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Abstract. We discuss theoretical and experimental approaches to three distinct developmental
systems that illustrate how theory can influence experimental work and vice-versa. The chosen
systems – Drosophila melanogaster, bacterial pattern formation, and pigmentation patterns – il-
lustrate the fundamental physical processes of signaling, growth and cell division, and cell move-
ment involved in pattern formation and development. These systems exemplify the current state
of theoretical and experimental understanding of how these processes produce the observed pat-
terns, and illustrate how theoretical and experimental approaches can interact to lead to a better
understanding of development. As John Bonner said long ago

‘We have arrived at the stage where models are useful to suggest experiments, and the facts of
the experiments in turn lead to new and improved models that suggest new experiments. By this
rocking back and forth between the reality of experimental facts and the dream world of hypotheses,
we can move slowly toward a satisfactory solution of the major problems of developmental biology.’
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1. Introduction
The word pattern, which stems from the French patron and the Latin patronus, means variously
a model or template (as in design), a regularly-repeating sequence of shapes, objects or states in
time and/or space (in mathematics), or more colloquially, something to be emulated. What does it
mean in biology? Often the term is used loosely to mean the variation of a structure or occurrence
or characteristic in space and/or time. For example, the leopard spots and zebra stripes shown in
Figure 1 show differing degrees of regularity, and animal coat markings in general usually do not
exhibit precise symmetry properties, yet we refer to them as patterns. Similarly, the arrangement of
hair follicles is referred to as a spatial pattern, even though its primary characteristic is a roughly
equal distance in space between the ‘units’. Obviously there are many levels at which what we
call pattern occurs, from the population-level, as in the bacterial patterns described later, to the
single organism level of animal coat markings (though many cells are involved here), to the single
cell level in early Drosophila melanogaster development. Certainly the mechanisms that generate
patterns at the different levels differ in detail, but some aspects are common: there must be a signal
of some sort, and mechanisms for detecting that signal and acting on it. Of course what the signal
is and what it means to act on the signal differs from case to case.

Skin pigmentation markings, such as the characteristic stripes of zebras or the spots of a leop-
ard, provide one of the most common and elegant examples of biological patterns (see Figure
1). Many of the advantages that accrue from the display of markings are obvious: these include
camouflage, warnings, like-recognition and mate attraction, yet a number of less apparent benefits
have also been set forth. For instance, in the case of zebra stripes these include social interactions,
thermoregulation and even protection from insects such as tsetse flies [193].

In the developmental context, the adult form of an organism is achieved by numerous repe-
titions of three basic developmental processes: (i) growth and cell division, (ii) morphogenetic
movements of cells and, (iii) determination and molecular differentiation of cells. The develop-
mental fate of either isolated cells or cells in a tissue is governed both by its current internal state
and by its previous history. Pictorially one can view the instantaneous internal state as a point in
a high dimensional space in which the coordinates are concentrations and other relevant factors,
and the evolution of the state in time determines a curve, or better a tube, given the inevitable
fluctuations in the state, in this state space. A cell is said to be determined when a particular
developmental pathway has been singled out, whereas it is differentiated when the program for
that pathway has been executed. At the molecular level, determination is generally viewed as ei-
ther preparation for transcription, or actual transcription, of a particular battery of genes, whereas
molecular differentiation involves the production of enzymes or structural proteins that alter the
morphology and function of a cell. These processes are more or less tightly coupled, though there
may be separate control of RNA processing, and hereafter we simply speak of differentiation.

1.1. Fundamental mechanisms of pattern formation
While significant advances in understanding the molecular components involved in signal trans-
duction and gene expression for model systems such as Drosophila melanogaster have been made
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Figure 1: Patterning at various levels. Top: The leopard and the zebra. (left) Persian Leopard, (Right)
Grevy’s zebra, Bottom: The fruitfly Drosophila melanogaster (left) and patterns in E. coli colonies (right)
(courtesy of J. Shapiro).

in the past forty years, the problem of pattern formation remains a major challenge. For some
time following the discovery of the structure of DNA, the prevailing attitude was that the prob-
lem would be solved if one could understand how the information encoded in genes is translated
into the patterns of synthesis that characterizes a given cell type. However, this was a faint hope,
because the developmental fate of a cell in a multicellular system (which we will call a tissue)
is determined not only by its genome, but also by its internal state, which in turn can depend on
its spatial position within the tissue. The genes do not determine the detailed program of cellular
activity, but rather, limit the scope of these activities. By setting bounds on the type of response
that is possible for a cell in a given environment at a given stage of its development, the broad out-
line of cell development is set, but details remain a function of the cellular environment. Because
gene transcription can be influenced by transcription factors in the cytoplasm, and because cells
can exchange material either directly via gap junctions or indirectly via the extracellular space,
intercellular communication can play a significant role in determining which part of the genetic
code is transcribed at a particular point in space and time.

1.1.1. Patterning controlled by prepatterns

Morphogen-based models for pattern formation and regulation fall into two main classes: those
with specialized regions that produce or degrade morphogens and those in which pattern emerges
spontaneously in an aggregate of identical cells. Models of the former type are generally described
as positional information models, but we call them prepattern models, since the next stage of
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patterning is predicated on the pattern established in a previous stage. The other main class has
two subclasses, one in which the pattern has a high degree of regularity with respect to some
reference frame, for example, the boundary of a tissue, whereas the other type is characterized by
a more or less random reference point of the structures, but also a more or less uniform spacing
between them. The canonical example of the first subclass is a Turing model, and an example of
the second is the spacing of hair follicles [42].

While spatial differentiation can certainly occur in a single isolated cell such as the Drosophila
egg, the difficult theoretical problems arise in tissues, because in order to produce position-dependent
differentiation, each cell must evolve along the appropriate curve in state space so as to select the
appropriate developmental pathway. Such space dependent differentiation or pattern formation
can be thought of as resulting from the cellular response to an appropriate spatial pattern of control
signals that establishes which genes are to be transcribed, which proteins produced, and what other
changes of cellular state are to be made. These signals can be biochemical or mechanical, and
may be the concentration of a critical substrate that produces changes in transcription, an extracel-
lular diffusable ligand that produces downstream changes in response to changes in occupancy of
receptors in the membrane, or some other cellular state variable. This primary pattern of signals,
which we call a prepattern, may be inherited or externally-maintained, or it may arise sponta-
neously within the tissue. Development usually proceeds in stages, and the pattern in one stage
often serves as the prepattern of the next, as will be seen in the context of Drosophila melanogaster.
In Alan Turing’s words ‘Most of an organism, most of the time, is developing from one pattern
into another, rather than from homogeneity into a pattern’ [219].

The spatial distribution of extracellular state variables defines what we call the morphogenetic
landscape to which the cells respond, and frequently alter by release of components into the ex-
tracellular space. When the signals in extracellular variables are diffusible molecules that affect
the internal state in a concentration-dependent manner, they are called morphogens, a term coined
by the British mathematician Turing [219]. More precisely, morphogens are defined as secreted
signaling molecules that (i) are produced in a restricted portion of a tissue, (ii) are transported by
diffusion [116], active transport, relay mechanisms, or other means to the remainder of the tissue
[109], (iii) are detected by specific receptors or bind to regulatory regions of DNA, and (iv) initi-
ate an intracellular signal transduction cascade that initiates or terminates the expression of target
genes in a concentration-dependent manner. The concept of a morphogenetic landscape, usually
described as a developmental field similar to the classical fields in physics, played a role through-
out the early history of theoretical work in pattern formation [40]. When morphogens are involved,
the morphogenetic landscape usually varies smoothly in space, but as the zebra exemplifies, and
as will be seen later for Drosophila melanogaster, there is often a very sharp delineation between
different elements of a pattern. Thus the response to an established prepattern may require con-
version of a smoothly-varying extracellular signal into a step-like response via some downstream
thresholding mechanism.

The early theories of developmental fields were synthesized into the theory of positional infor-
mation by Wolpert [235]. Formally the theory posits that a cell must ‘know’ its position relative to
other cells in order to adopt the correct developmental pathway, but of course what a cell ‘knows’
is determined by the information it extracts from the past and current signals received. Drosophila

4



H. G. Othmer et al. The intersection of theory and application in developmental biology

melanagaster is one of several model systems discussed later for which a number of morphogens
have been identified, and for which many of the components of the signal transduction and gene
control networks involved in patterning are known. However, less is known about how these net-
works produce the desired spatio-temporal pattern of gene expression.

1.1.2. Spontaneous emergence of pattern

To distinguish between the control mechanism underlying spontaneously-forming patterns that
are fixed with respect to a boundary from those characterized by a more or less random location
but regular spacing, consider a two-dimensional network of cells, each of which is coupled to its
nearest neighbors by junctional membranes, and suppose that the network is effectively isolated
from the remainder of the organism. In the second type of pattern, the spatial distribution of
differentiated cells is not rigidly fixed relative to the boundary, but rather, the spacing between
differentiated cells is approximately constant. Examples of this kind of pattern include the location
of certain kinds of insect bristles [43], the spacing of hair follicles [42], the pattern of peripheral
nerve connections in vertebrates, the eye where Notch-Delta signaling is involved [60, 27] and in
general, any pattern in which the absolute number and location of pattern elements is less important
than the final density of these elements.

In contrast, the first type of pattern contains a fixed number of structures located at more or
less fixed positions. Examples of this type abound: on many insects the sensory structures on the
epidermis are arranged in a constant number of rows with a fixed number of structures in each
row. Other examples are the over-all body segmentation pattern in arthropods and worms, the
segmentation of internal structures such as vertebrate somites, and the synaptic connections of
retinal ganglion cells in the midbrain tectum. In many of these examples the number of structures
is constant over a wide range of total cell number and hence aggregate size, thereby reflecting a
high degree of regulation with respect to the number of structures. Figuratively speaking, these
systems behave as though the basic pattern is embedded in a rubber sheet and then stretched or
compressed to accommodate to the overall size of the organism.

It is easy to construct a hypothetical control scheme for the second type of pattern. As an exam-
ple, consider an insect bristle pattern and suppose that initiation of bristle formation occurs when
the concentration of some essential substrate exceeds a threshold level. Further, suppose that every
cell produces this substrate, that growth and maintenance of a bristle requires a constant supply of
the substrate, and that the production rate in a single cell is insufficient to support a bristle. If all
cells are initially below threshold, initiation will occur in randomly-located cells in the aggregate.
If the cells are all coupled and the substrate can diffuse between cells, bristle formation in a given
cell will deplete the substrate in surrounding cells and prevent formation of nearby bristles. Statis-
tical analysis of the final density of structures that can be supported has been carried out and the
results agree very well with observed densities, not only for bristle patterns but also for hair follicle
patterns in several different species [76]. An alternate hypothesis that leads to similar patterns has
it that each bristle, once initiated, emits an inhibitory substance that prevents formation of bristles
nearby. At present one cannot decide between the depletion and inhibition models because the
molecular basis of the control scheme is not yet known. In a related problem, Jung, et al. [100]
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show that the feather tract is initiated by a continuous stripe of sonic hedgehog and growth factor
expression in the epithelium, which then separates into distinct feather primordia. They develop a
complex model that involves a uniformly-distributed activator, an activator of primordium ‘com-
petence’ that propagates across the field, and local activators and inhibitors whose production is
initiated in primordia.

The random-initiation-site model is clearly inadequate for producing the precisely-ordered pat-
terns of the first type, and the most interesting theory proposed for the generation of such patterns
is due to Turing [219]. In Turing’s model two or more chemical substances called morphogens
react within each cell and diffuse between cells. All cells are assumed to be identical initially and
cells at the boundary are closed, and thus the reaction-diffusion equations that describe the model
have a solution that is spatially- uniform. What Turing showed is that this uniform state can be un-
stable to some non-uniform disturbances if the kinetic interactions and the diffusion constants are
chosen appropriately. Such instabilities, which Turing called symmetry-breaking, can lead to ei-
ther a steady or time- periodic nonuniform distribution of morphogens. The unstable wavelengths
are fixed by the kinetic coefficients and the diffusivities, and therefore each unstable system has
an intrinsic chemical wavelength. Thus identical systems will give rise to an identical distribution
of morphogens and, via an appropriate interpretation mechanism, to an identical pattern of cell
differentiation. Turing himself suggested that the model could account for the regular spacing of
tentacles on Hydra and that it might be applicable to phyllotaxis. In the early sixties several biolo-
gists used the model to explain the pattern of sensory structures on the epidermis of certain insects.
Since none of the morphogens were identified in any of the systems, the applicability of the model
to these systems still remains in doubt.

More recently the existence of theoretically-predicted patterns has been demonstrated un-
der carefully controlled experimental conditions in the “CIMA” (Chlorite-Iodide-Malonic Acid-
Starch) reaction, [39, 54, 171]. When all of the measured parameters are entered into the mathe-
matical model derived from the known chemical reactions, excellent agreement is found between
the predicted patterns and those observed experimentally [120]. These and further observations
leave little doubt that interactions of reaction and diffusion can give rise to instabilities and result
in well-defined spatial patterns (cf. also [127]).

What remains in doubt is whether the mechanism is applicable to any biological systems. Two
potential applications are the generation of feather bud tracts in birds and hair follicle patterns of
mammals (cf. also [87], this issue). In the former, Jung et al. [100] have identified a number of
activators and inhibitors that are involved in feather bud formation and suggest that the patterning
may involve a Turing mechanism, but this remains to be shown. In the latter Sick et al. [207] report
experimental evidence that Wnt and its inhibitor Dkk function as an activator-inhibitor pair in the
Turing sense for hair follicle formation. On the other hand, Mou et al. [142] report the additional
activator-inhibitor coupling between Edar receptor and its inhibitor BMP in localizing follicles.
The incorporation of these interactions along with further species into the actual network raises
questions as to whether a two-component representation will be adequate in practice. The best that
can be done at present is to withhold judgment until more concrete tests of its applicability are
possible.
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1.1.3. Spatial patterns in populations of mobile units

In the previous discussion we focused on patterning in systems of immobile objects, whether
a single cell or a network of connected cells. In these systems the spatial patterning requires
mechanisms for distinguishing the states of adjacent cells or regions within a cell, and reaction-
diffusion mechanisms have been widely-invoked in this context. However, when the functional
units are mobile, movement of the units may play an essential role in pattern formation, which
adds a potentially-important new pattern-generating mechanism. Self-organization at the popula-
tion level gives rise to flocks of birds, schools of fish, herds of various mammals, and at a lower
level, various types of aggregations in single-cell organisms. It is only recently that the importance
of multicellular organization in prokaryotes, aside from examples such as Myxococcus xanthus,
has been recognized [201]. It is now known that intercellular communication and coordination are
widespread in prokaryotes, and many different classes of signaling molecules have been identified.
Current interest in this phenomenon stems from the discovery of quorum-sensing molecules such
as the N-acyl homoserine lactones, and their possible role in biofilm formation [68]. Much sim-
pler, and more tractable from the modeling standpoint, examples of pattern formation arise in E.
coli, S. typhimurium, and B. subtilis colonies [34, 35, 201]. Pattern formation in E. coli , which we
discuss in detail later, involves sensing of extracellular signals and alterations in the swimming be-
havior of individuals, as well as production of the attractant. However, spatial patterns can involve
millions of cells, and heretofore modeling of them has been primarily phenomenological; details
of the cell-level behavior were not incorporated into the equations that describe population-level
behavior until recently.

Another example of self-organized pattern formation in unicellular organisms arises in the so-
cial amoeba Dictyostelium discoideum, which uses oscillatory signaling for aggregation [168].
These cells normally live in forest soil where they feed on bacteria [28], but when the food supply
runs out amoebae express receptors that allow them to detect cAMP. They can also relay cAMP
signals, and after about eight hours post-starvation, randomly located cells called pacemakers be-
gin to emit cAMP periodically. Nearby cells detect the signal, move towards the cAMP source,
and relay the cAMP signal to more distant cells. Eventually the entire population collects into
mound-shaped aggregates, each containing up to 105 cells. Mounds elongate to form slugs, which
topple over and migrate over the substratum. At this stage cells also start to differentiate into pre-
stalk and prespore cells, which occurs randomly in a mound. However, as a result of cell sorting
and cAMP signaling, the prestalk cells end up in the anterior quarter of the slug, while the prespore
cells occupy the remaining posterior part. When conditions are favorable, the slug tip is extended
upwards, the anterior prestalk cells become immobilized in a central stalk tube, which the remain-
ing cells use as a support for upward movement. When the stalk has reached a certain length the
prespore cells mature into spores, which remain dormant until they are dispersed and find condi-
tions favorable for growth. The autonomous production and relay of cAMP pulses by starving cells
results in a very efficient process of chemotactic aggregation, and cAMP oscillations subsequently
organize the transformation of mounds into slugs, the migration of slugs over the substratum, and
the culmination into fruiting bodies.
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1.2. The role of modeling in understanding patterning
The theoretical papers by Turing [219] and Wolpert [235] provided a framework within which
to formulate hypotheses about pattern formation and differential gene expression, but it was not
until 1988, thirty six years after Turing’s paper and nearly twenty years after Wolpert’s, that the
first morphogen was identified in a biological system. Driever and Nusslein-Volhard found that
changing the level or distribution of bicoid mRNA (bcd) resulted in changes in the bicoid (Bcd)
protein distribution and a subsequent shift of anterior structures that respond to Bcd in Drosophila
[59, 58]. In addition to Bcd, a number of other morphogens have been identified, including the
bone morphogenetic proteins, members of the fibroblast growth factor (FGF) family, the epithelial
growth factor (EGF) family, and additional members of the transforming growth factor-β (TGF-β)
family (reviewed in [115, 191]). Many questions about the various steps in Bcd signaling remain
twenty years after the discovery of Bcd as a morphogen, but they go beyond the identity of the
molecular components involved.

Currently rapid progress on many questions in pattern formation can be made by integrating
mathematical modeling with experimentation in order to understand the mechanisms of patterning
in various systems. Over the past decade there has been an explosion in the number of papers that
couple mathematical modeling with experimentation to understand the biology, determine biophys-
ical parameters, and provide a platform for hypothesis testing. Mathematical, mechanistic-based
models are thus serving as tools for biological discovery in new and exciting ways, and in many
instances the mathematical models are leading the biology, rather than simply explaining existing
observations. Mathematical models for Drosophila oogenesis, Bcd patterning, BMP-mediated pat-
terning, planar cell polarity, EGF patterning, and segment polarity have all led to experiments that
would have not have otherwise been carried out, and contributed greatly to our understanding of
those systems [241, 77, 206, 3, 184]. Some of these will be discussed later.

Numerous phenomenological models for patterning were developed well before the discovery
of the first morphogen in a biological system, and continue to have a substantial impact today.
The most prominent example is the Turing model discussed earlier, which has served precisely as
Popper held scientific theories should, i.e., a theory should be considered scientific if and only if
it is falsifiable. More colloquially, it is said that ‘all experiments ever do is ruin a good theory’,
and this is what should be expected when developing a mathematical model. If the modeling work
is compelling enough that it leads to experiments, which may take years to complete, the data that
emerge from this endeavor will increase our understanding of the underlying mechanisms, and
may very well invalidate some components of the model.

The availability of experimental data for Bcd and other morphogens has led to a shift from
predominantly phenomenological models to mechanism-based models, the goals of which are not
only to explain the existing observations within a mechanistic framework, but to also be useful as
tools for discovery by biologists, biochemists, and geneticists. Some examples of how mathemati-
cal models of development have been used in the past are as follows.

• Determine what theoretically-possible mechanism(s) may work. This involves phenomeno-
logical modeling or initial hypothesis testing [61, 138, 203, 224] .
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• Determine how the system works: Quantitatively measure transport and molecular mecha-
nisms of pattern formation and include this information in the model [184, 82, 110, 83, 224,
200]. This also includes simulating aspects of patterning that are not easily observed such as
morphogen dynamics [224, 97, 138, 3].

• Determine why the system works as it does: Identify mechanisms that confer reproducibility,
insensitivity, scale-invariance, or other beneficial performance objectives [61, 227, 224, 82,
203, 190, 83, 50, 167, 223, 21, 81].

As a specific example, mathematical modeling has proved very helpful in uncovering mecha-
nisms of bacterial pattern formation, as illustrated by the following.

• E.coli can sense and adapt to ligand concentrations spanning five orders of magnitude, and
can detect a change in occupancy of the aspartate receptor Tar of as little as 0.1% [29].
The gain of the system, defined as the change in bias divided by the change in receptor
occupancy, can be as high as 55 [197], and mathematical modeling has been integrated with
experimentation to understand the source of the high gain. The model developed in [210]
predicted that in the absence of cooperativity in signal transduction, a Hill coefficient of at
least 11 for binding of CheYp at the motor was needed to explain the observed gain of 3-6,
and this was subsequently confirmed experimentally [44].

