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Dynamic instability of reactlon and transport processes in groups of
intercommunicating cells can lead to pattern formation and periodic
oscillations. Turmgs 1952 analy31s suggests a more general theory. A
powerful new method for analyzing onset of instability in arbitrary
networks of compartments or model cells is developed. Network structure
is found to influence interaction of intracellular chemical reactions and
intercellular transfers, and thereby the ‘stability of uniform stationary
states of the network. With the theory, effects of changes in network
topology can be treated systematically. Several tegular planar and poly-
hedral networks provide illustrations. Influences of boundary conditions
and intercellular permeabilities on patterns of instability are illustrated in
simple networks. Non-linear,aspects of instability are not treated. ‘

1 Introductlon

To dlscover and elucidate the physicochemical mechamsms that govern
spatial differentiation and pattern formation in multicellular organisms is a
major challenge in developmental biology. In passing from unicellular to
multicellular systems one encounters a new level of organization and com-
plexity, a level stemming directly from cell-to-cell interactions of various
types. Through physical contact, cells may exert forces on one another and
thereby deform one another, altering shapes and sizes directly and metabolic
and other aspects less directly, perhaps. Through chemical contact cells may
interchange one or more of their constituents, thereby altering metabolic
states. That is, chemical transformations taking place within individual cells
may be influenced by mass transport between cells, and thereby differences,
less or more regular, in cell composition may be established. Inherent in this
type of dynamic interaction are possibilities of natural instabilities that may
U.g Kresent address: Esso Research and Engineering Co., Florham Park, New Jersey,
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508 H. G. OTHMER AND L. E. SCRIVEN

lead to spatial organization and temporal oscillations within groups of cells—
the genesis of form and even rhythm. These possibilities we focus on here,
taking chemical interactions for our model even though there are, of course,
other modes of intercellular communication.

Ultimately the functioning, metabolic and other, of a truly multicellular
organism must depend as much on the spatial organization and inter-
connections within the aggregate as on the nature of the individual cells. One
way in which this may come about is made clear by the theory developed
here. Its potential utility is much more extensive, however, because it is a
basic theory pertaining to any network of compartments with internal
transformation processes connected by dlﬂ'uswn-hke transport paths that
have limited conductance. -

Nearly a score of years ago the Carnbrldge mathematlclan Alan Turing

(1952) proposed to explain the origin of patterns in groups of cells by means
of a model which is conceptually simple, although to analyze its operation
requires some mathematical sophistication. Unquestionably overidealized
from many biological points of view, the model illustrated a principle that
may very well be at work in reality, and for that reason Turing’s ideas would
seem to warrant far more attention than they have received since his untimely
death in 1954. In the model, chemical substances Turing called “morphogens”
diffuse between contiguous cells and react together within the cells. Turing
hypothesized that differentiation or preferential growth occurs in the cells
in which certain of the morphogens accumulate. He was able to show that ran-
dom disturbances can trigger instability in an isolated ring of cells, each
communicating equally well with its two immediate neighbors, and that non-
uniform distributions of two or three morphogens can be maintained by inter-
ference between the intracellular chemical reaction and the intercellular
diffusion. Some of the concentration distributions are quite regular around
the ring, and the end result according to Turing’s hypothesis would be a
well-defined spatial pattern of growth or differentiation.
- If so simple a model yields such suggestive results, what might be Iearned
from even slightly more realistic versions ? What would be the consequences
of interchange between cells and extracellular fluid ? Of one cell communicat-
ing with more than two others ? Of communication through more than one
kind of connection ? Of more than three chemical substances in the reaction—
diffusion system ? How sensitive are instability and pattern formation to the
arrangement, or topology, of intercellular connections in two- and three-
dimensional networks? . ... To answer such questions efficiently one needs a
theory formulated along the lines of Turing’s analysis but of far broader
scope. The generalization we develop hele depends, as is so often the case, on
mathematical abstraction.
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The next section presents the equations of concentration change of any
number of chemical substances in an arbitrary network, -or lattice, of com-
partments or cells interconnected by semipermeable membranes [e.g.
*junctional membranes” (Loewenstein, 1968; Furshpan & Potter, 1968;
Payton, Bennett & Pappas, 1969; Spitzer, 1970)] or similar low-capacity
diffusion paths [e.g. “cytoplasmic bridges” (Furshpan & Potter, 1968;
Cone, 1969)], and bathed by liquid of substantially uniform and constant
composition (“extracellular fluid””). We suppose that initially all the cells in
the network are in the same chemical, dynamic steady state, but that either
external or internal influences continually perturb the system, causing small
fluctuations from the uniform set of sfates. Provided a fluctuation is
sufficiently small a linearized version of the nonlinear equations of change is
adequate to describe its evolution. After solving the linearized equations we
can draw on previous work (Othmer & Scriven, 1969) to determine the con-
ditions under which fluctuations are damped, are just sustained, or are
amplified. The last case signals instability, which can lead to a non-uniform
pattern of states in the network. Although linearized analysis yields some
information about the scale and steadiness of patterns that can result, they
are really controlled by non-linear dynamics, a circumstance examined in the
sequel (Othmer & Scriven, manuscript in preparation).

In section 3 the stability analysis is reformulated in terms of matrix and
operator theory, which leads to a unified treatment of transport and trans-
formation in all networks, regular or not, and reveals an underlying structure.
All of the interrelationships of cells in a network are embodied in a single
abstract operator characteristic of the topology of that network, and any
pattern on the network can be represented in terms of the elgenvectors of the
operator. k

The theory is applied in sectlons 4 and 5 to a number of examples Tunng s
ting, open chains of cells, doubly periodic lattices of quadrangular cells
and hexagonal cells, and several regular polyhedral lattices. Some effects of
boundary condiﬁons and intercellular permeabilities on stability behavior are
examined, examples being given in the Appendix. Section 7 concludes the
paper with observations on the significance of compartmentahzatlon for
transport processes and stability, on some of the ways the theory may be
extended, and on its possible 51gn1ﬁcance in relation to mechamsms of
dlﬁ'erentlatlon and development : '

2. Stability Analysns

The model system consxsts of a connected network of N dlscrete, homo-
geneous compartments or cells, each containing a mixture of n chemically

1T.B, 33
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reactive species that participate in the set of reactions of interest. That set
includes r independent chemical reactions that can occur in each cell;
motreover r < n—1. Every cell is in chemical contact with at least one other
cell, i.e. no cell is isolated from the others so far as mass transfer is concerned.
The entire network is immersed in a bath of uniform and constant composi-
tion (see Fig. 1). For simplicity the volumes of all the cells can be regarded as
equal and constant, and so can the areas of mutual contact between pairs
of cells. -

Exchange

Bath N’
Cell p—2] Cell p=1 A A Cell p+1] Cell pt+2
. Trclnsfer‘ eaction ‘Transfer “

-

-

Exchange

Fic. 1. One-dimensional prototype of the model system.

