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ON THE RESONANCE STRUCTURE IN A FORCED EXCITABLE
SYSTEM*

JAMES C. ALEXANDER!, EUSEBIUS J. DOEDEL!, Axp HANS G. OTHMER'#

Abstract. The dynamics of forced excitable systems are studied analytically and numerically
with a view toward understanding the resonance or phase-locking structure. In a singular limit the
system studied reduces to a discontinuous flow on a two-torus, which in turn gives rise to a set-
valued circle map. It is shown how to define rotation numbers for such systems and derive properties
analogous to those known for smooth flows. The structure of the phase-locking regions for a Fitzhugh—
Nagumo system in the singular limit is also analyzed. A singular perturbation argument shows that
some of the general results persist for the nonsingularly-perturbed system, and some numerical results
on phase-locking in the forced Fitzhugh-Nagumo equations illustrate this fact. The results explain
much of the phase-locking behavior seen experimentally and numerically in forced excitable systems,
including the existence of threshold stimuli for phase-locking. The results are compared with known
results for forced oscillatory systems.
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1. Introduction. Many biological and some chemical systems are ezcitable,
which means that the equations that describe their temporal evolution in a spatially-
uniform system have the following properties: (i) there is a rest point or steady state
that is globally attracting relative to some large set in phase space, and (ii), there
is a region in state space that can be idealized as a surface of codimension one that
locally partitions the phase space into two sets D and A. The rest point lies in D (the
decaying set) and all orbits through initial points in D return to the rest point without
any substantial growth in any of the state variables. Thus an impulsive perturbation
of the rest point that leaves the state in D decays without significant growth, and the
responses are called subthreshold (cf. Fig. 1). By contrast, perturbations that carry
the dynamics into .4 (the amplifying set) can lead to a large change in one or more of
the state variables, even though the system eventually returns to the rest state. Per-
turbations that carry the state into A are usually called superthreshold. The surface
that locally separates the amplifying and decaying sets is called the threshold surface.
Examples of models for excitable dynamics include the Fitzhugh—-Nagumo equations
(Fitzhugh [1969)]), the Hodgkin—Huxley equations (Hodgkin and Huxley [1954]), mod-
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Fi1c. 1. A schematic of the phase space for a three-dimensional excitable system. Orbits that
begin in the decaying set D return to the rest point without any significant growth in z3, whereas
along orbits that begin in the amplifying set A there is a significant amplification in 3.

els of the cellular slime mold Dictyostelium discoideum (Monk and Othmer [1989];
Othmer and Monk [1988]), the Field-Noyes model of the Zhabotinskii-Belousov reac-
tion (Field and Noyes [1974]), and many others.

It can be anticipated that when an excitable system is forced periodically with
a superthreshold stimulus that periodic responses may result, in which case we say
that entrainment or phase-locking occurs, in analogy with the similar behavior found
in forced oscillatory systems. We shall show that in some cases we can define a firing
number or a rotation number which gives the number of superthreshold responses
per cycle of the forcing function. When the rotation number is rational and less
than one we speak of subharmonic entrainment or subharmonic resonance. Numerous
experiments (cf., e.g., Guttman, Feldman, and Jakobsson [1980], Matsumoto et al.
[1987], Chialvo and Jalife [1987], and references therein) have been done in which
excitable systems were forced periodically, and the results of these experiments show
much of the phase-locking structure found in forced oscillatory systems, including
apparently chaotic behavior at suitable combinations of the amplitude and frequency
of the forcing. An example of the phase-locking regions found in forced excitable
cardiac tissue is shown in Fig. 2(a), and some apparently chaotic responses observed
under different conditions are shown in Fig. 2(b). Numerical studies on Hodgkin—
Huxley systems (Holden [1976]), on a Fitzhugh-Nagumo-like system (Feingold et al.
[1988]), and on formal models of neurons (Nagumo and Sato [1972]; Sato [1972]; Sato,
Hatta, and Nagumo [1974]), also show that the resonance structure can be quite
similar to that in forced periodic systems. The main objective of this paper is to
provide a mathematical explanation for the similarities and differences between the
phase-locking or resonance structure in forced excitable systems and that in forced
oscillatory systems.

In §2 we develop the general model of forced excitable systems that will be an-
alyzed here. The model has slow and fast variables, as is typical of most excitable
systems, and in this paper we deal primarily with the singularly-perturbed limit and



ON THE RESONANCE STRUCTURE IN A FORCED EXCITABLE SYSTEM 1375

40

304

20

Strength (uA)
dv/dt

0 T T T T T
0 10 20 30 40 50

Duration (ms) \"

Fi1G. 2. (a) Strength-duration curves showing the phase-locking regions in a forced Purkinje
fiber. The plot shows the ratio p : q of the number of forcing cycles to the number of superthreshold
responses for given combinations of the duration of the input pulse in milliseconds and the amplitude
in microamps. The period of the forcing is 700 milliseconds. (b) A map of 100 successive pairs of
values of the transmembrane potential and its derivative at a forcing frequency of 322min—1. From
Chialvo and Jalife [1987].1

small perturbations of this limit. We suppose that the forcing occurs in the equations
for the slow variables, but this does not restrict the applicability of the results greatly,
for a large class of systems with forcing on the fast variables can be transformed into
equations of the form we study. We show in §3 that it is possible to define a rota-
tion number for the singular system and we derive properties of the rotation number.
There are some technical hurdles in this analysis because the singular system is not
continuous and the orbits are not unique. In fact the associated circle map is set-
(or multi-) valued. Thus it is necessary to develop the theory of rotation numbers
for multi-valued orbits since this has not been done heretofore to our knowledge. We
show that the rotation number depends continuously on parameters and that there
are periodic orbits if and only if the rotation number is rational, which is analogous
to the classical theory of rotation numbers. Accordingly, for a “random” parameter
value, the system will exhibit periodic orbits, which is what is frequently observed
in applications. However there are also irrational rotation numbers, which occur as
transition states between resonant states, and for these the motion is quasi-periodic.
In both the rational and irrational cases, we are able to give an essentially complete
description of the asymptotic dynamics.

We next discuss stability of orbits of discontinuous systems on a torus. It is
necessary to develop a variational equation for such systems, and although the ideas
are straightforward there are some technical details. This development is carried out in
§4. In §5 we apply the theories of §§3 and 4 to the singular system of §2 which models

1D. R. Chialvo and J. Jalife, Non-linear dynamics of cardiac ezcitation and impluse propagation,
Nature, 330 (1987), pp. 749-752. Reprinted by permission of the authors.
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a forced excitable system. The dynamics are completely described and it is shown
how to investigate stability. We also show in §6 that the phase-locking regions can be
easily computed for a piecewise-linear system. In §7 we investigate the nonsingular
system. The main result is that for a resonant system the nonsingular dynamics are
approximated by the singular dynamics. In particular, the nonsingular system has
stable periodic orbits which are uniformly approximated by stable periodic orbits of
the singular system.

In §8 we present some numerical results on the forced Fitzhugh-Nagumo equa-
tions. The results for this system illustrate both the theory developed in the preceding
sections, and what remains to be explained in the transition regions, where chaotic
behavior can occur. The latter aspect is currently under investigation. Finally, in §9
we discuss the relationship between our results and previous work. As we shall see
there, much of the previous work on discontinuous maps falls within the scope of the
theory developed here for discontinous flows.

2. Formulation of the model. The dynamics of excitable systems are typically
governed by evolution equations of the form

e—dv = f(v,w,\)
dt
(2.1)
dw _ (v, w, \)
dt g b b

where v € R™,w € IR", A € IRP is a parameter vector, and € is small. When
f(v,w,A) > O(1), v varies rapidly compared with w on the ¢ scale, which implies that
the v; are the fast “voltage-like” variables, and the w; are the “recovery-like” variables.
This form of the equations applies to all the examples mentioned in the Introduction
under suitable scalings of the variables.

In the absence of forcing the evolution of the system consists of a rapid motion
toward an attracting neighborhood of the set v = ¢(w, A), where ¢(w, ) is such that
F(é(w,A),w,A) = 0, and slower motion in this neighborhood. Locally ¢ defines a
smooth n—dimensional “slow” manifold when f and g are smooth for fixed A, but
globally v = ¢(w, A) usually has several branches when the system is excitable. As a
result, the slow motion in the neighborhood of an attractor may alternate with rapid
transitions between different branches. The standard example of such a system is the
unforced van der Pol oscillator (Minorsky [1962]).

In general the forcing can enter both the fast and slow subsystems, and it can
either enter parametrically, in which case the forcing is state dependent, or additively.
Although it is not necessary for our geometric formulation, it is convenient to con-
sider the case for which the forcing enters only through the slow subsystem. This
case applies directly to a variety of chemical and biological systems, ranging from the
Belousov-Zhabotinskii reaction in a continuous stirred tank reactor (CSTR) with pe-
riodic injection of the catalyst to periodically-forced acetylcholine-activated currents
in cardiac SA-node tissue (Michaels, Matyas, and Jalife [1984]). (Ostensibly this last
reference deals with a forced oscillatory system. However, an analysis shows that the
forcing involved is strong enough that the stable attractor is a rest point for part of the
forcing cycle. Thus the system studied there falls into the class of excitable systems
studied here.) Moreover, the following shows that some general cases of forcing in fast
variables can be reduced to this case.
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Consider a system of the form

2 = f(v,w,9() = p(0) ~ a(w,6(),

W o(o,w,9(0),

(2.2)

with C1 right-hand sides. In this paper we develop a theory for the case m =n = 1;
that is, the system (2.2) consists of one fast and one slow equation. Here we assume
m = n = 1; in the appendix we treat the more general case. Assume that g, # 0.
Then w = q(w, ¢) is monotone in w for each ¢ and thus there is a function ¢ = h(w, ¢)
which inverts g for each ¢. Changing to (v, w) variables, the system (2.2) becomes

dv -
Ea = p(’U) - w,

. %g(v,h(ﬁl,¢(t)),¢(t)) +

(2.3) S

R lp” ¥
96 ¢ ().

In these variables, the forcing appears only in the slow variables. Moreover, in
each case the transformation is uniform in € and thus is valid in the singular limit € — 0.
As an example note that the Fitzhugh-Nagumo class of equations, which includes the
standard cubic nonlinearity in v and piecewise-linear planar excitable systems, are of
the type given by (2.2) when the forcing is additive on the fast “voltage-like” variable.
As another example, the BZ reaction in a CSTR is often forced by periodic injection
of Br— ion, which is one of the fast variables (Hudson, Lamba, and Mankin [1986]).
However, in the FKN model for this reaction such forcing can be transformed to
forcing on the slow variable z (which represents Ce*4) by a change of variables of the
foregoing type. Finally, the interested reader can check that for Hodgkin—Huxley-like
equations, where the voltage and the gating variables enter as products in the voltage
equation, the additive forcing e@(t) of the voltage equation can be transformed into
forcing of the gating variables by the transformation v = z + [ ¢(t) with a similar
transformation for the reversal potentials.

Later we consider the reduction of (2.2) to the singular limit ¢ — 0, but this
reduction is not valid when the forcing frequency is O(1/¢), that is, when the forcing
frequency is commensurate with the fast time. In cases like this it also happens that
the forcing cannot be isolated on the slow variable, at least not uniformly in €. In fact
it is found numerically that new phenomena arise when the frequency of stimulation is
comparable to the relaxation rate of the fast variables (Rattay [1986]). Other methods
of analysis are required to handle such cases.

The foregoing shows that a number of forced excitable systems can be cast into
the form

dv

GE f('U,'LU, A)’
(2.4)

dw = g(v,w, A, 1)

dt g b ) I

and these are the equations we study in the remainder of this paper. Since the phe-
nomena of interest here arise in planar systems, we only consider the case m =n =1
hereafter. The technical assumptions on (2.4) are as follows.
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1. Smoothness. The functions f(v,w,) and g(v,w, A, t) are C2 in v, w, and A
except possibly at finitely many points, and g(v,w, A, t) is piecewise smooth in ¢ (to
allow piecewise constant forcing). For any bounded set U in (v, w)-space and any fixed
A, f, and g are Lipschitz continuous in (u,v), i.e., there is a constant ky such that

|f(vawa’\) - f(v’,w’, ’\)| < ku (l’U - UI' + |’LU - wll)

2.5
( ) |g(v,w,)\,t)—g(v’,w',)\,t)l < kU (|v—v’|+|w—w’|)

for (v,w) € U. For any initial condition (vo, wo, to), there is a unique solution of (2.4)
for all t > to (Hale [1969, §1.5]). These solutions depend continuously on (v, wo, A, to).

