefficients? Can this distribution be
established in the available time for reasonable
values of the diffusion coefficients, both under
normal conditions and after transplants of the
ZPA? Does the spatio-temporal history of cells
correspond with results obtained from fate
maps?

, Can one define a threshold-based combinat-
orial scheme of interpretation of the instan-
taneous concentration landscape or the
history of the landscape that will lead to the
observed spatial pattern of gene expression?
The existence of two spatially-separated

* If we assume that the diffusion coefficient D is
1×10−7 cm2 s−1, then the characteristic time t0L2/
2D=055 hours for a length of 2 mm. Thus in the later
stages of patterning the characteristic diffusion time-scale is
certainly comparable to the time-scale for growth. If even
the diffusion coefficient is 10 times this value the statement
still holds true.

† Specifying a zero concentration at the proximal
boundary rather than a zero flux has a substantial
conceptual attraction in that the concentration of the
morphogen produced at the AER would rise in the progress
zone as the limb elongates. In other words, labile cells that
leave the progress zone in the early stages of outgrowth
experience a lower concentration of this morphogen than
do those that emerge later. In view of this, a sequence of
thresholds could produce the partitioning in the PD
direction into three levels that could correspond to
humerus, radius and ulna, and wrist and digits. This
hypothesis is consistent with the observations that exchange
of the AER does not change the fate of the underlying
tissue, for we would interpret this as just a replacement of
one source with another.
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sources of the morphogens and the two-
dimensionality of the underlying spatial
domain make it plausible that such an
interpretation function can be devised.

, Can the model explain a significant fraction of
transplant results that are not explicable by the
existing one-dimensional models? In particu-
lar, can one explain the effect of the distance
between the transplanted ZPA and the existing
AER, particularly for those transplants that
produce splitting of the bud? Can one explain
why removal of a rectangle of tissue without
rejoining the cut edges leads to a partial loss
of skeletal elements, whereas when the
boundaries are sewn together, a normal wing
results (Javois & Iten, 1981)? Similarly, does
the model exhibit the degree of regulation
observed following other types of surgical
intervention, and what is the role of cell–cell
communication and growth in this regulation?

, Is it necessary to include some level of
self-organization in the model to account for
the fact that mesodermal cells that are
separated and allowed to reaggregate in an
ectodermal jacket without a ZPA form
moderately good digits (Pautou, 1973)? The
experimental results on this point are not
clear-cut, for the effect may be due to sorting
of cells that are already differentiated, in which
case the experiment has no bearing on pattern
formation.

The first two will be addressed here; the others
will be studied in future publications.

The model presented in this paper consists of
a fluid-mechanical component that describes
limb bud outgrowth, a reaction–diffusion–
advection component that determines the spatio-
temporal distribution of the morphogens, and a
moving boundary that represents the mechanical
and biochemical properties of the limb bud
ectoderm. We do not incorporate any augmenta-
tion of cell movement in response to the local
environment, for example due to chemotaxis, but
this can be incorporated in the future if the
results indicate the need for it. In the following
section we describe the mathematical formu-
lation of the model and in Section 3 we present
some analytical results for simplified geometries
and kinetics. In Section 4 we present numerous

simulations designed to illustrate the predictions
made by the model. This section can be read
independently of the preceding two by readers
who wish to skip the mathematical details.

2. Mathematical Formulation of the Model for a
Growing Limb

The first step will be to develop the
fluid-mechanical description for the growth and
movement of tissue in the limb. This component
of the model requires detailed elaboration,
because to our knowledge, this type of
description has not been used before. We model
the tissue as a viscous, incompressible fluid
whose volume increases by virtue of a distributed
source that stems from cell division and growth.
The boundary of the limb is regarded as an
elastic medium, and outgrowth results from the
‘‘pressure’’ of the increasing volume against this
boundary. The processes involved are depicted in
the schematic shown in Fig. 4. The equations for
the fluid motion that drives outgrowth are given
in the following subsection. The reaction–
diffusion equations that govern the evolution of
the morphogen distributions in space and time
are given in Subsection 2.2, and a scaled version
of the complete set of governing equations is
given in Subsection 2.3.

2.1.    

The tissue in a growing limb is a complex
mixture of cells, extracellular matrix, and other

F. 4. A schematic of the growing limb and the processes
involved in the limb. The interior of the limb is denoted V,
the AER region is denoted V1, the ZPA region is denoted
V2, and the boundary of the limb is denoted G.
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components, and to our knowledge its rheologi-
cal properties have not been investigated.
However the mechanical properties of other
embryonic chick cell aggregates have been
studied by Philips & Steinberg (1969), Philips
et al. (1977) and Philips & Steinberg (1978). In
a long-term culture vertebrate tissue masses
exhibit liquid-like characteristics in response to
stress, but the short-term response is more like
that of an elastic solid. Philips et al. (1977)
describe this tissue as an ‘‘elasticoviscous’’ liquid,
but a more common terminology is to describe
it as a viscoelastic material (Fung, 1993). Since
we are only interested in the slow motion due to
growth we neglect the elastic component of the
response and model the tissue as a viscous fluid.
The process of cell growth and cell division
requires transport of nutrients via diffusion and
convection across the limb bud ectoderm and
through the extracellular matrix, and at a later
stage, through the capillary system. We idealize
this complex process as a distributed source
S(c, x, t) of volume within the limb bud*. The
local source strength may depend upon chemical
species such as growth factors contained in c, the
location x of the tissue within the limb bud, and
the age of the limb.

We assume that the fluid density is constant,
but since there is growth, the continuity equation
takes the form

9 · u=S(c, x, t). (1)

wherein u is the local fluid velocity. Later we will
indicate how this growth term depends on the
morphogen concentrations and other variables.
We further assume that the fluid motion is
described by the Navier–Stokes equations, which
provide the simplest description of a viscous
fluid. These are given by (Batchelor, 1973)

r
1u
1t

+ r(u · 9)u=−9p

+ m092u+
1
3
9S1+ rF. (2)

Here r is the fluid density, p is the pressure, and
m is the fluid viscosity. The term F is the force
density (force per unit area in two dimensions)
that limb bud ectoderm exerts on the fluid
surrounding it. As will be seen below, F is
non-vanishing only in thin layers surrounding
the limb bud boundary.

Equations (1) and (2) describe the tissue
dynamics in the interior of the limb. In addition,
the growth model must include a moving
boundary G that represents the limb bud
boundary. The instantaneous configuration of
the boundary in two dimensions is given by the
function X(s, t), where s is a Lagrangian label
for a point on the boundary. We specify that
X(s, t) moves at the local fluid velocity, and
therefore

1X
1t

= u(X(s, t), t). (3)

Since the limb boundary is treated as an elastic
material, the force per unit length f(s, t) at
each point on the boundary is a function of
the instantaneous configuration. In a three-
dimensional model the limb bud boundary
could be modeled entirely by tangential
elastic spring forces. In two dimensions, we
include elastic links between the anterior and
posterior edges to represent the circumferential
forces in the three-dimensional ectoderm
that prevent the limb bud from ballooning
outward. The boundary is taken to be
neutrally buoyant and thus the limb bud
boundary forces are transmitted directly to
the fluid via the force density F, which is given
by

F(x, t)=gG

f(s, t)d(x−X(s, t)) ds. (4)

In this equation the integration is over the
points of the boundary G and d is the
two-dimensional Dirac delta function. The limb
bud grows out from the flank of the embryo, and
for simplicity we regard the flank as an
immovable boundary. This is accomplished by
tethering the points on the proximal boundary in
Fig. 4 to fixed points in space with stiff elastic
spring forces.

* S is the volumetric growth per unit volume per unit
time.
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2.2.  ––

   

In the interior V of the limb the evolution of
the morphogens c=(c1, c2), where c1 represents
the AER morphogen and c2 represents the ZPA
morphogen, is described by a system of
reaction–diffusion–convection equations of the
following form.

1c
1t

+9 · (uc)=D92c+R(c) (5)

The diffusion matrix D is a diagonal matrix
whose entries are the diffusion coefficients of the
two morphogens. We have assumed here that the
diffusion coefficients are constants, but we
could easily incorporate dependence on the
morphogens to describe control of cell–cell
communication by the morphogens.

As we indicated previously, the AER morpho-
gen is only produced in the AER (V1) and the
ZPA morphogen is only produced in the ZPA
(V2). Thus R=(R1, R2) has the form

Rk =6rk (c)− kkck

−kkck

x $ Vk

otherwise,
(6)

where rk (c)q 0 except possibly at c= 0.
The convective term 9 · (uc) in eqn (5) can be

written as c9 · u+u · 9c, and using the growth as
given by eqn (1), eqn (5) becomes

1c
1t

+Sc+ u · 9c=D92c+R(c). (7)

On G we specify the homogeneous Neumann or
no-flux boundary conditions

n · D9c=0, (8)

where n is the outward normal to G.