The concentration ¢} of the ith species in the uth cell can be altered by any
of three processes: the substance can be produced or consumed by chemical
reaction at a rate R¥'(c) that depends on composition within the cell; the sub-
stance can be exchanged with the bath at a rate N}(c#, c5) that depends on
composition or chemical potential differences between the cell and the bath;
and the substance can bé¢ transferred to or from contiguous cells at a net
rate J¥(c%, c}) that depends on composition differences between cells. The rate
of accumulation is related to these rates by the equation of change:

Sl_(_:‘i‘_ L AL DR {i=1,2,...,n.

a STENEERE 1o LN M
The Latin index ranges through the number of substances; the Greek index,
through the number of cells, which like the substances must be labeled in
some definite though arbitrary sequence for accounting purposes.

In virtue of the upcoming linearization of the equations of change it is really

not necessary to choose particular constitutive relations for the transfer rates.
Nevertheless we select simple linear relations for illustration. First is

JE=Y Y Di(cj=ch). ‘ )
. v J
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The index j ranges over all species whose concentration differences influence
the transfer of the ith substance. The transfer coefficients D} are, in the simplest
instance, independent of concentrations and equal between all pairs of con-
tiguous cells, and so may be written D;;. The index v ranges over all cells in
contact with the uth cell. In terms of the difference operator for the uth
cell, so defined thatt

#¢ =T,
v

equation (2) takes the compact form
J¥= Z D;;A%ch.

As indicated, the difference operator may differ from one cell to the next,
as indeed it does in irregular lattices; even in regular lattices it is specific to
the one under consideration. Examples are given below. '

In the second place we select for exchange between the bath and the uth
cell the relation

ZHU(C - .

where the transfer coefficients H, ;; are already presumed to be the same for all
cells. Concentrations in the bathing fluid are denoted by c. The coefficients
in both sets, D;; and H;;, are in the nature of permeablhtles, i.e. of con-
ductances of diffusion paths that have negligible capacity for accumulating
the diffusing substances. As defined, all of the coefficients contain a ratio of
transfer area to cell volume, but the area in D;; may differ from that in H;.
For this and other reasons D;; is generally unequal to H;;: the permeability
of “junctional membrane” differs from that of “ordinary membrane”.
With these constitutive relations and the simplification that the reaction
rate laws are the same in all cells the equation of change (1) becomes
] .
%cti = ; D;;A*ch+ Z,: Hij(c;? —c)+R(ch). 3)
Any uniform, non-equilibrium, stationary solution—any UNESS—is a
non-trivial positive solution ¢§ of the steady-state equation,

0 = Z Hij(c.? - C;) +R‘(Cj).

This always has a solution 1f the ¢ are regarded as variable parameters, as
may be proved (Othmer, 1969). To examine the stability of any given
UNESS with respect to infinitesimal concentration fluctuations we introduce

 Except for certain special cells that might exist, especially on the margin of a lattice,
each cell is in chemical contact with more than one other cell, and the operator is in essence
a second-difference operator.
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series expansions about ¢; and retain only those terms that are of first order
in the concentration excursion from the stationary solution, x} = ¢%—cj. The
resulting equation for fluctuations is

dx" ' i=1,...,n
dt ZDUA”x"+ZKU s {“= i

where the pseudo—ﬁrst-order rate constants of reaction and exchange are given
by (cf. Gmitro & Scriven, 1966)

K, = ,,(c5)+z( 2 ) (G-eD+ @_Ij)

j c j=CJ’

The fluctuation equation can be put in compact matrix form by defining an
excursion vector, a “transfer” matrix, and a “reaction” matrix (the latter
representing reaction and exchange):

D11...D1n Kll“"Kln

s

X

LI N

%
I
=)
I
P
i

xs) Dys:..Dy| K. .Ky
The lmearlzed equations governing stability of a UNESS thus become a set
of N matrix differential equationst

Cen .
| % =DA**+Kx!, =1, , )
Th1s set must be solved subject to an initial condition that represents an

arbltrary cell-by-cell fluctuation in concentrations: :
x"(0) = x*. - *)
In the following section we formulate the problem in more abstract terms

which lead to a powerful method of solving, in principle at the least, the set
of equations for virtually any network of cells.

3. Reformulation

Equation (4) governs stability of a compartmentalized and discontinuous
system. If the analogous equation for a continuous system were written, the
Laplacian operator V? would appear in place of the difference operator A*
and a function of the continuous position variable would take the place of
x“ which is a function of cell-mdex u, a discrete vanable The continuous

1' This happens to be the same as the set dCSCI‘lbll’lg aclosed system obeymg lmear reactlon
rate laws, in which case K is a matrix of true kinetic rate constants.
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analog of (4) could be solved by separation of time and the position variable,
the solution being represented in the form of a series expansion with respect
to the infinite set of eigenfunctions of V2 which is appropriate to the geometric
configuration of the continuous system. We wish to solve equation (4) in
similar fashion. Because no adequately general analog of the eigenfunction
method appears to have been detailed before, we must digress.

It is plain that eigenfunctions of a difference operator are lattice functions,
i.e. functions of the index u, and it might be anticipated that for any finite
lattice they constitute a finite set that depends on the connectedness of the
lattice rather than on its configuration, i.e. on topology instead of géometry.
But it is not clear, a priori, how to find the needed eigenfunctions and employ
them to solve equation (4). We now show that by regarding the entire set of
local operators A* for a lattice as an operator A on‘an abstract, linear space
having as many dimensions as there are cells in the network, the eigenfunc-
tions can be found by standard methods, for they are simply the eigenvectors
of a particular matrix representation of the lattice operator A. Our formula-
tion is new but follows logically from Friedman’s (1956) abstract treatment of
the method of separation of variables. '

A number of definitions are relevant. Let #™ be an inner-product space
with as many dimensions as there are chemical species in the system, and let its
elements be vectors, or ordered lists, of n real-valued, smooth functions of
time. Let &Y also be an inner-product space, one having as many dimensions
as there are cells in the network, and let its elements be vectors of N complex
numbers. The tensor product of a vector u = (uy, ... , uy)* from &~ and a
vectory = (¥, ..., ¥,)" from ¥ is defined by the formula (see, e.g., Halmos,
1958, § 52; note also that superscript T denotes transposition, which turns
typographically convenient row vectors into ordinary column vectors)

u®y5(u1y1’ -~-’u1ym ooy Un Yy, so ey uNyn)TD

All such products together with linear combinations of them constitute the
N x n-dimensional space ¥ ® #™. In this space the inner product of any two
ctors is defined by

(The sums are recognizable as inner products in &N and ¥, réspectively; the
asterisk denotes the complex conjugate of v;.) Important for our purposes is
the fact that if a set of N vectors {v;} is an orthonormal basis for &%, and a
set of n vectors {n;} is an orthonormal basis for ™, then the set of Nxn
vectors {v; ® 1,} is an orthonormal basis for ¥ @ ¥™ (see, e.g., Halmos,
1958, § 25). Consequently any vector x in ¥ ® ¥™ can be projected onto the
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orthonormal basis in &Y to yield a set of vectors in ¥™ which are defined by

M jzl <X, Vi ® nj>nj’

and from which the original vector can be recovered as the sum of tensor
products: _ -

N
X = v .