• When E. coli cells secrete a substance to which they also respond, complex patterns may
form under different growth conditions (cf. Section 4.). The hybrid cell-based model de-
scribed later provides opportunities to investigate the importance of intracellular processes
during pattern formation by tuning intracellular parameters. One example starts from a
steady state of the Patlak-Keller-Segel system with random noise. Simulation in 1D reveals
that a longer adaptation time leads to a larger aggregate size, while either no adaptation or
instantaneous adaptation preclude aggregation. Therefore a finite time for adaptation to the
signal is important for aggregate formation, which explains the experimental finding that
adaptation-defective mutants cannot aggregate.

System-specific details on how theoretical and experimental work has interacted to illustrate
Bonner’s assertion are given in the remainder of the paper. In the following section we give a
brief introduction to the mathematics and physics of pattern-forming processes, and discuss the
modeling process in general terms. In Section 3. we treat patterning in Drosophila melanogaster,
for which the morphogens are known and cell differentiation involves a prepattern: Bcd along
the anterior-posterior axis and others along the DV axis. Here the primary processes are reaction
and diffusion, since the movement of nuclei to the periphery of the egg is not taken into account
in the model. Section 4. deals with bacterial patterning, where pattern arises spontaneously due
to signaling and cell movement. Both hybrids of cell-based and continuum models, as well as
pure continuum models are used here, and the spatial patterns that emerge are primitive forms of
biofilms. In addition to cell-cell signaling, cell motility plays an essential role here. In Section 5.
we discuss pigmentation patterns that occur in butterflies, fish and mammals. As in the bacterial
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patterns, both spontaneous pattern formation and cell movement are involved, but in these systems
patterning occurs on a growing domain, and growth can modify the patterning process significantly.

2. An overview of the mathematics and physics of pattern for-
mation

2.1. The French flag problem
In the simplest version of a prepattern model, either specialized source and sink cells located at the
boundary of the developmental field maintain the concentration of the morphogen at appropriate
fixed levels, or they produce the morphogen at a fixed rate. In the former case, absent degradation
of the morphogen, a linear distribution can be established in a one–dimensional system of about 1
mm in length in the time that is normally available for commitment to differentiation [236, 51], and
given fixed thresholds between different cell types, the tissue can be proportioned into any number
of cell types in a perfectly scale–invariant way. However this scheme clearly has limitations, since
the flux between source and sink in a one-dimensional system of length L scales as 1/L, and thus
the morphogen producing or consuming cells at the boundary must adjust production to adjust for
the size of the system. For the latter case we introduce a simple version in which the flux at the
boundary, rather than the concentration, is specified – generalizations will be discussed later in the
context of Drosophila patterning. Suppose that a single morphogen is produced at the boundary of
a one-dimensional system, diffuses through the region, and decays via a first-order reaction. The
governing equations for the steady-state morphogen concentration c are

D
d2c

dx2
= κc x ∈ (0, L)

−Ddc

dx
= j x = 0 (2.1)

dc

dx
= 0 x = L.

In scaled coordinates this becomes

d2c

dξ2
= λ2c ξ ∈ (0, 1)

−dc
dξ

= J ξ = 0 (2.2)

dc

dξ
= 0 ξ = 1,

where
λ2 ≡ κL2/D and J = jL/D.
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The solution of this is

c(ξ) =
J

λ

[
eλ(2−ξ) + eλξ

e2λ − 1

]
≡ J

λ
φ(ξ) =

j√
κD

φ(ξ).

Thus the stationary distribution is characterized by one dimensionless parameter λ that is the
ratio of a diffusion time scale τD ≡ L2/D and a kinetic time scale τK ≡ κ−1, and a dimensional
parameter that is the ratio of the input flux j to a characteristic velocity defined by the diffusion
constant and the decay rate. The former enters in the shape function φ via the exponential terms
and determines how rapidly the morphogen concentration decays in space: the larger λ the more
rapidly the solution decays from the value at the source. It is clear that for a fixed input flux j
both the amplitude and the shape of the morphogen distribution depend on L, and thus this simple
mechanism does not suffice when significant variations in length occur in the developing sys-
tem. More complex patterning driven by prepatterns can result when there are several specialized
boundary regions. One example arises in vertebrate limb development, where specialized regions
called the ZPA and the AER direct outgrowth and patterning [57]; others to be discussed later
include dorsoventral (DV) patterning in Drosophila melanogaster and the localization of eyespots
in butterfly wing markings.

2.2. The standard Turing model
Turing models involve at least two morphogens that interact chemically and diffuse passively in
a network of identical cells [219]. Turing only considered periodic systems or closed surfaces, in
which case no boundary conditions are needed. More generally, any system of reaction-diffusion
equations in which the kinetic mechanism has certain structural features described later, and for
which the boundary conditions are of the same type for all species, will be called a Turing system
[56]. Under certain conditions described later, instabilities of a spatially-uniform stationary state
may develop and lead to either a spatially non–uniform stationary state or to more complicated
dynamical behavior. The resulting non-uniform distribution might in turn lead, via an unspeci-
fied ‘interpretation’ mechanism, to spatially nonuniform differentiation. Most analyses of Turing
models only treat instabilities of uniform stationary states, since numerical analysis is generally
required for more general stationary states. However, Turing himself recognized the biological un-
reality of this in stating that ‘most of an organism, most of the time is developing from one pattern
to another, rather than from homogeneity into a pattern’ [219]. An excellent review of some of the
background on pattern formation, particularly of two-component Turing systems, is given in [52]
and applications of two component systems to biological problems is described in [75, 131, 10].

In the following analysis we will assume that the temporal dynamics in a spatially uniform
system are governed by the solution of a system of ordinary differential equations. Let Ω be a
bounded region in <q, q ≤ 3 with a smooth boundary and outward normal n. The simplest version
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of Turing’s model for pattern formation is described by the system of reaction–diffusion equations

∂c

∂t
= D∇2c+ R̄(c, p̄) in Ω

n ·D∇c = 0 on ∂Ω (2.3)
c(r, 0) = c0(r),

where c = (c1, c2, · · · , cm)T , D is usually assumed to be a constant diagonal matrix, and R̄ is the
reaction rate vector. We assume for the present that all Di > 0. The reaction term R̄(c, p̄) may
also contain mass transfer with the surroundings, for if the system is thin in one dimension then
averaging across that dimension leads to a system such as (2.3) with transfer terms [169].

Let ω−1 be a time scale characteristic of the reactions, let L be a measure of the size of the
system, and let Ci be a reference concentration for the ith species. Suppose that the species are
ordered so that maxi{Di} = D1. Define the dimensionless quantities ui = ci/Ci, τ = ωt,
θi = Di/D1, ν = D1/ωL

2, and ζ = r/L, where r ≡ (x1, · · · , xq). The dimensionless governing
equations are

∂u

∂τ
= νD∇2u+R(u, p) in Ω

n · ∇u = 0 on ∂Ω

u(ζ, 0) = u0(ζ),

(2.4)

where D = diag{1, θ2, . . . , θm} and R(u, p) is the dimensionless form of R̄(u, p). It is easy to
show from (2.4) that when the reaction term is absent, the solution relaxes exponentially to the
average concentration set by the initial conditions. It follows that whenever the relaxation time
for diffusion of each species is sufficiently short compared to that of the chemical reactions, the
solution of the variational equation should relax to zero. The relaxation time of the kinetics relative
to that of diffusion is given by ν = ω−1/(L2/D1), and one should expect that solutions of the
nonlinear problem will also converge to spatially uniform solutions when ν >> 1. In particular,
this should occur when L is sufficiently small, which has been shown rigorously in [162, 45, 7].

However, Turing showed that diffusion could destabilize a steady state that is stable in the
absence of diffusion, and when this occurs one calls it a Turing or diffusive instability. In order to
define this precisely we have to consider the variational system associated with (2.4). Suppose that
us is a time–independent solution of (2.4), and suppose that we linearize (2.4) around us. If we let
ξ = u− us, then we obtain the variational system

∂ξ

∂τ
= νD∇2ξ +Kξ

n · ∇ξ = 0 (2.5)

ξ(ζ, 0) = ξ0(ζ).

12
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By assuming solutions of the form ξ = eλτΨ, we obtain the spectral problem

νD∇2Ψ + (K − λI)Ψ = 0

(2.6)
n · ∇Ψ = 0.

This is an n-component spectral problem and the eigenfunctions are difficult to obtain in general,
but if us is a constant the eigenfunctions can be written Ψjn = yjnφn, where φn is a solution of the
scalar eigenvalue problem

∇2φn = −α2
nφn

n · ∇φn = 0.
(2.7)

It follows that the vector yjn ∈ <m is a solution of the algebraic eigenvalue problem

(K − µnD − λI)y = 0, (2.8)

where µn ≡ α2
nν. Generically the eigenfunctions are complete, and the solution of the variational

equation can be written

ξ(ζ, τ) =
∞∑
n=0

e(K−µnD)τynφn(ζ), (2.9)

where the yn ∈ <m are determined by the initial data†. Thus stability in an L2(Ω) sense for the
linearized reaction-diffusion equation with homogeneous boundary conditions is governed by the
eigenvalues of the family {K − µnD}∞n=0. It is also well–known that the principle of linearized
stability holds for equations like (2.5), which means that asymptotic stability or instability for the
zero solution of the variational equations implies the same properties of the solution us of the
nonlinear equations.

The spatial eigenfunction φn(ζ) determines the spatial variation of that mode, but this has the
equivalent form

φn(ζ) = φ(αnζ) = φ
(αn
L
r
)
, (2.10)

where φ is the solution of
∇2φ = −φ in Ω

with homogeneous Neumann boundary conditions. Thus all of the spatial modes can be obtained
from a universal function by appropriately scaling the argument, but this only holds in the case of
homogeneous boundary conditions.

Since the Laplacian has a compact inverse for a reasonable domain, the variational problem
has a discrete spectrum, but it is convenient at present to replace µn with a continuous variable.
Then stability of us is governed by the character of the eigenvalues of the one-parameter family of
matrices {K − µD} for µ ∈ <+, and a diffusive instability is defined as follows [56].

†The mathematical structure of the solution is essentially unchanged if one considers a regular lattice of cells that
interact with their neighbors via a passive diffusive flux proportional to the concentration differences; all that changes
is that the sum is finite [169, 7].
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Definition 1. Suppose that us is asymptotically stable as a steady–state solution of u′ = R(u, p).
We say that a zero–amplitude diffusive instability of us exists if there exist µ±, 0 < µ− ≤ µ+ <∞,
such that K − µD has at least one eigenvalue with a positive real part when µ ∈ (µ−, µ+). If for
some µ∗ ∈ (µ−, µ+), K − µ∗D has a single real positive eigenvalue the instability is stationary at
µ∗, while if K−µ∗D has complex eigenvalues with a positive real part the instability is oscillatory
at µ∗.

Thus whenever the first eigenvalue that crosses from the left-half plane (LHP) to the right-
half plane (RHP) is real the instability is stationary, and generically this leads to bifurcation of
a stationary solution from us, whereas oscillatory instabilities generically lead to bifurcation of
periodic solutions from us.

In the study of pattern formation one is interested in conditions on the kinetics under which
Turing instabilities can arise, and the following theorem summarizes necessary conditions for sta-
bility of a uniform steady state. From this one can identify the type of kinetic interactions that can
potentially give rise to diffusive instabilities under appropriate conditions on the parameters. In the
theorem, K[i1, i2, · · · , ip] denotes a p×p principal submatrix ofK formed from rows and columns
i1, i2, · · · , ip for 1 ≤ p ≤ n− 1.

Theorem 2..1. [163] Let D be diagonal with Dj ≥ 0. In order that σ(K − µD) ⊂ LHP for all
such D and all µ ∈ [0,∞), it is necessary that

• σ(K) ⊂ LHP

• σ(K[i1, i2, · · · , ip]) ⊂ LHP for all pth-order submatrices of K, where 1 ≤ p ≤ n− 1.

These conditions are also sufficient for linearized stability for all µ ∈ [0,∞) for n = 2 and n = 3.
The physical interpretation of how instabilities arise at positive wavelengths when one of the

conditions in Theorem 2..1 is violated goes as follows. Suppose that there is an unstable subsystem
of order p represented by K1, and suppose that K is partitioned as in the proof of Theorem 2..1,
i.e.,

K =

[
K1 K2

K3 K4

]
.

By hypothesis, the complementary subsystem, whose matrix is K4 and which comprises species
p + 1 through n, is stable. The off-diagonal blocks K2 and K3 represent the interaction between
the two subsystems. Were K2 and/or K3 identically zero, the two subsystems would be uncoupled
and the composite system of species 1 . . . n would be unstable. However, because the unstable
subsystem is embedded in a larger network, the instability in the subsystem can be suppressed
through stabilizing interactions with the rest of the network in a spatially-homogeneous system.

When spatial variations are allowed, the amplitudes of the Fourier components of any distur-
bance satisfy the equation

dyk
dτ

= (K − µkD)yk

and if we choose

D =

[
0 0
0 I

]
14
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and partition yk appropriately, then

dyk1
dτ

= K1yk1 +K2yk2

(2.11)
dyk2
dτ

= K3yk1 + (K4 − µkI)yk2.

Since σ(K1)∩RHP 6= ∅, yk1(τ) grows exponentially if yk2(τ) ≡ 0. Of course yk2(τ) 6≡ 0 initially,
but if µk is large enough it will decay rapidly and its stabilizing effect on yk1 will be lost. Thus
diffusion offsets the influence of the stable subsystem by quenching the amplitude of the stable
components.

A similar analysis can be done when the reference solution is a spatially-uniform periodic
oscillation, rather than a steady state, and the result is that synchronized oscillations can also be
destabilized when the diffusion coefficients differ appropriately [162].

2.2.1. Diffusive instabilities for two component systems

When a diffusive instability cannot be ruled out, a more detailed analysis of how the intervals of
unstable wave numbers depend on the linearized kinetic parameters and on the ratio of diffusion
coefficients for a two-component system goes as follows (cf. [161, 149]). When there are only
two components the only diffusive instabilities possible are stationary for non-negative diffusion
coefficients, and thus instability occurs if det(K − µD) becomes negative for some µ. Suppose
that the second component is self-activating, which means that k22 > 0, then one finds that µ± > 0
only if θ ≡ D2/D1 < −k22/k11

‡. Furthermore, for fixed kij the discriminant of det(K − µD) is a
quadratic in θ, the roots of which are

θ± =
detK − k12k21 ± 2

√
−k12k21 detK

k2
11

.

It can be shown that

0 < θ− <
−k22

k11

< θ+,

and therefore the maximum allowable θ for which a zero–amplitude diffusive instability occurs at
some µ > 0 is θc ≡ θ−. Note that if trace K = det K = 0, then θ± → 1, which means that a
diffusive instability can occur when the ratio of the diffusion coefficients is arbitrarily close to one,
provided that both eigenvalues of the Jacobian for the kinetics are sufficiently close to zero. This
conclusion carries over to n-component systems as well [182].

At the critical value θ of the ratio of diffusion coefficients, the critical µ is

µ+ = µ− ≡ µc =
k22 + θck11

2θc
, (2.12)

‡In section 5.2.1. Figure 14, we display representative examples of the types of stationary patterns that can emerge
for a specific two-component system in two space dimensions.
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and the corresponding critical wave number is

αc

L
≡

√
µcω

D1

=

√
ω

D1

(
k22 + θck11

2θc

)
. (2.13)

The reciprocal of this defines a natural or intrinsic wavelength at marginal instability, which Turing
[219] called the chemical wavelength. It is determined by the physico-chemical properties of the
system, in particular the kinetic sensitivities at the steady state and the diffusion coefficients, but is
independent of any geometric properties of the domain. In a one–dimensional system of length L
with homogeneous Neumann boundary conditions, αn = nπ, n = 0, 1, · · · and φn = cosnπx/L,
while under homogeneous Dirichlet conditions αn = nπ, n = 1, · · · and φn = sinnπx/L. In
either case the critical wave number is indexed by the integer n closest to

L

π

√
ω

D1

(
k22 + θck11

2θc

)
(see [163]). IfK and D are such that there is a positive real eigenvalue ofK−µD for µ ∈ [µ−, µ+],
then perturbations containing the mode φn are unstable when

L ∈
[
L−
n , L

+
n

]
=

[
nπ

√
D1

ωµ+
, nπ

√
D1

ωµ−

]
. (2.14)

In a slowly growing system, one expects that as L increases from zero the uniform steady state
always loses stability with respect to φ1 first and is linearly unstable with respect to φ1 over the
range

∆L1 ≡ L+
1 − L−

1 = π

√
D1

ω

[
1√
µ− − 1√

µ+

]
.

A more detailed analysis of growth shows that this is correct for growth that is very slow compared
to the reaction and diffusion dynamics, but a more detailed analysis is needed in general, as will
be shown later.

Assuming that growth is sufficiently slow, a simple measure of the range for which the quali-
tative features of small-amplitude patterns are invariant under changes in length is the interval of
instability for the nth mode, which is given by

∆Ln = nπ

√
D1

ω

[
1√
µ− − 1√

µ+

]
.

Whenever n is large enough or θ is sufficiently small, the intervals overlap and there is more than
one mode to which the uniform steady state is unstable. In this case it is possible that more than one
spatially-varying solution is stable or that the spatial distribution of the morphogens in the stable
solution bears little resemblance to the spatial variation of the eigenfunctions. Thus linear analysis
gives little information about scale–invariance in the full nonlinear model in these cases, but it
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emphasizes again the fact that Turing’s model does not show perfect scale–invariance. Models
with different boundary conditions on different species, for instance homogeneous Neumann on
some species and homogeneous Dirichlet conditions on the others, show greater insensitivity to
changes in scale [56], and perfect scale-invariance can be achieved by modulating either the kinetic
coefficients or the diffusion coefficients appropriately, as is discussed later.

2.3. Other morphogen transport mechanisms
In either Turing’s model or models based on source-sink mechanisms, the system is regarded as a
homogeneous medium in which reaction occurs and transport is by passive diffusion as described
by Fick’s law, for which the flux of a species is proportional to the spatial gradient of that species.
However there are several other modes of cell-cell communication, including the following.

• Indirect transfer via secretion into the extracellular space followed by re-uptake by a variety
of mechanisms. The analog of Turing’s problem for this mode of communication has been
analyzed for passive secretion and uptake mechanisms [163], but detailed models of endo-
and exocytosis have not been included in this context. This is a formidable task, as the
example of the Drosophila wing disc shown in Figure 2 suggests.

• All-to-all communication, in which all cells release the signaling species and all detect and
perhaps internalize the signal [164]. While not useful for establishing a spatial pattern, this
mode does serve as a quorum-sensing mechanism [16, 8, 78] that can control gene expression
and cell motility, and may be involved in size-regulation in some systems [95].

• Direct cell-cell communication, either via gap junctions or direct receptor-ligand interactions
(which is often called juxtacrine signaling). Numerous examples of both types are known:
in the Drosophila melanogaster, wing disc cells are coupled via gap junctions [232], but
juxtacrine signaling via Notch and various ligands is used for establishing compartment
boundaries or directing neighboring cells to adopt different fates.

• Active transport, for instance along microtubules, may play a role in polarizing cells.

Several of these mechanisms play an important role in the patterning of the wing disc in Drosophila,
as illustrated in Figure 2.

Frequently the complexity involved in the interactions of the different processes is hidden by
analyzing the spread of morphogens using a simple reaction-diffusion system such as (2.3) [110],
but how to relate the individual steps in what may be a very complex process to such a high-level
description is not known.

