
Oscillatory cAMP Signaling in the Development of
Dictyostelium discoideum

1 Introduction

One of the most essential characteristics of living organisms, from the
unicellular level to the largest plants and animals, is their active inter-
action with their environment. From the unicellular level upward, or-
ganisms have developed sensitive signal detection systems that extract
information from their environment and enable them to find food and
mates, initiate developmental changes, avoid harmful environments or
execute any of the multitude of actions and behaviors in their repertoire.
Given that organisms are embedded in a ‘sea of data’, the extraction step
is usually the first and perhaps most critical step. We view this process
as essentially one of gathering the information and responding to it, and
thus some basic information-theoretic definitions are in order. We use the
definitions given in Parker1.

Data Any representation of characters or analog quantities to which mean-
ing, if not information, may be assigned.

Information Data which has been recorded, classified, organized, re-
lated or interpreted within a framework so that meaning emerges.

Noise Meaningless or erroneous bits that must be removed or ignored
from a data stream.
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Clearly there is some ambiguity in the definition of data, and perhaps
a more useful definition in the biological realm is that data is simply the
entire state of the environment of an organism. This includes all the usual
physicochemical quantities such as temperature, concentrations, and so
forth, but also includes other organisms. To extract information from this
data requires a signal transduction system, the purpose of which is to
detect, transduce, and possibly act upon available data. Our purpose here
is to first discuss the processes of detection, transduction and response
in abstract terms, and then to describe a particular unicellular organism,
Dictyostelium discoideum(Dd) for which much is known about these
processes.

1.1 An overview of signal transduction

Since most organisms maintain a clear distinction between inside and
outside, many primary environmental signals do not penetrate very far
into the organism. Instead there are mechanisms for transducing an ex-
ternal signal into an internal signal, and where appropriate, an internal
response. For example, at the cellular level extracellular hydrophilicfirst
messengersignals elicit a response through a transduction system in the
cell membrane that translates the signal into an intracellularsecond mes-
sengersignal. Similarly, in the sensory systems of higher organisms light
or mechanical stimuli are transduced by a multi-step cascade into an elec-
trical signal that is processed at a higher level. The problem of how exter-
nal information detected at the periphery of higher organisms is transmit-
ted to the brain has fascinated scientists for hundreds of years. An early
description due to Descartes of how this might occur is as follows.

To understand, next, how external objects that strike the sense organs can incite
[the machine] to move its members in a thousand different ways: think that

(a) the filaments (I have already often told you that these come from the in-
nermost part of the brain and compose the marrow of the nerves) are so arranged
that they can very easily be moved by the objects of that sense and that

(b) when they are moved, with however little force, they simultaneously pull
the parts of the brain from which they come, and by this means open the entrances
to certain pores in the internal surface of the brain ..

Thus if fire A is near foot B, the particles of this fire have force enough to dis-
place the area of skin they touch; and thus pulling the little thread (cc) which you
see attached there, they simultaneously open the entrance to the pore (de) where
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this thread terminates; just as, pulling on one end of a cord, one simultaneously
rings a bell which hangs on the opposite end.

R. Descartes -De Homine

Not only do transduction or processing systems amplify the signal, but
they often filter it as well, since not all features of a signal are equally
important. For instance, the important information in a signal is often
the short-term change in amplitude, rather than the absolute amplitude
itself. Thus sensory systems frequently have evolved to ignore constant
background signals, yet remain responsive to changes in the signal. Said
otherwise, a step change in an external signal from one constant level to
another often elicits a transient change in one or more components of the
internal state or in some behavior of the organism, followed by a return
to a basal level of that component or behavior. The process by which the
sensory transduction system terminates the response in the face of a con-
stant stimulus is usually called desensitization, habituation, or adaptation,
depending on the context, but in this paper we distinguish between them.
We use adaptation when the stimulus does not provoke any gross rear-
rangements or alterations in the signal-processing machinery, whereas
desensitization may involve structural changes such as the degradation
of receptors. The visual system and mechanoreceptors in the dermis of
mammals provide several easily-observed examples of adaptation, but
this capability is very common in sensory systems. Adaptation involves
more than simply saturating the sensory system, for it is also important
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to maintain sensitivity to further changes in the signal. Thus by an adapt-
ing sensory system we mean one that responds transiently to a transient
change in the signal, returns to a basal activity level in the presence of
a prolonged constant stimulus, and retains sensitivity to further changes
in the stimulus. These characteristics are shown schematically in Figure
1. Clearly adaptation represents a form of learning, since having it in a

Figure 1. A schematic of the response of an adapting system to different stim-
uli. Shown here is the cyclic AMP (cAMP) relay response, as measured by the
secreted cAMP, to extracellular cAMP stimuli in the cellular slime moldDic-
tyostelium discoideum. In (a) a step change in extracellular cAMP from0 to
10�8M elicits a single pulse of secreted cAMP. In (b) the system responds and
adapts to a sequence of step increases ranging from10�9M to 10�6M , but at the
highest stimulus the transduction system saturates. (Details are given in a later
section.)