2.3.    

In order to cast the governing equations into
dimensionless form, we introduce characteristic
length and velocity scales and a characteristic
chemical concentration, which we denote by L,
U and C, respectively. We then define the
following scaled variables: t= t/T, x̄= x/L,
X� =X/L, ū= u/U, c̄= c/C and p̄= p/P, S� =S/
S0. We further set T=L/U, P= rU2 and

S0 =1/T, and then obtain the following dimen-
sionless equations.

1ū
1t

+(ū · 9)ū=−9p̄+Re−1092ū+
1
3

9S� 1+F�

1c̄
1t

+S� c̄+ ū · 9c̄=D� 92c̄+G� (c̄)

1X�
1t

= ū(X� (s, t), t)

9 · ū=S� (c̄)

F� (x̄, t)=g f� (s, t)d(x̄−X� (s, t)) ds. (9)

Here the Reynolds number Re is defined as
Re=LU/n, where n= m/r is the kinematic
viscosity. The remaining quantities are defined as
F� =LF/U 2, f� =Lf/U2, G� =LR/(CU), S� =LS/
U, D� =D/(LU), s= s/L. To simplify the
notation the overbars are dropped hereafter, but
all variables remain dimensionless.

A characteristic length-scale for vertebrate
limb development is L=0.1 cm, the approxi-
mate width of the early chick limb bud. Between
stages 18 and 25 the PD length of the wing bud
increases from approximately 0.023 to 0.174 cm
over a time span of approximately 36 hours.
Thus the average rate of limb bud outgrowth is
approximately 0.0042 cm hr−1, which yields a
characteristic velocity U=1.2×10−6 cm s−1.
For these characteristic length- and velocity-
scales, a unit of dimensionless time t corresponds
to approximately 23.15 hr. The Reynolds num-
ber for these values of U and L for a fluid with
a kinematic viscosity of water (n1 0.01 cm2 s−1)
is Re0 10−5. Since reasonable values of n for
mesodermal tissue are likely to be several orders
of magnitude larger, Re may be several orders of
magnitude smaller. Initially, we shall take the
diffusion rate for growth factors in limb tissue to
be approximately 10−7 cm2 s−1. This gives us a
dimensionless diffusion coefficient D1 1.

2.4.      

The numerical algorithm for solving the
complete model equations given by the system at
(9) is based on the immersed boundary method,
first used by Peskin (1977) to model blood flow
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in the heart. This method has since been
developed into a general method that can be used
to study flows interacting with moving elastic
structures. Details of the implementation of the
numerical algorithm are described in the
Appendix. A crucial feature of this method in our
application is that the limb bud is not the entire
computational domain for the solution of the
fluid dynamical equations. The limb is embedded
within a larger rectangular domain andwithin this
larger domain, the limb bud boundary contrib-
utes a singular force field in the fluid equations.
The volumetric sources that model growth in the
limb are balanced by sinks distributed in the
region exterior to the limb. Because the fluid
equations are solved on a fixed regular domain,
we can impose periodic boundary conditions and
can solve the discretized Navier–Stokes equations
using a Fast Fourier Transform algorithm. The
advection–diffusion–reaction equations for the
morphogens are solved using a finite difference
method with an upwind scheme for the advection.
The method for approximating the Neumann
boundary conditions for the morphogens at the
moving limb bud boundary [eqn (8)] is discussed
in the Appendix.

3. Simplified One-dimensional Models

3.1. -   

To gain some insight into the effect the spatial
separation between the AER and the ZPA has
on the magnitude and spatial distribution of the
morphogen concentrations, we consider several
one-dimensional model problems in which the
growth, and hence the fluid velocity, is zero. The
first problem, which will show the effect of
diffusion coefficients and decay constants on the
distributions that result from coupled, spatially-
separated, positive feedback mechanisms, is one
in which the enzymes are localized at opposite
ends of an interval. Thus the terms ri in (6) are
localized in space, but the degradation of the
morphogens occurs throughout the domain.
Since the equations have been non-dimensional-
ized, the interval is [0, 1], and we suppose that the
AER is at x=1 and the ZPA at x=0. In this
situation the governing equations for the
morphogen concentrations reduce to

1c1

1t
=D1

12c1

1x2 − k1c1

1c2

1t
=D2

12c2

1x2 − k2c1

(10)

for x $ (0, 1), with the boundary conditions

−D2
1c2

1x
(0, t)= r2(c1(0, t)) (11)

D1
1c1

1x
(1, t)= r1(c2(1, t)) (12)

−D1
1c1

1x
(0, t)=D2

1c2

1x
(1, t)=0. (13)

These equations reflect the assumptions that the
morphogens diffuse throughout the domain and
are degraded by first-order reactions, that the
production of ZPA morphogen at x=0 is
controlled by the amount of AER morphogen
present, and that the production of AER
morphogen at x=1 is controlled by the amount
of ZPA morphogen present at x=1. It should be
noted that each morphogen only controls the
production rate of the other; it is itself not
consumed in the process.

We first show how to obtain time-independent
solutions of these equations, which must satisfy
the system

D1
d2c1

dx2 − k1c1 =0 (14)

D2
d2c2

dx2 − k2c2 =0 (15)

−D2
dc2

dx
(0)= r2(c1(0)) (16)

D1
dc1

dx
(1)= r1(c2(1)) (17)

D1
dc1

dx
(0)=D2

dc2

dx
(1)=0. (18)

The solution of eqns (14) and (15) which satisfies
the boundary conditions in eqn (18) is given by

c1(x)=A1 coshX k1

D1
x

c2(x)=A2 coshX k2

D2
(1− x).

(19)
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The amplitudes A1 and A2, which must be
positive, are determined from the remaining
boundary conditions given in eqns (16) and (17).
Thus the AER morphogen c1 has a maximum at
x=1, and the ZPA morphogen has a maximum
at x=0, as expected. One finds that the
amplitudes of these distributions are solutions of
the nonlinear system

D2A2X k2

D2
sinhX k2

D2
= r2(A1)

D1A1X k1

D1
sinhX k1

D1
= r1(A2).

(20)

We assume that r1(0)= r2(0)=0, which
simply means that there is no basal production
of morphogen in the absence of the other
morphogen. This could easily be changed
without altering the overall conclusion signifi-
cantly. Under this assumption the system (20)
always has the solution (A1, A2)= (0, 0) for all
values of the Di s and ki s but the question is
whether it has a non-zero solution. One sees
from (20) that if one of the Ai s is zero then so
is the other, so there is no possibility of a
non-zero concentration of one morphogen and a
zero concentration of the other.

We can write (20) in the form

A2 =V2 · r2(A1) (21)

A1 =V1 · r1(A2) (22)

where

V−1
i 0zkiDi sinhX ki

Di
,

and then there is a positive solution for A1 and
A2 if and only if the curves defined by (21) and
(22) intersect in the interior of the positive
quadrant of the A1 −A2 plane. The rate
functions ri are typically monotone increasing
functions, at least for small c, and they should
saturate at large c. Under these two conditions
one can show that there is at least one positive
intersection of the curves if

V20 dr2

dA11(21)

q 1
V1 0 dr1

dA21
−1

(22)

,

when these are evaluated at (0, 0). The subscripts
(21) and (22) denote quantities computed from
the equation with that number.

This cannot be determined in general without
knowledge of the rate functions, and we
therefore suppose that

r1(c2)=V1
c2

K2 + c2
r2(c1)=V2

c1

K1 + c1
.

(23)

That is, we assume Michaelis–Menten kinetics
for the production of both morphogens. We then
have

A2 =V2V2
A1

K1 +A1
(24)

A1 =V1V1
A2

K2 +A2
. (25)

These can be solved explicitly and one finds that
the non-zero solution is given by

A2 =
V1V2V1V2 −K1K2

K1 +V2V2
(26)

A1 =V1V1
A2

K2 +A2
. (27)

Therefore (A1, A2)q (0, 0) if and only if

V1V2

K1K2
qV−1

1 V−1
2 , (28)

or

V1

K2

V2

K1
qzk1k2zD1D2 sinhX k1

D1
sinhX k2

D2
.

(29)

On the left-hand side the term V1/K2 (resp. V2/K1)
is the slope of the corresponding production
term r1 (resp. r2) at zero concentration, while the
right-hand side is determined by the diffusion
coefficients and the decay rates.

If ki /Di is small, either because the decay rates
are small or the diffusion coefficients are large,
then

sinhX ki

Di
0X ki

Di
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and (29) reduces to

V1V2

K2K1
q k1k2. (30)

This is purely kinetic criterion which simply
states that the product of the maximal slopes of
the production terms must exceed the product of
the degradation rates.