Processes such as directed transport along microtubules require different descriptions of trans-
port, and we discuss two of them here. The first is a generalization of the simplest Brownian
motion model that leads to Fick’s law, in which particles execute a random walk in space due to
their interaction with the background particles in the medium. We call this the position- or space-
jump process, since it comprises a sequence of alternating pauses and jumps. In pure molecular
diffusion the pauses are negligible but when, for example, binding is allowed, the duration of a
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Figure 2: Patterning of epithelial cells in the Drosophila wing imaginal disc. The morphogen Dpp patterns
the Anterior/Posterior compartments of the Drosophila wing imaginal disc in (A) top view showing the pouch
and (B) slice (along dotted line in (A)) showing the geometry of the columnar cells. (C-D) Dpp establishes
a non-uniform distribution to pattern the anterior/posterior axis by transport and reaction. Numerous pro-
cesses may contribute to formation of the Dpp distribution including diffusion around columnar cells (C) or
transcytosis through columnar cells (D). Dpp secreted in the basolateral space cannot enter the lumen and
vice versa due to the presence of septate junctions (SJ) in (D).

pause is governed by an exponential waiting time distribution. Furthermore, the direction of the
steps is uniformly distributed and the distribution of lengths sharply peaked. A general formulation
that can be reduced to the simplest diffusion process leads to the renewal equation

P (x, t|0) = Φ̂(t)δ(x) +

∫ t

0

∫
Rn

φ(t− τ)T (x,y)P (y, τ |0) dy dτ, (2.15)

wherein P (x, t|0) is the probability that a particle that begins at the origin at time 0 will be at x ∈
Ω ⊂ Rn at time t, φ is the waiting time distribution, Φ̂ is the complementary cumulative waiting
time distribution, and T is a kernel that determines the next position x for a walker currently at y
[165]§. The primary assumption in this formulation is that the waiting time between jumps and the
size and direction of a jump are uncoupled. Under suitable assumptions concerning the existence
of limits as the mean step size goes to zero and the frequency of stepping goes to infinity, the
process is governed by a diffusion equation, but other evolution equations will result for other
waiting time distributions or other jump kernels. Using this formalism it is easy to incorporate
‘resting’ or transient ‘trapping’ states, and thereby to model various modes of binding or temporary
localization. If for example, the waiting time distribution has a sufficiently fat tail this can lead to
what is called ‘sub-diffusion’, for which the mean square displacement of a particle is characterized
by < r2 >∝ tα, for α < 1 [194].

§This result is a generalization of an earlier result due to Scher and Lax [195] for lattices. The authors of [165]
were unaware of the earlier result until very recently.
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2.4. The mathematical description of chemotaxis
Formation of spatial patterns of morphogens and cell determination may also involve cell move-
ment in addition to reaction and transport. A dramatic example of this occurs in the formation
of pigmentation patterns, which are discussed in Section 5. For instance in fish, various types of
pigment cells migrate in the epithelium to form the variety of spots and stripes that are observed.
Although it has not been established experimentally, it is likely that pigment cells respond to a
spatial distribution of chemical attractants and repellents, and thereby establish the spatial pattern
of pigment cells. A phenomenological model of cell movement in response to chemoattractants or
chemorepellents leads to what is called the classical chemotaxis equation or the Patlak-Keller-Segel
(PKS) chemotaxis equation (2.18), and this has been applied to model chemotactic movement in
many different contexts [104, 105, 106, 180, 70, 128, 4, 192]. In Sections 4. and 5. we summarize
models of bacterial pattern formation in E. coli and fish pigmentation, respectively, that employ
the PKS equation. Here we provide a brief introduction to the derivation of this equation.

Let n(x, t) denote the cell density as a function of space and time, and suppose that in the
absence of chemosignals cells execute an unbiased random walk. Under a suitable scaling of space
and time, n evolves according to a diffusion process governed by

∂n

∂t
= ∇ · (Dn∇n), (2.16)

where Dn is the diffusion coefficient of the cells. The diffusive flux is given by j = −Dn∇n,
which is simply Fick’s law applied to cells. In the presence of a gradient of a chemosignal one
postulates that the random walk is biased, which gives rise to a chemotactic drift. To incorporate
the drift, the phenomenological form

j = −Dn∇n+ χ(n, S)n∇S (2.17)

is often used, and the evolution equation for cell density becomes

∂n

∂t
= ∇ · (Dn∇n− χn∇S). (2.18)

The coefficient χ = χ(n, S, ...) is called the chemotactic sensitivity, us = χ∇S is called the
macroscopic chemotactic velocity, and equation (2.18) is called the classical chemotaxis or PKS
equation.

Equation (2.18) was first derived by Patlak [181] from a random walk with ‘persistence of
direction’ and ‘external bias’. Persistence of direction means that the direction of the next step is
correlated with that of the previous step, whereas external bias means there can be external forces
on the particle or other external factors that bias the movement. Equation (2.18) results when the
bias is caused by chemosignals. Later Keller and Segel [104] derived a system of four parabolic
equations to model the chemotactic movement of Dictyostelium discoideum, and reduced it to
(2.18) and the following reaction-diffusion equation for the chemosignal

∂S

∂t
= Ds∆sS +R(n, S). (2.19)

19



H. G. Othmer et al. The intersection of theory and application in developmental biology

They suggested that the aggregation of cells results from an instability of the uniform steady state,
but it is now known that this is not the correct explanation; aggregation results from the response of
cells to waves of a chemoattractant that are initiated by pacemaker cells. Later, similar equations
were applied to bacterial chemotaxis, with the aim of explaining the traveling bands observed in E.
coli by Adler [1, 105, 106]. Here too the conclusion is in doubt because the authors required that
the chemotaxis sensitivity χ = χ0/S become singular at S = 0 in order to establish the existence
of a traveling wave.

More recently (2.18) and (2.19) have been studied extensively mathematically (see [92] for a
detailed review and references). These analyses were motivated by biological features of chemo-
tactic movement and the spatial patterns that result. Existence of stable non-uniform steady states
and blow-up solutions were explored to determine if the model can produce patterns of cell con-
centration or aggregation [41, 98, 88, 170]. Existence of traveling wave solutions has been studied
to determine whether the model can produce patterns corresponding to the traveling bands of bac-
teria observed experimentally [106, 103, 93]. Many variations on the minimal form given by (2.18,
2.19) have been developed to incorporate mechanisms, such as excluded volume, that prevent the
blow-up solutions in finite time (see [90] for a review). Equations that describe taxis in the presence
of multiple signals have also been derived under various cases [174, 240].

A major drawback in using the phenomenological approach that leads to (2.18) is how one
rationalizes the constitutive assumption (2.17). Some characteristics of the microscopic response
of individual cells have been incorporated into the chemotactic sensitivity χ in different contexts.
Keller and Segel [105] related the chemotactic sensitivity to the frequency of reversals of a particle
moving along the real line, and Segel [198] incorporated receptor dynamics. Ford and Lauffen-
burger [72, 71] have estimated taxis coefficients within the framework of the phenomenological
approach. Pate and Othmer [180] derived the chemotactic velocity of amoeboid (crawling) cells in
terms of forces exerted by the cells, beginning from Newton’s law for the motion of a point parti-
cle, neglecting inertial effects, and assuming that the motive force exerted by a cell is a function of
the attractant concentration. They showed how the chemotactic sensitivity is related to the rate of
change of the force with attractant concentration, and in this approach the dependence of the flux
on the gradient of the attractant arises from the difference in the force exerted in different direc-
tions due to different attractant concentrations. Experimental support for this approach comes from
the work of Varnum-Finney, Voss, and Soll [226], who show that in Dictyostelium discoideum, as
many pseudopods are produced down-gradient as up-gradient, but those that are up-gradient are
more successful in generating cell movement. Another approach, based on a continuous time re-
inforced random walk in which the walker modifies the transition probabilities of an interval for
successive crossings, is developed in [170] for a single tactic substance and in [174] for multiple
substances.

Although the PKS equation has been used widely in modeling chemotactic movement and other
kinds of tactic movement, the general problem of systematically incorporating microscopic details
of the cell response into the chemotactic sensitivity remains a challenge. However, some progress
has been made on incorporating characteristics of cell-level behavior into the classical description
for the movement of bacteria and Dictyostelium discoideum [89, 166, 64, 63, 65, 240]. In Section
4.4. we discuss this aspect in the context of bacterial chemotaxis. The starting point for these
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analyses is a second major type of movement called a velocity-jump process. In this process the
motion consists of a sequence of “runs” separated by reorientations, during which a new velocity
is chosen. This leads to the following evolution equation for the density p(x,v, t) of individuals at
a spatial position x ∈ Ω ⊂ Rn, that are moving with velocity v ∈ V ⊂ Rn at time t ≥ 0 [165]:

∂

∂t
p(x,v, t) + v · ∇p(x,v, t) = −λp(x,v, t) + λ

∫
V

T (v′,v)p(x,v′, t) dv′. (2.20)

The parameter λ is the turning rate (1/λ is the mean run time between jumps), and in general
it may be space-dependent and depend on internal and external variables as well. The turning
kernel T (v,v′) defines the probability of a jump from v′ to v when a jump occurs, and implicit
in this formulation is the assumption that the choice of a new velocity is independent of the run
length. The turning kernel may also be space-dependent, and it may depend on the total density
of individuals. As will be shown in Section 4., when this approach is applied to the bacterium
E.coli the turning frequency must depend on the extracellular signal, as transduced through the
signal transduction and motor control system. The situation is more complex when this approach
is applied to amoeboid cells such as Dictyostelium discoideum, which use both run length control
and taxis [69], because there the extracellular cAMP distribution affects the forces involved in the
turning process and these must be accounted for explicitly [65]. As in the space-jump process,
resting states can be incorporated, as can birth-death processes [89]. It is also straightforward
to develop a model of intracellular transport that uses both kinesin and dynein (which move in
opposite directions along microtubules) using the velocity-jump process.

2.5. The problem of robustness and scale-invariance
The entire process of development, including growth and pattern formation, can be characterized
by its tendency to produce a normal adult, or to regulate, in the face of various disturbances im-
posed during development. At one extreme is mosaic development in which removal of a part of a
developing embryo at one stage results in the absence of that part (or parts that develop from it) in
later stages. In mosaic eggs such as annelids and mollusks, removal of portions of the cytoplasm
from the egg leads to the absence of those organs that normally develop from the excised region.
On the other hand, many systems show a high degree of regulation, particularly at early stages
of development. For instance, each of the cells that results from the first cleavage in amphibian
eggs can, when separated from the other, develop into a normal, although usually smaller, adult.
Regeneration of lost limbs in Hydra, a small marine creature, is an example of regulation in a
system in its terminal state of development. Development is rarely either strictly mosaic or strictly
regulative at all stages, but rather, shows both characteristics at different stages. Certainly regu-
lation requires some form of intercellular communication and some kind of feedback mechanism
whereby removal of part of an organism is sensed by the remainder and development redirected to
compensate for the part removed. The current thinking is that such a mechanism either coincides
with or is a part of the mechanism that controls pattern formation.

To understand what we mean by robustness of a model, consider the dynamical system
dx

dt
= F (x, p, S(t)) x(0) = x0, (2.21)
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wherein p is a vector of model parameters and S(t) is a time-dependent input. Three classes of
‘perturbations’ lead to three types of ‘insensitivity’ or ‘robustness’.

1. Insensitivity with respect to inputs, by which we mean that some components of the state
of the system ‘ignore’ a certain class of deterministic inputs in the long run. This type of
robustness is a characteristic of systems in which one or more components adapt to constant
signals, such as the motor control protein Cheyp in E. coli.

2. Insensitivity with respect to changes in the vector field, i.e.,the function F in (2.21). This
is captured in the notion of coarseness or structural stability: a vector field is structurally
stable if its associated flow is orbit equivalent to the flow generated by any vector field in a
sufficiently small neighborhood in a suitable topology. This is the broadest definition, for it
includes changes in F itself, but it is a strictly local (in a suitable topology) result, except for
linear vector fields.

3. Insensitivity with respect to changes in parameters. Strictly speaking this is a subset of (2),
but is often considered by itself.

4. Closely related to all of these is insensitivity to either internally-generated noise, due for
example, to molecular fluctuations, unequal partition of molecules at cell division, etc, or to
external noise due to fluctuations in the system environment. The main difference between
this case and the first three is that noise is usually thought to be persistent in time and is often
small amplitude, whereas, E. coli, for instance, can adapt to signal amplitudes ranging over
five orders of magnitude.

A first step is to decide what characteristic of the dynamics is being tested for robustness. In
the context of spatial pattern formation, it is often a measure of the size of the system that is of
interest with respect to robustness. As we have seen, reaction-diffusion systems, either with or
without specialized source regions, are often used to describe pattern formation, and as we saw in
the simple case of the French flag and in the analysis of Turing systems, the standard models do not
produce scale-invariant patterns. In either case the spatial distribution of a morphogen is governed
by the intrinsic kinetic and diffusion time scales, and thus scale-invariance may be achieved by
suitably modulating either one in a size-dependent manner. One way of doing this is to modulate
these scales with a species produced by all cells. The essential idea can be illustrated in a system
having only one morphogen.

Let c denote the concentration of the morphogen and let m denote the concentration of the
modulating or control species. Suppose that they react and diffuse in the region Ω according to the
following equations

∂c

∂t
= ∇ · (D(m)∇c) + λ(m)R(c) in Ω

∂m

∂t
= Dm∇2C +R in Ω

−n · (D(·)∇c) = 0 on ∂Ω

m = 0 on ∂Ω.
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As indicated, either or both of the diffusion coefficient or the characteristic kinetic time scale of
the morphogen can be modulated by the control species [167]. In effect, the former changes the
underlying space metric by changing the diffusion coefficient, and the latter changes the time scale
by modulating the reaction rates. If only diffusion is modulated then the diffusion coefficients must
scale as L2, which in effect changes the metric, since the level sets of the control species provide
a measure of distance from the boundary. In Drosophila melanogaster and related dipterans, it is
unlikely that the diffusion coefficients are modulated [81], but it is shown in Umulis et al [223]
that if the total number of nuclei does not change with the size of the embryo and other conditions
are met, then the morphogen gradient will scale with size, as is observed experimentally [81]. This
invariance can be understood by thinking of the total number of nuclei as embedded in a rubber
sheet, and then stretching the sheet to fit the embryo size. Thus the density of nuclei scales as L−2,
which is what is required to produce the correct scaling of the morphogen distribution.

2.6. The role of growth and cell movement in pattern formation
In some systems growth, cell movement and patterning occur on comparable time scales and there
may be feedback between them. An example treated later arises in pigmentation patterns in fish.
Here we consider the following model for growth and cell movement in a two-dimensional layer
of cells (for details see Section 5. and Painter, et al., [173]). Assume that (i) there are two cell
types, which may have different diffusion constants and chemotactic sensitivities, and (ii) there are
n morphogens which diffuse and react throughout the system. We suppose that morphogens make
a negligible contribution to the total mass and momentum of the tissue.

Let ρi be the density in mass/volume of the ith cell type and suppose that the total density is
constant. Then the overall continuity equation for the cell mass reads

∂ρ

∂t
+ ∇ · (ρv) =

∑
ρiRi (2.22)

where Ri is the net rate of creation or conversion of the ith cell type per unit of mass of that type.
Since ρ is constant by hypothesis we have

ρ∇ · v =
∑
i

ρiRi (2.23)

or
∇ · v =

∑
i

ωiRi (2.24)

where ωi is the mass fraction of the ith species. Note that there are no diffusion terms in (2.22)
because we define the velocity v via

v =
∑

ωivi.

The balance equations for the individual cell types are

∂ρi
∂t

+ ∇ · (ρivi) = ρiRi (2.25)
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and we rewrite this as

∂ρi
∂t

+ ∇ · (ρiv) = −∇ · ρi(vi − v) + ρiRi (2.26)

= −∇ · ji + ρiRi (2.27)

where ji is the flux relative to the mass–average velocity. This is comprised of diffusive and tactic
components. Clearly if we sum (2.25) over i and use the definition of ρ and v we obtain (2.22) and
hence (2.23). We define the fluxes ji as

ji = ρi(vi − v) = −Di∇ρi + χi(u)ρi∇ui, (2.28)

where ui is the attractant or repellent for the ith cell type, and χi is the chemotactic sensitivity of
that type to ui. Some or all of the sensitivities may be zero, and cells may be sensitive to multiple
signals. If we sum (2.28) over i we obtain ∑

i

ji = 0.

Thus we have the desired ‘counter–transport’ wherein one species displaces the other but the local
density remains fixed.

We write a similar set of equations for the morphogens, amongst which we include the chemoat-
tractants and repellents, and we assume that the morphogens are transported only by diffusion and
convection, the former relative to the mass average velocity of the cells. Thus we write

∂ui
∂t

+ ∇ · (uiv) = uiRi (2.29)

where ui is the mass density of the ith morphogen, which is used because v represents the mass
average velocity. Both the cell density and morphogen densities could be expressed in molar terms
as well, and then the molar average velocity would appear in the equations.

We must now postulate the velocity field to avoid solving the momentum equations as well.
Since

∇ · v =
∑

ωiRi,

the simplest hypothesis is that the cell growth rates Ri are all identical, and then in two space
dimensions

∇ · v =
∂vx
∂x

+
∂vy
∂y

= R. (2.30)

This can be satisfied by postulating that

V =
R

2
(xi + yj). (2.31)

This implicitly assumes a coordinate frame fixed at one corner of the tissue, which grows at equal
rates per unit length in each direction. With this assumption (2.26) becomes

∂ρi
∂t

+ ρi∇ · v + v∇̇ρi = −∇ · ji + ρiR
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or
∂ρi
∂t

+
R

2
x
∂ρi
∂x

+
R

2
y
∂ρi
∂y

= −∇ · ji. (2.32)

Note that the growth rate has disappeared from this equation, because the ‘convective flux’ due to
volume expansion on the left-hand side exactly balances the growth term on the right-hand side. If
we now introduce new coordinates so as to map the growing domain onto the unit square via the
transformation

ξ =
x

L1(t)
, ν =

y

L2(t)
, τ = t

then we find that

∂ρi
∂τ

=
1

L2
1

∂

∂ξ

(
Di
∂ρi
∂ξ

− χiρi
∂u

∂ξ

)
+

1

L2
2

∂

∂ν

(
Di
∂ρi
∂ν

− χiρi
∂u

∂ν

)
. (2.33)

Thus we see that in the moving frame the connective terms all disappear. Similar reductions hold
for the morphogen equations. The convenience of such simplifications will be exploited in Section
5.4. to investigate pigmentation pattern control on the growing skins of fish. A more general
analysis of patterning in growing domains appears in Crampin, et al., [49].

3. Morphogen-mediated patterning in Drosophila melanogaster

3.1. Background
While morphogen-mediated patterning has been studied in zebrafish [244], frogs [21], and other
model organisms, the most extensive biological and mathematical work has been done on the
model organism Drosophila melanogaster (the common fruitfly). During the first four hours of
Drosophila development, morphogens pattern the anterior/posterior (AP) and dorsal/ventral (DV)
axes into regions of differential gene expression that presage the relative spatial position of adult
structures. Examples of the AP and DV protein distributions that result from zygotic gene expres-
sion are shown in Figure 3.

The developing embryo of Drosophila approximates a prolate ellipsoid 500µm long and 160µm
in diameter at the midpoint that is surrounded by a 0.5µm thick fluid-filled shell called the periv-
itelline (PV) space. The AP axis extends from the anterior extremum, defined by the maternal
localization of bicoid mRNA (discussed later) in early development, to the opposite extremum
where nanos mRNA is maternally-localized. The DV axis, which lies perpendicular to the AP
axis, is established early in development through activation of the transcription factor Dorsal in the
ventral most region of the embryo ¶.

Drosophila development is temporally divided into a number of distinct stages. Pattern for-
mation begins during oogenesis, which occurs prior to fertilization and during which the mature

¶Often Drosophila genes are named for their mutant phenotype rather than for the function of the gene product –
thus, for example, knocking out the transcription factor Dorsal results in an embryo forming only dorsal tissues.
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Figure 3: Morphogens pattern the anterior/posterior (AP) and dorsal/ventral (DV) axes during the first 4
hours of embryonic development. (A) The top view shows a population mean distribution of pMad signaling,
a signaling intermediate for a step of the DV patterning network. (B) The side view shows the distribution of
even-skipped and Kruppel (from [73] Cell with permission). (C) Cross sectional view showing nuclear and
yolk/cytoplasm levels of the anterior morphogen Bicoid (from [83] with permission).

egg forms in the female fly egg chambers located in the ovaries. At 25o C oogenesis proceeds for
approximately three days, through a distinct series of developmental stages. The separate devel-
opmental events are divided into 17 stages defined by the changes that occur in the morphological
structure of the egg chamber [183].

Embryogenesis begins immediately after fertilization, and this process is divided into 17 stages
based on distinct morphological changes in the developing embryo. Furthermore, due to the im-
portance of early development, the first five stages are divided by cell-cycle number based on the
sequence of synchronous nuclear divisions, beginning at fertilization. A very good approximation
to the total number of nuclei in the syncytium at any given stage is 2n−1 where n is the current
cycle (i.e. during the 14th nuclear division cycle there are ≈ 213 nuclei in the embryo). During the
14th mitotic division membranes begin to form between the nuclei that line the periphery of the
embryo, and later they invaginate to delineate individual cells. Thus, during nuclear division cycle
14 there is an ambiguity as to whether nuclei or cells are lining the PV membrane. To further com-
plicate matters, nuclei during this stage of development respond to local receptors, are surrounded
by many cellular organelles, and secrete proteins in a spatially restricted manner similar to cells
that participate in cell to cell signaling.