I1. Conditions on f. The nullcline f(v,w,A) = 0 has the standard “cubic shape”
(see Fig. 3). More precisely, we assume that f(v,w,A) = 0 can be solved for w =
v(v, ) as a continuous function of (v, A) for every A € A C R, and that

flv,w, A) < 0if w > y(v,A),
fo,w,A) >0 if w < y(v, A).

Furthermore we assume that there are fixed values v; < v, of v such that

(v, A) is strictly decreasing in v for v < v,
(v, A) is strictly increasing in v for v; < v < vy,
(v, A) is strictly decreasing in v for v, < v,

and that v; is a nondegenerate minimum for v. That is, there exists @ = a(A) > 0
such that

Y(v,A) 2 y(v) + a(v —v)?
for v near v;.

Thus f,, < 0 on the set where f = 0, and consequently f, > 0 for v € (v, vr) and
fv < 0 otherwise.

III. Conditions on g. The equation g(v,w, A,t) = 0 can be solved for w = n¢(v, A)
for any fixed t. Moreover, we assume that

g(v,w, A\, t) <0 for w > ne(v, A),
g(v,w, A\, t) > 0 for w < ne(v, A).
Thus g;u < 0 and g, > 0 on the set where g = 0.

IV. Transversality. The nullclines intersect at only one point for any fixed ¢. That
is, for any t and fixed A there exists a unique solution (v, w?) to the equations

w =7(v,A),
(26) w = nt(’l), A)

V. Ezxistence of periodic solutions. There exist V; and V, such that v; < V| <
Vr < v, with the property that whenever the v-component of the rest point of the
unforced system lies in (V},V;) the rest point of the unforced system is unstable and
the system has a unique periodic solution that is a stable limit cycle. Otherwise the
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Fi1c. 3. The qualitative features of the isoclines f = 0 and g = 0 when (a) the rest point is
stable, (b) the rest point is unstable. In case (b) there is a stable limit cycle which contains the rest
point in its interior. The forcing causes the isocline g = 0 to move between the two states.

rest point is asymptotically stable. (Note that V; and V; always exist for € sufficiently
small, and that V; — v; and V;, — v, as € — 0. Thus this assumption is not necessary
for sufficiently stiff systems.)

Next we specify conditions on the forcing. If the forcing is weak in an appropriate
sense and the rest point of the unforced system is stable, then under the foregoing
conditions it is easy to prove that the forced system will only have small amplitude
periodic solutions that are perturbations of the rest point. Such solutions correspond
to the subthreshold responses i. e., responses in the region labeled 0:1 in Fig. 2(a). The
only point of mathematical interest in regard to these solutions concerns the nature
of the transition region in parameter space between subthreshold and superthreshold
responses. An example of such a strength-duration curve is given in §7.

On the other hand, if the amplitude of the forcing is too large there may be an
intersection of g = 0 with f = 0 for v > v, and we want to exclude this, because it
complicates some of the analysis without introducing any significant new phenomena.
The last hypothesis ensures that the forcing actually moves the rest point from the
left branch of f = 0 into the region where it is unstable when regarded as a rest point
of the system in which ¢ is fixed in the function g, but does not move it to the right
of v,.

VI. Conditions on the forcing. Let w; = y(vi, A) and let w, = y(vyr, A). We assume
that g(v,w, A, t) is periodic in ¢ of period T > 0, where T is large compared with the
time scale for the fast dynamics. Further, we suppose that there exists a T1 € (0,T)



1380 JAMES C. ALEXANDER, EUSEBIUS J. DOEDEL, AND HANS G. OTHMER

such that for ¢ € (0,T1), vQ < v, and for ¢t € (T1,T), v? € (v;,v,;). Thus there are at
most two values of ¢ € [0,T") at which (v?,w?) = (v;,w;). We also assume that in the
singular limit € = 0 the forcing turns “on” and “off” rapidly enough. More precisely,
if v/(v;") = 0, then

(2.7) tliI’F— gt (vi, Y(v), A, t) > 0
(thus the forcing turns off transversally), and if 4/(v;") = 0, then
_ - —\12
[g'v (Ul ,7(1)[ )a/\aTl )]
(o)
(thus the forcing turns on with some nonzero speed). These last two conditions enter

certain estimates in a technical way. If they are not satisfied the theory developed
here may still be valid, but more technical arguments are necessary.

(2.8) |9t (v 7 (07 ), A TT)| >

With these conditions in mind we can describe the qualitative dynamics more
completely. Let ¢ and A be fixed, and consider the autonomous system

2 = f(ww, ),
(2.9) t
dw -
d—t' = g(’U, w, /\, t)

in which the forcing is frozen. If v? < v, then P(f) = (v2,w?) is a globally attracting
rest point. If Vi < v < V;, the rest point (v?,w?) is unstable, and the unique
periodic solution attracts RZ\(vg,w?). Thus if # is regarded as a parameter of the
frozen system, a periodic solution emerges or disappears as f changes so that v? passes
through V;. For sufficiently small € > 0 the rest point of (2.4) is in the decaying set D
for 0 <t < T1, while if Th < t < T it is in the amplifying set .A. Thus the effect of the
forcing is effectively to move the rest point of (2.9) in and out of the amplifying set.

When the forcing varies on the slow time scale, any solution of (2.4) rapidly
approaches a stable branch of the set where f = 0. For v; > V], (2.4) oscillates,
and one can count the number of times N that the v-component crosses some value
v* > V; during one period of the forcing. This firing number gives the number of
large excursions, or spikes in one period of the forcing. The firing number may not
be the same for each forcing period, and a time average may be taken. Note that
the firing number depends on the choice of v*; there is no canonical choice except
in the singular limit. As X varies, the average firing number may change. As we
shall see, it can happen that a new small spike forms and grows as A changes until
it reaches the threshold v*, in which case the firing number changes discontinuously.
Alternatively, there can be a transition region in X in which there is very complicated
periodic, quasi-periodic, or even chaotic behavior. In the singularly-perturbed case
€ = 0, there is a canonical choice of v*, and the average firing number is continuous
in A. Moreover, information about the behavior in the transition regions can be
developed. The behavior of the singularly-perturbed system will be analyzed in the
following sections, followed by some analysis of the non-singularly-perturbed system.

A simple but typical example of a system that exhibits the desired qualitative
behavior is one in which the forcing is additive, namely,

dv
Egt- - f(v,w),
dw

Ti; = h(U, 'U)) + d)(t)v

(2.10)
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for some periodic forcing function ¢(t). It is usually reasonable to consider sinusoidal
forcing, for which ¢(t) = sin2xt/T, or even a step function

¢l OSt<T17

2.11 t) =
@11 #é) {d)r Tn<t<T,

where ¢; and ¢, are such that condition VI above is satisfied. Indeed, there is often
little loss in generality in letting h(v,w) be linear, so one can consider the simpler
system

dv
GEZ - f(va 'lU),
dw

E=v—aw+¢(t),

where « is sufficiently small that condition IV holds.

The first step in the analysis of (2.4) is to set € = 0 and determine the behavior of
the resulting singular differential system. We begin this analysis in this section, and
to simplify the notation we fix A for the present and suppress the A dependence in all
formulas.

When € = 0 the equation et = f(v,w) reduces to the equation f(v,w) = 0, or
w = y(v). For v < v; or v > v, the singular system is on a branch of the nullcline
w = v(v). Let v = §(w) invert w = y(v) for v < v; and let v = (- (w) invert w = y(v)
for v > v,. Then the system (2.4) reduces to the discontinuous scalar equation

(2.12) dw {Q(Cl(w),'UJ,t) for v = ((w) < w,

F g(¢r(w), w,t) for v = (w) > vy

If the solution lies on the left branch v = (;(w) and evolves so that w reaches w; =
4(v;), it jumps horizontally and instantaneously to the point (v,w) = (¢-(wi),wr)
on the right branch. Similarly if the solution lies on the right branch v = ((w)
and w reaches w, = «(vr), it jumps horizontally and instantaneously to the point
(v,w) = (¢i(wr), wr) on the left branch.

Consider the curves

L= {(v,w):v=q(w),wy <w< wr},

(2.13) R={(v,w):v=G(w), w <w < w},

and identify the endpoints as follows:

Po: (vi,wr) = (G(wi), wi) = (¢ (wr), wr),
Pi: (vr,wr) = (Gr(wr), wr) = (Gwr), wr).

The resulting space is a circle S1, and thus the phase space for (2.12) is the cylinder
S1 x R+. We let u € (0,1) be a coordinate for S1, where u = 0(= 1) corresponds to
Py and some u; € (0,1) corresponds to P;. Without loss of generality, we can rescale
the time so that the period T = 1, and identify the sections ¢t = 0 and ¢ = 1 of the
cylinder. As a result, (2.12) gives rise to the discontinuous equation

(2.14) ‘—fl-’tf = F(u,t)
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on a torus. We transform (2.12) to u coordinates by setting

w2;le for (v,w) € R,
(2.15) u=

1_w—wr for (v,w) € L

2 2w ’ ’

where W = w, — w;. Let u; = 1/2 correspond to w,. After time is rescaled, (2.12)
reads

T - Fi(u,t) forue€(0,1/2),
16) du _ [T Fi(w?) 0,1/2)
dt T - Fy(u,t) foru e (1/2,1).
Here 1
Fi(u,t) = Wg(cr(2Wu+ wr), 2Wu + wy, Tt)
F(u,t) = %g(g‘l(—QWu—{- W+ w,),—2Wu+ W + 'wr,Tt).

Both Fy and F3 are extended periodically with period 1 in both ¢ and u. The square
{(t,u) € [0,1] x [0,1]} is a fundamental domain, and the vector field F(u,t) has the
following properties on this domain (see Fig. 4).

(i) The horizontal component (i.e., the -component) is identically 1.

(ii) For 0 < t < t1,(= T1/T) there is a piecewise-smooth curve given by u = P(t)
on which the vertical, or u-component, of the vector field vanishes .

(iii) The vertical component is negative for 0 <t <t and P(t) < u < 1, it vanishes
on P(t), and is positive elsewhere. P(t) intersects « = 0 in at most two points.

(iv) The vector field is continuous except along the lines u = 0 (= 1) and u = 1/2,
and the lines ¢ = ¢, where t. are the ¢ values for which g(v,w,t) of (2.4) is
discontinuous. One-sided limits exist and are finite on the lines of discontinuity.
Fort € (0,t1), F(0—,t) <0, and F(0*,¢) > 0, while for ¢ € (t1,1), F(0—,t) > 0,
and F(0*,t) > 0. For all t € (0,1), F(uy,t) > 0, and F(uf,t) > 0.

As we show in the next section, the associated flow is continuous except along the line
u = 0 (= 1), and standard tools can be adapted to analyze the behavior of the flow.

3. Rotation numbers for multivalued flows. In this section we develop the
theory of rotation numbers for flows arising from a class of discontinuous fields. Under
certain restrictions on the types of discontinuities admitted, the rotation number turns
out to have the same properties as that for smooth flows on tori. The main points of
interest for us about the classical theory (Coddington and Levinson [1955, Chap. 17);
Hale [1969, §II.2]; Hartman [1964, §VI.14]) are as follows. Consider the differential
equation

(3.1) = =Flut)

in the (t,u)-plane, where F is 1-periodic in both ¢ and u. Equation (3.1) generates
a doubly-periodic vector field on the plane with horizontal component identically 1,
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F1G. 4. The vector field in the fundamental domain of the (t,u) plane. The interval 0 <u <1
consists of two parts—the interval 0 < u < uy, which is a copy of the curve R of (2.12), and the
interval u; < u < 1, which is an inverted copy of the curve L of (2.12). To recover the vector
field on the torus identify the lines t = 0 and t = 1, and the lines u = 0 and u = 1. The vertical
component of the vector field vanishes along the curve u = P(t). This curve is the locus of the
moving “stationary” point on the left branch, and in the case shown the amplitude is large enough
to force this ‘stationary’ point across u = 0.

and as in the previous section, we identify this with a vector field on the two-torus
T? defined as (¢,u)-space modulo the unit lattice. Let C9(T%?) denote the set of
continuous, doubly-periodic vector fields on T? with the property that solutions of
(3.1) through any point on T2 are unique, and endow this set with the C° topology.
The time-one map of (3.1) generates a monotone increasing homeomorphism ¥ on R
with the property that ¥(z + 1) = ¥(z) + 1. The rotation number of any point z € R
is defined as
n
p@) = tim L)

|n|—oc0 T

which has the properties:

(i) p is well-defined and is independent of z,
(ii) there is a closed orbit on the torus if and only if p is rational,
(iii) p depends continuously on F' € CO(T?2).