At the other extreme, if the decay rates are too
large there will certainly be no positive solution.
Furthermore if all the kinetic parameters are
fixed and the diffusion constants are decreased,
then (29) will certainly not be satisfied for
sufficiently small Di s, and again there will be no
positive solution. Since the length of the domain
is used to make the diffusion coefficients
dimensionless, one can always guarantee that
there is no positive solution for sufficiently large
L*.

It is clear from the foregoing analysis that the
condition

V1V2

K2K1
−zk1k2zD1D2 sinhX k1

D1
sinhX k2

D1
=0

(31)

represents a transverse bifurcation point at
which a solution (A1, A2) passes from the third
quadrant to the first quadrant as this quantity
increases through 0. Further analysis shows that
the positive solution for (A1, A2) is stable, at least
when the difference in (31) is positive and
sufficiently small.

3.2.    

The foregoing leads to an analytical criterion
that guarantees a non-zero solution, and it
indicates the interplay between production rates,
decay rates, and the diffusion coefficients.
However in reality both the AER and the ZPA
are distributed over a region of the growing limb
bud, and next we consider a one-dimensional

model of this. We assume that the AER lies in
the interval x $ (x3, 1) and that the ZPA lies in
the interval x $ (x1, x2), where x1 Q x2 E x3 Q 1.
Thus we assume here that the ZPA occupies a
fixed interval, but later we adopt a more
functional definition of ZPA-ness.

In this case the reaction terms R1 and R2 in eqn
(6) may be expressed in the form

R1(x, c)=H(x− x3)r1(c)− k1c1

R2(x, c)=H(x− x1)H(x2 − x)r2(c)− k2c2

(32)

where H is the Heaviside function (H(x)=0 for
xE 0 and H(x)=1 for xq 0) and the ri are as
given in (23). The governing equations are

1c1

1t
=D1

12c1

1x2 +R1(x, c)

1c2

1t
=D2

12c2

1x2 +R2(x, c)
(33)

for x $ (0, 1), with the boundary conditions

D1
1c1

1x
(0, t)=D2

1c2

1x
(0, t)=0 (34)

D1
1c1

1x
(1, t)=D2

1c2

1x
(1, t)=0. (35)

In general one cannot obtain analytical
solutions of these equations, but if both
production rates are constant the equations are
linear and uncoupled. This arises formally if
both c1 and c2 are large relative to the
corresponding Michaelis constant in the rate
expressions, in which case the production rates
are saturated, and we use this formal connection
later. In this special case the steady-state
distributions of the morphogens are given by the
following equations

c1(x)=6 a10(el1x +e−l1x)

a13(el1x +el1(2− x))+ a1

xE x3

x3 Q xE 1,

(36)

c2(x)=g
F

f

a20(el2x +e−l2x)
a21el2x + b21e−l2x + a2

a22(el2x +e−l2(2− x))

xE x1

x1 Q xE x2

x2 Q xE 1

(37)

* This has the interesting implication that the morpho-
genetic interactions between two spatially-separated orga-
nizing regions will be turned off when the size of the system
reaches a critical value. This may be a useful mechanism in
other contexts, such as in anterio-posterior patterning in
early development of the vertebrate neural plate, where
signals from each end of a planar domain are thought to
control patterning (Ruiz i Altaba, 1994).



(a) (b)

0.1

1.0

10.0

D1 = 0.01

(c)

0.1

1.0

10.0

D2 = 0.01

     309

Here ai =Vi /ki , li =zki /Di , i=1, 2 and the
coefficients are given as follows.

a10 = a10el1x3 − el1(2− x3)

2−2e2l1 1,

a13 = a10el1x3 − el1(2− x3)

2−2e2l1
−

e−l1x3

2 1,

a20 = a20−e−l2(−2+ x2) + e−l2(−2+ x1) + el2x2 − el2x1

2e2l2 −2 1,

a21 = a20−el2x1 + el2x2 + e−l2x1 − e−l2(−2+ x2)

2e2l2 −2 1,

a22 = a20−el2x1 − e−l2x2 + el2x2 + e−l2x1

2e2l2 −2 1,

b21 =

a20−el2(2+ x1) − e−l2(−2+ x2) + e−l2(−2+ x1) + el2x2

2e2l2 −2 1.

(38)

In Fig. 5 we show the effect of changes in the
diffusion coefficients of the species for fixed
values of the kinetic parameters and the spatial
domains in which the AER and ZPA are
localized. In Fig. 5(a) we show a base case in
which both diffusion coefficients are 1, and in the
other panels we show the effect of varying the
diffusion coefficients. Increasing Di leads to
flatter profiles, whereas decreasing Di leads to

sharper profiles and higher concentration levels
within the AER [Fig. 5(b)] and ZPA regions
[Fig. 5(c)]. As Di : 0 the solution approximates
a step function with c1 =V1/k1 in the AER and
c2 =V1/k2 in the ZPA.

3.3.    

When the production rates are not constant
one must resort to numerical computation of the
solutions to eqns (33–35). Figure 6 shows the
results for the kinetic parameters used in
Fig. 5(a–c) and several values of the diffusion
coefficients. One sees in Fig. 6(a) that at fixed D2,
increasing D1 (the diffusion coefficient of the
AER morphogen) increases the level of the AER
morphogen in the ZPA region and decreases it in
the AER region. Because production of the ZPA
morphogen depends on the level of the AER
morphogen when the kinetics are not saturated,
this leads to an increase in the level of the ZPA
morphogen throughout the domain. Figure 6(b)
shows that at fixed D1, increasing D2 decreases
the ZPA morphogen in the ZPA region and
increases it elsewhere, thereby producing an
increase of the AER morphogen. These results
are qualitatively similar to what is shown in
Fig. 5 because the kinetic terms are essentially
saturated for the values of Di shown, but here a
change in either diffusion coefficient affects the
distribution of both species. Furthermore, there
is a significant difference between the results
using constant production rates and concen-
tration-dependent rates when both diffusion
coefficients are very low. In the present case
small diffusion rates (for example D1 =1,

F. 5. Steady-state solutions with saturated kinetics. x1 =0.5, x2 =0.8, x3 =0.9. V1 =V2 =2000, k1 =50, k2 =50. The
horizontal axis is x $ [0, 1], the vertical axis shows c1 and/or c2 $ [0, 40] in dimensionless units. The values of the parameters
Vk and kk are those used in the full simulations in a later section. (a) c1 (peak on right) c2 (central peak) with D1 =1 and
D2 =1; (b) c1 with D1 =0.01, 0.1, 1, 10; (c) c2 for D2 =0.01, 0.1, 1, 10. In (b) and (c) smaller diffusivities produce larger
peak values in the morphogen concentration.
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F. 6. Steady-state solutions to the evolution equations (33)–(35), computed using the same kinetic parameters and
production regions as in Fig. 5. The horizontal axis is x $ [0, 1], the vertical axis (range [0, 40]) shows c1 (—) and c2 (. . .)
in dimensionless units. (a) D2 =1 and variable D1; (b) D1 =1 and variable D2.

D2 =0.01) leads to solutions that converge to the
steady state c=(0, 0), because there is insuffi-
cient transport of the complementary morpho-
gen between the production sites to offset the
degradation that occurs throughout the domain.
By contrast, when production of a morphogen is
independent of the level of the complementary
morphogen, as in Fig. 5, the spatial distributions
of the morphogens approach step functions
supported on the production regions as the
diffusion coefficients approach zero.

It is known that the maximum expression of
ZPA activity is not immediately adjacent to the
AER, but rather, lies in the region a few hundred
microns proximal to the AER. The preceding
results are consistent with this observation but
they reflect the fact that the ZPA was specified
geometrically rather than functionally. The
mechanisms controlling the graded distribution
of ZPA activity are not known at present, but one
possibility is that it stems from spatially varying
differences in the mesodermal tissue itself. An
alternative is that the ZPA morphogen pro-
duction exhibits a biphasic response to the AER
morphogen. This could arise, for instance from
activation of an enzyme at low AER morphogen
levels and inhibition at high levels. Computations
in which the production rate V2 depends on the
concentration of the AER substance c1 as follows

V2(c1)=61.0

0

if c1 Q cs
1

otherwise
(39)

produce profiles of the ZPA substance that has
a maximum at some distance from the AER, as
in Fig. 6.

4. Numerical Simulations Incorporating Growth
and Cell Movement

4.1.  -   



In this section we describe numerical results
from simulations of the full model, including
growth and cell movement. Initially, the curved
part of the limb bud boundary is an arc of a
circle chosen to approximate a stage 19–20 limb
bud. The initial configuration of the limb bud
domain is the same in each of the four
simulations described later.