3.2. Bicoid gradient formation and AP patterning
Three genes – gurken, torpedo and cornichon, are currently known to be the primary factors for
the initial formation of both the AP and DV axes [154, 183]. gurken gene expression originates in
the germline cell whereas torpedo expression takes place in the somatic follicle cells. Absence of
either gurken or torpedo produces eggs that lack polarity along both the AP and DV axes. Gurken,
a signaling molecule, is transported with the aid of Cornichon from the endoplasmic reticulum to
the oocyte surface where it is released through the membrane. Once released, Gurken is thought to
interact with Torpedo, the Drosophila homologue of the Epidermal Growth Factor (EGF) receptor
[154]. This early signal is believed to cause the terminal follicle cells to adopt a posterior fate
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and thus the origin of AP polarity [183]. This group of follicle cells returns a signal to the oocyte
causing a reorganization of the cytoskeleton and reversed polarity of the microtubules. Microtubule
polarity reversal allows transport of maternal RNAs bicoid and oskar to the anterior and posterior
poles respectively via kinesin motors. The localized RNA remains until early embryogenesis where
it becomes translated to further specify the AP axis.

bicoid mRNA tethered at the anterior pole encodes a transcription factor Bicoid (Bcd), which is
a morphogen that specifies regions of gene expression in a concentration dependent manner [59].
The spatial distribution of Bicoid protein has a maximum near the anterior pole, where bicoid
mRNA is produced, and decays monotonically to its minimum near the posterior pole [59] (see
Figure 4). Bicoid promotes the transcription of the zygotic gene hunchback, which is expressed
in the anterior half of the embryo. Hunchback acts as both a repressor and activator that specifies
regions of expression for other targets called the gap genes [96]. A complex system of activating
and repressing interactions ultimately generates the segmented body plan for Drosophila.

Analysis of Bicoid-mediated embryonic patterning has focused on two major questions: 1)
what processes interact to regulate the dynamic, spatial distribution of the Bicoid protein, and 2)
what processes contribute to the precise position and reproducibility of Bicoid target gene expres-
sion?

Early studies demonstrated that increases or decreases in maternally-supplied bcd mRNA lead
to increases or decreases in Bicoid levels in the embryo and subsequent shifts in the position of an-
terior structures [59]. The stained protein distribution of Bicoid is well approximated by a decaying
exponential [81, 94], which arises automatically from a mathematical model for the diffusion of a
molecule that undergoes first-order decay (see Section 2.1.). Since the protein distribution is ap-
proximated well by such a model it was widely assumed that the Bicoid distribution is established
by simple diffusion and decay. The only remaining problem was to measure the rates of diffusion
and linear decay.

To estimate the diffusion coefficient of Bicoid protein, investigators injected small amounts of
dextran molecules of approximately the same molecular weight and size of Bicoid protein into
Drosophila embryos [81]. The dynamic transport of the dextran molecules was imaged in live
embryos and their diffusion constant estimated by fitting the image data to a mathematical model.
The calculated diffusion coefficient of ≈ 20µm2/sec suggested that diffusion was rapid enough
to be the principle means of Bicoid transport along the AP axis [81]. However, more recently it
has been demonstrated that the in vivo diffusion rate for a Bicoid-eGFP (eGFP: enhanced Green
Fluorescent Protein) fusion protein is much lower than the biologically inert dextran molecules
[83].

In embryos stained for Bicoid protein, the majority of Bicoid accumulates in the nuclei lining
the periphery of the embryo (See Figures 3C and 5A) and not in the core yolk cytoplasm. Since
Bicoid concentrations are clearly higher in the nuclei, a natural hypothesis is that the nuclei play an
important role in determining the dynamics and distribution of Bicoid [81, 46, 83]. To investigate
the role of the nuclei, Gregor et al. [83] employed Fluorescence Recovery After Photobleaching
(FRAP) to measure the import and export rates responsible for the exchange of Bicoid between
the cytoplasm and the nuclei. The FRAP data were fitted to a linear local model for the number of
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Figure 4: After fertilization, maternally-supplied bcd mRNA tethered at the anterior pole is translated to
bicoid protein. The nonuniform spatial distribution of the protein has a maximum near the anterior end and
decays posteriorly. There are numerous possible spatial pathways for Bicoid transport.

fluorescent Bicoid molecules (n) in a single nucleus given by

dn(t)

dt
= kinCout −

1

τn
n(t). (3.1)

Here kin (kout) is the import (export) rate, kd−nuc is the decay rate, Cout is the concentration of
Bicoid-eGFP, and τn ≡ (kout + kd−nuc)

−1 is the time constant defined by the export and decay
rates [83]. The solution of (3.1) for a reduction in the number of fluorescent molecules ∆n0 is

n(t) = n∞ − ∆n0 exp (−t/τn), (3.2)
n∞ = kinτnCout, (3.3)

and thus the recovery after photobleaching depends on the time-scale for nuclear export. The
simple nuclear import-export and decay model was fitted to FRAP data, giving a calculated time-
constant of τn ≈ 70s, which is sufficient for establishing a steady-state Bicoid distribution when
coupled with the rapid diffusion approximated from the dextran molecules. Given the very rapid
recovery after photobleaching, one would expect the concentration of Bicoid within each nucleus
to remain constant or, if not constant, that the total number of Bicoid molecules in the nucleus
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would remain constant. During the course of the experiment, a further observation suggested
another intriguing aspect of Bicoid-mediated patterning: as the nuclei grow, the concentration of
Bicoid in each nucleus decreases at a rate inconsistent with either a fixed concentration or a fixed
total number of molecules in the system. Gregor et al. found that the observed nuclear Bicoid
concentration is predicted best by a model in which nuclei act as perfect absorbers, and transport
to the nuclei is diffusion-limited. This assumption leads to the rate kin = 4πrnD, where rn is the
nuclei radius and D is the diffusion constant, and with this, the diffusion constant of Bicoid in
the cortical cytoplasm is predicted to be ≈ 0.37µm2/sec, almost 100-fold lower than the diffusion
of dextran molecules. This yields a diffusion time τD = L2/D of ≈ 150 hours for the entire
embryo length (or ≈ 9 hours for one decay-length), far greater than the 3.5 hour development
time. To directly measure the diffusion coefficient in vivo, Gregor et al. used FRAP in the cortical
cytoplasm and calculated a diffusion coefficient of ≈ 0.3µm2/sec, consistent with the predicted
value.

It therefore appears that diffusion is too slow in the context of AP patterning in Drosophila,
but a number of both experimental and modeling issues require resolution. First, in the model
for nuclear transport of Bicoid, the extracellular concentration is assumed constant and it appears
that the cytoplasmic content in the vicinity of the nuclei also remains constant. However, the pho-
tobleached Bicoid molecules exported from the nuclei will compete with fluorescent Bicoid for
import. Since D = (Cin/Cout)(r

2
n/3τn), a small decrease in τn will lead to an increase in the pre-

dicted diffusion coefficient [83]. Additionally, the in vivo measurements for the diffusion constant
D were carried out in the cytoplasm near the embryonic periphery and technology does not permit
direct measurement deeper in the embryo. The experiments only measure the concentration of Bi-
coid in the nuclei and cytoplasm of the embryo, not the flux of molecules in the different internal
regions of the embryo. It is possible that the bulk of Bicoid transport occurs through regions of the
embryo removed from the nuclei at the periphery, but once at the periphery the high import rates
lead to nuclear accumulation of Bicoid.

Another intriguing possibility that was recently investigated is that the non-uniform distribu-
tion of Bcd protein depends on the non-uniform distribution of maternal bcd mRNA. This suggests
that the positional information may arise from processes that regulate the transcript transport in ad-
dition to the protein transport and additional work is needed to investigate the relationship between
changes in the bcd mRNA distribution and the resulting Bcd protein distribution [211].

To investigate alternative possibilities of Bcd patterning, the current generation of mathematical
models will have to be extended to include a more realistic 3D geometry that better reflects the
structure and allows a more accurate description of the underlying processes. For instance, a
3D FRAP model that accounts for both intra- and extra-nuclear bleached and fluorescent Bicoid
molecules would provide additional insight into the transport and diffusion rates. In addition,
more sophisticated 3D organism-scale models of the embryo would allow one to test alternative
transport mechanisms and quantitatively determine the relative contributions of cortical vs. core
Bicoid fluxes. These mathematical models will provide deeper insights and lead to additional
biological experiments that quantitatively determine the mechanisms of Bicoid transport.
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3.3. Terminal gradient formation in Drosophila embryos
Nuclei are also involved in patterning the terminal regions of the Drosophila embryo. The anterior-
and posterior-most structures rely on a non-uniform spatial distribution of phosphorylated ERK/
MAPK [47] (ERK: extracellular-signal regulated kinase; MAPK: mitogen-activated protein kinase;
the phosphorylated ERK is dpERK) in which dpERK is highest at the anterior and posterior poles,
decaying to a minimum near the AP midline of the embryo (Figure 5 B). The spatial distribution
of intracellular dpERK relies on the spatial activation of Torso, a receptor tyrosine kinase (RTK),
by ligands in the extracellular space surrounding the embryo [38, 47].

Two possible mechanisms could establish the spatially non-uniform dpERK profile: 1) extra-
cellular regulation of the ligand and Torso receptor distribution similar to the extracellular regu-
lation of BMPs (discussed later herein); or 2) diffusion and reaction of intracellular dpERK with
nuclei and other intracellular components. To discern between these mechanisms, Coppey et al.
[47] coupled mathematical models for nuclear import/export and long range diffusion with exper-
iments to visualize the dpERK distribution in wt and mutant embryos.

Consider the following morphogen patterning system: 1) morphogen is secreted at a localized
source at one end of a field of binding sites (receptor or nuclei); 2) the morphogen is free to diffuse;
and 3) the morphogen binds to receptors or is imported into nuclei, which removes them from the
freely diffusing pool. Under the assumption of excess binding this leads to the following linear
system

∂c

∂t
= D

∂2c

∂x2
− konRtotc ,

D
∂c

∂x
= J at x = 0 , (3.4)

D
∂c

∂x
= 0 at x = L ,

where c is the morphogen concentration, D is the diffusion coefficient, kon is the binding rate, and
Rtot is the total concentration of binding sites. The above system is simply the time-dependent ana-
logue of equations (2.1) in Section 2.1.. If the system length is much greater than the morphogen
decay length, the equilibrium solution is therefore approximated by

c(x) = Λ exp
(
−x

√
konRtot/D

)
, (3.5)

and Λ is determined by a balance of the input flux and model parameters. Given equation 3.5, it
is readily apparent that increasing the binding site density (Torso or nuclei) leads to a morphogen
distribution with a reduced range.

To determine whether intra- or extracellular events regulated the spatial distribution of dpERK,
Coppey et al. increased and decreased Torso levels using genetic approaches. Changes in the Torso
level yielded dpERK profiles that were indistinguishable from wt dpERK staining patterns, a result
only explainable in the context of the trapping model if the wt embryos have excess Torso (high
Rtot), which greatly limits the range of the extracellular ligand. This indirect evidence led to the
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suggestion that the dpERK distribution may be mediated by intracellular rather than extracellular
processes [47].

To investigate the intracellular processes regulating the dpERK pattern, it was hypothesized
that the balance between nuclei import and export regulates the distribution of dpERK [47]. If
nuclei shape the dpERK distributions, equation (3.5) suggests that increasing or decreasing the
nuclei density would reduce or expand the range of dpERK signaling respectively. To investigate
this dependence, Coppey et al. [47] imaged the distributions of dpERK in nuclear division cycle
n =10-14 embryos (recall there are ≈ 2n−1 nuclei per cycle) and in mutants that locally disrupt
the nuclear density. With this approach, three observations were made: 1) dpERK concentration in
nuclei is between 1.4 and 2 times higher than in the surrounding cytoplasm; 2) the steepness of the
dpERK distribution increases as the number of nuclei increases; and 3) the dpERK distribution is
sensitive to changes in nuclear density as observed in shakleton mutant embryos. The combination
of dpERK profile sharpening during the synchronous nuclear division cycles and the disruptions
of dpERK in shakleton embryos demonstrates a clear relationship between nuclear density and
morphogen profile [47].

One obvious extension of the Torso/dpERK model is to investigate the scale-invariance of
dpERK distributions between different Drosophila species. Different species of Drosophila lay
embryos varying greatly in size, but containing similar numbers of nuclei produced by synchronous
nuclear division. Two groups have independently suggested that nuclei may play an important role
in the scale-invariance of morphogen gradients such as Bicoid [223, 83]. The main hypothesis
central to this theory is that if nuclei bind the morphogen that is otherwise free to diffuse, scale-
invariance occurs automatically as long as the number of nuclei remains constant, even if the size
of the embryo changes considerably [223, 83].

3.4. BMP-mediated embryonic patterning
Shortly after the discovery of Bicoid, the secreted morphogen Decapentaplegic (Dpp) was dis-
covered in Drosophila. Dpp and Bicoid are similar in the sense that both are proteins forming
dynamic, non-uniform distributions that ultimately specify differential gene expression over a field
of naive cells, but this is where the similarities end. Bicoid is a transcription factor produced by
mRNA that is maternally-deposited during oogenesis, and it is transported directly into the nuclei
that line the periphery of the syncytial embryo. In contrast, Dpp is a zygotically-produced member
of the bone morphogenetic protein (BMP) family that is secreted into the extracellular space, is
controlled by numerous extracellular regulators, and must bind to transmembrane receptors that
initiate a series of downstream steps that ultimately lead to target gene expression.

Dorsal surface patterning of the Drosophila embryo depends upon the activity of a heterodimer
of BMP ligands Decapentaplegic (Dpp) and Screw (Scw) [203]. Screw is produced in all nuclei,
whereas Dpp is produced along the dorsal half of the embryo. While monomers of both Dpp/Dpp
and Scw/Scw are present, the Dpp/Scw heterodimer has ≈ 10-fold higher activity and is proba-
bly the principal ligand for patterning. Dpp/Scw is secreted into the thin, fluid-filled perivitelline
(PV) space surrounding the embryo. The BMP ligand transduces its signal by binding to type I
BMP receptors Thickveins (Tkv) and Saxaphone (Sax) and type II BMP receptors Punt to form
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Figure 5: Nuclei are not passive observers of the morphogen gradient. (A) Bicoid is in dynamic equilibrium
between the nuclei and the surrounding cytoplasm (from [83], with permission). (B) Nuclei shape the dpERK
distribution in relation to their density and spatial localization (from [47], with permission).

a heterotetrameric active signaling complex [203]. The activated receptor is a kinase that phos-
phorylates the intracellular molecule Mad to form pMad. pMad binds to two co-SMADs (Medea)
and forms an active transcription factor that accumulates in the nucleus to regulate target gene
expression.

If Dpp/Scw secretion and receptor binding were the only processes occurring, one would expect
that the spatial distribution of pMad would encompass nearly the entire region where Dpp/Scw is
produced. Instead, pMad begins low and broad, consistent with uniform receptor binding through-
out the Dpp/Scw secretion zone, but later the pMad signal simultaneously intensifies and contracts
from the broad early expression to form a narrow, high-intensity band centered at the dorsal mid-
line, as shown in Figure 6. Dorsal surface patterning by BMPs requires the activity of at least
4 additional secreted molecules that control various aspects of the morphogen dynamics, range,
and robustness (for a review, see [158]). The secreted BMP ligand is regulated by the secreted
inhibitor Short gastrulation (Sog), the secreted co-factor Twisted gastrulation (Tsg), and the met-
alloprotease Tolloid (Tld) (see Figure 6). Tsg is produced along the dorsal surface in a band that
covers the central 1/3 of the embryo centered between the anterior and posterior poles. Sog is
produced laterally in regions that flank the secretion zone of Dpp/Scw. The metalloprotease Tld is
roughly constant throughout the dorsal half. The prevailing picture is that laterally-secreted Sog
binds dorsally-secreted Tsg to form a potent inhibitor of Dpp/Scw. Dpp/Scw binds to Sog/Tsg,
and the complex cannot bind to receptors but is free to diffuse. Tld then cleaves Sog specifically
when it is in complex with Tsg and Dpp/Scw. The cleavage of Sog releases Dpp/Scw. The binding
of Dpp/Scw to Sog/Tsg is highest where the product of Dpp/Scw and Sog/Tsg concentrations is
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Figure 6: (A) BMP ligands and regulators are secreted into the thin, fluid-filled perivitelline space surround-
ing the embryo. The cross-sectional view of the syncytial embryo shows the chemical reactions that take
place to localize BMP signaling to the dorsal surface. (B) The contraction of pMad expression with time.
(From [224]. Copyright 2006 National Academy of Sciences, U.S.A.)

highest (near the Sog and Dpp/Scw secretion interface) and lowest near the dorsal midline where
the balance between Tld processing and formation of Dpp/Scw/Sog/Tsg favors the greatest release
of Dpp/Scw.

The model equations for Dpp/Scw-mediated patterning with positive feedback developed in
[224] are as follows:

∂B

∂t
= DB∇2B + φB(x) − k3I ·B + k−3IB + λT ld · IB

− k4B · C + k−4BC − k5B ·R + k−5BR (3.6)
∂S

∂t
= DS∇2S + φS(x) − k2S · T + k−2I (3.7)

∂T

∂t
= DT∇2T + φT (x) − k2S · T + k−2I + λT ld · IB − δTT (3.8)

∂I

∂t
= DI∇2I + k2S · T − k−2I − k3I ·B + k−3IB (3.9)

∂IB

∂t
= DIB∇2IB + k3I ·B − k−3IB − λT ld · IB (3.10)
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∂C

∂t
=

ΛBRν

Kν
h +BRν

− k4B · C + k−4BC − k7BR · C + k−7BCR− δEC (3.11)

∂BC

∂t
= k4B · C − k−4BC − k6BC ·R + k−6BCR− δEBC (3.12)

∂BCR

∂t
= k6BC ·R + k7BR · C] − k−6BCR− k−7BCR− δEBCR (3.13)

∂BR

dt
= k5B ·R− k−5BR + k−7BCR− k7BR · C − δEBR (3.14)

Rtot = R +BR +BCR. (3.15)

Here, B is the BMP dimer (Dpp/Scw), S is Sog, T is Tsg, I is the Sog/Tsg inhibitor complex, IB is
the complex when bound to the BMP ligand, R is the receptor level, and C is the level of secreted
BMP binding protein. As can be seen from the preceding equations, the regulation of BMPs
requires many non-linear steps that work in concert to produce BR distributions that correspond
with our pMad observations.

The complex regulation of BMP signaling has been the focus of numerous mathematical mod-
eling studies. Unlike the mathematical models used to measure aspects of Bicoid and dpERK
patterning, the focus of the modeling of BMP patterning has been on discovering modules that
satisfy a number of performance objectives [115, 61, 138, 224, 223, 203]. The general idea behind
this approach is that while we cannot measure specific conditions such as kinetic rates, transport
rates, and molecular interactions in vivo, we can develop models that incorporate a number of
plausible possibilities and use large-scale parameter screens to identify networks that reproduce
features that are also observed in the biological system. For instance, in BMP-mediated embryonic
patterning, some of the performance objectives that models were tested against include: 1) a sharp,
dorsally-centered distribution of BMP ligands bound to receptors, 2) insensitivity to reductions in
the levels of extracellular regulators, 3) correct spatiotemporal evolution of signaling, 4) insensi-
tivity to increases or decreases in receptor levels, and 5) robustness against changes in embryo size
(scale-invariance). The first modeling study on BMP-mediated dorsal surface patterning used a
large-scale screen to identify model parameters that 1) produced a sharp BMP distribution, and 2)
reproduced the experimentally observed robustness against genetic reductions in sog, scw, tsg, and
tld. Eldar et al. used the results of their large-scale screen to predict that Scw and Dpp diffusion
rates must be extremely slow unless it was bound by the inhibitor Sog, and they tested this by
staining for pMad signaling in eve2>dpp, sog−/− embryos. Without the inhibitor Sog, they found
that pMad signaling was restricted to the site of Dpp production. Following this study, Mizutani et
al. suggested that Dpp was actually highly diffusible, but in the presence of receptors, the range of
Dpp diffusion is very low [138]. (For a review, see [158]).