signal transduction system enables the organism to avoid responding to
a constant signal when such a response is not advantageous. In addition,
by adapting to background levels of a signal (or equivalently, changing
the sensitivity to the amplitude of signals) the sensory system can process
a far greater range of amplitudes. In fact the range of signal amplitudes
that can be tolerated is enormous. For example, the visual system in cer-
tain amphibians can detect and respond to light stimuli whose amplitude
ranges over five or more orders of magnitude2.
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1.2 Models of transduction and adaptation

The basic steps that characterize most signal transduction systems are
shown in Figure 2. The sensory systems of interest here can be described
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Figure 2. A schematic of the major steps in signal detection, transduction and
processing to produce an inter- and possibly extracellular response. Adaptation
may be involved at any of the steps shown.

by a finite number of state variables and an evolution equation that de-
termines how the state changes under prescribed inputs or stimuli. We
denote the state vector byu(�) 2 Rn and write the evolution equation in
the form

du

d�
= F(u; S); (1)

whereS 2 R represents the stimulus or input to the system. Typical state
variables are a transmembrane voltage, gating variables, the concentra-
tion of a chemical transducer substance, etc. Frequently the dynamics
described by (1) are ‘excitable’, in that the steady state at fixedS is sta-
ble and small changes in that state do not produce a significant response.
For such dynamics the stimulus must exceed a threshold, and this pro-
vides a means of filtering out small amplitude noise in the environment.
In general a change inS leads to a change in the transient and steady-
state values ofu, but in systems that adapt some functional ofu should
be independent ofS whenS is time-independent. In this section we dis-
cuss the constraints imposed onF by this requirement. The reader can
consult3{6 for a review of models that involve adaptation, including some
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for bacterial chemotaxis and adenylyl cyclase. Models for adaptation in
Dictyostelium discoideumwill be discussed later.

Suppose that the responseR of the system is a functionalG of the state
u given as follows:

R(�) = G(u(�)): (2)

For example, in the neurobiological contextG could represent the firing
rate of a neuron, in bacteria it is the change in the relative probabilities of
counterclockwise and clockwise flagellar rotation, and inDictyostelium
it is the rate of secretion of cyclic AMP. More generally,G could depend
on the derivatives of the state variables, their past history, or directly on
the stimulus and its derivatives. The first case is easily treated under the
third case, for_u is given in terms ofu andS by (1). Some of these
generalizations will be treated elsewhere; for now we restrict ourselves
to responses of the form (2). Furthermore, we shall only consider sys-
tems whose ‘basal dynamics’ are time independent, which means that
the system has an asymptotically stable steady state in the presence of
any constant stimulus. In that case we can define perfect adaptation to
constant stimuli as follows.

Definition 1 The responseR of a system whose dynamics are governed
by (1) is said to adapt to constant stimuli if the steady state response is
independent of the magnitude of the stimulusS.

Evidently this definition allows for the trivial case whenF is independent
of S, in which case there is no change in response to any changes inS.
Furthermore this definition of adaptation does not imply that the steady
state values of all variables must be independent ofS, and in fact some
of the state variables generally do change when the stimulus changes, as
will be seen in a later example.

Now suppose thatS is fixed. At a steady stateF(u; S) = 0, and we
shall assume thatdet(Fu) 6= 0, wheredet(�) denotes the determinant
and the subscript denotes the partial derivative. This implies that locally
there is a unique functiong : R �! Rn such thatF(g(S); S) = 0. The
steady state response isR = G(g(S)), and this adapts toS if and only if
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dR=dS � 0. We have that

dR
dS

=

�
rG; du

dS

�
; (3)

and

Fu
du

dS
+ FS = 0; (4)

where< :; : > denotes the Euclidean inner product. Therefore adaptation
of the steady state response requires that the sensitivity of the steady state
to changes in stimulus, as measured bydu=dS, must be tangent to a level
surface of the response. In other words, the following condition must be
satisfied.�

rG; du
dS

�
= � 
rG(g(S));F�1

u
(g(S); S)FS(g(S); S)

�
= 0 (5)

for everyS. Not all models can satisfy this condition, and even for those
that can, this condition imposes constraints on the admissible choices of
the parameters. A simple check of this condition alone suffices to show
that a number of models that are purported to adapt cannot in fact show
the desired adaptive behavior4.

However, adaptation of the steady state response is only one aspect of
adapting sensory systems. Another necessary property of such a system
is that it retain the ability to respond to changes in the stimulus level over
some range of stimuli, even though it has adapted to a certain level (cf.
Figure 1). Ana priori estimate of the magnitude of a response to a given
stimulus would be useful, but in general it is difficult to characterize the
entire response to a time-varying stimulus. Of course more can be said
in special cases. For instance, it frequently happens that the rise of the
transient response is very rapid compared to the return to the basal level,
and in this case singular perturbation or quasi-steady-state arguments can
be used to predict the magnitude of the response. An example is given
later.