The estimates of growth rates given earlier
show that diffusion, and hence establishment of
the morphogen distributions, is rapid compared
with growth when the distances are small, but the
time-scales of these processes become more
comparable as outgrowth proceeds. To eliminate
artifacts due to the initial morphogen distri-
butions, we first set the growth to zero and
compute an approximate steady state for the
morphogen distributions. We then use this
morphogen distribution as the initial condition
for simulations that include growth and cell
movement. The quasi-steady distributions for
the morphogens are obtained by integrating the
evolution eqn (5), with S0 0 and u=0, forward
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in time, using the methods described in the
Appendix, until the concentration distributions
are approximately constant in time. Thus, the
initial morphogen distributions are approximate
solutions to the equation

D92c+R(c)=0 (40)

with boundary conditions given by eqn (8). Once
the initial distributions for S=0 are determined,
we turn on the growth rate throughout the limb.
The dependence of the volumetric growth rate on
the morphogens must be postulated, and we
suppose that it depends only on c1, the
morphogen or growth factor produced in the
AER, as follows.

S= s1c1 + s2. (41)

The growth rate comprises a constant com-
ponent s2 =0.1 that represents a basal growth
rate, and a component proportional to the
concentration of the growth factor c1. We set the
first order rate constant s1 equal to 10/3. An
interpretation of (41) is that growth depends on
binding of a growth factor to surface receptors,
and that the concentration of growth factor is
much less than the Km for binding.

In the four simulations that follow the AER is
a region in the limb bud of roughly constant
dimensions localized along the distal edge of the
limb bud. The ZPA-competent tissue is a region
of constant width on the posterior edge of the
limb bud, beginning at the proximal boundary
and ending just short of the AER region.
Although the width of ZPA-competent region is
fixed, the ZPA-competent length elongates with
limb bud outgrowth. The algorithms for
determining the ZPA and AER regions are
described in detail in the Appendix. As will be
discussed below, the production rates of the
AER and ZPA morphogens within these regions
may vary both spatially and temporally. Since

the growth factor c1 is produced in the AER,
the growth rates are highest in the distal region.
This is consistent with experimental observations
which show that the mitotic rate is highest in the
PZ and about one-fourth that rate in the
proximal limb bud.

Simulation 1: Uncoupled AER and ZPA
production. As was discussed in the Introduction,
the biochemical reactions that produce the AER
and ZPA morphogens are believed to be
coupled. However, to establish a base case for
later comparison purposes we first suppose that
the production rates of the morphogens are
uncoupled. As a result, in this simulation active
ZPA extends along the entire posterior margin of
the domain. In later simulations, it is the
interaction with the AER factor that limits the
effective extent of the ZPA. Here the morphogen
production rates Rk that appear in eqn (5) have
the form

Rk (c)=6gk (1− ck )

−kkck

x $ Vk

otherwise
(42)

for k=1, 2. In all examples V1 is identified with
the AER and V2 with the ZPA, as in Fig. 2. The
dimensionless kinetic parameters are set at
gk =10000 in this example in order to ensure
that ck will be approximately 1 in Vk . The
dimensionless diffusion constants are set at
Dk =1 for k=1, 2 and the morphogen degra-
dation rates are set at kk =50. The outline of the
growing limb bud domain and contours of
the morphogen concentrations are shown at
several time steps in Row I of Fig. 7. Since the
production of c1 is independent of c2 and the
AER is initially symmetric about the PD axis,
the profiles of c1 are also symmetric about the PD
axis initially, and because the local growth rates
depend only on the concentration of c1, limb bud
outgrowth is also symmetric initially. One sees in
the figure that the shapes of the limb bud and
concentration profiles of the AER growth factor
remain essentially symmetric about the PD axis
throughout the entire period. The location of the
immersed boundary points are obscured by the
superposition of morphogen contours in this
figure, but the reader can look at Fig. 8, to be
described below, for a better picture of the
boundary*.

* We remark that the algorithm itself contains a slight
asymmetry that arises as follows. A single boundary point
is added whenever the boundary stretches by a prescribed
amount. The new boundary point is inserted between the
two adjacent immersed boundary points that have moved
furthest apart. The addition of new points to the boundary
generally does not occur symmetrically with respect to the
PD axis.
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F. 7. Contour lines of the morphogen concentrations c1 and c2. Row I: simulation 1 at dimensionless times (a) 0; (b)
0.5625; (c) 1.125; (d) 1.875 [real times of (a) 0; (b) 13; (c) 26; and (d) 43 hours]. Rows II–IV: simulations 2–4, showing the
concentration contours at dimensionless times (a) 0; (b) 0.375; (c) 0.75; (d) 1.3125 [real times of (a) 0; (b) 8.7; (c) 17.4; (d)
30.4 hours]. If we identify panel (a) in each row with stage 19, then these times correspond to stages 19, 21, 23, and 25,
respectively, in normal chick limb development. Here and hereafter, the bounding square in each panel delimits the
computational domain, each side of which is 2.0 mm in length (see Appendix). The contours shown represent equally-spaced
levels of c1, which is highest near the AER and decreases monotonically along the PD axis, and c2, which is highest along
the posterior boundary and decreases monotonically along the posterior–anterior axis. In Row I the contour levels shown
begin at 0.1 and increase in increments of 0.1 for each species. In Rows II–IV the contour levels begin at 0.5 and increase
in increments of 0.5 for each species.

Simulation 2: Coupled feedback interaction
between AER and ZPA morphogen production. In
this simulation we use the Michaelis–Menten

kinetics given at (23) for the production of the
morphogens and couple these with the standard
linear decay terms. Thus the kinetic functions are
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F. 8. The locations of fluid markers at selected times within the growing limb bud. The four rows correspond to the
four rows shown in Fig. 7, and the time snapshots within a row correspond to those shown in that figure.

as follows.

R1 =V1
c2

K2 + c2
− k1c1, for x $ V1

and R1 =−k1c1, otherwise

R2 =V2
c1

K1 + c1
− k2c2, for x $ V2

and R2 =−k2c2, otherwise. (43)

The dimensionless parameters are identical in
both species and are set at Vk =2000, kk =50,
Kk =1 and Dk =1, k=1, 2. As in Simulation 1,
the AER substance c1 is only produced in the
AER, but it decays throughout the limb bud with
time constant k−1

1 . Similarly, the ZPA factor c2 is
produced only in the ZPA and decays through-
out the limb bud.

Row II in Fig. 7 shows the dramatic effect
that spatial localization and coupling of the
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production rates has on the spatio-temporal
distributions of the morphogens. When com-
pared with Row I, the high point of the AER
morphogen distribution, which is slightly greater
than 2 at the final time (panel II-d), shifts toward
the ZPA and there is a gradient of AER factor
within the AER, with c1 higher in the posterior
and lower in the anterior portion of the AER.
(Since the average level of c1 is higher in Row II
than in Row I, the simulation in Row I was
extended in time to produce the same overall
growth.) The asymmetry in the production of the
growth factor, which is higher in the posterior–
distal region of the limb than in the anterior
region, leads to a pronounced asymmetry in the
shape of the growing limb. Note also that the
maximum levels of both morphogens decrease as
outgrowth proceeds, because both morphogens
are degraded throughout the growing volume of
tissue, but only produced in domains of constant
size*. For example the maximum of the ZPA
factor exceeds 6 in panel a of Row II, whereas
the maximum is only about 3.5 in panel d of that
row.

Simulation 3. In this and the following
simulation the reaction kinetics and kinetic
parameters are identical to those in Simulation 2,
but the diffusion coefficients are varied. In this
simulation we set D1 =1 and D2 =0.5, which
means that the ZPA species diffuses at half the
rate used in Simulation 2. One sees in Row III
of Fig. 7 that the maximum concentration levels
of c2 are higher at later times than in Simulation
2. In particular, the maximum value of c2 at the
final time (panel d) is approximately 4.5 here, as
compared with 3.5 at the same time in Row II.
Furthermore, just as in the results for the
one-dimensional simulations shown in Fig. 5, the
concentration levels of c2 fall off more rapidly
when the diffusion coefficient is reduced, and
hence the contour levels are more compressed in
space. Because the ZPA factor is more localized
in space when its diffusion coefficient is reduced,
this leads to a lower overall production of the
growth factor and hence a reduction in the

outgrowth of the limb. Indeed, the final length
shown in panel III-d is only 93% of the length
at the same time shown in panel II-d. Since the
only difference in the parameters between Row
II and Row III is the change in the diffusion
coefficient of the ZPA factor, this shows that the
coupling between production of the factors can
have unanticipated effects on the growth of the
limb. We will say more about this phenomenon
in the discussion of fluid markers below.