In the present case, the vector fields are only piecewise continuous and orbits are
not unique, and thus the classical theory does not apply directly. Furthermore, the
induced circle map is set-valued and therefore more recent results on the properties
of rotation numbers for continuous nondecreasing maps on S! (Newhouse, Palis, and
Takens [1983]) are also not applicable. We suppose that the vector fields are piecewise
smooth in the sense that F(u,t) is C* for k > 1 except along certain lines. We assume
that F(u,t) extends continuously along these lines and that the one-sided limits of
the derivatives exist in the generalized sense that some of the limits may be infinite.
These exceptional lines are classified as follows.
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(i) Space discontinuities. There are a finite number (up to periodicity) of values
u = U, such that

(3.2) AF (uc,t) = Ay, F(uc, t) = F(ud ,t) — F(uz ,t) # 0.

We assume that F(ud,t) and F(ug ,t) are piecewise smooth in ¢ (jumping only
at points tc).

(ii) Time discontinuities. There are a finite number (up to periodicity) of values
t = t. such that

(3.3) AF (u,t;) = Ay, F(u,te) = F(u,td) — F(u,tz) # 0.

We assume that F(u,t$) and F(u,t;) are piecewise smooth in « (jumping only
at points u.).

Thus (¢, u)-space is partitioned into a collection of rectangles by the horizontal lines
u = u. and the vertical lines ¢ = t.. We call these lines the lines of discontinuity
of F(u,t). F(u,t) is smooth in the open rectangles and for any such rectangle R,
F(u,t) can be extended to a continuous function on the closure of R. Therefore
the standard existence and uniqueness theorems (Coddington and Levinson [1955,
Chaps. 1 and 2]; Hale [1969, §1.3]; Hartman [1964, Chap. 2]) imply that (3.1) has
a unique solution through any point (¢o,uo) not on a line u = wu., and this solution
depends continuously on the initial conditions. We denote this solution U(¢, to, uo).
For multivalued solutions U(t,t0,u0) is interpreted as a set. We use the notation
U(t,to, uo0, A) if we want to explicitly denote the parameter.

Since F' is bounded a solution U(t,%o,uo) for uo not on a line u = u. can be
extended in both directions to a line u = u. (although it will have corners at lines
t = t.). We require that the partial derivatives F,, and F; extend continuously to one-
sided derivatives at any line of discontinuity, and we allow F, to become positively or
negatively infinite along these lines. It is easy to show, using Gronwall’s inequality,
that for any point (¢,u) in @R where F, is not infinite at most one orbit through (¢, u)
intersects the interior of R. In fact, more is true. Even if F, is infinite at (¢,u) € OR,
at most one orbit through (¢, «) intersects the interior of R unless F'(u,t) = 0 as well.
For if not, apply Gronwall’s inequality to dt/du = 1/F(u,t).

The nature of the flow near the lines © = u. is determined by the sign of F(u,t)
above and below such a line. We first consider the cases in which the signs of F
are constant on an open interval around ¢, and then we patch such regions together
at points where F' changes sign and at time discontinuities. Fix ¢« € (t1,%2), where
(t1,t2) is chosen so that there is no time discontinuity in this interval, and let F'%(uc, t«)
denote the limits from above and below (t«,uc). Choose (t1,t2) so that sgn(F+ (uc,t))
is constant (including 0) for ¢ € (¢1,%2), and similarly for sgn(F~(uc,t)). If the sign
is 0, assume Fy(uc,t) # 0 for ¢ € (t1,t2). Then there are nine distinct cases to be
considered, depending on whether F'* is +, —, or 0. We shall only sketch the analysis
of these cases and leave the details to the reader. A summary of the cases is given
in Table 1 and sketches of some of the associated orbits are shown in Fig. 5. In the
systems discussed in §2 there are no instances of sign 0, and F(uc,t) and Fy(uc,t)
vanish simultaneously only at isolated points.

If F(ud,t.)-F(uz, ts) > 0 the orbit has a unique extension forward and backward
in time across u = uc, although with a corner at ¢t = ¢. (Fig. 5(a)). We call these
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TABLE 1
The orbit structure when sgn(F*) is fized.
Uniqueness*
sgn(F~) | sgn(F+) Type Forward Backward
+ + Transverse Yes Yes
- — Transverse Yes Yes
+ - Attracting Yes No
- — Repelling No Yes
0 0 Yes Yes
0 + Yes Yes
0 — Yes Yes
+ 0 Yes Yes
— 0 Yes Yes

* Refers to uniqueness through any point (t,uc), t € (t1,12).

transverse space discontinuities because the trajectories intersect the line of disconti-
nuity transversely. If F(uf,t.) < 0 and F(ug,t«) > 0, u = u, is locally attracting
in the sense that solutions are decreasing for u > u. and increasing for u < u.. In
this case two orbits can reach u = u. at ¢t = t«, one from above and one from below,
and for ¢ > t. these orbits continue along the line u = u. (Fig. 5(b)). The solution
through (t«,uc) is locally (in t) unique for ¢ > t., but is not unique in reverse time.
On the other hand, if F(uf,t.) > 0 and F(uz,t«) < 0, the line u = u, is locally
repelling near ¢, and a solution that begins in the interior of either adjacent rectangle
cannot reach (¢«,uc) in forward time. However, it can be shown that solutions which
begin near (t«,uc) can reach (t«,uc) from either above or below in finite reverse time.
Thus there are two solutions that emanate immediately from (¢, uc) into the interior
of rectangles R, one that lies above the line © = u. and one that lies below the line
u = uc. In addition, we also consider any orbit that travels along u = u. for some
interval of time to (%%, uc) and then (with a corner) goes into the interior of a rectan-
gle R to be an orbit from (¢«,uc). In this case the solution through (¢, u.) is unique
locally for t < t., but is not unique in forward time. Note that the dynamics near
attracting and repelling space discontinuities are related by reversing time.

In the remaining “constant sign” cases one or both of the limits vanish for ¢ €
(t1,t2). Suppose, for example, that F— vanishes. Since the horizontal component of
the vector field is 1, orbits cannot reach (t«,u.) from below, and there is always a
unique orbit through (¢«,uc). Using this observation we can complete the table for
these cases. Finally, at the intersection of a space discontinuity u = u. and a time
discontinuity ¢t = t., we simply patch together the orbit types given in Table 1 at
t=t..

In all cases for which the orbit through a point on u = wu. is not unique, we
regard the forward extension of the orbit to be the set of all orbits that emanate
from this point. This includes orbits which may “travel along” the discontinuity
u = uc for some finite interval of time. More precisely, for any point (o, uo), let
S+ (to,uo) denote the set of all forward orbits with (fo,uo) as initial point, and let
u(t) = sup{u € S+ (to,wo)} and u(t) = inf{u € S*+(to,u0)}. Since the supremum and



1386 JAMES C. ALEXANDER, EUSEBIUS J. DOEDEL, AND HANS G. OTHMER

(a)

C /
Uot

T
u (b)
Us /\/¥,
ff* t
u (c)

MAXIMAL

~ Aﬂw ORBIT
Us / //W
MINIMAL

ORBIT

» !

FiG. 5. A schematic of the behavior of solutions near the various types of discontinuities. (a)
The flow near a transverse space discontinuity at u = uc. The orbit through (u,t) = (ug,to) reaches
the discontinuity att = t*. The line t = t. is a time discontinuity. (b) The flow near an attracting
space discontinuity at u = uc. An orbit that reaches the line u = uc at t = t* continues along that
line for t > t*. (c) A space discontinuity that is transverse for t < t* and repelling for t > t*. There
is a mazimal orbit and a minimal orbit leaving (u,t) = (ue,t*), and the hatched region between these
orbits is called the forward shadow of the point (uc,t*).

infimum of orbits are orbits, %(¢) and u(t) are orbits in S+(¢o, uo), called the mazimal
and minimal orbits, respectively (Hartman [1964, §II1.2]). We call the set of points
in the plane between the minimal and maximal forward orbits through a point the
forward shadow of that point. Since the horizontal component of the vector field is
identically 1, the forward shadow of the point (¢o, uo) is St (to,u0). Backward shadows
and full (or two-sided) shadows are defined similarly. We also speak of S+ (to,uo) at
time t1 (> to) and by this mean the section of the shadow at t;. If there is only
one orbit through a point, the forward shadow consists of all points on the positive
semiorbit through that point.

In this way the discontinuous vector field under consideration defines a set-valued
flow in the plane and, by factoring modulo the integer lattice, a set-valued flow on the
torus T2. However, a rotation number cannot be defined for these flows unless the
following condition holds: for any (to,uo),

(3.4) S+t (to,uo) NS+ (to,uo + 1) = 0.
The fact that this condition is necessary can be seen as follows. Because the orbit

through an interior point of a rectangle is unique, this condition can only be violated
if the shadows intersect on a space discontinuity. If (3.4) is not satisfied and the two
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shadows intersect at time ¢, then all orbits are contained in S+ (to,u) for ¢ > ¢; and
all u € [uo,uo + 1]. As a result, S*(to,u) contains the whole torus for ¢ > ¢, and any
u, and there can be no theory of rotation numbers. Thus we are led to impose the
following additional hypothesis on (3.1):

(H1) There are no attracting space discontinuities and there is at most one orbit ema-
nating in reverse time from any point at which F, is infinite.

As discussed above, the second part of (H1) is an issue only at space discontinuities
and only if F is zero at the point in question. It follows from the preceding discussion
that under this hypothesis uniqueness holds for the time-reversed flow, but not in
general for the forward flow. The backward uniqueness implies that (3.1) is satisfied
and, as we show next, rotation numbers can be defined satisfactorily in this case.

Let ¥(uo) = U(1,0,up) denote the time one map for (3.1). This map has the
property that

U(up +n) = V(ug) +n

for n € Z, where the equality is defined setwise when u lies on a line 4 = u.. That is,
if (U= (uc), ¥*+(uc)) is the image of u., then the foregoing means that

(T (ue +n), Tt (uc +n)) = (T (uc) +n, T+ (ue) +n).
Furthermore, ¥ is monotone in the usual sense. We define the rotation number p as

(3.5) p= lim Em—(u—o—),

[n|—o0 n

where n € Z. We claim that the value of p is independent of uy and of the choice
of the orbit through (0, uo). To see this, let U(t,0,uo) be the maximal orbit through
(0,u0) and let U1(t,0,u0) = U(t,0,u0) + 1. By periodicity in u, U(t,uo) is also a
solution of (3.1). Moreover

(3.6) U(n,0,u0) < U(n,0,up) < Ul(n,0,u9) = U(n,0,uo) + 1,

where the second inequality comes from (3.4). Dividing by n and taking the limit, we
find that p does not depend on which orbit is chosen through (0, ug). With this fact, the
argument in Coddington and Levinson [1955] and in Hale [1969] can be used mutatis
mutandi, replacing U(t, uo + m) by the m-translate U™ (t,0,uo) = U(¢,0,up) + m for
—00 < m < 0o0. Thus the rotation number p is well-defined.

The rotation number also has properties (ii) and (iii) given previously. We prove
(iii) only for one-parameter families of vector fields, and we define continuity with
respect to a parameter A to mean that the lines u. = uc(\) and t. = t.()\) depend
continuously on A, and away from any such line the vector field depends continuously
on A.

THEOREM 1. Under condition (H1):

(i) p is rational if and only if there is a closed orbit of the differential equation
(3.1) on the torus,

(ii) if the vector field depends continuously on X then so does p.

Proof. Certainly if there is a closed orbit of (3.1), then for some integer m > 0
and some ug there is an integer k£ such that U(m,0,up) = uo + k, which implies that
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p = k/m. To prove the converse, note that if U(m,0,uo) > uo + r for all ug for some
real number r, then p > r/m. For by induction on I,

U(im,0,u0) > U((I — 1)m, 0,u0) + 7 > ug + Ir.

Dividing by Im and letting [ — oo, we obtain the inequality. Now suppose p = k /m
for integers k and m, but that U(m,0,up) # uo + k for any ug. We may suppose
that U(m,0,u0) > uo + k. But then p > k/m by what was just proved, contrary to
assumption. Thus U(m,0,u0) = up + k and there is a closed orbit on the torus.