Moreover, the tensor product of an operator R on &V and another operafor
T on ¥™ is defined to be the operator R ® T whose action is given by
(Halmos, 1958, § 52)

®R@Tx= Y

n
R J_Zl X, v, ®n j>(?vi) ® (Tn;).
(The inner products are recognizable as the components of x with respect to
the tensor basis.) Every operator defined on a finite-dimensional space can be
represented by a matrix (Halmos, 1958, § 38), a situation that suits our
purposes. The direct, Kronecker, or tensor product of matrices is so defined
as to be entirely consistent with the foregoing product of operators. If R is

an Nx N matrix and T an nx n one, their tensor product is an Nnx Nn one

(Halmos, 1958, § 52; Bellman, 1960, § 12-5): P~
Ry T...RiyT
RRT=
Ry T...RyyT

If the set of vectors representing concentration excursions is written as a
vector of vectors, i.e. a vector in N ® ¥,

Xl

e
Hi

= (X}9 .. .9 X;}a .. -’XIIV, ey XIIY)T5
XN
then all the foregoing definitions ¢come to bear, because it is found that the
equation set (4) becomes the simple matrix equation
dx . N
5 = A®DX+0 O K%, ©)

where A is an N x N matrix which incorporates all of the local operators A*
and represents a new operator in &”. Clearly the nxn matrices D and K
tepresent operators in ¥™.
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Inasmuch as the matrix A is found to depend solely on the connectedness or
structure of the lattice it can be called the “structural matrix™ of the given
network. Because contact of one cell with another is a symmetric relationship
A is necessarily a non-trivial, real, symmetric matrix (thus it represents a self-
adjoint operator) and it therefore has real eigenvalues «; and a complete set
of orthogonal eigenvectors u; all satisfying the equation

Ay, = o, u,, k=1,2,...N
where o, is the eigenvalue belonging to the eigenvector u,. The eigenvectors
can be normalized to unity, i.e. ufu¥ = 1, and are a highly apt choice as the
orthonormal basis {v;} for &". It is appropriate to call them “structural
modes” of the network, for they too depend solely on lattice structure.

The initial condition (5) in full matrix form is %(0) = X,, and because the
vector X, lies in Y @ ¥™ we see from the above that it can be expanded in
the structural modes:

. N
%, = Z LY V= Z Ko i@ MM, @

To bring our d1gress1on to a close we quote a theorem the proof of which has
been given by Friedman (1956).

Theorem 1

Suppose that T!, ..., T? are operators on ¥™ and R!, ..., R? are self-
adjoint operators on &Y and that the latter have a common spectral represen-
tation, that is, there exist a complete orthonormal set {u;} in &N and a set of
real numbers o such that R%u, = a aWmforg=1,....p andk=1,...,N.
Let L be an operator in &N ® ¥ defined by L = R! ® T+ R’J ® T”
Then the equation Lf = h, where  is any element of N ® “V " has a solu-
tion if the operators (@ T+ .., TP~ are uniformly bounded for all
k,k=1,...,N. Moreover the solutlon is given by

N f= kzl u, ® (dlkTi +... +Otka") hk
where : ‘
hk“‘ z <h “k®ﬂ,>ﬂ, o

Now by settmg f=%-%,h= ‘(IN ® K)%,, T! = [I,(d/d)—K], T? = —D,
R! = I, and R" = A we can apply the theorem, for all of the hypotheses

t Strlctly, this is true only if the membrane permeablhtles or conductances for each
species are independent of the direction of transfer, a circumstance that may be more the
exception than the rule in biological systems. If the two unidirectional permeabilities differ,
the structural matrix is no longer symmetrlc in fact, it may no longer be possible to dis-
tinguish D and A. Then the theory is mat‘hematlcally more involved but admits an even
richer variety of physical possibilities.
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are met, as has been shown (Othmer, 1969). Inversion of the operators
I(d/d)—K—o,D is well known (Bellman, 1960, chaps 10 and 11). In this
way the general solution of the stability problem (6) with (7) is found to be

‘N
() = kZI 0L ® C(K'H"‘D)tyz. v (8)

That this is the solution can be verified by direct substitution in (6). That it is
analogous in form to the solution obtained by separation of variables in the
continuous case is already evident but is brought out plainly in the next
section.

The advantage of the abstract formulation is that the solution (8) to whlch
it leads applies to any network of cells. In using (8) to determine stability
“behavior of a system with réspect to infinitesimal concentration fluctuations
about a UNESS the procedure is first, deduce the structural matiix of the
network, A, and calculate its eigenvalues, &, and eigenvectors, u,; and
second, for each of the N numbers, o, calculate the eigenvalues, 4, of the
reaction-and-transfer matrix, K+« D. Then if all Nxn eigenvalues, A,
have negative real parts the exponential functions in (8) tend toward zero,
i.e. all of the structural modes of any disturbance decay to zero, and so
limit X(f) = 0: the system is stable. If one or more of the eigenvalues, 4;,

t— o0
have positive real parts, the system is unstable, in the sense that at least one
structural mode that may be and generally is present in random fluctuations
is amplified exponentially in time, until its amplitude reaches proportions at
which nonlinear effects come into play. If an eigenvalue has an imaginary
part the amplitude of the corresponding structural mode may undergo
damped or amplified oscillations and there is even a possibility that the
system can propagate disturbances having the character of traveling waves
(cf. Gmitro & Scriven, 1966; Othmer, 1969).
For each structural eigenvalue, o, the eigenvalues, 4, ;» are solutions of the

nth order determinantal equation

K+a,D—-4I]=0
A thorough parametric analysis of the eigenvalues in the instance that o,
varies continuously and n equals two or three has been presented elsewhere
(Othmer & Scriven, 1969). From the results the eigenvalues of K+, D may
be obtained for any structural eigenvalue, ¢, when only two or three chemical
substances participate in the system of reaction and transfer.}

+ Analyses of the stability of Turing’s and related reaction schemes have been reported
by Prigogine and coworkers [J. chem. Phys. 46, 3542 (1967); J. chem. Phys. 48, 1695 (1968);
International Conference on Theoretical Physics and Biology (M. Marois, ed.) pp. 23-52,
(1969)]. They confirm that the postulates of irreversible thermodynamics are consistent
with unstable solutions Turing found, and that diffusion can play an essential role. -
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In the next section we apply our general solution and the procedure out-
lined here to the relatively simple case of one-dimensional networks. There-
after we treat a number of two-dimensional networks, with results that are
interesting in their own right, besides illustrating the power of the theory.