Simulation 4. In this simulation the diffusion
coefficients are set at D1 =2, D2 =0.5, and
otherwise the parameters are the same as
previously. The contours in c1 and c2 are shown
in Row IV of Fig. 7. There are two significant
effects of the increase in the diffusion of the AER
factor. Firstly, the maximum levels of the AER
factor are reduced significantly (the maximum of
c1 is approximately 1.0 in panel d of Row IV,
compared with just under 2.5 in panel d of Row
II), because when the AER factor is more
uniformly distributed in space the total degra-
dation rate is increased substantially. As a result,
the rate of limb bud outgrowth is lower in
Simulation 4 than in Simulation 3. Secondly, the
faster diffusion of the AER factor means the
ZPA morphogen is produced in significant
amounts over a larger portion of ZPA-
competent tissue, and thus the concentration of
the ZPA factor rises throughout much of the
posterior margin of the limb. Thus the ZPA
substance is more proximally expressed in
Simulation 4 than in Simulation 3. However, the
maximum concentration level of the ZPA species
is lower in Simulation 4 (approximately 4) than
in Simulation 3 (approximately 4.5).

4.2.  

Since growth in the limb is asymmetric when
the ZPA and AER are localized in space and
interact via diffusible substances, it is necessary
to track cells in order to determine the temporal
pattern of morphogen concentrations to which
cells are exposed during outgrowth. Without this
information it is difficult to propose mechanisms
by which the morphogen concentrations can be
translated into levels of gene expression. In
addition to tracking the overall shape of the limb
and the concentration distributions within it, we
track individual fluid markers in each of the

* The AER-competent region is of fixed size, but the
ZPA-competent region elongates. Because of morphogen
coupling, the active region of the ZPA species is localized
distally and the size of the active region is roughly constant.
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simulations described in the preceding section.
These markers, which may be regarded as
proxies for individual limb bud cells or their
progeny, travel at the local fluid velocity, and
thus accurately reflect the relative displacements
between selected points in the limb as outgrowth
proceeds.

Fluid markers are placed on each interior grid
point at t=0, and subsequently each marker is
convected along at the local fluid velocity. The
locations of these fluid markers within the
growing domain for the four simulations
described previously are shown in Fig. 8. Initially
the markers are regularly spaced, since they
coincide with the grid points, but because they
move with the local velocity, which is determined
by the local growth rate, the distance between
adjacent pairs of markers changes with time.
Evidence of high growth rates in the region of
highest concentration of c1, the AER growth
factor, can be seen in the wider spacing of
markers in the distal region, but there is a basal
level of growth throughout the limb. The axially
symmetric distribution of c1 in Simulation 1
(Row I Fig. 7) leads to axially symmetric growth
rates and an axially symmetric fluid marker
distribution (Row I of Fig. 8). The asymmetric
distribution of c1 due to coupling with the ZPA
morphogen c2 (see Rows II–IV of Fig. 7) results
in asymmetric local growth rates and to a
marked asymmetry in the fluid marker distri-
bution, as shown in Rows II–IV of Fig. 8. In
particular, the spacing between adjacent columns
of fluid markers is much greater in the
posterior–distal region than in the anterior–
distal region. As noted above, the reduction of
the diffusion coefficient D2 for the ZPA species in
Simulation 3 results in a posterior shift in the
production of the AER species. This change in
the distribution of c1 results in more pronounced
posterior–distal growth rates, as evidenced by
the increased posterior spacing between adjacent
columns of the distal fluid markers (cf. Row III

of Fig. 8). In Simulation 4 the diffusion constant
D2 remains the same as in Simulation 3, but D1

is increased. This leads to a more uniform
distribution of the AER factor c1 and more
uniform growth throughout the limb, as can be
seen in the fluid marker distribution shown in
Row IV of Fig. 8.

Further insight into the pattern of cell
movement during growth can be gained by
plotting the trajectories of selected fluid markers.
The results for the four simulations are shown in
Fig. 9(a–d). Initially nine pairs of fluid markers,
located along the posterior–distal edge of the
limb bud are chosen from those shown in Fig. 8.
The pairs are designated (a, A) . . . (i, I) from
posterior to anterior. In each pair, the more
proximal marker is designated by a lower-case
letter, the distal marker by a capital letter. In
panel 1 of Fig. 9 we show the tracks of the fluid
markers for Simulation 1*. The pair (e, E) is
initially on the centerline in the PD direction and
remains there throughout the simulation—a
reflection of the axially-symmetric distribution of
c1 and concomitant axially symmetric growth
rates. The other pairs are displaced posteriorly or
anteriorly, depending on their initial location.
The trajectories for Simulation 2 are shown in
panel 2 of Fig. 9, where it is seen that the pairs
(d, D) and (e, E) are displaced anteriorly as well
as distally. This anterior displacement results
from higher growth rates in the posterior–distal
region. As in Simulation 1, (a, A), (b, B), and
(c, C) are displaced posteriorly and distally. The
fact that growth occurs primarily near the AER
is reflected in the fact that cell markers that
initially lie near the AER are far removed from
it at the final time.

Panel 3 of Fig. 9 shows the trajectories for
Simulation 3, where, in contrast to Simulation 2,
the fluid marker pair (c, C) follows a more axial
path and (d, D) and (e, E) are displaced more
anteriorally. As was noted in the previous
section, the AER growth factor is more
concentrated in the posterior–distal region of the
limb bud in the third simulation. The higher
growth rates in the posterior–distal region push
the fluid marker pairs (c, C), (d, D), and (e, E)
anteriorally. There is however less effect on the
trajectories of cells that begin on the anterior side
of the mid-line.

* Since the computational domain is of fixed size and the
fluid is incompressible, the volumetric source that arises
from growth must be ‘‘absorbed’’ in sinks located outside
the limb bud. These are placed at four grid points near the
corners of the computational domain, and the results in
Panel 1 show that the location of these sources preserves the
symmetry of the results.
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F. 9. Paths of selected fluid markers (a, A), . . . , (i, I) for simulations 1–4. Labels on the curves mark the trajectories
of selected fluid markers.

The anterior displacement of these pairs is less
pronounced in Simulation 4, as is shown in panel
4 of Fig. 9. This is consistent with the higher
diffusivity of the AER factor, which leads to
more uniform, albeit lower, growth rates
throughout the limb bud (cf. also Rows III and
IV of Fig. 8). In this simulation there is
proportionately less growth near the AER, and
cells that begin near the AER remain closer to it
throughout outgrowth. An interpretation of this
in the context of the progress-zone model
described in the Introduction is that cells that
begin in the progress zone never stray far from
it; they are held more or less in their relative
place by the growth that occurs proximally.

Since the trajectories of fluid markers can be
interpreted as the trajectories of individual cells
or their progeny, the preceding results show that
the location of individual cells within the limb
bud as a function of time depends on the details
of the model, and in particular, is strongly

influenced by the diffusivities of the AER and
ZPA factors. As can be anticipated and will be
shown below, the time-dependent location of the
cells relative to the AER and ZPA leads to a
time-dependent micro-environment of morpho-
gen levels to which the cells are exposed.

An alternate representation of the differential
growth throughout the limb is obtained by
following the motion of the trapezoidal blocks of
tissue formed by connecting four adjacent
markers, two in the proximal row and two in the
distal row. The eight blocks that result are
labeled as follows: Block 1: (a, A, b, B), Block 2:
(b, B, c, C), . . . , Block 8: (h, H, i, I) (see Fig. 10).
Each block undergoes growth, deformation and
displacement during outgrowth, and the differ-
ence between the final and initial area of a block
represents the cumulative growth in that block.
The spatial location of a block at any time T can
be interpreted as a fate map, from t=0 to t=T,
for cells in that block. The details of this
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transformation depend primarily on the local
growth rate, which is governed by the spatio-
temporal distribution of the morphogens. For
example one sees that in Simulations 2–4, Block
3 is the largest and has a significant area in the
post- and pre-axial regions. The boundary
between Blocks 4 and 5 represents the midline at
t=0, and one sees that it suffers a substantial
displacement in the anterior direction in
Simulations 2–4.

4.3.    



The local patterns of growth as a function of
time, which are manifested in the separation
between markers in Figs 8 and 9 and in the
growth of area in Fig. 10, reflect the history of
exposure to the growth-controlling morphogen
at the fluid markers. On the other hand, the
contour lines shown in Fig. 7 reflect an Eulerian
or ‘‘fixed-in-space’’ viewpoint that reflects what
a cell is exposed to at a certain point in
space–time. At present it is not known whether

it is the instantaneous concentration of morpho-
gens that determines gene activation, or whether
it is the history of exposure (or at least a
minimum exposure time) that is paramount. For
this reason we next display the morphogen
concentrations in the Lagrangian framework, in
which concentrations are tracked along cell
trajectories.