Following the initial modeling work that established the plausibility of the shuttling mecha-
nism, further experiments demonstrated that the extracellular transport of Dpp/Scw formed only a
piece of the puzzle, and that positive feedback as a result of prior BMP signaling was also required
for the dynamic refinement and localized spatial distribution of pMad signaling [231] (Figure 6).
Upon further investigation of the Eldar et al. and Mizutani et al. models with constant and uni-
form BMP production (Eldar et al. also considered a special case where Dpp production is turned
off after 10 minutes, however this is demonstrably false [203]), it was found that neither model
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captured the appropriate dynamics of pMad signaling [61, 138, 224]. During development, pMad
begins broad and low and refines to a narrow, high intensity band just prior to gastrulation (Figure
6). Both models predict that BMP-receptor (proportional to pMad) levels begin broad and low
and, as time progresses, that the signal gets stronger and wider. Taking the new biological infor-
mation and dynamics into consideration, Umulis et al. [224] developed a modular-based model to
compare a number of different receptor/feedback mechanisms. In this study, the additional perfor-
mance objectives included were that 1) the model produce the correct dynamics, and 2) the level
of BMP-receptor complexes is insensitive to reductions or increases in the number of receptors
as experimentally observed [231, 224]. The additional analysis suggested that positive feedback
of a membrane-associated BMP binding protein such as Crossveinless-2 (Cv-2) yields the correct
temporal dynamics, spatial distribution, and robustness of BMP signaling [224] (Figure 7 A-D).
With the inclusion of positive feedback coupled with endocytosis in the BMP-patterning model,
a new type of BMP-signal interpretation emerged: the dynamics of pMad signaling suggest that
cells are dynamically responding to the extracellular distribution and competing for a limited num-
ber of BMP ligands [224]. The dynamic interpretation of BMP signaling not only reproduces the
correct spatiotemporal signaling during development, but also produces very sharp boundaries be-
tween high and low signaling cells due to bistability. In the dynamic evolution to equilibrium,
dorsally localized cells outcompete adjacent lateral cells for limited BMP ligands, thus reinforcing
the difference between high and low pMad signaling (Figure 7 A- bottom panel).

Positive feedback can also lead to hysteresis which suggests that the concentration of BMPs
is less important than the exposure of BMPs to different levels of signaling (Figure 7 B). An
additional performance objective that is gained by inclusion of positive feedback is the insensitivity
of signaling to the number of receptors. Both increases and decreases in the number of BMP
receptors lead to pMad distributions that are virtually indistinguishable from wt (Figure 7 C). To
demonstrate the increased robustness against receptor levels, Umulis et al. [224] compared three
different receptor models: 1) rapid equilibration, 2) receptor-mediated endocytosis, and 3) positive
feedback of a secreted binding protein (Figure 7 D). With positive feedback, the modeling suggests
that receptor levels can vary from less than 100 nM to greater than 5× 103 nM concentrations and
still produce the desired level of cells receiving high levels of BMP signaling. While the positively
regulated molecule that controls pMad dynamics during embryogenesis has not been found, the
recent discovery of the role of collagen in the embryo provides a new pathway of potential targets
[230]. Briefly, Wang et al. [230] found that type IV collagen plays an important role in complex
assembly between Dpp/Scw and the secreted inhibitors. Since modeling suggests that the positive
feedback molecule must be localized where it is produced, it is possible that type IV collagen also
plays a role in restricting the movement of other secreted BMP binding molecules.

In addition to embryonic patterning, a related model has been used to investigate the positive
feedback of BMP signaling in a completely different patterning context. Here BMP patterning
occurs during the development of crossveins in the Drosophila wing [200]. Wing patterning relies
upon a set of secreted regulators homologous to those used for embryonic patterning, but it also
requires the activity of an autonomous BMP binding protein called Cv-2. Cv-2 is involved in
many different contexts and species as a positive and/or negative regulator of BMP signaling. In
this context, local models were developed to identify biologically testable conditions that switch
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Figure 7: Mathematical modeling results for dorsal surface patterning. (A) Positive feedback leads to dy-
namic contraction of BMP-receptors and bistability which leads to the sharp boundary between high and
low signaling states. (B) Hysteresis leads to a dynamic interpretation of extracellular BMP in the posi-
tive feedback model. (C) pMad staining in wt and tkv mutant embryos is nearly identical. (D) The model
with positive feedback is less sensitive to changes in receptor levels than models other models of receptor
regulation. (From [224]. Copyright 2006 National Academy of Sciences, U.S.A.)

Cv-2 from being an activator to an inhibitor of BMP signaling. According to the modeling, using
a low affinity ligand and changing the concentration of Cv-2 impart the biphasic behavior of Cv-2
regulation. The model predictions were later tested and verified both in vivo and in vitro; additional
details can be found in [200].
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4. Bacterial pattern formation
Bacteria are single cell organisms that proliferate through binary fission. Generally of the order ∼
1−10µm, they adapt to a wide variety of environments and, while many are pathogenic, form vital
symbiotic relationships with many higher-level organisms (for example, in the digestive system).
The capacity to move is an essential trait in many bacteria that allows them to migrate towards
more favorable environments or away from more harmful environments in response to extracellular
signals such as chemicals, light and oxygen. Of these, the tendency to follow extracellular chemical
gradients (chemotaxis) has been widely studied for its critical role in coordinating multicellular
behavior.

Many bacteria do not live as individuals, but rather form multicellular colonies that com-
municate through chemical signals [201]. Intercellular communication leads to the formation
of biofilms, communities of one or more bacterial types enclosed by self-secreted extracellular
matrices [234, 53, 229, 80, 112]. Biofilms form almost anywhere a nutrient supply is available
and surface attachment is possible, for example, plaques on teeth and slippery coatings on stones.
Initiation of biofilms involves random attachment of planktonic cells to surfaces, and subsequent
growth is facilitated by chemotactic movement toward the colonizers, which thereby increases the
attachment probability. Mature biofilms form channels that ensure the efficient delivery of nutri-
ents from exterior to interior.

Depending on the context, biofilms can be either harmful or beneficial. On teeth, on artificial
medical implants, and in chronic wounds the formation of biofilms is harmful. On the other hand,
biofilms play important roles in bioremediation technology, allowing chemical waste to be de-
graded in water [209]. The chemotaxis of bacterial cells towards contaminants has the potential to
bring cells into close proximity to waste, thereby facilitating the degradation process. Understand-
ing the mechanisms controlling biofilm formation and function may therefore lead to improved
modes for eliminating harmful bacteria and improving their beneficial effects.

The spectacular growth patterns observed in a variety of bacterial colonies [34, 35, 237, 20,
17, 26, 189] provide a simple and manipulable system for studying the initiation of biofilms. The
fundamental processes of proliferation and movement conspire to generate diverse pattern forms,
and understanding their development will allow us to exploit biofilm properties to treat biofilm
induced disease or increase the effectiveness of bioremediation. In this section we review both
the biological experiments and mathematical models for the patterns formed in Escherichia coli
colonies. Pattern formation in other bacterial colonies, e.g. Bacillus, Proteus and Myxococcus is
discussed in [18, 238, 101, 102] and references therein.

4.1. Pattern formation in E. coli colonies
Escherichia coli is a cylindrical enteric bacterium that swims using a run-and-tumble strategy
[22, 23, 228]. Each cell possesses 5–8 helical flagella extending several body lengths, with each
flagellum capable of rotation clockwise (CW) or counterclockwise (CCW), driven by its basal ro-
tary motor. When rotated CCW the flagella form a smooth bundle to propel the cell forward in a
smooth “run” with speeds between 10 and 30 µm/s; when rotated CW the bundle flies apart, the
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cell stops almost immediately due to the low Reynolds number (∼ 10−6), and “tumbles” randomly.
Each tumble reorients the cell in a quasi-random direction, although there is a slight bias in the di-
rection of the previous run [86]. In the absence of signal gradients, the alternation between running
and tumbling results in random cell movement, and run/tumble times are exponentially distributed
with means of 1 and 0.1 seconds, respectively. However, when exposed to a signal gradient run
times are extended when moving up (down) a chemoattractant (chemorepellent) gradient, thereby
biasing cell movement.

The molecular mechanism of chemotaxis in E. coli has been studied extensively [123, 228, 29].
The signal transduction pathway contains three basic elements, as is shown schematically in Figure
8. The first is the detection of the signal by chemoreceptors. E. coli has five chemoreceptor
types, four of which are methyl-accepting chemotaxis proteins (MCPs). MCPs form homodimers
that span the bacterial cell membrane, and these assemble into trimers of dimers, which are the
functional unit of MCPs. The cooperativity of the functional units contribute one part of the high
gain of the chemotaxis system. The second is the transduction of the signal, which involves a
decrease in autophosphorylation of and phosphotransfer to chemotaxis proteins. Attractant binding
to a receptor reduces the autokinase activity of the associated CheA, and therefore reduces the level
of phosphorylated CheYp, which is the output of the transduction network, on a fast time scale
(∼ 0.1 s). This constitutes the excitation component. Changes in the methylation level of the
receptor by CheR and CheB restores the activity of the receptor complex to its pre-stimulus level
on a slow time scale (seconds to minutes). This results in adaptation to the ambient signal, which
enables the cell to respond to further signals. The third component is the change in bias of the
rotation of flagellar motors due to changes in CheYp. The default rotation of the motor is CCW,
which leads to smooth swimming. When CheYp binds to the switch protein FliM on the flagellar
motor, the motor has a higher probability to rotate CW. The ultrasensitivity of the motor to CheYp

contributes to the remaining part of the high gain. The concerted motion of several flagellar motors
enables the cell to swim. Therefore increasing attractant concentration leads to decreasing CheYp

and therefore a longer run time on average.
Chemotaxis in E. coli plays a major role in spontaneous, self-organized pattern formation,

primarily when factors such as the nutrient supply vary in space. Experiments by Adler in the
1960s led to the discovery of moving bands/rings for a bacteria colony exposed to a nutrient that
also serves as a chemoattractant [1]. Budrene and Berg uncovered a wide spectrum of stable
spatial pattern types generated by E. coli cells, attributed in part to the fact that the bacteria secrete
chemoattractants (aspartate and analogues) [34, 35]. Similarly-derived patterns have also been
observed in S. typhimurium colonies [237].

In the first type of experiment, a small number of E. coli cells was introduced at the cen-
ter of a semi-solid agar substrate in the presence of a single nutrient source (succinate or other
highly-oxidized intermediates of the TCA cycle). Over the following three days, a concentric
swarm ring is observed to spread radially from the inoculation site (IS) with a symmetric array
of spots or stripes forming sequentially in its wake (Figure 9). The initial dynamics are driven
mainly through proliferation of the inoculation, with a doubling time of approximately 2 hours
[35]. Succinate consumption induces the production of aspartate by the growing colony, leading
to a chemotactically-driven compact aggregate at the IS of the order of 200 µm diameter. Lo-
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Figure 8: Signaling components and pathways for E. coli chemotaxis. Chemoreceptors (MCPs) span the
cytoplasmic membrane (hatched lines), with a ligand-binding domain on the periplasmic side and a signaling
domain on the cytoplasmic side. The cytoplasmic signaling proteins, denoted Che in the text, are identified
by single letters, e.g., A = CheA. (From [210]. Copyright 1997 National Academy of Sciences, U.S.A.)

cal depletion of succinate leads to starvation and the cessation of aspartate secretion at its center,
while cells at its boundary continue to produce aspartate due to succinate diffusing into the aggre-
gate from the surrounding substrate. As these cells spread outwards, a positive aspartate gradient
is generated that provides the directional information for centralized cells to keep pace with the
front. A swarm ring thus develops that moves radially outwards with constant speed. Depending
on the initial succinate concentration, aggregates may or may not form and stabilize in the wake of
the swarm ring. At low concentrations of succinate the swarm ring may propagate to the edge of
the petri dish without breaking up (Figure 9, a). At higher concentrations aggregates form inside
the ring. The ring continues to move and the aggregates gradually detach from the ring. The cells
in the aggregates finally become nonmotile, which stabilizes the pattern. The radial sequence of
aggregates form by a repetition of the sequence that initiated the first generation of aggregates.
If the concentration of succinate is not too high the aggregates are aligned radially (Figure 9, b).
When the radius becomes large, new spokes of aggregates appear between the old ones. If the
concentration is higher, new aggregates form between the preceding sites (Figure 9, c). The speed
of the swarm ring is inversely proportional to the succinate concentration, as is the radius at which
the ring collapses into spots.

A second set of experiments was performed by suspending E. coli cells in a liquid medium.
Under sufficiently high cell densities, the chemotactic response to aspartate induces the cells to
form networks initially, which subsequently collapse into moving aggregates which merge over
time [24]. The timescale of patterning for the liquid suspension experiments is of the order of
minutes and the role of proliferation can therefore be neglected. The properties of a single aggre-
gate have been investigated in [137] for a quasi-2D system. The equilibrium size of aggregates,
150 ∼ 200 µm in diameter, was shown to depend only weakly on the density of cells and most
probably on the sensory mechanism of the bacteria. The tumbling rate of a cell depends strongly
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Figure 9: Patterns generated by E. coli cells cultured in semi-solid agar [35] under different succinate levels:
(a) 1 mM, (b) 2 mM, (c) 3 mM, (d) 3 mM. The E. coli strains used in experiments are not chemotactic to
serine and either have the gene tsr deleted (a,b,c, strain HCB317) or are serine-blind (d, strain RP4368).
A similar pattern to that in (d) can be generated with the strain HCB317. The concentration of succinate
required to generate a particular pattern differs for different strains, but the sequence of patterns with respect
to succinate concentration remains the same. (From [35], with permission.)

on its position within the aggregate and the direction of movement: tumbling is suppressed when
swimming towards the center of the cluster, resulting in overshoot, but when swimming at the pe-
riphery of the aggregate cells tumble immediately. These two responses conspire to maintain the
boundary and fix the aggregate size.

The formation of these bacterial patterns involves a complex interplay between different pro-
cesses, including consumption of nutrients, production of chemoattractants, tactic movement to-
wards the attractant, cell growth and loss of motility. Moreover, formation of these spatial patterns
can involve millions of cells. Mathematical models of the patterns include continuum models that
incorporate these processess using phenomenological descriptions of the processes, and hybrid
cell-based models that allow detailed description of microscopic behavior. The continuum models
are easier to implement and more amenable to mathematical analysis, but justification of the mod-
els has to be addressed. Hybrid cell-based models give a better description of the experimental
picture and allow for investigation to the balance of different processes, but can be expensive to
implement. In the remainder of this section we first review both types of models that facilitated
our understanding of the mechanisms underlying formation of the complex patterns, and we then
summarize the current results on deriving the continuum model from the cell-based model.
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4.2. Continuum models for bacterial pattern formation
A variety of Patlak-Keller-Segel type systems, as described in Section 2.4., have been developed
and applied to model E. coli and S. typhimurium patterns [106, 117, 118, 19, 218, 237, 221, 220,
222, 185]. In [106] it is shown that the system of equations

∂n

∂t
= ∇ · (Dn∇n− χ0

S
n∇S),

∂S

∂t
= Ds4S − kS,

(4.1)

allows for an analytic traveling wave solution, but the singular chemotaxis sensitivity chosen there
violates the fact that cells have bounded traveling speed when S is small. A nonsingular chemotac-
tic sensitivity however would lead to a moving band with decreasing speed and broadening density
profile due to diffusion. Later in [117, 118] it is shown numerically that by incorporating cell
growth and death the speed and shape of the band can be stabilized.

To model the E. coli patterns published [34, 35], the PKS model was extended to include both
attractant and substrate. In Ben-Jacob et al. [19] and Tsimring et al [218] a second repellent field
was assumed to autocatalyze the production of attractant. Simulations revealed radially aligned
and sunflower-like aggregation patterns. However, the assumption of the repellent field was not
biologically supported. In [221] a minimal model was proposed to account for patterns formed in
both liquid and semi-solid media. The equations describe the dynamics of the cell density n, the
attractant concentration S, and substrate (nutrient) concentration f as follows,

∂n

∂t
= Dn4n−∇ ·

(
k1n

(k2 + S)2
∇S

)
+ k3n

(
k4f

2

k9 + f 2
− n

)
, (4.2)

∂S

∂t
= Ds4S +

k5fn
2

k6 + n2
− k7nS, (4.3)

∂f

∂t
= Df4f − k8n

k4f
2

k9 + f 2
. (4.4)

Simulations under suitable parameter sets reveal aggregate and swarm patterns roughly agreeing
with the experiments shown in Figure 9 (b)-(c). However no clear swarm rings with sharp bound-
ary seem to form as in the semi-solid agar, nor does the network/stranded pattern which precedes
the formation of aggregates seen in liquid medium experiments. The model was later analzsed
under the condition k3 = k7 = 0 corresponding to aggregate formation, merging and disappear-
ance in liquid medium in [220]. Linear analysis around the spatially-uniform solution showed that
the uniform steady state is always stable to large wave number perturbations but unstable to lower
wave number perturbations for a limited amount of time, and that leads to the appearance and
disappearance of the aggregates. The analysis agrees with the experiments and simulations quali-
tatively, but the index of the mode with the largest amplitude differs from the number of peaks in
simulations by a factor of two. How the nonlinearity in the system contributes to this discrepancy
is not clearly understood. Polezhaev et al. [185] proposed a model that also incorporates loss
of motility of cells due to starvation. The resulting simulations revealed the formation of a swarm
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ring and stable aggregation patterns composed of immobile cells. However, the swarm ring formed
has a very diffusive front, in contrast to what is observed in experiments. Although all the above
models can produce patterns with some similarity to those in the semi-solid agar experiments, how
different processes balance to shape the patterns was not addressed.

This was addressed by Brenner al. [31], who developed a model for the purpose of understand-
ing which processes are responsible for different localized features of the patterns, e.g., swarm
ring formation and aggregate formation and disassociation from the ring. The PKS chemotaxis
equation was coupled to reaction-diffusion equations for attractants and nutrients and a minimal
mechanism for the swarm ring and aggregate formation was proposed. The authors suggested that
movement of the swarm ring was driven by local nutrient depletion, with its integrity resulting
from the high attractant concentration at the ring location; in contrast, aggregates were proposed to
form within the ring through fluctuations about the unstable uniform cell density. An asymmetric
profile in the attractant concentration arises due to the consumption of aspartate by cells following
the depletion of succinate. The results are qualitative due to the discrepancies between predictions
of the linearized system and the full nonlinear system, and mechanisms for the regularity of the
patterns in semi-solid agar were not considered. In a subsequent paper [25] an analysis of the trans-
formation of high cell density cylinders into regularly spaced aggregates from the swarm ring was
undertaken, with the conclusion that a shifting balance between diffusion and chemotaxis leads to
collapse of the strands.

4.3. Cell-based models of bacterial pattern formation
Hybrid cell-based models have been developed for bacterial pattern formation in [62, 240, 238].
In these models, each cell is characterized by its position x ∈ RN , velocity v ∈ V ⊆ RN , internal
state y and age θ. In E. coli the cell speed is more or less constant throughout the movement, so
we assume that only the direction of the velocity changes during a tumble, therefore V becomes
a sphere. In the experiments of Budrene and Berg [35], the cell density is O(108) ml−1, thus
the average volume fraction of the cell population in the substrate is O(10−4). Even if in an
aggregate cells are 100 times more crowded than average, the volume fraction would still be as
small as O(10−2). Therefore, it is plausible to assume that cells are well separated, and there is
no mechanical interaction between them. This means that we can treat the movement of different
cells as independent processes. Since the mean tumbling time (∼ 0.1 s) is much shorter than the
run time (∼ 1 s), we also neglect the tumbling time and assume that cells reorient immediately.
Therefore the chemotactic movement of each bacterial cell is an independent velocity jump process
(see Section 2.4.). The turning rate and turning kernel are determined by the internal variables y.

The signal transduction pathway of E. coli is very complicated, and several detailed mathemat-
ical models have been proposed for the entire signal transduction network [210, 202, 134, 188].
However the essential dynamics are simple and can be captured by a minimal cartoon model that
incorporates both the adaptation and excitation processes crucial to chemotaxis [168]. It was shown
in [64] that the following model predicts qualitatively and quantitatively similar input-output be-
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havior to that of the full model in [210]:

dyi1
dt

=
G(S(xi, t)) − (yi1 + yi2)

te
, (4.5)

dyi2
dt

=
G(S(xi, t)) − yi2

ta
. (4.6)

Here the superscript i is the index of the cell, S is the local attractant concentration and te and
ta (with te � ta) are constants defining excitation and adaptation timescales. The function G(S)
models the detection of the extracellular (chemoattractant) signals. We adopt this cartoon model
and suppose that the turning kernel T and turning rate λ are given by

T =
1

|V |
and λi = λ0(1 − yi1

γ0 + |yi1|
) , (4.7)

where ∫
V

T (v,v′) dv = 1 .