4. One-dimensional Lattlces

The first example is a ring of N cells, each in contact with two neighbors,
as diagrammed in Fig. 2. This is one instance of a periodic, one-dimensional
network with a period of N, i.e. x**V = x*, The compartmentalized disk of
Fig. 2 is another example. In such networks A*x* = x*+1—2x*x*~1 for

@@ |
) R

N‘|~+1]

FiG. 2. Examples 'of one-dimensional networks.

o[1] eee [#]

all u, 1 to N. Consequently, the matrix representation of the structural
matrix is}

0 ... 0 1

-2 1 0 0
{ -2 1 0 0 .. 0 0
0 1 -2 1 0 .. 0 0
A=
[ 10 0 0 o0 ... 1 -2

This is a special type of matrix called a circulant matrix, the eigenvalues and
eigenvectors of which are well known (e.g. Bellman, 1960, § 12.15). The

+ Both rows and columns are mdexed consecutlvely by cell number; i.e. this is the matrnx

representatnon of the operator A with respect to the canonical basis {e; = (O, ..., 0, 1
. 0);7=1,...,N}. All subsequent representatlons by structural matrices are also
w1th respect to canomcal bases. . -
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eigenvalues are
o= =2+p,+pil=—4sin?(nk/N), k=1,...,N,

where p, is the primitive root of unity given by p, = exp (2nik/N);
these eigenvalues are degenerate, for, as may be readily verified, oay_;, = .
The corresponding eigenvectors in normalized form are

) S

u=vVI/N, p, p2, ..., pN"Y), k=1,...,N. .
These are complex-valued but there is a fully equivalent set of real-valued
eigenvectors:

u, = V/2/N(1, cos 2nk/N, ..., cos 2nk(N—=1)/N)\ (k=1, ..., N/2—1

o if N even.
Uy_ = v/2/N(0, sin 27k/N, ..., sin 2nk(N—1)/N) [ |k =1, ..., (N=1)]2
if N odd.
u, = V2JN(1, cos 27k/N, ..., cos 2ek(N — 1)/N) {: = z /?f’ ;]V lgg’ even.
= 1 oqgd.

(the set for N = 4 may be seen in Fig. 4 below). Stability in a periodic,
one-dimensional network is governed by the eigenvalues, 4;;, of the N
matrices

K—(4sin® nk/N)D, k=1,...,N.

Because the o, are degenerate, as noted above, only (N+42)/2 of these
matrices are distinct when N is even and only (N+1)/2 are distinct when
N is odd. Consequently each degenerate eigenvalue is shared by two
eigenvectors, i.e. two distinct structural modes display the same time course,
including rate of exponential damping or amplification. Their stability
behavior is therefore identical. In the complex-valued set the degenerate
pairs of modes are complex conjugates; in the real-valued set they are com-
plementary odd and even functions, being sines and cosines, respectively, of
the same arguments.

From equation (8) the vector of concentration excursions in the puth cell is
found to be

xX(t) = _1_ % 2mi(n— 1k/No(K +aiD)t ( i e —Zni(v—l)k/Nx:>‘ ©)
N k=1 v=1 .
This formula is analogous to that obtained by separation of variables and the
eigenfunction method in the case of a continuous, one-dimensional system.
The term in large parentheses is simply the kth Fourier coefficient in the
eigenfunction expansion of the initial condition; the factor exp (2ni(x— 1)k/N)
is the value of the kth eigenfunction or Fourier component at the uth cell
(1 being analogous to position in the continuous system); the remaining factor
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is the time course of the kth eigenfunction; and the concentration excursion
is a linear combination, a superposition of normal modes, or structural modes
all evaluated at the cell in question.

- In comparison with Turing’s 1952 assault on two and three “morphogens”
in a closed ring of cells the theory brought to bear here may seem of un-
necessarily large caliber, but it does expose an important distinction between
structural and dynamic aspects, it can extract solutions for (linearized)
systems of many more morphogens, and it is the only systematic method
available for attacking two- and three-dimensional lattices of any but the
simplest regular connectivity.

In a periodic, one-dimensional lattice that departs slightly from a UNESS
the variation of concentrations from cell to cell is determined by the factor
exp (2mi(u—1)k/N) in equation (9) and is therefore periodic, or wave-like,
along the lattice. The maximum wavelength corresponds to k = N. In this
mode there is no variation from cell to cell at any time: they all share the same
excursion, whether it is damped or amplified. When N is even the
minimym possible wavelength, or repeat interval on the lattice, is two and
corresponds to k = N/2. In this mode the concentration excursions in
adjacent cells are equal in magnitude but opposite in sign or, if the
perturbations have traveling-wave character, the adjacent cells are out of
phase by half a time-period. Interestingly, the minimum possible wave-
length is quite different when N is odd. If N is a prime number all of the
structural modes are of the maximum wavelength, i.e. the only periodicity
is that of the lattice itself. If N is a composite odd number the minimum pos-
sible wavelength is the smallest divisor of N; for exarnple, if N = 15, the
repeat unit consists of three successive cells each with a different con-
centration excursion, this mode corresponding to k = 5.

If the eigenvalues of K+u,D include a complex one, say Ay = A+ik
(and necessarily its complex conjugate A,—iA, too), then time-dependent,
oscillatory normal modes can be identified in equation (9). These can be
organized either as standing waves, cos (4;¢) exp (i2nkp/N), or as traveling
waves, exp i(2rkp/N—A;t) and exp i(2rkp/N + A; 1), the latter moving through
the lattice at a speed of 1; N/2nk cells per second. Whether standing or pro-
gressing, the waves are unstable and amplifying, stable and attenuating, or
marginally stable with unchanging amplitude, according as 4, is positive,
negative, or zero, respectively. In all cases the concentrations in the cells,
except any nodal cells in standing wave patterns, oscillate rhythmically in
time, with radial frequency A;. This may be regarded as a natural
“chemical frequency”. The appeatance of standing or progressive waves
depends on phase differences from cell to cell, differences that are governed
by boundary conditions and initial conditions on the network.
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The wavelengths of structural modes depend solely on topological features
of the network and are not influenced by the dynamic processes occurring
within individual cells.}

However, the time course of each mode is determined by the correspond-
ing eigenvalues, 4, of the matrix Ko, D. Thus network structure influences
the dynamic processes through the structural eigenvalues, o;. Structure and
dynamics together determine which modes are unstable and, of those, which
are amplified most rapidly. In initially random fluctuations the most rapidly
amplified modes are the ones most likely to dominate a new, non-uniform
dynamic state to which instability leads through non-linear effects. It must be
emphasized that the present analysis of linearized equations of change is but
the first step toward determining the entire time course of concentration
fluctuations in unstable systems. Such things as multiple stationary states,
limit cycles, and almost periodic behavior can only be uncovered by non-
linear analysis,