The morphogen concentration c̃k (t) at the
location of a fluid marker can be expressed as

c̃k (t)= ck (Xi (t), t) (44)

where Xi (t) gives the path of the i-th marker. The
concentrations c̃k of the AER and ZPA
substances at the location of the markers whose
trajectories are given in Fig. 9 are shown as a
function of time in Fig. 11. One sees there that
in simulations 2 and 3 the concentration of the
AER morphogen is a strictly decreasing function
of time for all cells but the one that originates at
the marker (C). This decrease is to be expected,
since the growth rate is highest near the tip,

F. 10. Blocks 1–8 for simulations 1–4. Each frame shows the initial and final block outlines and limb bud configurations.
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F. 11. Concentrations of c̃1 (—) and c̃2 (. . .) at the location of the individual fluid markers. The hash marks on the
vertical axis of each graph represent equal increments of dimensionless concentration from (0, 6). The hash marks on the
horizontal axis represent equal increments in dimensionless time from (0, 1.3125). For each of the simulations shown, the
most posterior pair (a, A) is shown at the left of the figure.

and thus the apex grows away from the marked
cells. There are small increases at intermediate
times for the cell marked C in all simulations
because (a) it remains quite close to the tip
throughout outgrowth, and (b) its traject-
ory is displaced posteriorly, and hence toward
higher AER factor, especially in Simulation 2.

The temporal profile of the concentration of
ZPA factor is quite different for cells that
originate in the anterior half as compared with
those that originate in the posterior half. In the
former the ZPA factor is decreasing in time, as
is the AER factor, but cells in the posterior half
experience a well-defined temporal maximum of



     319

ZPA factor, and this occurs earliest nearest the
ZPA and later toward the midline.

5. Interpretation Functionals Relating Gene
Expression to Morphogen Distributions

The patterns of gene expression in the growing
limb bud, such as those discussed later for Hox,
may be directly or indirectly related to the
spatio-temporal profiles of substances produced
in the AER and ZPA. Transduction of an
extracellular signal into gene expression usually
involves complex signal transduction mechan-
isms based on intracellular second messengers,
and at present the molecular basis of Hox gene
control has not been elucidated. Thus it is not
known if there is a direct connection, but the
indirect evidence for a connection is strong
enough to justify some theoretical analysis. In
this section we suggest several possible interpret-
ation mechanisms by which the morphogen
distributions could be translated into patterns of
gene expression.

The simplest map between morphogen con-
centration and gene expression is obtained by
making the latter directly dependent on the
former. In the previous section we showed that
the concentration of the AER factor is a strictly
decreasing function of time along most cell
trajectories. This fact can be used to define a gene
control mechanism as follows. Let us define
the progress zone (PZ) as the region in which the
concentrations of the AER morphogen and the
ZPA factor are above a given threshold, and
then cells leave the PZ when either concentration
level drops below the respective threshold.
Suppose we set the thresholds at c̃1 =1 and
c̃2 =1 in Simulation 2 (cf. Fig. 11). Then one sees
from that figure that only the cells corres-
ponding to the three posterior-most markers
[(a, A)–(c, C)] are ever in the PZ, and these cells
leave the PZ in a posterior to anterior sequence
in time. This is consistent with the observation
that posterior differentiation typically precedes
anterior differentiation. Other maps based
directly on the morphogen distributions are
possible, but we turn next to maps based on a
rudimentary form of signal transduction.

In the simplest model we assume that the
activation and transcription of the genes in

question depends on the concentration of c1 and
c2 at the cell site. The gene product wk , which is
the indicator of gene expression, is produced in
each cell according to the differential equation

dwk

dt
= f(c̃k (t))− bkwk (45)

where as before, c̃k (t) is the k-th morphogen
concentration in the Lagrangian description, i.e.
at the cell site at time t. We suppose that
production of wk depends only on the concen-
tration of c̃k and that it is degraded according to
first-order kinetics with rate constant bk . The
form of the response function f is described
below. In this model, the production rate of a
particular gene product wk depends only on the
single morphogen c̃k , but a more complex model
could be constructed in which the production
rates depend on both morphogens.

The solution to (45) is

wk (t)=wk (0)e−bk t +g
t

0

f(c̃k (s))e−bk (t− s) ds.

(46)

Thus the current concentration of the gene
product, wk (t), depends on the entire history of
the morphogen concentration c̃k at the cell site.
The decay rate of wk determines how rapidly the
‘‘memory’’ of past concentrations fades, and the
function f determines how the morphogen
concentration is filtered via the signal transduc-
tion scheme. The following four characteristic
forms for the response function f will be
considered here.

f1 =
c̃k

1+ ck

f2 =
c̃k

1+ c̃2
k

f3 =
c̃6

k

1+ c̃6
k

f4 =
c̃6

k

100+ c̃6
k
.

The graphs of these functions are shown in
Fig. 12, where one sees that f1, f3 and f4 are
increasing functions of c̃k , k=1, 2, and each of
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F. 12. Graphs of the four functions used in the
interpretation schemes.

varies significantly with the spatial marker when
using f2 as the filter. It is also evident that, as
expected, the switch-like functions f3 and f4

enhance the spatial gradients of the gene
products along the anterior–posterior axis as
compared with those for the morphogen
concentrations. In particular, one sees that the
anterior–posterior gradient of w2 is significantly
sharper than that of c2 when using either f3 or f4

as the response function.
To better compare our results with experimen-

tally-observed spatial patterns of gene ex-
pression, we have also computed the contours of
wk over the entire limb domain at selected times*.
The contours for wk that result from applying the
response functions f1 and f2 are shown in Figs 15
and 16. The contours in Fig. 15 are suggestive of
the Hoxa and Hoxd expression patterns seen at
HH stage 22 (see the Discussion). However, it
should be noted that the pattern seen here is
qualitatively similar throughout the simulation,
whereas the patterns of Hox expression in chick
limb apparently change significantly during
development. Since f1 is monotone increasing
one expects that the concentrations of the wk s
will be monotone decreasing in the distal to
proximal and posterior to anterior directions,
and one sees that this is generally the case. In
contrast, because f2 increases rapidly to its
maximum at wk =1 and falls off gradually at
larger concentrations, the region of maximum
expression of wk does not necessarily coincide
with the region of maximum expression of ck . In
Fig. 16(a), which corresponds to stage 21, the
maximum expression of w1 is found in the
subridge proximal to the limb bud apex. In the
later stages the high point is found at the apex.

To emphasize the effects of changes in the
response functions, we show the w2 distribution
for all four response functions in Fig. 17. To
provide a basis for comparison the same
concentration levels are shown for all response
functions. The functions f1, f3, and f4 are each
monotone in wk and produce expression patterns
with the highest concentrations in w2 in the ZPA.
The concentration levels decrease monotonically
in a posterior–distal to anterior–proximal se-
quence, but this monotonicity is lost in the
functional f2. Moreover, as can be anticipated
from earlier discussion, the expression of w2 is

these saturates at 1. The function f2 has a single
maximum and decays to zero for large c̃k , f1 is of
Michaelis–Menten form, and f3 and f4 are
sigmoidal and differ only in the half-maximal
concentration. The primary difference between
the Michaelis–Menten and sigmoidal functions is
in the shape of the function at the toe near
c̃k =0. The sigmoidal functions f3 and f4 are
intended to approximate ‘‘switches’’ of different
sharpness under which the production of wk

switches rapidly from low to high as c̃k increases.
In the following we apply these functionals to the
concentration histories in Simulation 2. The
conclusions for the other simulations are similar.

We set b=10 and w(0)=0 and compute the
temporal evolution of wk for all pairs of fluid
markers in the posterior half of the limb. The
results for f1 and f2 are shown in Fig. 13 and those
for f3 and f4 are shown in Fig. 14. These figures
should be compared with the graphs of c̃k for the
same fluid markers shown in Fig. 11. Clearly the
graphs of wk are much smoother than are those
for c̃k because the concentration is smoothed via
the integration in eqn (46). Moreover, because
the ‘‘gene product’’ wk is zero initially, the wk s
have a pronounced maximum and the time
above half-maximal concentration depends
strongly on the response function. For example
f1, f2 and f3 produce relatively broad peaks, and
in addition, the location of the peak in time

* In order to generate these contours, we solve eqn (46)
for each of the fluid markers in the limb domain. The
concentration data at the irregularly spaced fluid markers
is interpolated to the regular grid using the subroutine
BIVAR supplied with the NCAR graphics package.
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much more localized in space for f3 and f4. A
comparison of Figs 16 and 17 shows that the
qualitative picture of the spatial distribution
depends heavily on the decay parameter.

To further emphasize the effect of the decay
rate on the spatial distribution of gene product
we show the distribution of w2 for the response
function f2 and a lower decay rate in Fig. 18. One

sees in Fig. 18 that decreasing the decay rate
increases the expression domain of w2, as
expected, but the value of the decay rate can have
unexpected effects. One sees that there is a
Y-shaped expression domain for w2, which is
suggestive of what might be used for determining
the bifurcation into the radius and ulna, or
perhaps later, the digits.