For (ii), we use the following trick. Rotation numbers can also be defined for the
time-reversed flow (indeed, since reverse orbits are unique as a consequence of (H), the
standard arguments work). Moreover, the rotation numbers for the forward flow and
the time-reversed flow are equal (note that n changes to —n in (3.5)). Thus we prove
continuity of the reverse rotation number. Continuous dependence of rotation numbers
on a parameter depends on the continuous dependence of orbits on the parameter.
Suppose (3.1) depends continuously on a parameter A. Denote the unique orbit for
parameter value A through the point uo and time ¢y for t < to by U(to,t,up, ). By
periodicity, the orbit is uniformly continuous in the following sense: for fixed T < T3,
given € > 0, there exists a § = §(T1,T2,A) > 0 such that

(3.7 |U(to, t,u0, A) — U(th, ¥, up, N)| < €

if Ty <t <to<Ty Ty <t <th < Ty and |to—th] <6, [t — /| <6, |uo—uj| <6,
|\ — M| < 6. This is true within any rectangle R where F is continuous (Hartman
[1964, §V.2]). Then (3.6) can be applied iteratively over rectangles. Now let ¢, = to,
t' =t =10—1, ug = uo. Then given € > 0, there exists § > 0 such that if |\ — \| < §,
then

|U(to,t0 — l,u(),/\) —Ul(to,to — 1, ug, )\’)l < €.

By induction on &
|U (to,to — k,uo, A) — Ul(to, to — k, uo, )| < ke.

Dividing by k£ and taking limits, we obtain that [p(A) — p(X)| < € if |\ — \| < 8, which
implies that p is continuous in A. This completes the sketch of the proof.

Finally we observe that if p is rational, then as t — oo any orbit whose shadow
does not eventually (for times t > some t1) contain a periodic orbit must approach a
pertodic orbit as t — oo (and similarly for ¢ — —oo). For since p is rational, there
exists an orbit U(t, 0, uo) such that U(n,0,uo) = uo+ k for integers n and k. Consider
the shifted return maps g: uo — U(n, 0, uo) — k and g: uo — U(n,0,ug) — k. These are
monotonic in ug. Consider any uo, 0 < up < 1. If g(uo) < uo and F(ug) > uo, the
forward shadow of uq contains a periodic orbit. Otherwise assume 1 > g(uo) > uo.
If the forward shadow of uo does not eventually contain a periodic orbit, then, by
induction on r, 1 > g"(uo) > g"(uo) > g"*+(uo), and both g"(uo) and §"(uo) must
approach the same point u1, 0 < u; <1, and U(t,0,u1) is a periodic orbit. Note that
the approach to the periodic orbit is locally monotonic.

4. Variational equations for discontinuous vector fields. In this section
we study the stability of solutions of (4.1). As usual we make use of the variational
equation, but because the underlying vector field is discontinuous some care is needed
in the analysis of this equation.
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Fi1c. 6. (a) Infinitestmally close orbits crossing a time discontinuity t = t.. There is no effect
of tc on the variation in that lim A~u = lim At u. (b) Infinitesimally close orbits crossing a space
discontinuity. The effect on the variation is given by (4.4).

We begin with the equation (3.1):

(4.1) %1:— = F(u,t).

As before, we assume that F'(u,t) is piecewise smooth in the sense that there are a
finite number of discontinuities of the types defined in the previous section that occur
along lines in (¢,u)-space. In the open rectangles defined by these lines, F(u,t) is
smooth and for each such rectangle R, F(u,t) can be extended to a smooth function
on the closure of R, except that F, may become infinite. An orbit may intersect the
corner of a rectangle and hence encounter a space discontinuity and time discontinuity
simultaneously, but it will be shown that the effects of the two discontinuities can be
considered separately. We restrict our attention to orbits u(t) for which F (u(t), t) #0
for all ¢; such orbits are single-valued.

If u(t) is a solution of (4.1), the variational equation should describe the behavior
of an infinitesimally nearby solution. More precisely we have to determine how a
solution u(t) + €£(t) behaves as € goes to zero. Since F(u,t) is Ck for k > 1 in the
interior of any R,

(4.2) W—t);5@ = F(u(t) + €£(t),t) = F(u(t),t) + e%—i(u(t),t){ + O(e?)
for u # uc, t # tc, and the variational equation reads

d oOF
(43) = w0

for (t,u) in any R.

First we analyze the effect of having a time discontinuity at ¢ = ¢t.. Let A—u =
e€(t;) and A+u = €£(td) be the difference between u and a nearby solution u + Au
on the left and right of ¢ = t., respectively. Since the line of discontinuity is vertical,
Aty = A-u (see Fig. 6(a)), which implies that the time discontinuity has no effect
on the dynamics of .
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Next suppose that there is a space discontinuity at v = u., and suppose that an
orbit U(t) reaches this discontinuity at ¢ = ¢,,. Since F(ug,t,, ) and F(ugz,t,,) are
not zero, we can invert the relationship v = U(t) to obtain ¢t = 7(u), where dr/du =
F(u,t)~1 (in other words, the roles of space and time as dependent and independent
variables are interchanged locally). From the previous paragraph, Atr = A-7. On
the other hand, the difference quotient Au/Ar approaches du/dt = F(u,7(u)) as At
goes to zero. Thus (compare Fig. 6(b))

Atu A-u
(4.4) T = — .
F(Uc stuc) F(Uc ’tuc)

Now consider a solution u = u(t) of (4.1) between the times ¢t = to and ¢t = ;.
For convenience, we assume u(t;), i = 1,2 does not lie on a line of discontinuity.
Integrating (4.3) and taking into account (4.4), we find that

@) 1p Flud,tu,) b GF
(4:5) e ~ U e ) ( , dun?) ‘”) !

where the product is over all space discontinuities encountered by u(t) and the integral
ignores the discontinuities. We can rewrite (4.5) as follows if we leave the integration
of (4.3) in logarithmic form. Let Alog|é| = Af log|¢| = log|é(t1)| — log|é(to)| and
Alog|F (uc, tu, )| = log |F(ud , tu,)| — log|F(uc_,tuc) . Then

t1 F
(4.6) Alog ¢| = ZAlog|F(uc,tuc)|+ a—(u £ dt

It will be convenient to have (4.6) in another form. First suppose that F' (u(t), t) #
0 for to <t < t1. Note that along u,

(4.7) %(u(t),t) = g—i(u,t)u + %—I;(u, t).

Thus we can divide (4.3) by £ and by u(t) = F(u(t),t) and integrate between to and
t; to obtain

t1
(4.8) Alog¢] = Alog|F| — / ‘91°g|F|( t) dt,
0

where Alog|F| = Ai; log |F| = log|F(u(t1),t1)| — log |F(u(to),to)|. We have to in-
terpret the integral on the right at lines of discontinuity so that (4.8) is consistent
with (4.6). To do this, we isolate a small interval around each line of discontinu-
ity and compare the two equations. We find that space discontinuities do not affect
the integral on the right of (4.8), but that each time dlscontmulty tc adds a term
Alog|F(u(te), tc)| = log|F( (t),t¥)| — log|F(u(tz),ts)| to the right-hand side.
Thus the integral in (4.8) is a generalized integral in the sense of distributions, and
each time discontinuity introduces a Dirac delta function in the logarithmic derivative.
Written as an ordinary integral with the same conventions (4.6), (4.8) reads

(4.9) Alogl¢| = Alog |F| — zAloglF u(te), tc|_/ 8log|F|( ) dt
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Finally there is the question of what happens if F(u(t), t) = 0 at a point on the
orbit u. It can be checked that if dF (u(t),t)/dt # 0 at such a point, the integral in
(4.8) should be interpreted as a principal value and the singularity causes no trouble.
If F (u(t), t) = 0 on an open t-interval (so that the orbit remains on a stationary point
for some interval of time), it is better to use (4.5).

The following special cases illustrate some of the foregoing alternatives. Suppose
that (4.1) is autonomous, so that 9F/dt = 0. Then from (4.8)

(4.10) Alogl|é| = Alog|F|,

in accordance with the usual results. On the other hand, if (4.1) is independent of u,
then from (4.4),

(4.11) Aloglé| =0

(the system is invariant under vertical translations). Suppose that F(u(t1),t1) =
F(u(to),to) (as is the case for a periodic orbit). Then from (4.9)

" 9log|F|

(4.12) Alog |¢] =—EA10g|F(u(tc),tc)| —/t 5 (u,t) dt.

For a periodic orbit of an autonomous system,
(4.13) Alog|¢| =0

as can be seen by considering an autonomous system on a circle.

Finally we note that if u(t) is a periodic orbit of (4.1) and Alog|{| # 0, then the
orbit is hyperbolic and thus persists under perturbations of the system.

5. The resonance structure in the singular limit. In this section we apply
the general results from the previous two sections to the system (2.12), which is the
singularly-perturbed limit of (2.1). As we proved in §3, (3.1) has a periodic solution if
and only if the rotation number is rational. When p = n/m with m and n coprime, we
say that the system is phase-locked in the ratio n: m or that it is in an n: m resonance,
and we use R/, to denote the n:m resonance zone in parameter space. The same
definitions can be used in the forced oscillatory case, and in that case a great deal is

known about the structure of the resonance zones. Consider the autonomous system

in Rk p
u
T = f(u)

and suppose that ihis has an asymptotically stable periodic solution of period 1. The

forced system

% = ) + Ag(u, ),

where g(u, t) is periodic of period 1 in ¢, has a periodic solution for every rational value
of w when A = 0. Furthermore, the resonance zones, or Arnold tongues, are generically
wedge-shaped regions that emanate from (n/m,0) in the (w, A) plane (Hall [1984];
Loud [1967]). Some recent results on how these tongues interact at large amplitude
forcing are given in Mackay and Tresser [1986]. As stated in the introduction, one of
our purposes is to determine the structure of the resonance zones of forced excitable
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systems. In this section we do this for the singular limit in a three-parameter family of
additively-forced systems. Some analytical and numerical results on the nonsingular
limit are given in the following two sections.

The first step is to show that the theory developed in §3 applies to the class of
equations discussed in §2. In particular, we establish the following lemma.

LEMMA 2. Equation (2.16) satisfies hypothesis (H1) of §3.

Proof. According to property (IV) in §2, the vector field is continuous except
along the lines u = 0 and v = 1/2, and along the lines ¢ = t. that arise from
discontinuities in the forcing. F, may become infinite along the lines u = 0 and
u = 1/2, but F(1/2,t) is never 0, and F(0,t) can only be 0 if t = 0 or t = t;. The
segment (0,¢1) on u = 0 is repelling and the segment (¢1, 1) is transverse (see Table 1).
The line u = 1/2 is a transverse discontinuity for all ¢ and plays no significant role
in determining the dynamics. Furthermore, it is easy to see from the discussion in §3
that time discontinuities across which the flow does not change type also have little
effect. Thus we only have to check the behavior of the flow near (0,0) and (¢1,0) in
order to determine whether backward orbits are unique. In fact it suffices to check
the one-sided behavior for © = 0—.

From (2.15), the variables u and w are linearly related on each rectangle. Ac-
cordingly, we can work with the system (2.12), which can be written

dw
(51) E{ = K(t’w) = g(Cl(w)aw7t)
for v < vy, which is the region of interest (recall that the A dependence is supressed
in the notation). Note that

g () w(§ §)

dw  Ovow  dw \ov 9 2
since
o6 _ o1 /of
Sw dw/ v’

Thus the right-hand side of (5.1) may have infinite derivative at v = v if f, — 0
as v — v from the left. If not (e.g., if there is a corner of y(v) at v, or if 8f/0v
and 9f /0w both go to zero at the same rate), uniqueness in reverse time obtains.
However, if 4/(v) — 0 as v — v; from the left, we change variables from w to v = {;(v)
and obtain the equation

(5.2) %=J@m=ﬂ%%%ﬁ.

Introduce a new independent variable 7 and write (5.2) as the autonomous system

dt

(5.3) dr
& = (0,900, 1),

_FYI(U)a

Then dt/dr > 0 and is 0 only at v = v;. Moreover, (5.3) is C! and so has unique
(forward and reverse) orbits. However, if the point (T, v;) or (T1,v;) is a stationary
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point of (5.3) there may be many orbits which are asymptotic to it in forward 7 time.
In ¢ time, this occurs in finite time, and (5.2) and hence (5.1) do not have unique orbits
in reverse time. To check this possibility we linearize (5.3) and obtain the matrix

0o -4
(54) (_Qa *Q.(z_d!ig_il)'

At (T, 0) this has sign structure
0 —
(2 <)

by virtue of (§2.1I, eq. (2.7)). Thus the determinant of (5.4) is negative and (7,0) is
a saddle of (5.3). Thus there is only one orbit of (5.3) positively asymptotic to the
fixed point from the quadrant ¢ < T, v < v;. On the other hand, at (771, 0), the matrix

(5.4) has the sign structure
0 —
+ <0

and (T1,0) is a center or attracting node or spiral. It is a center or spiral if (2.8) holds.
In this case, there are no orbits asymptotic to the fixed point from the quadrant ¢t < T3,
v < v;. Thus reverse orbits are unique and the lemma is proved.