In the preceding example of the ring of cells the periodicity condition
x"*¥ = x* had to be satisfied. On an open, one-dimensional network of the
sort indicated in Fig. 2 it is necessary to satisfy two end conditions instead.
Different types of end conditions result in different structural matrices and
in different sets of eigenvalues, o, and structural modes u,. For example, if
the concentrations were all held fixed in the end cells of an N+2— cell string
the end conditions on excursions would be x° = x" *1 =0 and the N xN
structural matrxx would be

-2 1 0 o0 0 0
1 -2 1 0 .. 0 0
0 1 -2 1 .. 0 0
A= L] . i [ X
0 0 0 o0 .. 1 -2

This is a pseudo-circulant matrix, with well-known eigenvalues and eigen-
vectors. If transfer beyond cells 1 and N were prevented it would be as though
the concentrations in cell O were always matched to those in cell 1, and those
in cell N+1 to those in cell N; the end conditions would be x° = x! and
xV = x¥*1 and the structural matrix would be slightly different. Yet
another slightly different structural matrix would arise if concentration were

.+ This is true only so long as all cells and junctions share the same constitutive relations
for reactions and transfers, respectively. If they do not, formidable complications arise which
are akin to those in continuous systems with spatially-dependent coefficients.
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fixed at one end and transfer beyond the other énd were prevented. Results for
the four types of end conditions are summarized in Table 1.7 =~ =

It is obvious that end conditions, or boundary conditions, can have sig-
nificant influence on the structural modes of a system and, through the
structural eigenvalues, on stability behavior. This influence is illustrated in

TABLB4 1

Structural eigenvalues, «,, and structural modes, u,, of one-dimensional
networks with various end conditions ’

Corl?gi?ion Sin_l v:‘“;/E Uy U = (ukly Upoy o0y “}CN)T
Periodic k[N V1/N exp Qnrik(I—1)/N)}
Fixed - '
concentrations nk[2(N+1) V2/(N+1) sin [nkl/(N+1)]
No transfer nk/2N sin [nkl/—ll] —'sin [zk(—1)/N]

V2N |sin [nk/2N]|
Owhenk =N VI/Nwhenk =N
Mixed n(k—3)/2N+1) VZI(N+P sin [1k—DIN+D]

b Real-valued modes are given in the text.

Appendix A below by a particular example involving only two participating
chemical substances in a four-cell chain. The effect of a deviant permeability
of the junction between one pair of cells can be illustrated simply with a
short, one-dimensional array, and this too is done in the Appendix. The
example confirms the expectation that stability in a network can be under
the control of junctional transport mechanisms.

5. Two-dimensional Lattices

Despite their simplicity one-dimensional lattices lack certain structural
features that may well be important in networks of living cells. A suspension
of tissue culture cells if allowed to reaggregate on a surface generally begins

+ Not included here is the slightly more complicated end condition of the “third kind”,
i.e. a linear combination of fixed-concentration and fixed-flux conditions, amounting to an
end cell connected by a junction of special permeability.
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assembling into a two-dimensional rather than a one-dimensional network;
this is especially true of epitheliocytes (Willmer, 1958; Lucey & Curtis, 1959).
Single sheet systems of cells, as in epidermis and epithelium, are featured in
D’Arcy Thompson’s (1942) classic review, which also covers a number of
regular three-dimensional assemblies, as occur in parenchymatous tissues and _
early stages of embryonic development. The number of ways of arranging
communication links between cells jumps farther as one passes from one- to

LN 2,N| « e IN—1,N N,N
1, Nt N, N~
Vv
p, v
@) . Ip-1,v MV ;L+1,1;| .

V-1 '
1,2 M2 #
1,1 -2,1] P pw—m M1 |

FiG. 3. Examples of regular two-dimensional networks.



DYNAMIC PATTERN IN CELLULAR NETWORKS 523

two-dimensional lattices than as one passes on to three-dimensional net-
works. The character of the latter is foretold by analysis of two-dimensional
systems, which are less tedious to treat.

There are regular, two-dimensional lattices which can be analyzed with
straightforward extensions of the theory as it applies to cases in the pre-
ceding section. Simplest is a doubly periodic network in which each cell con-
tacts four neighbors. The situation is represented in Fig. 3(a). Each cell is
conveniently indexed by a pair of coordinate integers (u, v); the period is then
Min pand Ninv,ie x**¥ Y = x* " = x% **N The difference operator is
defined by

Al ItV — x“+1"'—2x""'+X“'1’"+x""’+1-—2x“"’+x“""1.

But this is just the sum of the operators (defined in section 3) for the two
separate directions, i.e. A**¥ = A*+A"; consequently the structural matrix
can be composed from those for rings of length M and N, respectively, as
defined at equation (9):

A = AN ® IM+IN ® AM'

Iy and I, are the Nx N and M x M unit matrices, respectively; in the next
equation Iyy = Iy ® I, is the NM xNM one. Equation (6) governing
stability of a UNESS becomes

o = (84 BT +1,® 4) ©DI8 + Ty % (10)

with X(0) = X,. ;
This equation is readily solved with the aid of a result proved by Friedman
(1961).

Theorem 2
Let
P
C= 21 A,®B,
. q=

where Ay, ..., A, are Nx N matrices and B, .. ., B, are M x M matrices.
Suppose the A are all simultaneously dlagomzable and let v be an eigen-
vector of the set ie, A,v=ua,v,g=1,...,p. If there exist a vector w
and a number 4 such that (oy B1+ +och‘,)w = Aw, then A is an eigen-
value and v® w an eigenvector of the NMxNM matrix C i.e.
Cvew =iv® w.

It follows immediately that here the elgenvalues of A are sums of those of
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Ay and Ay Thus the structural eigenvalues and structural modes are -

= ot +oy = —4[sin? (nk/M)+sm (nl/N)] ; 1y
U =u,Qu ,
_ =1, .
I/MN(I pks --‘wpllcu 1)®(1 0',, R ] 1)’{1__1 N

where p, = exp (21uk/M ) and a; = exp (2nil/N).
Stability behavior is therefore governed by the elgenvalues of the MN
matnces
K —4[sin? (nk/M)+sin? (nl/N)]D.

The vector of concentration excursions in the (u,v)th cell is
x¥(t) = 1 Y Z eZnt[(u DR/M+(v= 1)1/N]e(K+amD)t

MN
(Z Z o= 2mil(r- 1)k/M+ (5 - DNy, a)

In essence this is the double Fourier series representation of the solution
of (10). Because the structural modes are doubly periodic the discussion in
section 4 about maximum and minimum wavelengths in one-dimensional net-
works pertains separately to each coordinate direction. In addition the
structural modes may contain definite lines of cells in which the excursions are
thaximal or minimal, and nodal lines along which the excursions vanish, so
that the modes are genuinely two-dimensional patterns. By way of example
the 16 periodic structural modes of a 4 x 4 lattice are diagrammed in Fig. 4.