F. 13. The temporal profiles of wk for simulation 2 at the fluid markers (a, A), (b, B), . . . , (e, E), using the functions
f1 and f2. The vertical axis represents the concentration of wk $ [0, 0.1]; the horizontal axis represents dimensionless time
for t $ [0, 1.3125].
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F. 14. The temporal profiles of wk for simulation 2 at the fluid markers (aA), (bB), . . . , (eE) (ordered top to bottom),
using the functions f3 and f4. The vertical axis represents the concentration of wk $ [0, 0.12]; the horizontal axis represents
dimensionless time for t $ [0, 1.3125].

6. Discussion

6.1.  -   

  

Important features of our model when
compared with previous models are the incor-
poration of outgrowth of the limb bud, the
mutual feedback interactions between the AER

and ZPA factors, and the ability to determine the
morphogen distributions in two space dimen-
sions as a function of time, both at fixed
locations in space, and along cell trajectories in
the growing limb. As a result, we can determine
the spatial and temporal history of individual
cells and cell lines within the changing environ-
ment of morphogen concentrations. That the
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F. 15. Concentration contours for w1 (upper) and w2 (lower) produced with the functional f1 at dimensionless times
(a) 0.3375; (b) 0.50625; (c) 0.675; (d) 0.9375; (e) 1.2; [real times of (a) 7.8; (b) 11.7; (c) 15.6; (d) 21.7; (e) 27.8 hours and
stages (a) 21; (b) 22; (c) 23; (d) 24; (e) 25] in simulation 2. Higher concentration levels are indicated by closer spaced cross
hatching. Three dimensionless concentration levels are shown: 0.02 Qwk Q 0.04, 0.04Qwk Q 0.06 and 0.06Qwk .

computational model can give insights into cell
and morphogen dynamics in vivo is suggested by
noting that the fluid marker maps shown in
Fig. 8 are qualitatively similar to the fate maps
in Bowen et al. (1989) in the distal half of the
limb bud, and that the block maps shown in
Fig. 10 are qualitatively similar to the fate maps
shown in Vargesson et al. (1997) Fig. 1(B) and
1(G). Because the computations provide infor-
mation about cell lineage via the fate maps of
tissue blocks, as well as the temporal history of
morphogen concentration levels within these

tissue blocks (Fig. 11), we can investigate the
relationship between cell lineage and gene
expression.

In the classical version of the progress zone
model discussed in the Introduction, the PZ is
regarded as a specialized region within the distal
subridge, and the amount of time cells spend in
the PZ influences the course of proximal–distal
differentiation. In our model we could define the
PZ as a region in which the AER growth factor
is above a threshold level, and as can be seen in
Fig. 7, the contour lines in the AER morphogen

F. 16. Concentration levels for w1 (upper) and w2 (lower) in simulation 2 produced with the function f2 at the stages
shown in Fig. 15. Four dimensionless concentrations levels are shown: 0.015 Qwk Q 0.020, 0.020Qwk Q 0.025,
0.025Qwk Q 0.030, and 0.030Qwk .
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F. 17. Concentration levels for w2 using the four response functions. (a) f1; (b) 2f2; (c) f3; (d) f4. The contour plots show
the solution for simulation 2 at dimensionless time 0.9375 (real time 21.7 hours) corresponding to HH stage 24. Five
dimensionless concentrations levels are shown: 0.04 Qw2 Q 0.08, 0.08Qw2 Q 0.12, 0.12Qw2 Q 0.16, 0.16Qw2 Q 0.2,
0.2Qw2. The parameters for the functions are the same as those used above, except b=2.5.

c1 define a stable PZ in the distal subridge. Using
this definition of the progress zone, one can
determine when cells enter and/or leave the
progress zone by determining the local concen-
tration of c1 at the cell site, as shown in Fig. 11.
Of course the PZ, and hence the residence time
in it, may be determined by a downstream
product of the morphogens, and the filtered
histories of the morphogen concentrations
shown in Figs 13 and 14 illustrate how the time
spent in the PZ changes as the definition of the
PZ changes.

One of the most important open problems in
limb development concerns the relationship
between the spatio-temporal pattern of primary
signaling molecules such as Sonic and the
various growth factors, the patterns of gene
expression, and the translation of these patterns
into patterns of cell differentiation to cartilage
and connective tissue types. Given the complex-
ity of the networks involved in the control of
gene expression, the possible redundancy be-
tween the effects of homologous genes, and the

paucity of information about the control of cell
differentiation, it is not possible to synthesize an
integrated scheme at present. However one can
address simpler issues, such as the possible
relationship between the pattern of signaling
molecules and patterns of gene expression. At
present most is known about the spatio-temporal
pattern of expression of the Hox genes, which are
thought to be the primary genes involved in the
patterning necessary for the proper spatial
localization of the cartilage condensations, and
therefore we briefly review this information. A
listing of many other genes that are known to be
expressed in various stages of limb development
is given in Tickle & Eichele (1994).

The vertebrate Hox genes comprise four
complexes of gene clusters, Hoxa, Hoxb, Hoxc
and Hoxd, and genes in each complex have
homologs in each of the other clusters. The
patterns of expression of Hoxa and Hoxd have
been most completely mapped, and a summary
of the pattern at HH stage 22 is shown in Fig. 19.
The five Hoxd genes, labeled 9–13 from 3' to 5'
on the chromosome, are expressed in a
spatially-nested pattern that is centered roughly
at the ZPA [cf. Fig. 19(b)] (Izpisúa-Belmonte
et al., 1991). This spatial pattern of gene
expression reflects the temporal order in which
genes are read from 3' to 5'. Hoxd-9 and
Hoxd-10 are expressed throughout the prospec-
tive limb field at stage 16, Hoxd-11 appears at
stage 18, and expression of Hoxd-12 and
Hoxd-13 begin thereafter (Nelson et al., 1996).

Our computational results demonstrate that
the interaction between two spatially-localized
sources of FGF and SHH can produce a stable
two-dimensional distribution of each of the
morphogens and of secondary gene products as

F. 18. Concentration levels for w2 produced with the
functional 2f2 at stage 23, but with a decay rate of b=1.
Seven contours levels are shown: (0.04, 0.08), (0.08, 0.12),
(0.12, 0.16), (0.16, 0.20), (0.20, 0.24), (0.24, 0.28), (0.28,
0.32).
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F. 19. A schematic of the spatial pattern of Hoxa (a)
and Hoxd (b). After Robertson & Tickle (1997).

stage 28, and high concentration levels of FGF
may be required for the continued expression of
this gene. The results of our computational
model are in qualitative agreement with this
conclusion, in the sense that cells of the same
lineage will nonetheless experience different
temporal histories of morphogen exposure.

6.2.  

As we stated earlier, our objective here is not
only to study the effects of spatial localization of
the ZPA and the AER, and of the coupling
between them, but also to develop a compu-
tational tool that can be used to investigate the
effects of experimental interventions during limb
development, and to explore various hypotheti-
cal maps between morphogen distributions and
gene expression. In future work we plan to
extend the model to three space dimensions and
to explore some of the grafting and blocking
experiments that have been done. We also plan
to investigate the interactions between the major
known signaling pathways, to develop a better
model for the viscoelastic properties of cells, and
to include chemotactic motion of cells.

Supported in part by an NSF Postdoctoral
Research Fellowship and NSF grant DMS 9805501 to
R. Dillon and by NIH Grant (GM21923 to H.
Othmer.
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APPENDIX

The rectangular fluid domain is discretized
using a uniform rectangular grid. The fluid
variables (u, p, F, S) are discretized and defined
at the grid points. The limb bud boundary is also
discretized and represented by a finite number of
points Xp , p=1, . . . , N, but in general the
immersed boundary points Xp do not coincide
with points of the fluid grid. The boundary forces
fp are defined at the points Xp , and interpolation
between the immersed boundary points and the
fluid grid is effected by means of a discrete
d-function given below. The concentration of
chemical species c is defined on the same grid as
the fluid variables. Since the computational fluid
domain is rectangular we are able to use Fast
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Fourier Transform methods for time-stepping
the fluid equations.

The algorithm for numerical solution of the
coupled fluid-chemical system can be summar-
ized as follows. At the beginning of each time
step n we have the fluid velocity field un, the
locations Xn

p of the immersed boundary points,
and the chemical concentration field cn. In order
to update these values during this time step we
do the following.

1. Calculate the force density fn
p at each

immersed boundary point.
2. Interpolate the forces to the grid to

determine the force density F [eqn (4)].
3. Calculate the local growth rate Sn =S(cn).
4. Solve the Navier–Stokes eqns (1–2) for

un+1.
5. Interpolate the fluid velocity field to each

immersed boundary point and move that
point at its local fluid velocity to obtain
Xn+1

p [eqn (3)].
6. Solve the advection–diffusion–reaction eqn

(5) for cn+1.