Remark. If the opposite inequality in (2.8) holds, there are certainly orbits asymp-
totic to the fixed point from the quadrant ¢ < 71, v < v;, and reverse orbits are not
unique. However, depending on the behavior of g, these orbits may collapse in reverse
time to a single orbit at (0,0). In this case, the theory of this paper is still valid. If
not, the theory must be extended.

We call the forward shadow of the point (0,0) the critical shadow, and any orbit
through (0,0) will be called a critical orbit. If the interior of the critical shadow
contains a lattice point (m,n) (Fig. 7(a)), one of the orbits in the critical shadow
is periodic and the rotation number is n/m. Let u+ = U(1,0,0) (respectively, u— =
U(1,0,0)), and let up be such that U(m—1,0,uo) = 0; then there is a periodic solution
of rotation number n/m if ugp € (u—, ut). For some of the analysis it is more convenient
to use the circle map 7 induced by the time-one map V. 7 is set-valued at 0 because
T:0 - I' = (a1, /1) C ST, and is an orientation-preserving homeomorphism on (0, 1)
because orbits through points in (0, 1) are unique (Fig. 7(b)). 71 is point-valued but
has a flat spot whenever the critical shadow at ¢ = 1 is an interval.

Let 7o = {7T7(0) : p € Z—} be the set of preimages of 0. This is a countable
set since backward orbits are unique. It is clear that whenever the critical shadow
is an interval the set (0,1) \ 7o is contracted by the factor 1 — |(a1, 81)| per iterate,
where |I| denotes the length of the interval I. However, this is not sharp enough for
our purposes, and in order to give a more complete description of the dynamics we
introduce another hypothesis. Suppose that the following contraction hypothesis for
the time-one map V¥, and hence for the circle map 7, holds: there is a p > 1 such that
WP is a uniform contraction on any interval J where it is point-valued, in the sense
that there is a § > 0 such that each Jo C J of length [ is mapped to a subinterval of
length < (1 — é)! . When ¥ satisfies this hypothesis we call it a p-contraction. The
time-one map of Fig. 7(b) is not a 1-contraction since it has slope larger than 1 near
u = 1. However the second iterate is a contraction where it is point-valued.

To understand the meaning of this hypothesis, recall that along any orbit we have

Et)  yp Flud,tu,) t9F
(5:5) elto) H Flug ta) P ( , oul?) dt) '
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Sn+l

FiGc. 7. (a) The forward shadow of the origin at time 1, translated into the fundamental domain
[0,1] x [0,1]. The critical shadow contains the lattice point (1,1). (b) The graph of the circle map
T induced by the time one map of the flow.

It is easy to show, using the hypotheses on g given in §2, that F,, < 0 in the interior of
any rectangle R, and therefore the exponential factor is always less than 1. Thus an
interval around a fixed orbit contracts under the flow if the cumulative product of the
jumps encountered, which is always positive, is less than the contraction that occurs
in the interior of the rectangles traversed. The hypothesis states that this need not
be true for t; = 1, but only that there is an integer p such that it holds for ¢; = p.

THEOREM 2. Suppose that ¥ is an m-contraction.

1. If the lattice point (m,n), m and n coprime, lies in the interior of the critical
shadow then:

(i) there is a unique periodic solution (up to translation int by k fork=1,---,m—
1) of (2.12) in the critical shadow and it is unstable (this conclusion does rot
require that U be an m-contraction),

(ii) there is a unique periodic solution (up to translation int by k fork=1,--- ,m—
1) of (2.12) outside the critical shadow and it is asymptotically stable.

I1. If the critical shadow does not contain a periodic orbit then (2.12) has no
periodic solution.

Proof. 1t suffices to suppose that (m,n) = (1,1) for the proof of (i) and (ii);
the proof for other (m,n) is very similar. The uniqueness of the orbit in the critical
shadow is a consequence of the uniqueness of backward orbits. That it is unstable
follows from the nonuniqueness of the forward orbit through (0,0). The existence and
uniqueness of the stable orbit follows from the fact that ¥ (or 7') is an m-contraction
on intervals on which it is point-valued. If the critical shadow does not contain a
periodic orbit then it does not contain a lattice point, and 0 ¢ 7%(0) for any k. Since
7™ is a 1-contraction, and since 77(0, 1) covers [0,1]\7™(0), it follows that there are
no fixed points of 7™ € (0,1).

Remark. The trivial nonuniqueness of the stable periodic solutions only obtains
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for the flow on RZ2; there is a unique stable closed orbit on T°2.

Next corsider the case in which the rotation number is irrational. Let IP =
int{7 (IP-1)} = (ap, Bp) for p € Z+*. In this case IP N {0} = ¢, for otherwise there
is a periodic orbit of period p + 1. Furthermore, the intervals IP are disjoint, for if
IP N 19 # ¢ there is a periodic orbit of period p — ¢. When p > 0 the arcs IP are
arranged monotonically on S! because 7 is monotone where it is point-valued (cf.
Fig. 8).

ay

az

FiG. 8. The shadow in the fundamental domain and on the sectiont =0 (mod 1). In case
(a), the mazimal orbit emanating from the point (0,0) hits the point (1,1) = (0,0). The successive
iterates of the shadow on the sectiont =0 (mod 1) fill up the section from the “top” down without
gaps between. In case (b) the mazimal orbit crosses just below the point (1,1). In this case, there
are small gaps between successive images of the shadow on the section. Later images lie in these
gaps. If the shadow does not contain any lattice point (n, m) with n > 0, the images fill in all of the
section except for a Cantor set and the rotation number is an irrational number slightly less than
1. Alternatively some lattice point (n,m) for large n is contained in the shadow and the rotation
number is the rational m/n near 1.

Clearly there is no limit point in any of these arcs, for otherwise there would be
a periodic solution. It follows that the a- and w-limit set of any point in (0,1) \ 7o
lies in the set

C= (76 Uso Il’)c.

The set € is nonempty and invariant by construction, and when the contraction hy-
pothesis holds C contains no interval, since |[77{(0,1)\Zo}| — 0Oasn — co. If s € C is
an a, for some n € Z+, then it follows from the monotonicity of the arcs IP that there
is an increasing subsequence {an, } converging to a,. A similar argument applies for
any frn, and together this shows that every endpoint is a limit point of C. If s € C is

not an endpoint then s = lim ap, for some subsequence {an, }, since C has empty
Nk — 00

interior. Therefore C is perfect and has empty interior, i.e., it is a Cantor set.

When the contraction hypothesis holds and p is irrational the dynamics on the
Cantor set can be described completely. Suppose that each of the intervals I? is
identified to a point. The quotient space is also a circle (note that 0 = 1 is not in
any of the intervals). For any Cantor set on the interval [0,1] consider a continuous
monotonic Cantor function f which is constant on each component of the complement
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of the Cantor set and strictly monotonic on the Cantor set. The space obtained by
collapsing each component of the complement is homeomorphic to f([0,1]). The time
1 map induces a dynamical system on the quotient space with the same rotation
number (this follows from a definition of rotation number which depends only on the
local ordering of the circle, and not on any notion of angle (Guckenheimer and Holmes
(1983, §6.2])). Denjoy’s theory (Denjoy [1932]) (see Theorem 17.3.2 of Coddington
and Levinson [1955] or Theorem II.2.3 of Hale [1969]) implies that on this circle the
dynamics are conjugate to rotation by the angle 2wp. This proves the first part of the
following theorem.

THEOREM 3. Suppose that the contraction hypothesis holds and that the rotation
number is irrational. Then every noncritical orbit is dense in the complement of the
critical shadow. The rotation number is stable under perturbations in (2.12) if and
only if the critical shadow contains a lattice point in its interior. If (2.12) depends
continuously on parameters, then on the boundaries in parameter space of a phase-
locking region for rotation number n/m either the mazimal orbit or the minimal orbit
of the critical shadow at t = m passes through the lattice point (m,n).

The proof of the statements concerning the behavior of the rotation number under
perturbations is left to the reader.

In general it is difficult to prove that the contraction condition holds, since it
is usually impossible to intergrate the variational equations analytically. Thus it is
usually necessary to check the contraction condition numerically, but for sufficiently
simple systems it may be possible to make the necessary estimates. We outline one
possibility.

Consider the singular limit of (2.10) with a step function forcing. This can be
written in terms of the coordinate u as follows.

(5.6) U= f(u) + ¢(t) = F(u,1),

where ¢(t) is as in (2.11). Suppose a periodic orbit has rotation number n/1, which
means that there are n spikes during a forcing cycle. Note that for Ty <t < T, (5.2)
is effectively autonomous, since ¢(t) = ¢, is constant there. It follows from (5.5) that
the orbit is asymptotically stable if

F(u(TD)) + 1| ‘ f(w(T)) + ¢r

(5.7) <1

Fu(TH) + | |f((TT)) +¢r

The second term in the product is bounded since f (u(Tl'" )) + ¢r can be bounded
away from 0, and the first term can be controlled by controlling Ty — T'. In particular,
when ¢t € (0,T1) the rest point on L is asymptotically stable by the properties of §2,
and thus the numerator of the first factor can be made sufficiently small by making
T sufficiently large. In other words, if the decaying phase D is sufficiently long
(depending on f), (5.7) holds.

If the forcing is not a step function such explicit bounds will not be available.
In particular, F(u,T;") can be zero. However, if T} — T is sufficiently large and the
change in the forcing from the decaying set to the amplifying set is sufficiently fast (in
particular if F’(u,Ti) is large enough), it will be possible to control F(u(T}),T:1) and
similar results can be obtained.

6. The structure of the resonance zones. According to Theorem 2, when the
contraction hypothesis holds, (2.14) has a periodic solution if and only if the critical
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shadow contains a periodic orbit, which, by Theorem 1, is true if and only if the
rotation number is rational. Thus the parameter set for which the critical shadow
contains a lattice point (m,n) coincides with R, /m. According to Theorem 1, if the
vector field depends continuously on a parameter then the rotation number does also,
and therefore it is constant on open intervals of the parameter. In this case Theorem
2 states that when the parameter lies on the boundary of R, /., either the maximal
or the minimal orbit of the critical shadow passes through the lattice point (m,n),
and a saddle-node bifurcation of periodic solutions occurs at this parameter value.
Consequently, the boundaries of the resonance zones can be determined analytically
(up to solving certain transcendental equations) for additive step forcing. In this
section, we carry out the determination of the resonance zones for this case.

Suppose that the contraction hypothesis is satisfied and suppose that (2.12) has
the form

(6.1) dw {Q(Ct(w),w) - f(t) forv=q(w) <,

dt 9(¢r(w),w) — f(t)  for v = ¢ (w) > vy
where f is piecewise constant and takes the values 0 and A. Clearly there is threshold

value Ag of A, below which the solution never reaches the right branch even if the
forcing is always on, and this value is

Ao = g(G(wr), wy).
Ihe minimum time %o needed to reach threshold from any point wo € (w;, wy) for any
A > Ap is given by
wl d . _
Ry e R—
wo, 9(G(w),w)— A

It is clear that ©/(A4) < 0, and thus the resulting strength-duration relationship A =
©~1(T;) is qualitatively similar to the boundary of the 0:1 region given in Fig. 2 for
periodic forcing.

Now suppose that the forcing is given by the periodic extension of period T of

the function
- {O for t € (0,T1),

t) =4 —
1) A forte (Th,T).
Condition VI in §2 is satisfied only if Z_< A, = g(Cr(wT),gr). If T1 = 0 then
(6.1) has a periodic solution of period To(A) (or frequency w(A)) when regarded as

an autonomous equation, but it is only periodic as a solution of the nonautonomous
equation with trivial time-dependence if T'/To(A) is rational.

It is convenient to transform the equations to u coordinates as is §2. Let 6 denote
the fraction of the unit interval during which the forcing is off. Then (2.16) becomes

(6.2) du _ {T(Fl(“) - f(t,6)) forwe (0,1/2),

t.0
dt | T(Fy(u) + f(t,6)) for ue (1/2,1),
and
0 forte€(0,0),

1(t.9) = {A for t € (6,1).
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The threshold value of A is denoted Ao and the upper bound on A, above which the
rest point lies on the right branch of f = 0, is denoted A;.

Equation (6.2) has a solution of period m at § = 0 if T'/Tp = n/m, or equivalently,
if wo/w = n/m, where w = 2 /T. When this resonance condition is satisfied at § =9
the flow on T2 is parallel and the critical shadow reduces to a single orbit. If 8 > 0
and A > Ap, §%(0,0) intersects ¢ = 1 in an interval, and the boundaries of R, /m, in
the (w, 8) plane correspond to the (w, ) pairs for which either the maximal orbit or
the minimal orbit passes through (m,n). We sketch the analysis needed to determine
these boundaries for (m,n) = (1,1) and leave the general case to the reader.

u
Il Ry R

% o 1, 5 |

t

Fi1G. 9. A sketch of the paths for the mazimal and minimal orbits (see Fig. 8) through (1,1)
when (w, 0) lies on the corresponding boundary of the 1:1 resonance zone.