This cell-based description for chemotactic movement can be augmented with reaction-diffusion
equations to describe dynamics of the extracellular nutrient and attractant and numerically solved
with a hybrid scheme: the movement of each cell is simulated by a Monte Carlo method while the
reaction-diffusion equations are solved with an alternating direction method. The details of this
algorithm can be found in [240]. In the following we present numerical results in a 2-D domain.
Although we do not expect significant differences, extension of the results to 3-D is currently under
investigation.

4.3.1. Network and aggregate formation in E. coli liquid medium

To model the liquid medium experiments, E. coli cells are distributed evenly in a 3 cm × 3 cm
square under a uniform initial nutrient supply and zero initial attractant. The dynamics for the
attractant and nutrient concentrations are described by

∂S

∂t
= Ds4S + γ

N∑
n=1

δ(x − xi) − µS. (4.8)

∂f

∂t
= Df4f − k

N∑
n=1

δ(x − xi). (4.9)

Here Ds and Df are the diffusion rates, γ defines the attraction secretion rate by cells and µ is
an unspecified degradation rate. The experimental time for liquid medium experiments is between
10 and 15 minutes and proliferation/death is therefore negligible. Furthermore, in an abundant
supply the nutrient equation can be dropped. Figure 10 shows the evolution of cell density, first
into a network of high cell density, then breaking up into randomly-distributed aggregates. These
clusters remain motile and a cluster close enough to another merges with it. Moreover the cluster
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Figure 10: Simulation showing the formation of networks and aggregates for the suspension of E. coli in a
liquid medium using the hybrid model defined by equations (4.5-4.9). Parameters used: L = 3 cm, f0 = 0.3
mM, s̄ = 10 µm/s, λ = 1 s−1, Ds = 9× 10−6 cm2/s, µ = 0, ω = 10−5 s−1, γ0 = 5× 10−4, ta = 5 s, G(S) = S.

size is in good agreement with experimental measurements. This model is the first to predict
network formation and the conclusions are robust, since altering the total number of cells has a
negligible effect on the size of individual aggregates, but of course does change the total number
of aggregates.

4.3.2. Expanding swarm ring in E. coli semi-solid agar

The hybrid model was applied to model the semi-solid agar experiments under the assumptions of
[31]. It is assumed that cells consume succinate and secrete aspartate at a rate proportional to the
extracellular succinate concentration. A low succinate concentration is assumed to induce cells to
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consume aspartate [31]. Following the introduction of a small population of bacteria, a cell colony
is observed to evolve into a ring of bacteria which expands radially at constant speed (≈ 2 mm/h),
as shown in Figure 11. The aspartate concentration echoes the bacteria profile while the succinate
is rapidly depleted by the colony, forming a sharp gradient. The sharp wave front predicted here is
in agreement with experiments.

Figure 11: Simulations showing an expanding swarm ring for an E. coli colony inoculated in the semi-solid
agar. Parameters used: L = 3 cm, f0 = 0.3 mM, s̄ = 10 µm/s, λ = 1 s−1, Ds = 9 × 10−6 cm2/s, ω = 10−5

s−1, γ0 = 5 × 10−4, ta = 5 s, starving delay = 20 min.

In Figure 12 the sensitivity of the chemotaxis mechanism is increased by 10 fold (γ0 = 5 ×
10−5). Inhomogeneities inside the swarm ring lead to the formation of a polygon pattern with
fast-moving high-density aggregates and connecting catenary arcs. The pattern arises from the
fact that the aggregates consume succinate at a higher rate and therefore move with a larger speed
than the arcs. Notably, this pattern was also observed in certain species of E. coli in unpublished
data [33]. The disassociation of aggregates from the swarm ring is currently the subject of further
investigations; a possible driving mechanism is the high aspartate concentration in the swarm ring
saturating the cells and impeding their movement towards regions of higher nutrient. How different
parameters in saturation lead to the different patterns of aggregation formation or polygon patterns
remains to be investigated.

4.4. From cell to continuum
As discussed earlier, a classical PKS approach has been employed to model bacterial pattern for-
mation by a number of authors [19, 218, 220, 221, 185]. However questions remain as to whether
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Figure 12: Simulated polygon formation in an E. coli colony.

the PKS equation is a justifiable limit of the underlying microscopic process. Following the in-
troduction of velocity jump processes to characterize the movement of bacterial cells in [165],
significant progress has been made in determining the conditions under which the PKS equation
can be derived [89, 166, 64, 63, 240].

The transport equation for the classical velocity jump process described in Section 2.4. is

∂

∂t
p(x,v, t) + v · ∇p(x,v, t) = −λp(x,v, t) + λ

∫
V

T (v′,v)p(x,v′, t) dv′, (4.10)

where p(x,v, t) is the probability density of a cell at position x with velocity v at time t > 0,
λ is the turning rate of the cell and T (v′,v) is the probability density of jumping between v′

and v at a “tumble”. Note that conservation of cells implies
∫
V
T (v′,v)dv = 1. Under the

assumption of independent and identical cells, p can be also viewed as the cell density. Under
reasonable assumptions on the turning kernel, the diffusion limit of the transport equation (4.10)
was investigated in [89] and equation (2.16) was derived using regular perturbation analysis. In
general, the diffusion ‘coefficient’ Dn is a second-rank tensor, and conditions under which Dn is
diagonal were determined [89]. In the presence of a chemical signal, the classical PKS chemotaxis
equation (2.18) was derived under the assumption that the extracellular signal field S enters via the
functions λ and T [166].

To understand how the chemotactic sensitivity depends on parameters of the intracellular dy-
namics, Erban and Othmer incorporated the velocity jump process with the internal state variables,
y [64, 63]. The transport equation becomes

∂p

∂t
+ ∇x · (vp) + ∇y · (fp) = −λ(y)p+

∫
V

λ(y)T (v,v′,y)p(x,v′,y, t) dv′. (4.11)

Applying moment closure techniques and regular perturbation analysis, the authors obtained the
equation

∂

∂t
n = ∇ ·

[
s2

Nλ0

∇n−G′(S(x, t))
bs2ta

Nλ0(1 + λ0ta)(1 + λ0te)
n∇S

]
, (4.12)

first derived in 1D, and later extended to 3D on the diffusion time and space scales [64, 63]. A
major assumption in this derivation is that b

λ0
G′(S)∇S · v ∼ O(ε) sec−1, i.e., the signal gradient
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is shallow. Other assumptions include time-independent signals S = S(x) and a linear turning
rate λ = λ0 − by1. The derivation was generalized in [240] to admit a time dependent signal and
nonlinear dependence of the turning rate on internal variables. The shallow gradient assumption
therefore becomes H := a1

λ0
G′(S)(∇S · v + ∂S

∂t
) ∼ O(ε) sec−1, where a1 = − ∂λ

∂y1
. In addition,

the analysis was further generalized by considering external forces. As an example, treating the
swimming bias that arises when cells are near a surface ( which leads to the spiral density patterns
seen in P. mirabilis ) as an external force, leads to the equation

∂

∂t
n = Dn4n−∇ ·

[
G′(S)n

(
χ0∇S + β0(∇S)⊥

)]
(4.13)

under the assumption of fast excitation (te = 0). Here
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ω0a1s
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)

2((λ0(1 − ψd) + 1
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0)(λ

2
0(1 − ψd)2 + ω2

0)
. (4.16)

The parameter ω0 measures the swimming bias, while ψd is the index of directional persistence
(see [239] for details).

The ultimate aim is to derive equations for the cell density from the cell-based model under
a variety of signal gradients. In [238] it is shown that for an ultra-small signal gradient, H ≤
O(ε2) sec−1, the chemotactic response of the population enters into the cell density solution as
small perturbations (higher order terms) to a diffusion process (n0) with Dn = s2/(Nλ0), and
the chemotaxis equation (4.12) still provides a good approximation. For larger signal gradients,
H ≥ O(1) sec−1, however, Equation (4.12) may fail to provide a reasonable approximation, since
the macroscopic velocity

uS = χ(S)∇S = s

(
a1s

λ0

G′(S)∇S
)(

− 1

|V |

∫
V

v ⊗ (taλ0A− 1)−1vdv

)
(4.17)

can increase beyond realistic cell speeds when ∇S is large. Exactly how to derive appropriate
macroscopic equations from the microscopic process and what equation to expect for larger signal
gradients remains an open problem. Related unresolved issues arise when one tries to derive the
PKS equation for amoeboid cells [65].

5. Pigmentation markings
Pigmentation in vertebrates initiates early in the embryo following the migration of pigment cell
precursors from their neural crest origin to the dermal skin layers [119]. At the time at which the
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pattern is laid down, each stripe of the zebra or spot of a leopard is of the order of 100 pigment
cells in diameter, and the question naturally arises as to what mechanisms are involved in the large
scale organization of cells to produce a particular pattern within the skin. The study of pigmenta-
tion patterning is thus an elegant model system for exploring the fundamental processes governing
embryonic morphogenesis. In particular, pigment patterning provides a rare opportunity to ex-
amine the coupling between embryonic growth and morphogenetic patterning, because for certain
species (particularly fish) the pigmentation pattern evolves with organism growth throughout the
individual’s lifespan.

Despite the many differences at the microscopic level, for example the number of pigment
cell types and the mode by which pigment is transferred, the same basic pattern types – stripes
and spots – are widespread across the animal kingdom, raising the question as to whether similar
mechanisms control pigmentation in different species. Our insights into the biological control of
pigmentation have principally derived from the study of a few model systems, including salaman-
ders, mice and zebrafish, while theoretical models have focused mainly on mammalian, fish and
butterfly pigmentation. In this section we begin by comparing and contrasting pigmentation in
these systems, examples of which are shown in Figures 1 and 13, with detailed consideration of
the patterning process observed in angelfish and zebrafish. We consider the various theories ex-
pounded for the control of pigment regulation, with particular emphasis on the reaction-diffusion
based model for pigment patterning.

5.1. Biology of pigmentation
5.1.1. Pigmentation in mammals

In mammals, pigmentation derives from a single pigment cell type – melanocytes – which generate
oranges and blacks through transfer of pigment granules via dendrites into hairs and epithelial
cells; other colors, such as the blues on the face of a Mandrill, are attributed to the scattering
of light within the skin rather than a specific pigment [186]. As noted earlier, pigmentation in
mammals and other vertebrates involves the migration of pigment cell precursors from their neural
crest origin to the dermal skin layers [119]. Successful migration along a complex path leading to
their final destination depends on their ability to respond to local cues (e.g. see [217]), but long-
range cues (e.g. chemotactic signals) released in the developing dermis also appear to play a role
[216].

It is generally believed that the pigmentation patterns of mammals are fixed early in embryonic
development (for example, from the 3rd to 5th week of gestation in the zebra according to [12])
with subsequent alterations stemming mainly from deformation due to organism growth. However,
there are a number of notable exceptions, which indicate that the underlying pattern may undergo
continual refinement well into juvenile stages. Newborn Malaysian tapirs display an elegant pattern
of dappled white stripes and spots on a brown coat which disappear during their first few months
into the solid black/white pattern of the adult, while the white spots of foals disappear into an
almost uniform brown pigmentation in adult deer. Furthermore, it has been suggested that cat
pigmentation markings derive from the same fundamental pattern of “solid spots”, which then
transform into a wide range of adult patterns (e.g. “rosettes” in leopards and jaguars, spots in
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Figure 13: Examples of pigmentation patterns in fish and butterflies. Clockwise from top right: Emperor
angelfish (Pomacanthus imperator), Eastern bath white (Pontia edusa), Swallowtail (Papilao machaon) and
Beaked coralfish (Chelmon rostratus). Images by K.J. Painter.

cheetahs, “patches” in clouded leopards) during subsequent growth [233]. The evolution of this
transition between solid spots and “rosettes” can be observed in leopard and jaguar cubs [122].

5.1.2. Pigmentation in fish

Fish (and other animal classes) possess a greater range of pigment cell types (or chromatophores),
including melanophores, iridophores and xanthophores, which arrange into ordered layers of the
dermis to form the dermal chromatophore unit [9]. The distinct arrangement of these layers gener-
ates dazzling and contrasting colors, many of which can not be obtained through a single pigment
cell type.

At a macroscopic level, many species of fish (as well as amphibians and reptiles) alter their pig-
mentation throughout their life cycle. Rapid changes – physiological color change – are stimulated
through hormonal and/or neural signals which trigger the redistribution of the pigment granules
within the pigment cells, thus allowing animals such as chameleons and flatfish to blend into the
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surrounding environment. Certain fish can even adopt the form of a chessboard when placed on
an appropriate surface [152]. Slower changes – morphological color changes – occur much more
gradually and result from changes to pigment cell densities or the transfer of pigment granules to
the skin (for a review, see [215]). For example, long-term exposure of the medaka (Oryzias) to
a dark background results in increased densities of melanophores and decreased numbers of leu-
cophores [214]. In many instances, the pigmentation pattern is dynamic, undergoing continuous
transformation as the fish develops from larval to adult stages. Consequently, fish pigmentation
offers a tractable system for studying the intrinsic relationship between embryonic growth and
morphogenetic patterning. Two examples have attracted particular attention from theoreticians:
the marine angelfish and the zebrafish.

Pigmentation in the marine angelfish

The marine angelfish family Pomacanthidae comprises 9 genera and more than 70 individual
species found in tropical waters of the Atlantic, Indian and Pacific oceans [153], with their exquisite
and diverse coloration popularizing them as ornamental fish for aquariums. One of the striking
characteristics for many of the species in this family are the markedly different juvenile and adult
markings. Most species in the genus Pomacanthus (and sub-genus Pomacanthus Euxiphipops) dis-
play a broadly consistent juvenile pattern composed of a number of curved white bars on a dark
blue background. During juvenile growth, the numbers of these stripes increases in proportion to
fish size with new stripes regularly inserting between pre-existing ones [113], first emerging faint
and narrow but widening as the fish continues to grow. This process may repeat several times be-
fore being replaced by the adult pattern, which varies widely from species to species (e.g. see [2]).
Adoption of a distinct pattern confers an advantage to the juvenile: adults are highly territorial and
tend to attack other fish with similar markings [74].

Pigmentation in zebrafish

The beautiful coupling between organism growth and pattern formation described above is offset
by its impracticality for detailed study: the long period of growth, large size, sensitivity to the
environment and territorial nature preclude intensive study of Pomacanthus in the laboratory. In
stark contrast, the zebrafish Danio rerio has emerged as one of the predominant model organisms
for studying embryonic development (for a review, see [84]). Unsurprisingly, the pigmentation
pattern is one of its defining traits, consisting of alternating black and silver/yellow stripes that
extend horizontally across the flank.

Zebrafish pigmentation appears early and melanophores are already visually identifiable 24
hours post fertilization (hpf) and the pattern is dynamic from early larval through to adult stages.
The rapid development of zebrafish (3-4 weeks from fertilization to adult), the large repertoire of
larval and adult pigmentation mutants [107, 159, 85], the number of closely related species with
varied markings [175] and the growing understanding of the molecular events controlling pigment
cell differentiation and positioning [208] collectively make zebrafish pigmentation an ideal system
for studies of morphogenetic patterning.
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Pigmentation can be divided into two distinct phases: a larval pattern that begins to form 24
hpf, and the characteristic horizontal black/silver stripe pattern of the adult. Pigment cell pre-
cursors originate in the neural crest (a transitory population of precursor cells also giving rise to
neural, glial and skeletal cells) along the dorsal midline between the neural tube and surface ecto-
derm [119]. Melanin-expressing melanophores can be identified shortly following their migration
away from the crest where they begin to populate the dorsal stripe, one of three melanophore
stripes that characterizes the larval pattern [136]. Patterning of the dorsal stripe initiates anteriorly
and progresses posteriorly, consistent with the migration of cells away from the neural crest. After
30 hpf melanophores begin to form a ventral stripe with a lateral stripe the last to become estab-
lished (at approximately 42 hpf). Two further pigment cell types contribute to the larval pattern:
xanthophores (yellow) in melanophore-free zones and iridophores associated with melanophores
in the stripes [91]. Over subsequent days of development this basic pattern is consolidated through
increased numbers of pigment cells.

Metamorphosis to the adult pattern commences two to three weeks post-hatching. Melanophores
begin to appear from latent precursors [179] to form the first two adult stripes on either side of the
larval lateral stripe. An interstripe predominantly composed of xanthophores develops in between,
while those melanophores in the larval lateral stripe either die or migrate into one of the forming
stripes [178]. The formation of adult stripes and interstripes appears to partially depend on the
attractive and repulsive relationships between the various chromatophore types [125, 177]. During
the following days, pigment cell numbers increase to reinforce the stripes and interstripes until
each stripe is densely populated by pigment cells and approximately 6 cell diameters in width.
With continued adult growth, new stripes/interstripes appear dorsally and ventrally of the existing
adult stripes [130], although occasionally an existing adult stripe may split (particularly in older
fish, [6]). For further details on metamorphosis to the adult pattern see, e.g. [99, 176, 125, 175].

5.1.3. Pigmentation in butterfly wings

Pigmentation patterns in butterfly wings form in a flat two-dimensional structure composed of a
highly organized mosaic of individually colored “tiles”: the pigmented scales [156]. A subset of
epidermal cells differentiates to form a monolayer of scale cells that subsequently extend broad
and flat cellular appendages, the scales. Coloration of the scale is achieved through the transfer of
pigment granules synthesized in the scale cell, each of which can produce a single pigment color,
[111]. Synthesis of the pigment, and hence appearance of the color pattern, does not occur until
shortly before the emergence of the adult butterfly (i.e. late pupal stages), yet specification of the
color type of scale cells is established during larval and early pupal stages, thereby generating an
imperceptible prepattern of scale cells each committed to a pigment type. The fixed structure of
the scale cell monolayer precludes cell movement during the specification of the scale cells, which
excludes the involvement of movement during pattern organization [156]. This is in stark contrast
to vertebrates where pigment cells can potentially migrate within the dermis.

Each of the attractive and complex pigmentation markings observed in the wings of differ-
ent species can be broken down into common sets of elemental pattern types, referred to as the
nymphalid groundplan [196, 213, 156, 160]. Patterning observed on wing patterns is comprised of
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both “localized” forms, such as the characteristic “eyespots”, an example of which can be seen to
the bottom left of the Swallowtail wing pattern in Figure 13, or the specific markings correlated
with structural elements of the wing (e.g. the thin black markings along the wing veins of the
Swallowtail) and “global” forms consisting of the larger scale patterns spanning entire wing tracts,
for example the alternating dark/white patchwork pattern on the Eastern Bath White (Figure 13) or
the wide black band running parallel to the distal wing in the Swallowtail.

At a cell and molecular level, the determination of eyespots (in Nymphalidae) is currently the
most well understood process. Eyespots usually consist of a pattern of concentric color rings used
as a means of startling predators. Each eyespot develops about a group of organizing cells that act
as signaling centers, and while the signal is not known, the fact that the cells signal is demonstrated
by transplanting them to other wing regions and observing the formation of ectopic eyespots at the
new locations [30]. In [37] the expression patterns of a number of candidate genes was explored
and the eyespot organizing cells at the center were identified by their unique expression of Distal-
less. A variety of further transcription factors have been found to be expressed in rings coincident
with the color markings [32]. These results imply a model in which organizer cells stimulate gene
expression and, eventually, pigment specification in the surrounding cells.

5.2. Chemical prepattern and reaction-diffusion models for pigmentation
5.2.1. Mammalian pigmentation

Much of the current interest in modeling pigmentation patterning stems from the influential work
of Murray on mammalian coat markings and lepidopteran wing patterns in the late 1970s (see
[143, 144, 145]; a comprehensive and detailed review of this topic is given in Chapter 3 of [146]).
Murray’s proposal was that a system of reacting and diffusing morphogens could generate a chem-
ical pre-pattern within the developing integument via a Turing instability. The subsequent coat
pattern was simply assumed to reflect the chemical pre-pattern via differential response of the pig-
ment cell precursors to the levels of these morphogens. A similar reaction-diffusion based model
for mammalian pigmentation was developed in [13].