A.1. Elastic Boundary Forces

The ectodermal boundary of the two-
dimensional limb bud is modeled by a discrete
set of immersed boundary points Xp for
p=1, . . . , N(t). The location of each point is
time dependent. Each immersed boundary point
Xp is connected to its neighbors Xp−1 and Xp+1 by
elastic forces of the form

f1
k = s

k+1

p=k−1

p$ k

S1(>Xk −Xp>−L0)(Xk −Xp )
>Xk −Xp>

.

(A.1)

where S1 is a spring stiffness constant and L0 is
the resting length. The initial spacing between
adjacent pairs of immersed boundary points is
also given by the resting length L0 and is one-half
the mesh width of the two-dimensional fluid
domain. The immersed boundary points along
the proximal boundary are also tethered to fixed
points in space via elastic spring, and thus these

points are subject to an additional force of the
form

f2
k =S2(Xk −X0

k ), (A.2)

where S2 is a spring stiffness constant and X0
k is

the initial location of a proximal boundary point
Xk . The tethering force f2

k =0 at all immersed
boundary points away from the proximal
boundary.

Each immersed boundary point along the
posterior boundary is also connected via an
elastic spring force to an immersed boundary
point on the anterior boundary. If we label the
set of non-proximal boundary points
(X1, . . . , XM ), from the lower left corner of the
limb bud counterclockwise around the limb to
the upper left corner, we form an elastic link
between pairs (X1, XM ), (X2, XM−1), . . . , (XM/

2−1, XM/2+1). The transverse force at a
posterior immersed boundary point Xk is derived
from an equation of the form

f3
k =S3(>Xk −Xp>−Dw )(Xk −Xp )/>Xk −Xp>.

(A.3)

where p=M− k+1. The spring constants S3

are taken to be zero unless the distance between
the pair of points is greater than DW , the nominal
limb bud width. These transverse forces con-
strain the limb so that it elongates along the
proximal distal axis rather than ballooning as the
limb bud grows.

The total elastic force at each immersed
boundary point is the sum fk =S3

j=1fj
k . These

forces f are interpolated to the two-dimensional
numerical fluid grid points by a discrete version
of eqn (4). The interpolation is based on an
approximate delta function of the form
dh (x)=d(x) d(y) where h is the mesh width and

d(r)=g
G

G

F

f

1
4h 01+cos

pr
2h1

0

=r=Q 2h

=r=e 2h.
(A.4)

We refer the reader to Peskin (1977) for further
details.

As the limb bud expands, the immersed
boundary points become more widely spaced.
During the simulation, we introduce a new
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boundary point between an adjacent pair if the
elastic link exceeds a prescribed length.

A.2. Numerical Solution of the Navier–Stokes
Equations

The numerical method for solving the
Navier–Stokes eqns (1)–(2) is similar to the
method described in Peskin & McQueen (1995).
Our model includes an additional term in eqn (1)
due to the distributed source S in the continuity
eqn (2). Equations (1)–(2) are discretized on a
regular rectangular grid of with mesh width h

r0un+1 − un

Dt
+ s

2

s=1

un
s D2

s un1=−D0pn+1

+ m0s
2

s=1

D+
s D−

s un+1 +1/3D0Sn1+ rF n

D0 · un+1 =Sn (A.5)

where Sn =S(cn), D+
s , D−

s are the forward and
backward divided difference operators for
s= x, y, D0 is the centered divided difference,
D0 · is the center divided difference divergence
operator and D2

s is the upwind divided difference
(Peskin & McQueen, 1995). Equation (A.5) can
be rewritten as:

0I−
mDt
r

s
2

s=1

D+
s D−

s 1un+1 +
Dt
r

D0pn+1 = vn

D0 · un+1 =Sn (A.6)

with

vn =0I−Dt s
2

s=1

un
s D2

s 1un +
mDt
3r

D0Sn

+DtF n. (A.7)

Equation (A.6) is a constant-coefficient system
of difference equations in the unknowns
(un+1, pn+1). We can define the discrete Fourier

transformation of the grid function f on the
spatial domain (0, L)2 by

f
 k1, k2 = s
N−1

j1, j2 =0

exp(−i(2p/N)(j1k1 + j2k2))fj1 j2

(A.8)

for 0E k1, k2 EN−1 and L=Nh. With this
definition, the discrete Fourier transform of eqn
(A.6) is given by:

01+
4mDt
rh2 s

2

s=1

sin2(pks /N)1(uxs )n+1
k1k2

+
iDt
rh

sin(2pks /N)pxn+1
k1k2

= (vxs )n
k1k2

i

h
s
2

s=1

sin02pks

N 1(uxs )k1k2 =S
 n
k1k2

. (A.9)

We can now multiply eqn (A.9) by

i

h
sin02pks

N 1 (A.10)

and sum over s=1, 2, to obtain

pxn+1
k1k2

=$01+
4mDt
rh2 s

2

s=1

sin2(pks /N)1S
 n
k1k2

−
i

h
s
2

s=1

× sin(2pks /N)(vxs )k1k2%>Dt
rh2 s

2

s=1

sin2(2pks /N).

(A.11)

With px known, we can solve eqn (A.9) for ux to
obtain:

(uxs )n+1
k1k2

=
(vxs )n

k1k2
−

iDt
rh

sin(2pks /N)pxn+1
k1k2

1+
4mDt
rh2 s

2

s=1

sin2(pks /N)

.

(A.12)

Note that the denominator in eqn (A.11) is zero
for (k1, k2)= (0, 0), (0, N/2), (N/2, 0), or (N/2,
N/2). For these values of (k1, k2) we can solve
eqn (A.9) directly for (uxs )k1k1 since the term
involving pxk1k2 is zero. This is equivalent to
setting pxk1k2 =0 in eqn (A.12). Once uxn+1 is
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computed, we make no further use of the pxn+1

and obtain the fluid velocity field un+1 using the
inverse discrete Fourier transform.

This model might be formulated for the Stokes
equations [obtained from eqns (1)–(2) by setting
the left-hand side of eqn (2) to zero]. However,
for a solution to exist on a periodic domain, the
integral of F over the domain must be zero. This
condition will not necessarily hold if a portion of
the limb bud immersed boundary is tethered as
it is in our model. Thus a time dependent
equation must be employed. In the method used
here, the computational cost of including the
advective term (u · 9)u is minimal since this term
is evaluated at the previous time step.

A.3. Solution of the
Advection–Reaction–Diffusion Equations

The irregularly shaped-moving boundary of
the growing limb bud creates special difficulties
for the numerical solution of the advection–
reaction–diffusion eqns (5). The model requires
Neumann (zero-flux) boundary conditions for
the chemical species at this interface. We solve
these equations on the same grid as the fluid
equations. At regular grid points within the limb
bud domain, we use a standard five-point stencil
for the Laplacian 92c. At irregular grid points at
least one of the grid points in the standard
five-point stencil lies outside of the limb bud
domain. As a result, the irregular grid points
require special treatment. Step (6) of the
algorithm can be further subdivided into several
steps:

6a. determine the (x, y) coordinates of the
points where the limb bud boundary
intersects a vertical or horizontal grid line;

6b. determine the grid points that lie inside
the limb bud domain;

6c. solve the advection–reaction–diffusion
system.

Since the time steps for the fluid solver are
small, we can use an explicit method in step (6c)
for solving the advection–reaction–diffusion

system. Since we are only interested in the
chemical concentrations within the limb bud
boundary, we can ignore the solution at grid
points outside of the limb bud. At regular grid
points, we use the standard five point stencil in
a central difference approximation to the
Laplacian. Near the boundary, one or more of
the grid points in the standard stencil will lie
outside of the limb bud domain. At these
irregular grid points, we make use of the
Neumann boundary condition to develop an
equation for the Laplacian approximation. If
only one point is missing from the five-point
stencil (Type 4), we use an approximation
described in Morton & Mayers (1994). At
irregular points with two (Type 3) or three points
missing (Type 2), we assume that the limb bud
boundary for the morphogen equations con-
forms to the grid lines. This gives us an O(h)
approximation to the Laplacian on the per-
turbed boundary. The Type 4 solutions can be
poor if the immersed boundary is very close to
a grid point. Since our limb bud is growing, there
are points that come arbitrarily close to the
boundary. We circumvent the computational
difficulty by assuming that the boundary is
further away than it really is. While we lose some
accuracy, the method is stable and inexpensive to
compute. A more elegant approach based on the
‘‘immersed interface method’’ of LeVeque & Li
(1994) could be incorporated into our numerical
software.

A.4. Determination of the Source Strength

At each time step, we must evaluate the local
source strength Sn

i,j at each mesh point. Si,j may
depend on the local concentration of one or
more growth factors cn

i,j . For the simulations
shown in Section 4 and from eqn (41), the local
source strength is given by Sij = s1(c1)ij + s2.
Mass balance over the entire fluid domain
requires Si,jSn

i,j =0. The source terms within the
fluid domain are balanced by four sinks located
outside of the limb domain. We assume that
Sij =0 outside of the limb bud domain except at
the sinks.
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