Minor variations on the foregoing case are easily dealt with. First, the
intercellular transfer coefficients D;; may be different in the two directions of
cell-cell contact. If we let D’ be the n x n matrix of transfer coefficients D;; in
the p-direction and D” be that of coefficients Dj; in the v-direction, then in-
stead of (10) we have :

EZ‘_ =[AyRLY®D"+(Iy @A) DIk +(Iyy ®K)X. (12)

This is analogous to the equation for a continuous system in which the
diffusion—coefficient tensor is anisotropic. From the preceding paragraph it
can be seen that the structural modes are still given by (11), i.e. they are the
same whether transfer coefficients are the same in both lattice directions
[equation (10)] or different [equation (12)]. But of course the network
structure, or topology, is the same in both cases. In the latter case, however,
stability is governed by the eigenvalues of the new matrices.

K+, D' +a,D" = K—4[sin? (nk/M)]D’ —4[sin? (z/N)]D".
In this way the anisotropy manifests itself in dynamic behavior of the net-
‘work. Other variations of the basic case arise when the énd conditions on any
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U + e = o
U, + ~ + -
Uz © + o =

U, + + + +

e & o o - o + o - o 4+ o + o - o
- o + @ + o ~ o . o ] + o = @
un Uz us Vs
e o @ o - & 4+ o + o - o + & - @
* —= o + o = o e o ‘. 4+ & - @
e o o o -+ - o+ -4+ - ¢ + - -
- 4+ - + + - + - e o o o + -+ -
Uz Uz2 o usz Us2
e o o o -+ - + + - + - + - -
+ - + - -t - * e . - -
e o o o e - o + ¢ ~ o + ¢ 4+ o -
e - o 4 o + o - e o o o * 4+ o -
Uz Uas Usz Usz
s o ¢ o ¢ - o + e + o - o + o -
¢ .+ & - ¢ + 0 - . ¢ o ¢ 4+ 0 =
e o o o - - - - - - - + o+ o+ o+
- - = - + + + 4+ o o o o + + + +
Ug . Uzg Uzq Ugg
e o o o - - - - + + + + + + + +
+ + + + + + + + e o o o + + + +
FiG. 4. Periodic structural modes of a 4-cell ring and of a 4 X 4-cell torus (u;; = u; @ uy).

Key: + = +1, — = —1, @ = 0. The modes shown are not normalized.

or all boundaries of a rectangular network with connectivity four are altered.
Structural eigenvalues and modes can be found by taking sums and tensor
products, respectively, of those listed in Table 1. '

In close-packed planar arrays of nearly identical objects there is often a
strong tendency for each to be surrounded by and in contact with not four
but six others. The corresponding regular network has a connectivity of six
and can be represented by a hexagonal lattice, as in Fig. 3(b). This provides
an instructive contrast to the lattices just considered.

Though triangular coordinates (4, u, v) seem natural for labeling cells,
one of them is redundant—any point in a plane can be located by two co-
ordinates. We again retain coordinate integers (u, ¥) but now associate them
with two directions at 120° to each other [see Fig. 3(b)]. For simplicity

T.B. 34
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we restrict consideration to a network periodic in both u and v with the same
period N; it follows that it must have a period of 2N in the direction of A.

A “hexagonal” network is just a “tetragonal” network so modified that
the connectivity is six instead of four. One accordingly expects both likenesses
and differences in their stability and pattern-forming tendencies. The
difference operator for the “hexagonal” network is defined by

ARV Y o ABglts ¥ + AV Y - ARV v,
where the new operator, stemming from the added connectivity, is given by
; Auvxu, Vo xu+ 1,v+1 —2X"' v+xu— 1,v— 1‘

The corresponding part of the structural matrix of the entire network can be
written as Jy ® Jy—2Iy @ Iy+Jy ® Jy, where Jy is the cyclic permutation
matrix,

[0 1 0 ... 0]

0 01 0
Jy=

000 ... 1

1 0 0 ... O

The structural modes w,, of an N x N “tetragonal” network [cf. equation (11)]
are found to satisfy the equations

Iy ® Iy = prpyuy,
Iy ® Iy, = uy, o
1

T RIDu, = ——u,.
. ( N » N) 'kl pk pl 'kl
Therefore they are also the structural modes of the Nx N “hexagonal”
network, i.e. eigenvectors of the structural matrix

: AN®IN+IN®AN+JN®JN—2IN®IN+JN®JN

However, as is easily shown, the structural exgenvalues of the NxN
“hexagonal” network are

oy = —4[sin? (nk/N)+sin? (zl/N) +sin? (n(k + l)/N)]. "
Thése differ in the third term from the structural eigenvalues of the
“tetragonal” network. Consequently stability behavior, whlch is determined
by the eigenvalues of the N? matrices
K —~4[sin? (wk/N)+sin? (nl/N)+sin? (n(k + )/N)]D,
is different. The differences between the two networks lie not in the structural
modes per se, but rather in the dynamical behavior of each mode. Most of
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the modes w,,; (except uyy, which is indifferent to network topology, and the
N—1 modes of the form u,, y_;) may be stable in the “hexagonal” network
and unstable in the “tetragonal” network, or vice versa.

Besides the “hexagonal” and ““tetragonal” networks there is only one other
that corresponds to perfectly regular planar arrays: it is the “triangular”
network, in which each cell is in contact with just three of its neighbors, as
indicated in Fig. 3(c). There are new features in the structural matrix, and its
eigenvectors are not those of the “hexagonal” and “tetragonal” networks,
although some resemblances show through; the eigenvalues, however, are
quite different (Othmer, 1969). The distinctive structural modes and stability
behavior of the “triangular” network highlight how important connectivity
in a network can be. :

6. Regular Polyhedral Lattices

In certain simple multicellular organisms and in early stages of develop-
ment of others, cell groupings are to be seen which are more or less
spherical, or are at least topologically equivalent to a sphere, or rather to
some polyhedral network (cf. Thompson, 1942). The doubly periodic, two-
dimensional lattices of the preceding section can be neatly wrapped on a torus
but not on a sphere, which, being topologically of another genus, warrants
separate attention. If we restrict consideration to regular polyhedral networks
on the sphere there are just five, corresponding to the five Platonic solids, as
shown in Fig. 5. We present results for “the tetrahedral”, “cubic”, and
“octahedral” lattices only; the somewhat bulkier results for “dodecahedral”
and “icosahedral” lattices have also been obtained (Othmer, 1969).

It must be emphasized that in no spherical lattice, whether regular or not,
are there any edges at which to impose end conditions or boundary con-
ditions, and so for a given lattice there is but one set of structural
eigenvalues and structural modes.