One of the compelling arguments for the reaction-diffusion theory of pigmentation lies in its
impressive capacity to replicate many of the observed pigment patterns through a single mech-
anism. We consider a two component Turing model given by Equation (2.3), with c = (u, v)
representing hypothetical chemical morphogens in the integument. Assuming that (a) the depth of
the integument is small with respect to the scale of patterns, and (b) the initial pigmentation pattern
is fixed over a relatively short timescale early in development, it is reasonable to assume the re-
action takes place on a fixed 2D domain (we consider coupling growth to pigmentation patterning
later). For the simulations here the reaction term R̄ is given by the Lengyel-Epstein model [120]
developed to describe the Turing patterns observed in the CIMA chemical reaction [39], although
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many other kinetics would generate equivalent results. The equations are given by

∂u

∂t
= Du∇2u+ k1

(
v − uv

1 + v2

)
(5.1)

∂v

∂t
= Dv∇2v + k2 − v − 4uv

1 + v2
, (5.2)

on a 2D rectangular domain Ω with periodic boundary conditions. A stability analysis about the
positive homogeneous steady state at (1 + k2

2/25, k2/5) determines the conditions on the parame-
ters for Turing instabilities to occur and in Figure 14 we plot the spatial distributions of activator
(v) predicted by equations (5.1)-(5.2) at various points in Dv–k1 space. Clearly, the above system
is capable of producing many of the commonly occurring pattern-types observed in animal skins,
including “spots”, “stripes”, “reticulated stripes” and “inverted spots”. The conditions that distin-
guish between stripes or spots in reaction-diffusion systems have been investigated by a number of
authors; a major factor is the dominating nonlinearity in the kinetics (e.g [124, 66, 132]).

Predictions of the reaction-diffusion model stem from the link between geometry and pattern-
ing: the patterns generated by Turing systems possess a characteristic wavelength (see Figure 14)
and it is therefore expected that average widths/diameters of stripes/spots are broadly consistent
across the body. The intrinsic relationship between the pattern and the domain geometry sub-
sequently leads to a number of generic predictions. For example, spotted mammals can exhibit
striped tails while the reverse does not occur, and both very small and very large mammals can
generally be expected to display uniform pigmentation (see [146] for further details). The former
prediction appears to hold true while the latter, albeit not universal (giraffes and species of vole
provide counter-examples at either end of the size distribution), generally seems to be upheld. At
a finer scale, reaction-diffusion models have also been proposed to provide the information for
the positioning of the individual hair follicles [150, 151, 140] and recent experimental data have
revealed potential networks that may operate in a Turing-like fashion ([142, 207], see also [87] this
issue).

While the reaction-diffusion model is far from the only hypothesis for the origin of pigmenta-
tion patterns, see Section 5.3.), the seductive charm lies in its capacity to generate highly realistic
patterns (particularly when solved on life-like geometries, see Figure 15) and has led to its applica-
tion to model pigment pattern control across the animal kingdom. Reaction-diffusion models have
been employed in [199] to explain butterfly wing markings (see section 5.2.3. below), Meinhardt
[133] uses activator-inhibitor systems to replicate the enormous diversity of patterns of tropical
sea-shells, their application to the markings of various species of ladybird beetles is considered in
[121], and [187] have examined within-feather pigmentation control via a Turing system. Over
the past decade interest in reaction-diffusion models has been further heightened by their ability to
replicate the highly dynamic patterns observed in the skins of fishes.

5.2.2. Fish pigmentation

The first proposal for a reaction-diffusion model controlling fish pigmentation was formulated by
Kondo and Asai [113] following observations on the patterning of the marine angelfish genus Po-
macanthus. As previously described, juvenile members display evolving patterns in which the
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Figure 14: Activator (v) concentrations at different values of Dv (horizontal axis) and k1 (vertical axis).
At each Dv–k1 pair, equations (5.1)-(5.2) were solved numerically to t = 10000 from initial distributions
(u(x, 0), v(x, 0)) = (us, vs) + r(x), where (us, vs) is the uniform steady state and r(x) a small random
spatial perturbation. Other model parameters were fixed at Du = 1.0 and k2 = 11.0 with periodic boundary
conditions on the 2D square domain of dimensions 10 × 10. Concentration is represented through the
colorscale (red = high, blue = low). Note that in the top right hand corner, the conditions for a Turing
instability are not satisfied and no spatial pattern develops.

number of stripes increases proportional to body length before metamorphosis to the adult pattern
occurs. The close correspondence between simulations of reaction-diffusion models and temporal
features of the pattern change observed in real fish led to the proposal for a reaction-diffusion model
driving angelfish pigmentation [113] (see Section 5.4.). A number of further reaction-diffusion
based models have been developed to describe additional features of pigmentation in Pomacan-
thus and other species: Barrio and others [225, 15] have considered the special role that domain
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Figure 15: Simulations of equations (5.1)-(5.2) on “animal-shaped” geometries replicating the pigmenta-
tion patterns in Tiger Salamander (Ambystoma tigrinum) (left) and Juvenile Koran Angelfish (Pomacanthus
semicirculatus) (right).

geometry and boundary conditions may play; Painter and others [173, 172] augmented a reaction-
diffusion model to incorporate the accumulation of pigment cells into stripes via chemotaxis. A
number of authors have explored the mechanisms regulating stripe orientation, (eg., [204, 205]
and [135]). The latter demonstrated how stripes of specific orientations can be experimentally
generated in the CIMA chemical reaction.

A reaction-diffusion model for adult zebrafish patterning has been proposed in [6], indicating
that perturbation to a single parameter in a standard reaction-diffusion system could generate a
transition between horizontal stripes (as observed in the zebrafish Danio rerio) to labyrinthine and
spotted patterns (observed in the leopard mutant). In later work by the same group, experimental
results in which zebrafish stripes reformed following their partial ablation were replicated using
a reaction-diffusion model, which suggests that the adult stripe pattern is dynamically-controlled
rather than fixed at its time of formation [242].

5.2.3. Butterfly pigmentation

As described above, the complexity observed in butterfly wing pattern can be broken down into
a number of distinct pattern elements [196, 213, 156], and theoretical modeling has generally
concentrated on understanding the control of these various elements separately. The mechanism
for eyespot formation has been considered by a number of authors. Nijhout [155] proposed that
cells at the eyespot focus could produce a signal, leading via diffusion to a morphogen gradient
that provides positional information to the surrounding cells. A number of detailed investigations
have explored these ideas in greater detail (e.g. [156, 139, 55]). In contrast, the models in [67,
129], are aimed at explaining eyespot generation through simulating candidate gene regulatory
networks. The pre-specification of eyespot organizers from an undifferentiated population of scale
cells has been modeled in [156] using an activator-inhibitor mechanism. This model was capable of
producing point-wise chemical prepatterns at the precise locations of future organizers by assuming
wing veins act as a source of activator. Furthermore, chemical concentrations predicted in the
model displayed a complex temporal sequence later shown within the gene-expression patterns of
Distal-less.

A number of models have been developed to describe the mechanistic basis for global pattern-
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ing features, i.e. patterning that covers large portions of the wings (see [157] for a detailed review).
Murray [145] proposed a diffusion-morphogen-gene-activation model in which wing margins pro-
vide the source for a diffusible morphogen which, in turn, triggers gene activation and eventual
color specification. Theoretical results of this model were consistent with a wide variety of ob-
served patterns. A diffusion-based model has been developed by Bard and French in [14]. Eye-
spots and the wing-margin are assumed to act as sources and sinks for a chemical morphogen, the
subsequent profile of which is assumed to provide the positional information for color specifica-
tion. More recently, work by Sekimura and others (e.g. [199, 126, 157]) has explored the potential
for reaction-diffusion type mechanisms to generate features of global patterning. Focusing on the
spectacular and varied color patterns of the species Papilio dardanus, a standard activator-inhibitor
type mechanism has been solved on realistic wing geometries with specific boundary conditions
(representing activator sources) along the distal wing edges. Perturbations to model parameters
were shown to generate the variety of patterns observed in this species.

5.3. Cell-based models for pigmentation
Despite the successes of the reaction-diffusion model at capturing certain patterning elements
across the animal kingdom, including mammalian, fish and butterfly pigmentation, the in vivo
identification of plausible morphogens is lacking and the model does not consider the potentially
important role the pigment cells themselves may play in setting or regulating the pattern (e.g.
[177, 125]). In the reaction-diffusion model it is generally assumed pigment cells are “passive”
objects that respond to threshold concentrations of the morphogens through differentiation, but
a number of other models have been developed that explicitly incorporate a role for cells in the
patterning process.

In vertebrates, pigment cells derive from the neural crest, an embryonic population contributing
to a variety of cell populations in the adult organism. During development neural crest cells are
highly motile, occasionally traveling across the organism to their final destination, and it is thought
that both local and long distance chemical signals control neural crest cell migration in vivo. Based
on data collected on the timing of stripe formation in embryonic and hatchling alligators, [147]
proposed a cell-chemotaxis model for pigmentation, while [148] suggested a similar model for
pigmentation in snakes. In these models, the pigment cells play a crucial role in generating the
pigment pattern through migration in response to self-regulated morphogens. As described in the
context of bacterial patterning, models of this form can certainly generate macroscopic patterns
qualitatively similar to observed pigment patterns. Chemotaxis has also been incorporated into the
models by Painter et al. [173, 172] to explain specific aspects regarding the dynamic pigmentation
patterns in the angelfish genus Pomacanthus. In these models the cells respond chemotactically to
the primary pattern generated by a Turing system, rather than inducing their self-organization.

Based on the findings in [177, 125], recent discrete-cell models developed in [141] and [36] dis-
pense with extrinsic chemical signals and demonstrate that the pigmentation pattern for zebrafish
can be generated solely through specific local interactions (i.e. adhesive or repulsive) between
the principal pigment cell types (melanophores and xanthophores). Perturbations to the self- (i.e.
melanophore-melanophore or xanthophore-xanthophore) and cross- (melanophore-xanthophore)
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interactions generates a wide variety of pattern types corresponding to pigmentation mutants. The
capacity for differential-adhesion to generate the cellular sorting of different populations has been
known since the seminal work of Steinberg and others (e.g. see [212]).

Other discrete cell models for pigmentation have been developed in [243] and [79] for mam-
malian pigmentation, adopting cellular-automata type models. While pigment cells are explicitly
incorporated into these models, their input into the patterning process occurs via their regulation
of chemical activators and inhibitors, subsequently leading to similar pattern phenotypes to those
generated by continuous reaction-diffusion systems.

5.4. Patterning on growing skins
In the foregoing we have generally restricted attention to the modeling of pigmentation patterning
on fixed geometries. Yet, for many species, the color markings undergo continual change through-
out the lifespan of the organism, a striking example of which is given by the juvenile angelfish
described earlier [113]. Adult zebrafish also show stripe insertion, with new stripes inserted dor-
sally and ventrally [130] following sufficient adult growth. As previously mentioned, there is also
evidence of transformations during mammalian pigmentation, particularly in certain species of cats
[233, 122].

These examples all imply a link between morphogenetic patterning and domain growth: the
insertion of new stripes in juvenile angelfish is closely correlated with fish size, with stripes in-
creasing twofold with each doubling in the head-tail length. There is also an age-structure to the
stripes, with old stripes bright and wide and newer stripes faint and thin. To explain these trans-
formations it is necessary to account for the domain growth, as has been done by a number of
authors (e.g. [5, 114, 113, 173, 49, 57, 48, 11]). In general, tissue growth will depend on a range of
both global and local cues (for example mitotic and apoptotic factors) and expansion is expected to
depend on the spatial distribution of underlying factors transported with tissue growth and models
for “morphogen” controlled domain growth have been developed by [57, 49, 48, 11]. Earlier (see
section 2.6.) we developed a model to describe the planar expansion of a tissue through cellular
growth, and demonstrated that under the assumption of spatially uniform growth the equations
simplify to a form that lacks the additional terms resulting from growth-induced transport.

5.4.1. Stripe insertion in juvenile angelfish: uniform growth

To model stripe insertion in juvenile angelfish it is necessary to consider the in vivo growth of
juveniles. In the absence of empirical data it is reasonable to expect uniform growth and equations
(5.1)-(5.2) are extended onto a 1D growing domain [0, L(t)] representing the head-tail axis. Fol-
lowing the process in Section 2.6. and rescaling onto a fixed domain [0, L(0)], the equations for a
growing-domain are given by

∂u

∂t
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Figure 16: Simulations showing activator (v) concentration from equations (5.3)-(5.4) for a 1D exponentially
growing domain [0, exp(rt)]. Simulations show that for a wide range of growth rates it is possible to generate
a robust sequence of “frequency doubling” in which new activator peaks insert between preexisting ones.
For very slow and very fast growth rates, this sequence breaks down.

The impact of growth is absorbed into time-dependent diffusion coefficients and additional “decay-
type” terms interpreted as chemical dilution due to domain growth. Analogous equations have
been derived by [114], [173] and [49] using a variety of methods. In the context of angelfish
pigmentation, the principal question is whether the above generates a regular insertion of new
stripes as the fish doubles in size. To explore this we simulate equations (5.3)-(5.4), assuming
that juvenile growth (at least initially) is exponential (the impact of different growth forms has
been considered in [173, 49]), thus L(t) = L0 exp(rt) where r is the growth rate. The activator
distribution (v) is shown in Figure 16, and the results demonstrate that for a wide range of growth
rates the reaction-diffusion model does indeed generate a robust “doubling” sequence in which
activator peaks insert with each doubling of the domain length, consistent with stripe insertion on
the angelfish.

That a Turing system could generate “peak doubling” was predicted in [5] and re-discovered
in the context of juvenile angelfish patterning by Kondo and Asai [113], strengthening their hy-
pothesis for an underlying reaction-diffusion system governing pigmentation. A number of subse-
quent extensions of their analysis have been made to understand additional features in the pig-
mentation sequence. For example, Painter et al. [173, 172] analyzed patterning on more re-
alistic two-dimensional geometries and incorporated a chemotaxis-based hypothesis for the ac-
cumulation of pigment cells into the forming stripes. On the 2D uniformly growing domain
(x, y) ∈ [0, L1(t)] × [0, L2(t)], their equations are
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where the additional equation for c represents the density of the predominant pigment cell type
populating the “stripes”. In Figure 17 we show the results of simulations of the above model using
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Figure 17: Simulation of the 2D chemotactic-reaction-diffusion hybrid model showing (top row) activator
concentration v and (bottom row) pigment cell density c. The accumulation of cells at the sites of “new”
stripes proceeds slowly, resulting in an age-structure to the stripes consistent with the pattern observed in
juvenile angelfish.

“logistic” growth, for which the initial growth is approximately exponential, but later the domain
size stabilizes. The activator concentration (v) is plotted in the top row, showing that a robust
sequence of stripe insertion also occurs in 2D, but it should be noted that the developing stripes
show no persistent age structure. However, the corresponding pigment cell density (bottom row)
does show an age structure to the stripes due to the slower process of chemotactic migration.

5.4.2. Stripe insertion in zebrafish: boundary growth

While new stripes appear throughout adult zebrafish growth, their pattern of appearance is some-
what different from that of juvenile angelfish: new zebrafish stripes appear along the dorsal and
ventral edges of the flank with increased growth. Clearly, the uniform growth scenario described
above is unable to explain this sequence, since uniform growth predicts the appearance of new
stripes across the entire dorsal-ventral flank. We consider the possibility that growth in adult
zebrafish occurs principally through stretching at the dorsal/boundary extremes, i.e. boundary
growth. For example, by assuming domain growth occurs along the y = 0 boundary (representing
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the dorsal flank), the reaction-diffusion systems equations become [172, 49]
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The nonuniform growth results in the addition of convective terms describing the transport of the
chemicals due to the stretching of the skin, as in [57]. Under reasonable forms for the growth terms,
the above equations can indeed predict the appearance of new stripes along the dorsal extremes,
consistent with the mode of stripe insertion in zebrafish, as shown in Figure 18.

Figure 18: Simulation of the 2D boundary growth model demonstrating (top row) insertion of new stripes
along the dorsal side. For these simulations, we assumed Lx(t) = 2 and Ly(t) = 1 + rt for r = 0.01.

6. Future Perspectives
Recent years have witnessed a dramatic rise in the use of mathematical modelling to understand
the basic mechanistic processes underlying biological pattern formation, from patterning within an
individual cell, via the organization of tissues and organs during development to the coordinated
behaviour of organisms within a population. The advancement in experimental methodology is
leading to increasingly detailed and quantitative data on the core regulators of pattern formation,
in turn resulting in a new generation of detailed mathematical models both driven by and driving
experimental research. However, more traditional, phenomenological-based models still play a
vital role, providing an established theoretical framework in which to understand details of these
more complex models. We conclude this paper with a brief consideration of outstanding questions
relating to pattern formation both in general and with respect to the three examples reviewed earlier
– Drosophila, E. coli and pigmentation patterning – highlighting the core role that modelling may
play in this process.
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6.1. Drosophila
The timing is propitious for mathematical modeling of pattern formation and morphogenesis in
Drosophila, as there is a good balance of established facts and questions that remain to be an-
swered. In recent years, a number of biological questions relied on developing and analyzing
mathematical models of varying complexity, as discussed earlier, but there is ample scope for
further work. As discussed for each case earlier, to truly couple the modeling with the experi-
mentation to make the next wave of biological discoveries, one has to develop more geometrically
representative models of the organisms and tissues used for the experimentation. While significant
biological insight has been gained from simple 1D models, we have reached the limits of what
we can use the models for in terms of leading experimental design. Furthermore, experimentalists
have been exploiting the orthogonal nature of AP and DV patterning to drive ectopic expression of
DV genes in spatially restricted zones along the AP axis. These types of experiments provide more
flexibility in developing experiments to delineate the function of BMP regulators, and none of the
current 1D models are capable of predicting the signaling patterns for any of these experiments.
Furthermore, experimentalists used a method of mRNA injection to decipher various aspects of
BMP-mediated positive feedback in the Drosophila embryo. In order to test the next generation of
models and plausible positive feedback mechanisms against the experimental observations, a full
3D model must be developed and this work is ongoing.

With a 3D organism-scale model of the Drosophila embryo, modelers can investigate a number
of other phenomena that have not yet been addressed. First, one could perturb the geometry of the
model to determine the sensitivity of patterning to the specific embryo geometry. One could also
couple the 3D model with new biological data such as the VirtualEmbryo, which is a new spa-
tiotemporal map of gene expression in Drosophila, and determine the sensitivity of BMP signaling
to perturbations in the spatial distribution of upstream components.

6.2. Bacteria
Biofilm formation is a complicated process that involves cell growth, differentiation, cell-cell sig-
naling, and mechanical response to substrate. Bacterial patterns formed in laboratories provide a
manipulable model system to understand biofilm initiation and growth. In particular, the beauti-
ful patterns formed in E. coli colonies have posed excellent challenges to understand the com-
plex interplay between different processes involved through mathematical modeling. Although
the previous models have been shown to produce qualitatively similar patterns in experiments, the
understanding of the mechanisms underlying these patterns is still poor and has to be addressed.

• Further development of the hybrid cell-based model. The hybrid cell-based model provides
opportunities for modelers to describe individual cells in great detail and investigate the role
of intracellular processes in the populational patterns. Two major aspects of the E. coli pat-
terns in semi-solid agar are the swarm ring formation and the regular aggregation pattern
formation. The hybrid cell-based model has already been shown to predict the outward-
moving swarm ring, with a sharper wave front and a diffusive wave tail. Depending on
parameters, instability develops inside the ring and may induce fast moving aggregates. In
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Figure 19: Future work– geometry, dynamics and concentration data. (From [108] with permission)

order to obtain stable aggregates disassociated from the ring, one has to incorporate satu-
ration of receptors at high concentration of attractant and change of motility of cells in the
future. In addition, since succinate has been shown to be a weak attractant for E. coli , it is
worthwhile to investigate the contribution of response towards multiple signals to the pattern
formation.

• Derivation of continuum models. In section 4.4., chemotaxis equations were derived from
the cell-based model under the shallow signal gradient condition. How to derive the macro-
scopic equations for large signal gradient remains an open problem. In addition, in the
derivation cell-cell mechanical interaction was ignored since the cell density is low. How-
ever when cell density becomes high, one may need to consider the volume filling effects.
How to derive the macroscopic equation with volume filling from a suitable cell-based model
deserves future investigation. An initial step to address the question would be to consider
the case with no signal gradient and derive a nonlinear diffusion equation.

6.3. Pigmentation patterns
Pigmentation patterning presents an ideal system for understanding the emergence of pattern and
form in the developing embryo. The rich tradition of modeling in this area provides a convenient
platform for formulating expanded models that integrate recent data regarding the molecular con-
trols and cellular interactions determining pigment cell specification and positioning. The natural
cell markers (i.e. the pigment) and the ability to follow pattern change in a noninvasive manner
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offers a potential to formulate testable predictions into the fundamental mechanisms controling
patterning. To conclude this section, we offer a number of challenges for modelers to address in
this exciting area.