Consider the minimal orbit through (0,0). This leaves the rectangle R3 (cf. Fig. 9)
at a point (0,u;) and enters R4. In order for this orbit to pass through (1,1), it must
either remain in R4 and pass through (1,1), or it must leave R4, enter Rz, and then
enter R4 again. The former case is included as a limiting case of the latter. Let
(0,u4), (t2,1) and (t3,1/2) denote the exit point from Rz, R4 and Rg, respectively.
These points depend on (w, 8, A) but the sequence R3 — R4 — Ry — Ry is the same
whenever the minimal orbit passes through (1,1). This sequence defines the sequence
of maps JF; such that

F~ F,~ Fi~ 1.7~
(O’ 0)_1'(9’Q1)_2’“2a 1)_3’(t3’ '2')_4)(17 1)
The composition of these maps yields an equation F— = 0 that defines one boundary
of Ry/;. We find that F— is given by

u, (w,8) 1
w 4 du du
F(w,0,A)=1—- — —+/ S —
(,6,4) 21 [/ () " Jy, ) F2(u) + 4

(6.3) ) .
+/2 d_“+/ _du_
o Filu)—4  Jp B(u)+A

b
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where u, (w, ) is defined by

9 _ i/ﬂl(wvg) du
- 2 1 FQ(U)

Note that u,(w, ) is independent of A and depends on (w, ) only through z = 0/w.
Now suppose that A € (Ao, A1) is fixed. It follows from the second equation that

Ou,
—a-;(w, 0) >0

and that 9
U
e 0.
From these it follows that
do Fo
—_=—-—x<0
dw Fa

along the curve defined by F— = 0.

A similar procedure can be followed for the maximal orbit through (0,0) to de-
termine F+. Now however, there are two distinct sequences through the rectangles
Ri,-++, R4, and this implies that the part of the boundary of R;;; determined by
the condition that the maximal orbit passes through (1,1) is only piecewise C!. (In-
deed it is true in general that the boundaries of R,/ are piecewise smooth, and
that discontinuities in the derivatives may arise when the the transition sequence
R; — Rj — --- — Ry changes at discrete values of (w,6). )

We find that

1/2 du U2 (w,0) du
F(w,0,4) =1— — / /
.7:_[ (w, ’ ) o [ o Fl(u) + 172 Fz(’u)

(6.4)

+/1 _du
T (w,0) F2(u) + A

for z > z*, and

nwd) gy 5 du
fwoa=1-2) [T S [ e
f[[(wa ) ) 27 [ o Fl(u) + (@) Fl(u) —_A

ri du
+/% Fy(u)+ A

. 1 /% du
T2 Jo Fi(u)’

and W1 (w, 0) (respectively, Uz2(w,d)) is the solution of

0 w U (wvo) du
~or /0 Fi(u)’

(6.5)

for z < z*, where



1400 JAMES C. ALEXANDER, EUSEBIUS J. DOEDEL, AND HANS G. OTHMER

/% du +/Wwﬂ> du
o Fi(w) Jy Fa(u)

Here the subscript on F+ denotes the path in Fig. 9.

respectively,
W
T on

The solutions of the equations F* = 0 generically generate two distinct curves
that emanate from every point (w,8) = (mwo/n,0) and bound the resonance zone
Rn/m- The following proposition gives some information on the global (in (w,#))
disposition of these zones for any fixed A € (Ao, A1).

PROPOSITION 1.
(i) Rn/m does not intersect the line 6 =1 for w > 0.
(if) p = oo along the linew =0 for 6 € (0,1).
(iii) If r # km and s # kn for some k € Z, then

Rs/r n Rn/m = .
(iv) For every fized (m,n) 3w* >0 >

Rojm C{(w,0) | w <w*,0€[0,1)}.

(v) The resonance zones that emanate from the line 6 = 0 all terminate at (w,6) =
(0,1).
Proof. The first three facts are obvious. To prove the fourth note that when
w — oo the vector field tends to 0. Thus given m > 0 we can find w* > 0 such that
the intersections of the maximal and minimal orbits with the line ¢ = m lie below the
line u = 1/2. To prove the fifth point we show that solutions of every rotation number
exist in a sufficiently small neighborhood of the point (w,8) = (0,1).

e
|

Fic. 10. A sketch of the resonance zones in the (w,8) plane. w denotes the frequency of
the forcing system and 6 denotes the fraction of the period during which the forcing is off. For a
piecewise constant forcing the m:n resonance zone enanates from (w,8) = (0, mwg/n), where wg is
the natural frequency of the system when the forcing is on.
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Fig. 10 shows a sketch of the qualitative structure of the resonance zones for the
general case. The computations involved in determining F * can be carried out in

detail for the piecewise-linear vector field

—a1v— 1w +v  for v <y,

d
egg = a2V — ,Bzw — Y2 for v € (Ul,’Ur),
(6.6) —agv — Bzw +v3 for v > vy,
dw
% = (511) - 62w,

in the limit ¢ = 0. The 1:1 zone is shown in Fig. 11 for a particular choice of the
coefficients. We leave it to the interested reader to compute the boundaries of the
resonance zone Ry, for (m,n) # (1,1).

Fwe)=0
~—)
02+

00— N .,
00 05 10 15 20 25 30 35

FORCING FREQUENCY

Fic. 11. The 1:1 resonance zone for the piecewise linear system given by (5.13). a; = 2.0,
ag=ag=1,6=1,i=1.c...,3, 91 =0.0, y2 = 0.6, y3 = 1.8, §; = 1.0, 62 = 0.5.

Now let us consider the (6, A) section for fixed w > 0. It is easy to show from
(6.3)—(6.5) that

dA-  Fy
@9 Fy >0
and .
dA;
20 >0

for i = I, IT and A — Ay positive and sufficiently small. Thus the forcing amplitudes
corresponding to the upper and lower boundary of R, /1 are decreasing functions of
the fraction of time 1 — # that the forcing is on. Earlier we showed that the time
to threshold is also a decreasing function of the time the forcing is on, and these
two results lead to the qualitative sketch of the amplitude-duration plane shown in
Fig. 12. This diagram is in qualitative agreement with the experimental results shown
in Fig. 2, except that the latter does not show the upper boundary of the 1:1 zone. A
more complete analysis of the relationship between the theoretical and experimental
results will be given elsewhere.
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FI1G. 12. A sketch of the amplitude-duration plane for the piecewise constant forced system for
A sufficiently near Ao (cf. Fig. 2(a)). The forcing is on for a fraction 1 — 8 of each period.

7. The case ¢ > 0. In the previous sections we showed that in the limit ¢ =
0 the dynamical behavior of the system (2.4) can be characterized by whether or
not the system is in resonance with the forcing. As a parameter A is varied, the
rotation or spiking number p varies continuously. For a generic system the domain
of A decomposes into a disjoint set of resonance zones R, /m> on each of which the
rotation number is n/m, and the union of the resonance zones is dense. In this section,
we consider the case € > 0; that is, v is not infinitely fast. For € > 0, the rotation
number cannot be defined to be continuous in A. However it is to be expected that
for small € the dynamics approximate that of the singular limit. We prove that for
€ > 0 and A in a resonance zone there is a stable periodic orbit that approximates the
stable periodic orbit of the singular system.

THEOREM 4. Fiz A in a resonance zone of the singular system and let Zo(t) be
a stable periodic solution of this system. There is an €y > 0 such that for € < €
there is a unique stable periodic solution Z.(t) of the nonsingular system such that as
€ — 0, the trajectory of Z.(t) uniformly approaches that of Zo(t). Moreover, for A
in a compact subset of a resonance zone €x can be chosen independent of A, and the
estimates on the nearness of Ze(t) to Zo(t) and on the stability of Zc(t) are uniform
in A ‘

Proof. We use the machinery of singular perturbation theory applied to the
asymptotics of discontinuous limit cycles. An exposition of the relevant theory is
found in the book of Mishchenko and Rosov [1980], to which we refer explicitly in this
section. In the language of that book, we claim that Zo(t) is a zeroth approzimation
to Zc(t). It is necessary to turn our forced system into an autonomous system in
a standard way. Suppose the rotation number of the asymptotic system is p/q and
that the period of the forcing is 7. Introduce an angular polar variable 7 and radial
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variable r, and extend the system to the following one:

dv
65 - f(vvwa )‘)7
d

_w :g(v’w7A’T)

(7.1) dt

ﬂ =2r/T

dt ’

dr

pri r(l—r)

Since g is periodic in its third variable, the system is well-defined on 4-dimensional
space. The last two variables do not depend on the first two and the subsystem of
the last two variables has a unique stable periodic orbit with » = 1. Clearly periodic
orbits of this autonomous system correspond with periodic orbits of the periodically
forced system (2.4). For purposes of understanding the proof, and in particular the
pictures in Mishchenko and Rosov [1980], it is convenient to suppose that ¢ = 1, but
the argument works for arbitrary q.

On page 173 of Mishchenko and Rosov [1980], there are five conditions which
must hold for the results to hold. We discuss these five conditions in our context.
The surface (3-dimensional in our case) I' is the locus of the equation f(v,w,\) = 0.
A nonregular point is a point on I" where df/8v = 0; i.e., where the graph of f
is horizontal. A nonregular point S € I with coordinates (vo,wo,70,70) is called a
junction point if the five conditions are satisfied. Let G(v,w,7,r) denote the right-
hand side of the last three equations in (7.1). Given (wo,70,70), let X, 7,7 be the
line consisting of the points

{(v, w0, 70,70) : —00 < = < 00} .

(a) S is not a zero of G (the word “not” is dropped in Mishchenko and Rosov
[1980]). This is always the case since dt/dr is never zero.

(b) All eigenvalues of the matrix (8 f/ 61}), except one, which vanishes, have neg-
ative real parts. This is vacuous in our case since the matrix has size (1 x 1).

(c) For v, 7, and r fixed at vo, 70, and rg, respectively, the equation

(7.2) e = f(v, w0, \)

has only one trajectory approaching S when ¢t — —oo. This is clear in our case.

(d) No line in R* obtained by the translation of the line Xgg 7, by the vector
h - G(S) (h > 0 sufficiently small, but independent of €) contains equilibrium
positions of (7.2) near S in R%. (This condition is mistranslated in Mishchenko
and Rosov [1980]. The intent is that locally the 2-dimensional sections obtained
by fixing 7 and r look like Figs. 26 and 27 on page 43 of Mishchenko and Rosov
[1980]. Orbits near the junction point for € > 0 must “fall away from” the f =0
surface, and so their behavior is governed by the fast part of the trajectory of
the orbit for € = 0.) This condition is verified so long as the w-nullcline does
not intersect critical points of the v-nullcline. Note that a trajectory of (2.4)
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with € = 0 (considered as an orbit of (7.1) with ¢ = 0) contains only junctfon
points as nonregular points precisely if it a periodic resonant orbit.

Finally there is a drop-point condition: the orbit of (7.2) which approaches S as
t — —oo approaches a stable (in v) point of I as ¢ — oo; this condition is always
satisfied in our case. Thus all conditions except (d) are satisfied in general by (7.1),
and (d) is satisfied precisely if the system is resonant.

In Chapter V of Mishchenko and Rosov [1980], periodic solutions are investigated.
There are additional assumptions (p. 199) that the asymptotic system has a periodic
solution Zo, which (p. 200) is isolated and stable. There is a nondegeneracy condition
(p. 202) which is a linearized version of (d) above and like (d) is satisfied when the
system is resonant. Accordingly, Theorem 1 on page 204 of Mishchenko and Rosov
[1980] guarantees that there is a periodic solution Z for small € > 0 which uniformly
approaches Zy as ¢ — 0.