The structural matrices, as may be confirmed from Fig. 5, are:

tetrahedral, A =1, ® [_i __:1:,] +1® [} i]’

cubic, A = —4L; @ L +(J;+ID ® [i }] ;

octahedra, A =1, ® [_i’ _;] +J+ID® L.

t Note that the missing number in each of the Schlegel diagrams is the number of the
face through which all the others are projected.
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H
-
W

(b)

o G
/ 8\

FiG. 5. Regular polyhedral networks, Spherical polyhedra and corresponding Schlegel
diagrams. (a) Tetrahedral, (b) cubic, (c) octahedral, (d) dodecahedral, (¢) icosahedral
networks. .
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The structural eigenvalues and, in unnormalized form, the real-valued struc-
tural modes are: ‘

Tetrahedral lattice

Eigenvaluea, —4 —4 —4 0

Uy 1 1 0 1
Eigenvector uys 0 -1 1 1
components uzzs —1 1 0 1

U 0 -1 =1 1

Cubic lattice

Eigenvalueoa,, ~6 -6 -4  —4 —4 0

(1199 1 0 1 0 1 1

Ugs 1 0 -1 0 -1 1

Eigenvector U3 0 1 1 1 0 1

components uxgs - 0 1 -1 -1 0 1

s —1 -1 0 1 1 1

ue —1 -1 0o -1 -1 1

Octahedral lattice

Eigenvalueoa, -6 -4 -4 —4 =2 =2 =2 0
Uy 1 1 0 1 0 1 1 1
U —1 =1 0 1 0 1 =1 1
us —l1 0 1 -1 1 0 1 1
Eigenvector u 1 -1 -1 -1 1 0 -1 1
components s 1 —1 0 1 0 -1 1 1
Uke —1 1 0 1 0 —1 -1 1
U7 —1 0o -1 -1 -1 0 1 1
uzs —1 0 1 -1 -1 0 -1 1

Though these tabulations are for the cell labelings in Fig. 5, relabeling of the
cells leaves the eigenvalues unchanged and merely permutes the components
of any given eigenvector.

The degeneracy of most of the structural modes, i.e. the fact that more than
one correspond to the same eigenvalue, implies that so long as the dynamic
behavior is close enough to being linear that equation (6) applies, modes
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having different spatial patterns follow the same time course. For example,
if a tetrahedral lattice were unstable at o, = —4, then from any initially
random fluctuation three structural modes would be amplified with the same
exponential growth rate. Which, if any, of the modes is selected for dominance
by the dynamics of the system can be detected only by nonlinear analysis. )

7. Discussion

Muilticellular systems seldom show even topological regularity that comes
anywhere close to that of the foregoing examples—rings with connectivity
two, sheets with connectivity four or six (or three), closed shells with con-
nectivity three or four (or five, in the dodecahedral lattice). However, the
power of the theory developed here extends to irregular networks as well.
Mathematically the additional difficulty in treating irregular networks is
strictly a matter of computing eigenvalues and eigenvectors of structural
matrices that are not as simple as those in the examples here. Simplicity of
a matrix is largely a matter of pattern in its entries: that mathematical
structure of the matrix array reflects directly the topological structure of the
cell network is both satisfying and suggestive, from a theoretical point of
view. Many ramifications remain to be studied. For one, it is natural to ask,
what are the consequences of a local imperfection in an otherwise perfect
lattice, e.g. 4 four-connected and two neighboring seven-connected cells
in the middle of a hexagonal lattice?

The role of boundary conditions is an important one, as the simple
example in Appendix A details and as such work as that of Loewenstein &
Penn (1967) testifies. Apart from periodicity conditions, boundary conditions
represent prescribed interaction of a system with its immediate surroundings
—and inclusions too—whose states are largely independent of the state of the
system itself. Whether they are on the edges or in the interior of a network,
any cells displaying a marked degree of autonomy with respect to the bulk
of the network can be regarded as boundary cells and modeled mathe-
matically by boundary condltlons The example treated in Appendix A barely
opens the subject.

Appendix B shows how changes in permeability between two cells of a
three-cell network can turn a stable system into an unstable one, or vice versa.
‘The result is indicative of what may be expected of larger networks, That
changes in permeabilities of junctional membranes have pronounced effects
on cell differentiation has been suggested on other grounds, of course (cf.
‘Loewenstein, 1968; Furshpan & Potter, 1968). The approach laid out here
may provide a rigorously logical framework within which such biological
phenomena can be analyzed. : :
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Yet another ramification is oscillatory instability and the associated stand-
ing waves and traveling waves in networks, an aspect barely touched on in
section 4, in connection with one-dimensional systems, though oscillations
and wave phenomena are every bit as possible in principle in two- and three-

. dimensional lattices. As pointed out elsewhere (Gmitro & Scriven, 1966),
steady-state systems of reaction and diffusion or diffusion-like transport can
be arranged to propagate chemical signals as waves traveling at speeds far
faster than allowed by transport alone, Chemical concentration waves could
provide large numbers of parallel signal-transmission channels between cells
in a network.

A regular cellular array represents a homogeneously compartmentahzed
system, which is perhaps the simplest example of pre-existing pattern in an
otherwise uniform system. The results reported above thus shed light on the
effect of pre-existing pattern on spontaneously developing pattern and
rhythm, which is one of the basic problems posed by Gmltro & Scrlven
(1966).

The theory, by separating the structural aspects from the dynamlcal aspects’
of the stability problem, reveals how network topology can influence patterns
of instability and wave propagation in any sort of network. It also brings out
the influence of end conditions in an open chain of cells, edge conditions in
an open sheet of cells, outer surface conditions in a three-dimensional aggre-
gation of cells. The matrix methods to which the theory leads can be readily
applied to a wide variety of dynamical processes on open networks governed
by linear, differential-difference equations.

Perhaps the most profound conclusion that can be drawn from the
theory in its present state of development and application is the following.
Compartmentalization signifies partitioning of what might have been a con-
tinuous system into regions of comparatively rapid transport, enclosed by
envelopes having high, and perhaps highly localized, resistance to transport
of certain things. Thus compartmentalization can replace diffusion-control
of transport processes by control at membranes, interfaces, and transport
bridges. Transport can thus be made to depend far more on number of com-
partments to be traversed in a network than on distance to be traversed or
size of compartments: localized transport routes can be established as
particular sequences of compartments within the network; and in these ways
transport processes can be made to depend on topological rather than metrical
features of the network. That is, compartment size and shape and connector
configuration can give way to numbers and relationships of cells and con-
nectors, and to the performance of the latter as transport paths. The tyranny
of random-walk diffusion processes, so slow and given to isotropy, can be
broken, For example, in place of congentration gradient comes concentration
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difference; that is, concentration change per cell replacés concentration
change per unit length. It is not necessatily true that, as has been asserted,
Turing’s old two-morphogen model would predict that different patterns
should arise if particular stages of differentiation occurred in embryos of
different sizes. : '

And when there are transformation processes occurring within the com-
partments as well as transport processes between them and exchange pro-
cesses with a surrounding bath, the potentialities of compartmentalization
are multiplied, particularly in régard to instabilities, spatial patteris,
temporal oscillations and wave propagation—as the body of the paper
illustrates. In a network of cells, such phenomena may comeé under the
control of junctional membranés and cytoplasmic bridges, intracellular
metabolic processes and control mechanisms, and concentration levels in
whatever fluid bathes exposed outer surfaces of the cells.