• Distinguishing between models for pigmentation. As described above, the reaction-diffusion
model accurately predicts many known pigment patterns across a wide variety of species.
Yet a number of diverse models, including chemotaxis-based and differential-adhesion-based
models, are capable of predicting similar pattern types. How do we successfully differentiate
between these various models to identify the fundamental mechanism underlying pigmenta-
tion control?

• Integrating microscopic data into the modeling. In the absence of detailed information con-
cerning the cellular and molecular processes underpinning patterning, the majority of mod-
eling has focused on a phenomenological level, employing generic assumptions regarding
the underlying interactions. Recent work, particularly in zebrafish and butterflies, is reveal-
ing greater insight into molecular and cellular interactions, leading to recent formulations of
cell-based models of pigmentation control [141, 36]. A challenge for future modeling will
be to integrate new data into existing models to generate experimentally testable predictions.

• Positioning of pigment cell precursors. Pigmentation models have generally focused on
explaining the origin of the adult form with less attention on the initial stages. Following
their migration from the neural crest, larval pigment cells of the zebrafish organise into
a number of longitudinal melanophore stripes with xanthophores occupying the spaces in
between. The development of models that consider both the generation of this larval pattern
as well as its subsequent transformation to the juvenile/adult form remains unexplored.

• Explaining patterning diversity. In zebrafish and related species the pigmentation pattern
may vary considerably [175], leading to questions regarding a link between patterning and
diversification. A number of theoretical studies have begun to explore the impact of per-
turbations to a model for the form of the adult pattern (e.g. [6, 141, 36]), yet extending this
further will be required with increased understanding into the biological processes governing
patterning.

In summary, we are at the beginning of a transition in the modeling of development in biology.
Models are changing from qualitative descriptions to explain some peculiar or non-intuitive data,
to quantitative models that make predictions that can be tested experimentally to drive the biology
forward. As mathematical models of biological mechanisms continue to provide significant new
insights into the underlying biology that can be directly assayed in vivo, we will observe a revolu-
tion in biology that transforms it from a qualitative, observation-driven discipline, to a quantitative,
analysis-driven discipline.

63



H. G. Othmer et al. The intersection of theory and application in developmental biology

7. Acknowledgements
The research herein was supported by the National Science Foundation (US), the National Insti-
tutes of Health (US), the Alexander von Humboldt Foundation, the Digital Technology Center, and
the Minnesota Supercomputing Institute.

References
[1] J. Adler. Chemotaxis in bacteria. Science, 153 (1966), 708–716.

[2] G. Allen, R. Steene, M. Allen. A guide to angelfishes and butterflyfishes. Odyssey, 1998.

[3] K. Amonlirdviman, N. A. Khare, D. R. Tree, W. S. Chen, J. D. Axelrod, C. J. Tomlin.
Mathematical modeling of planar cell polarity to understand domineering nonautonomy.
Science, 307 (2005), No. 5708, 423–6.

[4] R. P. Araujo, D. L. S. McElwain. A history of the study of solid tumour growth: The contri-
bution of mathematical modelling. Bull. Math. Biol., 66 (2004), No. 5, 1039–1091.

[5] P. Arcuri, J. Murray. Pattern sensitivity to boundary and initial conditions in reaction-
diffusion models. J. Math. Biol., 24 (1986), 141–165.

[6] R. Asai, E. Taguchi, Y. Kume, M. Saito, S. Kondo. Zebrafish leopard gene as a component
of the putative reaction-diffusion system. Mech Dev, 89 (1999), 87–92.

[7] M. Ashkenazi, H. G. Othmer. Spatial patterns in coupled biochemical oscillators. Jour.
Math. Biol., 5 (1978), 305–350.

[8] S. Atkinson, C. Y. Chang, R. E. Sockett, M. Camara, P. Williams. Quorum sensing in
yersinia enterocolitica controls swimming and swarming motility. J Bacteriol, 188 (2006),
No. 4, 1451–61.

[9] J. Bagnara, M. Hadley. Chromatophores and color change. Prentice-Hall, Eaglewood Cliffs,
New Jersey. 1973.

[10] R. E. Baker, E. A. Gaffney, P. K. Maini. Partial differential equations for self-organization
in cellular and developmental biology. Nonlinearity, 21 (2008), No. 11, 251–290.

[11] R. E. Baker, P. K. Maini. A mechanism for morphogen-controlled domain growth. J Math
Biol, 54 (2007), 597–622.

[12] J. Bard. A unity underlying the different zebra striping patterns. J. Zool., 183 (1977), 527–
539.

[13] J. Bard. A model for generating aspects of zebra and other mammalian coat patterns. J.
Theor. Biol., 93 (1981), 363–385.

64



H. G. Othmer et al. The intersection of theory and application in developmental biology

[14] J. Bard, V. French. Butterfly wing patterns: how good a determining mechanism is the simple
diffusion of a single morphogen? J. Embryol. Exp. Morph., 84 (1984), 255–274.

[15] R. Barrio, C. Varea, J. Aragn, P. Maini. A two-dimensional numerical study of spatial pattern
formation in interacting Turing systems. Bull. Math. Biol., 61 (1999), 483–505.

[16] B. L. Bassler. How bacteria talk to each other: regulation of gene expression by quorum
sensing. Curr Opin Microbiol, 2 (1999), No. 6, 582–587.

[17] E. Ben-Jacob, I. Cohen, A. Czirok, T. Vicsek, D. L. Gutnick. Chemomodulation of cellular
movement, collective formation of vortices by swarming bacteria, and colonial development.
238 (1997), No. 1, 181–.

[18] E. Ben-Jacob, I. Cohen, H. Levine. Cooperative self-organization of microorganisms. Ad-
vances in Physics, 49 (2000), No. 4, 395–554.

[19] E. Ben-Jacob, I. Cohen, O. Shochet, I. Aranson, H. Levine. Complex bacterial patterns. 373
(1995), No. 6515, 566–557.

[20] E. Ben-Jacob, O. Schochet, A. Tenenbaum, I. Cohen, A. Czirok. Generic modelling of co-
operative growth patterns in bacterial colonies. 368 (1994), No. 6466, 46–49.

[21] D. Ben-Zvi, B. Shilo, A. Fainsod, N. Barkai. Scaling of the BMP activation gradient in
Xenopus embryos. Nature, 453 (2008), 1205–1211.

[22] H. Berg. Random walks in biology 1983.

[23] H. C. Berg. Motile behavior of bacteria. Physics Today, 53 (2000), No. 1, 24–29.

[24] H. C. Berg. http://webmac.rowland.org/labs/bacteria/movies/others/. (2008).

[25] M. D. Betterton, M. P. Brenner. Collapsing bacterial cylinders. Physical Review E, 64
(2001), 061904.

[26] K. Bisset, C. Douglas. A continuous study of morphological phase in the swarm of proteus.
J. Med. Microbiol., 9 (1976), 229–31.

[27] V. Bolos, J. Grego-Bessa, J. L. de la Pompa. Notch signaling in development and cancer.
Endocr Rev, 28 (2007), No. 3, 339–63.

[28] J. T. Bonner. The development of Dictyostelium, Chapter Comparative Biology of Cellular
Slime Molds. Academic Press 1982, 1–33.

[29] R. B. Bourret, K. A. Borkovich, M. I. Simon. Signal transduction pathways involving pro-
tein phosphorylation in prokaryotes. 60 (1991), 401–441.

[30] P. Brakefield, V. French. Eyespot development on butterfly wings: the epidermal response
to damage. Dev. Biol., 168 (1995), 98–111.

65



H. G. Othmer et al. The intersection of theory and application in developmental biology

[31] M. P. Brenner, L. S. Levitov, E. O. Budrene. Physical mechanisms for chemotactic pattern
formation by bacteria. 74 (1998), No. 4, 1677–1693.

[32] C. Brunetti, J. Selegue, A. Monteiro, V. French, P. Brakefield, S. Carroll. The generation
and diversification of butterfly eyespot color patterns. Curr. Biol., 11 (2001), 1578–1585.

[33] E. O. Budrene. Personal communication 2005.

[34] E. O. Budrene, H. C. Berg. Complex patterns formed by motile cells of Escherichia coli.
Nature, 349 (1991), No. 6310, 630–633.

[35] E. O. Budrene, H. C. Berg. Dynamics of formation of symmetrical patterns by chemotactic
bacteria. Nature, 376 (1995), No. 6535, 49–53.

[36] C. Caicedo-Carvajal, T. Shinbrot. In silico zebrafish pattern formation. Dev. Biol., 315
(2008), 397–403.

[37] S. Carroll, J. Gates, D. Keys, S. Paddock, G. Panganiban, J. Selegue, J. Williams. Pattern
formation and eyespot determination in butterfly wings. Science, 265 (1994), 109–114.

[38] J. Casanova, G. Struhl. The torso receptor localizes as well as transduces the spatial signal
specifying terminal body pattern in Drosophila. Nature, 362 (1993), 152–155.

[39] V. Castets, E. Dulos, P. D. Kepper. Experimental evidence of a sustained standing Turing-
type nonequilibrium chemical pattern. 64 (1990), No. 24, 2953–2956.

[40] C. M. Child. Patterns and problems of development. University of Chicago Press 1941.

[41] S. Childress, J. K. Percus. Nonlinear aspects of chemotaxis. 56 (1981) 217–237.

[42] J. H. Claxton. The determination of patterns with special reference to that of the central
primary skin follicles in sheep. J. Theor. Biol., 7 (1964), 302–317.

[43] J. H. Claxton. Developmental origin of even spacing between the microchaetes of
Drosophila melanogaster. Aust J Biol Sci, 29 (1976) 131–135.

[44] P. Cluzel, M. Surette, S. Leibler. An ultrasensitive bacterial motor revealed by monitoring
signaling proteins in single cells. Science, 287 (2000), 1652–1655.

[45] E. Conway, D. Hoff, J. Smoller. Large time behavior of solutions of systems of nonlinear
reaction-diffusion equations. SIAM J. Appl. Math., (1977).

[46] M. Coppey, A. Berezhkovskii, Y. Kim, A. Boettiger, S. Shvartsman. Modeling the bicoid
gradient: diffusion and reversible nuclear trapping of a stable protein. Dev. Biol., 312
(2007), 623–630.

[47] M. Coppey, A. Boettiger, A. Berezhkovskii, S. Shvartsman. Nuclear trapping shapes the
terminal gradient in the Drosophila embryo. Curr. Biol., 18 (2008), 915–919.

66



H. G. Othmer et al. The intersection of theory and application in developmental biology

[48] E. Crampin, W. Hackborn, P. Maini. Pattern formation in reaction-diffusion models with
nonuniform domain growth. Bull. Math. Biol., 64 (2002), 747–769.

[49] E. J. Crampin, E. A. Gaffney, P. K. Maini. Reaction and diffusion on growing domains:
Scenarios for robust pattern formation. Bulletin of Mathematical Biology, 61 (1999), No. 6,
1093–1120.

[50] O. Crauk, N. Dostatni. Bicoid determines sharp and precise target gene expression in the
Drosophila embryo. Curr Biol, 15 (2005), No. 21, 1888–1898, comparative Study.

[51] F. H. Crick. Diffusion in embryogenesis. Nature, 225 (1970), 420–422.

[52] M. C. Cross, P. C. Hohenberg. Pattern formation out of equilibrium. 65 (1993), No. 3, 851–
1112.

[53] R. Daniels, J. Vanderleyden, J. Michiels. Quorum sensing and swarming migration in bac-
teria. FEMS Microbiol Rev., 28 (2004), 261–89.

[54] P. de Kepper, V. Castets, E. Dulos, J. Boissonade. Turing-type chemical patterns in the
chlorite-iodide-malonic acid reaction. D 49 (1991) 161–169.

[55] R. Dilão, J. Sainhas. Modelling butterfly wing eyespot patterns. Proc. Biol. Sci., 271 (2004),
1565–1569.

[56] R. Dillon, P. K. Maini, H. G. Othmer. Pattern formation in generalized Turing systems I.
Steady-state patterns in systems with mixed boundary conditions. Journal of Mathematical
Biology, 32 (1994), No. 4, 345–393.

[57] R. Dillon, H. G. Othmer. A mathematical model for outgrowth and spatial patterning of the
vertebrate limb bud. J. Theor. Biol., 197 (1999), No. 3, 295–330.

[58] W. Driever, C. Nüsslein-Volhard. A gradient of bicoid protein in Drosophila embryos. Cell,
54 (1988), No. 1, 83–93.

[59] W. Driever, C. Nusslein-Volhard. The bicoid protein determines position in the Drosophila
embryo in a concentration-dependent manner. Cell, 54 (1988), No. 1, 95–104.

[60] S. Eglen. Development of regular cellular spacing in the retina: theoretical models. Mathe-
matical Medicine and Biology, 23 (2006), No. 2, 79–99.

[61] A. Eldar, R. Dorfman, D. Weiss, H. Ashe, B. Z. Shilo, N. Barkai. Robustness of the BMP
morphogen gradient in drosophila embryonic patterning. Nature, 419 (2002), No. 6904,
304–308.

[62] R. Erban. From individual to collective behavior in biological systems. Ph.D. thesis, Uni-
versity of Minnesota 2005.

67



H. G. Othmer et al. The intersection of theory and application in developmental biology

[63] R. Erban, H. Othmer. From signal transduction to spatial pattern formation in E. coli: A
paradigm for multiscale modeling in biology. 3 (2005), No. 2, 362–394.

[64] R. Erban, H. G. Othmer. From individual to collective behavior in bacterial chemotaxis.
SIAM J. Appl. Math., 65 (2004), No. 2, 361–391.

[65] R. Erban, H. G. Othmer. Taxis equations for amoeboid cells. J Math Biol, 54 (2007), 847–
885.

[66] B. Ermentrout. Stripes or spots? nonlinear effects in bifurcation of reaction-diffusion equa-
tions on the square. Proc. Roy. Soc. Lond. A., 434 (1991), 413–417.

[67] T. Evans, J. Marcus. A simulation study of the genetic regulatory hierarchy for butterfly
eyespot focus determination. Evol. Dev., 8 (2006) 273–283.

[68] A. Filloux, I. Vallet. Biofilm: set-up and organization of a bacterial community. Med Sci
(Paris), 19 (2003), No. 1, 77–83.

[69] P. R. Fisher, R. Merkl, G. Gerisch. Quantitative analysis of cell motility and chemotaxis
in Dictyostelium discoideum by using an image processing system and a novel chemotaxis
chamber providing stationary chemical gradients. J. Cell. Biol., 108 (1989), 973–984.

[70] R. M. Ford, D. A. Lauffenburger. Analysis of chemotactic bacterial distributions in popula-
tion migration assays using a mathematical model applicable to steep or shallow attractant
gradients. 53 (1991), No. 5, 721–749.

[71] R. M. Ford, D. A. Lauffenburger. Measurement of bacterial random motility and chemotaxis
coefficients: II: Application of single-cell-based mathematical model. Biotechnol. Bioeng.,
37 (1991), 661–672.

[72] R. M. Ford, B. R. Phillips, J. A. Quinn, D. A. Lauffenburger. Measurement of bacterial ran-
dom motility and chemotaxis coefficients: I. stopped–flow diffusion chamber assay. Biotech-
nol. Bioeng., 37 (1991) 647–660.

[73] C. Fowlkes, C. Hendriks, S. KerŁnen, G. Weber, O. Rbel, M. Huang, S. Chatoor, A. De-
Pace, L. Simirenko, C. Henriquez, A. Beaton, R. Weiszmann, S. Celniker, B. Hamann,
D. Knowles, M. Biggin, M. Eisen, J. Malik. A quantitative spatiotemporal atlas of gene
expression in the Drosophila blastoderm. Cell, 133 (2008), 364–374.

[74] H. Fricke. Juvenile-adult colour patterns and coexistence in the territorial coral reef fish
Pomacanthus imperator. Marine Ecology, 1 (1980), 133–141.

[75] A. Gierer, H. Meinhardt. A theory of biological pattern formation. 12 (1972), No. 1, 30–39.

[76] L. Glass. Stochastic generation of regular distributions. Science, 180 (1973), 1061–1063.

68



H. G. Othmer et al. The intersection of theory and application in developmental biology

[77] L. A. Goentoro, G. T. Reeves, C. P. Kowal, L. Martinelli, T. Schpbach, S. Y. Shvartsman.
Quantifying the Gurken morphogen gradient in Drosophila oogenesis. Dev. Cell, 11 (2006),
263–272.

[78] A. B. Goryachev, D. J. Toh, T. Lee. Systems analysis of a quorum sensing network: design
constraints imposed by the functional requirements, network topology and kinetic constants.
Biosystems, 83 (2006), No. 2–3, 178–87.

[79] C. Graván, R. Lahoz-Beltra. Evolving morphogenetic fields in the zebra skin pattern based
on turing’s morphogen hypothesis. Int. J. Appl. Math. Comput. Sci., 14 (2004), 351–361.

[80] E. P. Greenberg. Bacterial communication: Tiny teamwork. Nature, 424 (2003), 134.

[81] T. Gregor, W. Bialek, R. R. de Ruyter van Steveninck, D. W. Tank, E. F. Wieschaus. Diffu-
sion and scaling during early embryonic pattern formation. Proc Natl Acad Sci U S A, 102
(2005), No. 51, 18403–7.

[82] T. Gregor, D. W. Tank, E. F. Wieschaus, W. Bialek. Probing the limits to positional infor-
mation. Cell, 130 (2007), No. 1, 153–164.

[83] T. Gregor, E. F. Wieschaus, A. P. McGregor, W. Bialek, D. W. Tank. Stability and nuclear
dynamics of the bicoid morphogen gradient. Cell, 130 (2007), No. 1, 141–152.

[84] D. Grunwald, J. Eisen. Headwaters of the zebrafish – emergence of a new model vertebrate.
Nat. Rev. Genet., 3 (2002), 717–724.

[85] P. Haffter, J. Odenthal, M. C. Mullins, S. Lin, M. J. Farrell, L. Vogelsang, H. F., M. Brand,
F. van Eeden, M. Furutani-Seiki, M. Granato, M. Hammerschmidt, C. P. Heisenberg, Y. J.
Jiang, D. A. Kane, N. Kelsh, R. N. Hopkins, C. Nusslein-Volhard. Mutationa affecting pig-
mentation and shape of the adult zebrafish. Dev. Genes. Evol., 206 (1996), 260–276.

[86] H.Berg, D. Brown. Chemotaxis in Escherichia Coli analyzed by three-dimensional tracking.
Nature, 239 (1972), 502–507.

[87] D. Headon, K. J. Painter. Stippling the skin: Generation of anatomical periodicity by
reaction-diffusion mechanisms. Submitted to MMNP, (2008).

[88] M. Herrero, J. Velázquez. Chemotactic collapse for the Keller-Segel model. J. Math. Biol.,
35 (1996), 177–194.

[89] T. Hillen, H. G. Othmer. The diffusion limit of transport equation derived from velocity-jump
processes. Siam J. Appl. Math., 61 (2000), No. 3, 751–775.

[90] T. Hillen, K. Painter. A user’s guide to pde models for chemotaxis. J. Math. Biol., 58 (2008),
183–217.

69



H. G. Othmer et al. The intersection of theory and application in developmental biology

[91] M. Hirata, K.-i. Nakamura, T. Kanemaru, Y. Shibata, S. Kondo. Pigment cell organization
in the hypodermis of zebrafish. Dev Dyn, 227 (2003) 497–503.

[92] D. Horstmann. From 1970 until present: the Keller-Segel model in chemotaxis and its con-
sequences I. Jahresbericht der DMV, 105 (2003), No. 3, 103–165.

[93] D. Horstmann. A constructive approach to traveling waves in chemotaxis. Journal of Non-
linear Science, 14 (2004), 1–25(25).

[94] B. Houchmandzadeh, E. Wieschaus, S. Leibler. Establishment of developmental precision
and proportions in the early Drosophila embryo. Nature, 415 (2002), No. 6873, 798–802.

[95] L. Hufnagel, A. A. Teleman, H. Rouault, S. M. Cohen, B. I. Shraiman. On the mechanism of
wing size determination in fly development. Proc Natl Acad Sci U S A, 104 (2007), No. 10,
3835–40, epub 2007 Feb 28.

[96] J. Jaeger, J. Reinitz. On the dynamic nature of positional information. Bioessays, 28 (2006),
No. 11, 1102–11.

[97] J. Jaeger, S. Surkova, M. Blagov, H. Janssens, D. Kosman, K. Kozlov, Manu, E. Myas-
nikova, C. Vanario-Alonso, M. Samsonova, D. Sharp, J. Reinitz. Dynamic control of posi-
tional information in the early Drosophila embryo. Nature, 430 (2004), No. 430, 368–71.
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