Next we investigate the stability of Z by obtaining information about the Floquet
exponents of the orbit Z.. The variational matrix of (7.1) is clearly

19f 18f ¢
€ Ov € Ow
99 &y 9
v Sw or
0 0 0 0
0 0 0 -1

The Floquet exponents are the eigenvalues of the integral of this matrix along the
orbit. There is one 0 eigenvalue and one equal to —1; we need to show that the
others are in the negative half-plane. Clearly the bottom right corner splits off and
we consider the (3 x 3) upper left corner. There is an easily verified criterion for a
(3 x 3) matrix to have one zero eigenvalue and two in the negative half-plane. Let
o1 denote the trace of the matrix, o3 the determinant, and o2 the sum of the three
(2 x 2) principal minors (the characteristic polynomial is then 3 — g1t2 + o2t — 03).
The condition is: o1 < 0, 02 > 0, and o3 = 0. In our case we compute

_ 4 [19F %
71 _}{Ze [e ov + 8w] dt,

g:lj{ 9f 09 _9f9g] .
2T ) vow  dwov|

The computation of o1 proceeds as on page 142 of Mishchenko and Rosov [1980]
(where the integral is computed to show stability for a two-dimensional system). The
computation of o3 is easier, because the integrand is independent of ¢. The integrand
has to be positive by continuity, since for € = 0, the “value” of g3 is 400, because Zg is
stable. Accordingly the three nonzero Floquet exponents lie in the negative half-plane
and Z. is stable.

Finally we note that all the estimates of Mishchenko and Rosov [1980] depend
on how well condition (d) (and for stability, the later linearized version) is satisfied.
If A lies in some compact subset of a resonance interval, on the periodic orbits of the
asymptotic systems the w-nullcline is bounded away from the critical points of the
v-nullcline. Accordingly, the estimates can be made uniform in A, with the resulting
uniformity of the theorem. This completes the proof of the theorem.
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Of course around the edges of the resonant sets in the parameter space, as € is
increased from 0, the behavior is not described by this result. The picture becomes
fuzzy, literally so if one is plotting return maps. Other types of analysis will be required
to understand the behavior in these regions.

8. Numerical results for the Fitzhugh-Nagumo equations. If (2.12) ad-
mits an asymptotically stable periodic orbit then Theorem 4 implies that (2.4) does
also for sufficiently small e. The bound on € is not uniform but depends on a number
of factors, one of which is the denominator n of m/n. We expect that as the parameter
A is varied in (2.4) when e is sufficiently small we may see a complicated bifurcation
sequence in the region between parameter values where there is m-fold spiking and
m/-fold spiking. The invariant sets will include at least periodic orbits with rotation
numbers m/n with n larger (possibly considerably larger) than 1. In this section we
give some numerical results that illustrate some of these transitions.

060

050}~ '_,""
040 -
v

030 I e

0.20

010 L | | | |
010 015 020 025 030 035 040
CONSTANT FORCING (B)

Fic. 13. The bifurcation diagram for the Fitzhugh-Nagumo equations (8.1) with constant
forcing. The horizontal azis is the forcing amplitude b. The vertical axis is the scaled Lo-norm
jv] = {71,- fOT v(t)2dt}'/2. The stationary point (v, w) is stable when b is small (the solid curve), but
becomes unstable (dashed curve) through a Hopf bifurcation (the solution point with label 2). The
bifurcating branch of periodic solutions (the branch of solid circles) is supercritical and the periodic
solutions are therefore asymptotically stable. This and the succeeding two figures were generated by
the numerical bifurcation package AUTO (Doedel [1981]).

The equations we consider are the Fitzhugh-Nagumo equations (Fitzhugh [1969])
with sinusoidal forcing :

~e£1£=F(v)—w, Fw)=v(v—a)(l—-v)
(8.1) ddt
d_z: =v —dw — (b + rsin(Bt)).

The vector field for this system is similar to that shown in Fig. 3. Throughout this
section we fix € = 0.005, a = 0.5, and d = 1.0.

First consider the effect of constant forcing, i.e., set » = 0 and treat b as the bifur-
cation parameter. The behavior of the solutions is summarized in Fig. 13, which shows
a scaled La-norm |v| = {T! fOT v(t)2dt}1/2 as a function of the forcing amplitude b.
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FORCING PERIOD

FiG. 14. A portion of the branch of periodic solutions as a function of the period T of the
forcing. The vertical axis is the norm |v]. The labels on the curve indicate the number of spikes
(large excursions in v) per period of the forcing function. Solid lines denote stable periodic solutions
and dashed lines denote unstable periodic solutions. New spikes form continuously along the primary
branch but the solutions are unstable in some regions. Other solutions which ezhibit higher resonance
or are chaotic, are seen if the system is allowed to evolve. Further details on the solution set in the
transition region between 1 and 2 spikes are given in Fig. 15.

The stationary point (v, w) is stable when b is small (the solid curve in Fig. 13), but
becomes unstable (dashed curve) through a Hopf bifurcation (the solution point with
label 2). The bifurcating branch of periodic solutions is supercritical and the periodic
solutions are therefore asymptotically stable.

Next we fix b at b = 0.2, i.e., just to the left of the Hopf bifurcation point
in Fig. 13, which implies that the rest point of (8.1) is stable when r = 0. Now
suppose that r» # 0, ie., the time-dependent component of the forcing is nonzero.
For sufficiently small r there is a small amplitude stable periodic solution without
spikes, but when r is sufficiently large (>~ 0.06) the periodic forcing term will have
values to the right of the Hopf bifurcation point during a fraction of the forcing
period, and large amplitude excursions (spikes) may exist. The spiking behavior over
a range of B-values for r = 0.2 is illustrated in Fig. 14, where |v| is shown versus the
forcing period T = 27 /3. The solid portions of the single, smooth solution curve in
Fig. 14 correspond to asymptotically stable periodic solutions, and the dashed portions
represent unstable solutions. When the period of the forcing function is small (i.e.,
high forcing frequency) there is no spiking. This corresponds to the solutions of small
norm at the lower left of Fig. 14. The labels in the diagram indicate the number of
spikes per forcing period for nearby solution points on the branch. With respect to
(2.8), note that

_l+a—-—+Va?2—-a+1

v = 3 )

1
" = -
V) = Tm——
|9¢(vi, wi, Th)| = By/r2 — (b — v + dwy)2.

It can be checked that (8.1) satisfies (2.8) for the parameter values used here when
B>114---.
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Fic. 15. An enlargement of the transition region between one and two spikes. Solid lines
denote stable periodic solutions, dashed lines denote unstable periodic solutions, and solid squares
denote period-doubling bifurcations. Note that the horizontal azes in Figs. 15 and 16 are different
(the former is period; the latter is frequency). The diagram shows the main branch and a secondary
period-doubled branch of periodic solutions. Solutions on the main branch at the right have one
spike per forcing period. At the rightmost secondary bifurcation point (8 ~ 2.675) the solution has
alternating full spikes and subthreshold responses. During the nearly-vertical portion of the secondary
branch, a second spike is formed every other forcing period; this solution is stable (label 2.5). Further
to the left there is another period doubling bifurcation followed by a gap in which neither of the
solutions shown is stable. Further period-doublings also occur on branches that emanate from the
secondary branch. Plots of solutions obtained by numerical integration are shown in Fig. 17.

The solution curve in Fig. 14 contains several saddle-node bifurcations (limit
points) and period doubling bifurcations. The latter have not been indicated. How-
ever, in Fig. 15 we show some of the period doubling behavior that occurs in the
transition region from 1- to 2-spike solutions as a function of the forcing frequency 3
(note that the independent variable is changed from the previous figure in order to
emphasize the region of interest). Label 2 in Fig. 15 corresponds to the same solution
as label 2 in Fig. 14. The solid squares denote period doubling bifurcations, and one of
the resulting additional solution branches is also shown. It contains a region of stable
periodic behavior (the solid curve near label 2.5) and further period doubling bifurca-
tions. An entire sequence of such bifurcations is possible. In fact we have traced out
additional bifurcating branches, but for the sake of clarity these are not shown in the
diagram.

It is clear from Figs. 14 and 15 that there exists a continuous transition along the
primary branch from 1 spike to 2 spikes in which an additional spike grows smoothly.
However, at a certain stage of the spike-building process this transition becomes un-
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FI1G. 16 (see also continuation). The projection of the orbits into the v-w plane and the v-
component of the solution as a function of time for various values of 8. (a) and (b): 8 = 3.0, (c)
and (d): B = 2.675, (e) and (f): B = 2.65, (g) and (h): B = 2.625. The solution at B = 3.0 has
one spike per forcing period and is on the main branch of Fig. 14. In the asymptotic limit e = 0
this solution would reduce to one with rotation number 1. The solution at B = 2.675 still has one
spike per forcing period but one sees in Fig. 17(c) that the subthreshold response is becoming erratic.
The solution at B = 2.65 alternates between one and two full spikes per forcing period. This w:ould
correspond, in the limit ¢ = 0, to a solution with rotation number 3/2. Finally, the solution at
B = 2.625 (Fig. 17 (g) and (h)) is either chaotic or has a very high period (longer runs show no
apparent periodicity, but we have not ezamined this carefully).

stable via a period-doubling bifurcation. The foregoing results suggest that the stable
behavior may consist of a cascade of period doublings that lead to chaos. In order
to understand how the sensitive dependence on initial data that characterizes chaotic
behavior can arise in this system, we have computed the solutions by integration of
the differential equations for a sequence of 8 values that cover the range in which the
basic solution branch is unstable. Some of the results are shown in Fig. 16. This
sequence shows the stable solution and how it evolves as the frequency is decreased.
At 8 = 3.0 (Fig. 16(a) and (b)) there is a stable solution with one complete spike and
a subthreshold response. As the frequency decreases below the first period-doubling
point the subthreshold response grows and the stable solution consists of alternate
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FiG. 16 (continued). Graphs (e)~-(h).

full and partial spikes (Fig. 16(c) and (d)). When 3 is decreased to a value in the
interval where the secondary branch is stable the stable solution consists of an al-
ternation between one and two spikes per forcing period (Fig. 16(e) and (f)). When
B lies in the interval where the primary and secondary branches are both unstable
the solution is either chaotic or has a very long period (Fig. 16(g) and (h)). As the
frequency decreases further another partial spike begins to grow, entering a region in
which the basic solution of two full spikes and a partial spike becomes unstable, and
the foregoing sequence continues until there are three complete spikes.

The projections into the v-w plane show where the sensitivity of the orbits arises
and how this may lead to chaos. As a partial spike grows, the trajectory approaches a
separatrix between a full and a partial spike, corresponding to the trajectory through
the rightmost turning point in the v nullcline. Trajectories that cross the separatrix
produce large spikes, while those that fall below produce pariial spikes, and since the
system is quite stiff for the chosen value of ¢, the transition between these possibilities
depends sensitively on the forcing when the orbit is near the separatrix. Clearly
this does not preclude building a spike continuously, as happens along the continuous
curve in Fig. 15, but it cannot be done in a dynamically stable manner because of the
sensitivity. It is difficult to do more analytically for the Fitzhugh—-Nagumo equations,
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but more can be done for a piecewise-linear vector field and piecewise-constant forcing.
Analytical and numerical results for this problem will be reported elsewhere.

9. Discussion. In the singularly-perturbed limit the two-dimensional system of
equations that models an excitable system reduces to a discontinuous vector field
on the circle. Under periodic forcing such a system leads to a discontinuous vector
field on a torus, and as we have shown, we can develop a theory for such systems
that closely parallels the classical theory for smooth flows. Our approach is novel in
that the theory is not restricted to small amplitude forcing. This generality is gained
at the expense of reducing the full system to its singular limit, which precludes the
possibility of anything more complicated than quasi-periodic behavior. However our
analysis is sufficiently general to include as a special case the type of integrate-and-
fire models developed in Rescigno et al. [1970], Builder and Roberts [1939], and Glass
and Mackey [1979], and further analyzed in Keener, Hoppensteadt, and Rinzel [1981].
In fact, a figure essentially identical to our Fig. 10 is given in Builder and Roberts
[1939], although previous work was aimed at understanding forced periodic systems
and thus did not deal with the existence of threshold phenomena. The introduction of
the critical shadow for the flow enables us to connect our results more closely with the
classical theory, for, as we showed, there is a saddle-node bifurcation on the boundary
of the phase-locking region in our theory. In contrast, if we do not treat the circle
map as set-valued (or alternatively, do not consider the critical shadow for the flow),
we lose a root at the discontinuity of the associated circle map and there is no obvious
connection with the bifurcation structure of the smooth case (Glass and Mackey [1979];
Keener [1980]; Keener, Hoppensteadt, and Rinzel [1981]). Furthermore, our approach
is necessary in order to connect the dynamics in the singularly-perturbed (¢ = 0) limit
with the dynamics in the € > 0 case. The numerical results on the Fitzhugh-Nagumo
equations given in §8 illustrate how spikes in a stiff but not singularly-perturbed system
are built, and in particular, they show how the existence of a threshold can lead to an
instability in the spike-building process. In this paper we analyzed the time-one map
of the flow, but we could also have analyzed the mapping from v = 0 to u = 1 defined
by the flow (cf. Fig. 7(a)). It is easy to see that this phase map is discontinuous and
multiple-valued for ¢ = 0, and extends to a discontinuous self-mapping of a cylinder
for ¢ > 0. We shal! show elsewhere that we can analyze much of the structure in the
transition region between the n- and (n + 1)-spike regions when € > 0 for a piecewise
linear vector field using this cylinder map.