As in Loewenstein’s (1968) categorization, cells may communicate with
each other in three ways: (i) directly through intervening membrane if they are
in contact; (i) along lateral surface membranes provided they belong to a con-
nected clump of cells; and (iii) indirectly via intercellular fluids bathing the
cells which, in this cas¢, need not belong to the same clump (clearly the
three ways are not mutually exclusive). While we have focused here on
direct contact and the simplest sort of bath, the theory ¢an be augmented to
account for communication along connected membranes. Gradients and
tranisients in the bathing fluid can be incorporated too, at the expense of added
mathematical complexities. More importantly, the theory encompasses
stability of nom-uniform, non-equilibrium stationary states on networks:
examples will be found in the sequel (Othmer & Scriven, manuscript in
preparation). Thus the means are at hand for analyzing instabilities of
stationary states in which various cells of a network are in different
chemical, dynamic steady-states (or maybe only states that are almost
steady). Such differentiation might have originally arisen by non-linear lock-
ing-in of a pattern triggered by instability of an initially uniform system as it
developed under internal controls that alter reaction rate constants and
membrane permeabilities. The differentiated network may function as an
inducing field or pre-pattern as the internal controls go on to develop a new
competence for instability and transition to yet another non-uniform set of
dynamic states, which might act as pre-pattern for the next round. With the
theory one can envision a succession of instabilities leading to successively
more complex dynamic structures in a developing, compartmentalized system.

Possibly this sort of theory will lead toward the science of self-organization
and dynamic morphology envisioned by P. Weiss (1962). Perhaps there is here
something of the mathematical theory of epigenesis and development which
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Waddington (1962) had hoped to find in the still evolving theory of
chemical reactors—another field of interacting reaction and transport pro-
cesses, where multiple dynamic states are commonplace and their stability or
instability is crucial.

«
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APPENDIX A

i

Influence of Boundary Conditions on Stability Behavior

Consider two one-dimensional networks of four cells each, one with
periodic end conditions, the other transferring nothing across its ends. From
Table 1 the structural eigenvalues and modes are as follow:
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End conditions ' Periodic - No flux
1 -2 ~2+4V2
Structural dz —4 -2
eigenvalues oa -2 o —2-42
' [+ 7% 0 ‘ 0
s (V22-v2 V22 —\/2) VI AT
231 (l) 0’ _1: 0)/'\/2 ( 2 ’ 2 * 2 2 4—2’\/2
Structural ug (1, —-1,1, -1)2 {, —1, -1,1)/2
modes = (V2 =2-V2 24V2 —V2 e
w ©1,0-ova (SRR V) Vit

Us (ly 11 1) 1)/2 (1’ 19 1, l)/2

Cell-to-cell variation in each of these modes is indicated in Fig. Al. Though
the curves there are continuous, only the values at integral / have meaning.

In order to illustrate the influence of the end conditions on stability
behavior let us now suppose that there are two chemical substances which
actively participate in the system of reaction and transfer and that at UNESS
conditions the effective kinetic coefficients and transfer coefficients happen
to satisfy the five equatlons

- Ky1+ Ky = ~4,
K 1K —K 3Ky =202,
Dy1+D,, =4,
_ Dy D23=Dy;Dyy = &8,
K11D11 +K12Dz1+K21D12+K22D22 = —{*(5+¢),
and the two inequalities,
(>0, e>0.

¢ is taken to be a small number. If the elements of K and D satisfy the fore-
going, the 2 x2 matrix K has two eigenvalues, ——(21\/5) {, both negative;
and the 2x 2 matrix D has two eigenvalues, (1 ++/ 2/2) {/2, both positive.
Thus the system would be stable were there solely reaction and exchange,
or were there only transfer between cells. Both eigenvalues of the actual
stability matrix, K+aD, are negative except in the neighborhood of
= —4, where the larger turns positive (the eigenvalues are — 4(1 ++/1+¢ s/4)C
thus the width of the interval over which the larger is positive can be
made arbitrarily small by decreasing €). So with periodic end conditions the
structural mode u,, which has the shortest possible wavelength and corres-
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Fi. Al. Cell-to-cell variation in four-cell, one-dimensional networks: (a) periodic end
conditions; (b) zero-flux end conditions, Key: — —y Upj =, Ugj — = ——, Ug} = — ——, Uy,

ponds to a, = —4, is unstable. In contrast, with no transfer across the ends
of the string of cells none of the structural modes are unstable, i.e. the system
is stable, even with respect to fluctuations of the shortest possible wavelength.
Were the kinetic and transfer coefficients altered in a certain way, the stability
behavior of the two systems could be interchanged. Thus boundary condi-
tions can control stability behavior. :
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APPENDIX B

Influence of Intercell Permeability on Stability Behavior

Consider a one-dimensional network of just three cells, with no transfer
across its ends, i.e. the only transfer is that between cells 1 and 2 and between
cells 2 and 3. Suppose the matrices of transfer coefficients are D and 6D,
respectively, where 0 < 6 < 1; when 6 = 0 the membrane between cells
2 and 3 is impermeable and when § = 1 it has the same permeability as that
between cells 1 and 2 (the same situation could arise by addition of cell 3 to
an existing two-cell network). The structural matrix is

-1 1 0
A=]| 1 -1-6 é}.
0 0 =6

The structural eigenvalues and modes are

oy, 0= —1—84+V1—-86+62, a3=0
g, u —(—-1—1 o /a =(1,1,1)//3
1> 42 — 1+ak’ ’5'{-0( k> us— s L

k

a—J( o >2+1+< L>2
k- S+ 1+o,) "

The two limiting cases are as follows:

where

Permeability ratio =0 S=1
0 -1
Structural Zl — 3
eigenvalues 2 -
‘ 3 0 0
Structural o (LLOWY2Z - (1,0,-1)V2
modes us  (L,—LOWVZ (—1,2 —1)VE

us ,1,1)/v3 a,1,1)/v3

In the first case the isolation of cell 3 is manifest. Both sets of structural modes
are orthonormal bases for &3 and so any pattern, any combination of cell- -
to-cell variations, can be represented whether or not cell 3 is coupled in with
cells 1 and 2. However, the structural eigenvalues o, are different, the pair
(0, —2) metamorphosing into (—1, —3) as J passes from O to 1. Therefore
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a given perturbation may die out in one network yet grow in the other,
depending on the permeability ratio 6 and the values of the kinetic and
transfer coefficients in the matrices K and D. A UNESS on the three-cell
network may be stable when cell 3 communicates poorly with cell 2 but may
become unstable when communication opens up. )