Another observed phenomenon which has been analyzed in terms of excitable
systems is bursting. If a dynamical system is excitable for some values of the parame-
ters that system will often have self-sustained periodic solutions for nearby parameter
values. Thus if a parameter is varied slowly to switch such a system periodically be-
tween a regime in which it is excitable and a regime in which it is oscillatory, another
type of dynamical behavior called bursting is observed. Bursting is a form of periodic
or aperiodic behavior characterized by a number of large excursions that are closely
spaced in time, separated by intervals of quiescence. Roughly speaking, one period
in a periodic bursting system comprises one or more rapid excursions through the
amplifying set and slow variation in the decaying set.

Usually bursting is modelled with an autonomous system, which more-or-less nat-
urally separates into a “slow” forcing subsystem and a “fast” response subsystem, pos-
sibly with a small amount of feedback from the response subsystem to the forcing sub-
system. Bursting is known to occur in molluscan neurons (Adams and Benson [1985];
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Alving [1968]), in hippocampal cells (Johnson and Brown [1984]), in pancreatic S-cells
(Atwater et al. [1980]; Chay and Keizer [1983]), and in the Zhabotinskii-Belousov re-
action (Hudson, Hart, and Marinko [1979]; Janz, Vanacek, and Field [1980]). An
example of the output recorded in a bursting system is shown in Fig. 17. When
viewed as the result of slow forcing of an excitable system, periodic solutions of this
type are superharmonics in the usual terminology in that the system “fires” more
than once per cycle of the forcing function. Many models of bursting systems involve
a differential system which is far from a singular limit, and there are thus differences
in the detailed structure of the spiking. However, the coarse behavior is well-modelled
by a system at or near the singular limit, and better agreements can be expected with
further results in the case € > 0, especially if € is far from zero. As we note below, the
effect of feedback does not alter the qualitative behavior of a forced excitable system,
except near the boundaries of the resonance zones.

0-

20mV

10sec.

F1G. 17. The transmembrane potential as a function of time recorded in the bursting R15
neuron of Aplysia californica.

One of the earliest models for bursting in neurons is that of Plant and Kim (Plant
[1978]; Plant [1981]; Plant and Kim [1976]). Since then there have been many models
proposed for other bursting systems (Chay [1986]; Chay and Rinzel [1985]; Rinzel
[1985]) and numerous analyses of bursting (Argemi et al. [1984]; Argemi, Gola, and
Chagneux [1979]; Argemi, Gola, and Chagneux [1980]; Baer and Tier [1986]; Decroly
and Goldbeter [1987]; Ermentrout and Kopell [1986]; Honerkamp, Mutschler, and
Seitz [1985]; Rinzel [1987]; Rinzel and Lee [1986]; Rinzel and Lee [1987]). These have
relied either on perturbation analysis valid for small perturbations of a fixed system
(Ermentrout and Kopell [1986]) or on a multiple-time-scale analysis (Argemi et al.
[1984]; Argemi, Gola, and Chagneux [1979]; Argemi, Gola, and Chagneux [1980];
Honerkamp, Mutschler, and Seitz [1985]; Rinzel and Lee [1987]). In most cases the
foregoing authors treat dynamical systems comprised of slow and fast subsystems with
bilateral coupling between them. As was just suggested, an alternate viewpoint is to
regard the bursts as superharmonic solutions in a slowly-forced excitable system in
which the spike-generating system has no influence on the slow forcing system. One of
our long-term objectives is to determine whether such a model is adequate to explain
the experimental observations on bursting, or whether there are observed phenomena
that can only be understood in the framework of a coupled system. Our immediate
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objective in studying these types of solutions is to understand how the number of
“spikes,” or large excursions in a burst, changes as parameters in the equations are
varied. Our approach is close to that of Ermentrout and Kopell [1986], but our results
are not restricted to small perturbations of degenerate systems. Moreover, the results
will be applicable to forced excitable systems in general.

Our analysis of a forced system is based on slow forcing of an excitable system,
and does not require any feedback from the fast to the slow system, as is present in
many bursting systems. The motivation for doing this is two-fold. Firstly, it is easier
from the mathematical standpoint to analyze forced excitable systems. Secondly, we
can imagine many slow external periodic influences, such as the light-dark cycle or
internal rhythms uncoupled from the bursting system, which could provide the forcing
but which are in no way influenced by the responding system. This observation may
be important in the brain, for it shows how a supersensitivity to a global signal can
lead to large-scale synchronized activity. There are of course examples in which there
is feedback from the slow to the fast system, and it is possible to analyze such a
coupled system in terms of general results about (bi-)coupled oscillators. In analyses
which consider one system as forced by the other, the feedback is weak is and is
effectively eliminated in the mathematics by normal forms or some other technique.
The following general considerations show that weak feedback does not introduce new
qualitative features in the interior of phase-locking regions. In a system with feedback
the forcing itself is weakly state-dependent, which can be modelled as follows. We
consider an autonomous system

dv
ea—t_ - f(va w,z),

dw
9.1 —— =
( ) dt g('U,'w,Z),
dz
—(;l? - h’(k'ﬂ(vaw)az),

where z may have more than one component. We regard this as the forcing subsystem,
and ky (v, w) represents the feedback. Let the magnitude of the feedback be measured
by n and suppose that ko(v,w) = 0, in which case there is no feedback. We assume

that for n = 0, the system p
;5 = h(0,2)

has a stable periodic orbit ¢(t). In this case (9.1) reduces to (2.1), and the theory we
have developed applies. If the reduced system with € = 0 is resonant for n = 0, then
for small € > 0, the system has a stable periodic orbit. Thus by regular perturbation
theory, for small n (depending on ¢), the system (9.1) has a stable periodic orbit. In
other words, feedback does not alter the qualitative dynamics when the parameters
lie in the interior of a a resonance zone. Feedback is likely to have a more profound
effect near the bourndaries of the resonant parameter sets, and in it may be that it
provides one mechanism for effecting chaotic behavior.

Appendix.
Normal form for forcing. In §2, we considered systems in the normal form

dv
Ea? - f(’U,'LU, )\)7

dw

yTi g(v,w, A t).
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That is, the forcing is on the second, slow variables. In this appendix, we show that

a number of systems with the forcing on the first variable can be normalized to this
form. Thus consider

2 = Fo,w,6(0) = p(v) — a(w,6(1),

(A1)
dw
E - g(v,'w, 1/’(75)),
where
p:R™ — Rm,
(A.2) g :R* x Rl — R™,

g:Rm x R* x Rl — Rn.

We assume for the present that p, ¢, and g are C!, by which is meant that p, ¢, and g¢
have continuous bounded derivatives on their respective domains. In order to transfer
the forcing from the v equations to the w equations we want to define the new variable
W = q(w, ¢(t)) and then invert this relation to obtain w in terms of & and ¢. To do
this we have to regard g as an abstract map and use a global implicit function theorem
on suitable spaces.

Let R+ = [0, 00) and let C(R*, R¥) be the set of continuous bounded functions on
R+ with values in R¥, endowed with the norm ||u||cc = sup |u(t)||x. Let C1(R+, RF)

0,00)
be the set of functions in C(R+, RF) with continuous bounded derivatives, and let
Cr be the set of continuous real-valued T-periodic functions endowed with the norm
|llcc = r[l(}%‘)]c |¢(t)|. Then the function ¢ in (A.2) gives rise to the substitution operator

Q: C(R*,Rn) x Cp — C(R+, R™).

defined by
Qw, ¢)(t) = q(w(t), #(1)).

This operator inherits the regularity of the associated function on R x R!, as is shown
in the following proposition.

PROPOSITION 1. Let f € C'(R!, R!) and let F : C(R+, R') —» C(R+, R!) be the
substitution operator defined by

F(u)(t) = £ (u(®))

for u € C(R*,R'). Then F € C'(C(R*,R?),C(R+,RY)).
Proof. Since f € C1(R!, R!),

1
@ +y) - f(o) = / f'( + sy)y ds
0
and therefore

Fluo + €)() - Fluo)(t) = / F(uo () + sE)E(E) ds
0
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for any uo and £ in C(R*, R1). We claim that the Frechet derivative of F at ug is the
linear operator F’ given by

(A.3) F'(uo)€ = f'(uo)é.

Clearly

1 1
Fluo +€) = Fluo) = fwo)é = ¢ [ fiwo+s)ds = [ r(uo) ds)
0 0

and thus
I (uo + €) — F(uo) — f'(u0)€lloo = [|€lso - | /(f’(uo + 5€) ds — f'(uo)) ds| ..
0

The integrand is the composition of f’/ with an affine map and therefore the usual
rules for taking limits apply. It follows that the right-hand side is uniformly o(||¢||o0)
as ||{|loo — 0. Furthermore,

17" (uo0)élloo = Il (w0)llco < 11" (w0)lloo - [1€loc

and therefore ' as defined by (A.3) is bounded. Consequently it is the Frechet
derivative of F at uo. It is clear that if f/(z) is nonvanishing for all z € R then F’ is
an isomorphism at ug.

The foregoing implies that the Frechet derivative of Q at (wo, ¢o) is given by

0
Q’('LU(), ¢0)(f777) = 5%(1110, ¢0)§ + aa_gg(wo’ ¢0)77,

but it is singular in general. Thus we have to consider two different cases.

First suppose that m > n. In this case we define w = q(w,¢) and we write
w = (W1, w2) = (q1(w, ¢), g2(w, ¢)), where w1 € R*, w2 € R™—", and q is partitioned
conformally. We assume that 8¢, /0w is nonsingular and that || (8g1/0w) ' ||n < K
for some constant K > 0 and all (w, ¢) € R* x R!; also that ||0g1/0¢||» is uniformly
bounded. By the usual implicit function theorem, near any triple (1, w,¢) with
w1 = qi1(w, @), there is a locally defined C! function w = h(w1,¢) with the same
graph. However, these local functions may not fit together to form a global function;
that is, there may be monodromy. To preclude this, we use the following global inverse
function theorem for Banach spaces (Avez [1986, Appendix D.2]).

LEMMA 1 (Hadamard-Levy). Let E and F be Banach spaces, and let F : E — F
be a C' map. Suppose that F'(z) is an isomorphism for all z € E, and that there is a
constant A > 0 such that ||[F'(z)]~1|| < A. Then F is a diffeomorphism of E on F.

To apply this result, let £ = F = C(R*, R*) x Cr, with norm the maximum of
the component norms, and let F(w, ¢) = (q1 (w, @), ¢). Proposition 1 implies that F
is a C! map with Frechet derivative

F(an)(€,m) = ( G2 o, 606 + S (unohnn) = (6.0,
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for any (£,n) € E. Thus

) 6w = ((52) 7 (- G2n)on)

and it follows from the hypotheses on d¢1 /0w and 8¢; /0w that the required bound on
I[F']~1||cc exists. Thus, by the Hadamard-Levy result, there is a global inverse and so
there is a unique functional w = H(w, ¢). However, locally H has the representation
w(t) = h(w(t), ¢(t)), and so by uniqueness, h is a global function.

Returning to the original system, for C'! functions w and ¢,

din _ O dw | dq
dt  Ow dt 9¢

and consequently (A.2) is transformed into the system

f% = p(v) - o,
ds: - g g(v, h(w1, $(1)), 9 (?)) + on ,(t)’

where @ = (q1(h(@1,8(t)), $(t)), g2 (h(W1, $(t)), #(t))). In this form the forcing only
appears in the equations for the slow variables.
When m < n we define @ = g(w, ¢(t)) as before, and we write w = (w1, w2). We

suppose that d¢/dw; is nonsingular and that the inverse of this Jacobian is uniformly
bounded above. Then w; = h(ﬁ),qﬁ(t)) and

f@ Oq dw 0Oq

Let G (v, w1, ws, ¢(t))

= g( (w1, w2),$(t)) and partition G to conform with the par-
titioning of wj; then (A.2) i

s transformed into the system

ej—: = p(v) -

B _ D4 G 0, h(a, $(8)), war $(8)) + —¢’(t)
dt  ow ‘7 T

dw

S22 = Ga(u, (@, $(), w2, ¥().

The reader can verify that the foregoing simplifies when the forcing has the ad-
ditive form g(w, ¢) = go(w) + ¢ with appropriate global assumptions on go.

Acknowledgment. The authors would like to thank John Rinzel for his valuable
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