Some insight into the stimulus-response coupling can be gotten by ex-
amining changes in the response immediately following a step change in
the input. This type of stimulus is particularly appropriate in the context
of Dd in view of the experiments done by Devreotes,et al.7{9, which
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were designed to characterize the relay and adaptation response in this
system. Suppose that the system is at steady state with inputS, and that
at time� = �0 the input is instantaneously changed toS +�S. Immedi-
ately after imposing the stimulus

dR
d�

����
�+0

=

�
rG(g(S)); du

d�
(�+0 )

�
= hrG(g(S));F(g(S); S +�S)i

and therefore the response will change provided thatrG is not orthogonal
toF, i. e. , provided that the vectorfield is not tangent to the level surface
of G at (g(S); S + 4S). SinceF vanishes at(g(S)); S), this will be
true if G depends on at least one component ofu (sayui) that is directly
influenced by the stimulusS in the sense that@Fi=@S 6= 0.

A model system that illustrates some of the essential features of an
adaptive system is given as follows. Suppose that there are two internal
state variablesu1 andu2, and that these variables evolve according to the
following equations.

du1
d�

=
f(S(�))� (u1 + u2)

�e
(6)

du2
d�

=
f(S(�))� u2

�a
:

In these equations the functionf(�) encodes the signal transduction steps,
and it should have the property thatf(0) = 0. For concreteness we sup-
pose that the response is proportional tou1, i. e. G(u(�)) = au1(�) where
a is a constant. Then this simple scheme can be viewed as having two in-
put pathways, an excitatory one in which the stimulus increases the pro-
duction ofu1 and hence increases the response, and an inhibitory one that
increases the production ofu2, which in turn shuts off the response.

Since this system is linear the solution can be obtained by quadrature
once the stimulus is specified. For the special case in whichu1(0) =
u2(0) = 0 andS(�) is a step function of amplitudeS0 that turns on at
� = 0, the solution is as follows.

u1 =
f(S0)�a
�a + �e

(e��=�a � e��=�e)

(7)
u2 = f(S0)(1� e��=�a)
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Thus the response occurs on two time scales, the scale of excitation,
which is characterized by�e, and the scale of adaptation, which is char-
acterized by�a. From this one sees that if�e << �a, then whenever
� >> �e, u1 relaxes to

u1 � f(S0)e
��=�a � f(S0)� u2(�):

This is just the pseudo-steady-state value ofu1 which is gotten by setting
du1=d� = 0. On the other hand, if�a << �e then adaptation is rapid
compared to excitation,u1 never rises significantly above zero, and there
is no significant response. The typical response for a single step in the
stimulus when�e < �a is shown in Figure 3(a), where one can see that
when the system begins at(u1; u2) = (0; 0) neitheru1 noru2 exceedS1.
The response to two step changes that are well separated compared to the
adaptation time are shown in Figure 3(b).

1u

u2
(a)

1S(τ) = 0 S(τ) = S

1u

u2
(b)

S(τ) = 0 S(τ) = S1 S(τ) = S2

Figure 3. The phase plane for the model adapting system described by (6) when
f is a linear function.

We note from (6) that when the stimulusS(�) is constant the steady
state level ofu1 is zero,i. e. , the response adapts perfectly to any constant
stimulus, but the level ofu2 does not adapt. Moreover, when�e <<
�a the system is excitable in the following sense. The rest state in the
absence of a stimulus ((u1; u2) = (0; 0)) is asymptotically stable, but
a brief stimulus of the proper type can produce a significant response,
followed by a return to the steady state. Thus iff is linear, if the system
is initially at (0; 0), and ifS(�) = S1 for � 2 (0; �e) and zero thereafter,
thenu1 will rise to approximately2S1=3 and then return to zero. Usually
an excitable system is considered as one that has a threshold and shows
anall-or-nothingresponse, such as the firing of a neuron, depending on
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the magnitude of the stimulus. In contrast to this, the response of the
present system isgradedin that there is a response to any stimulus level.
As we shall see later, this simple example contains some of the essential
features needed in a model for signal transduction and relay in Dd. Other
excitable systems that show a graded rather than an all-or-none response
occur in models of intracellular calcium dynamics10{12.

This simple model illustrates some of the basic features necessary in an
adapting system, but there is no biochemical basis for it. A more realis-
tic model, which is sometimes called the ‘adapting box’ model, is shown
in Figure 4. This model was first proposed and analyzed by Katz and
Thesleff13 in a study of adaptation produced by acetylcholine at the mo-
tor end-plate of frog muscle, and more general forms were subsequently
used by others in a similar context (Gero14 and references therein). More
recently Knoxet al. 15,16 used it as a model for receptor adaptation in
Dd.

L

L

k 1

k −1

k −4

k

k 3 k −3k −2k
2

R RL

4
D

R
D

R L

Figure 4. A schematic of the transitions in the adapting box model.R represents
the active form of the receptor,RD the inactive or refractory form of the receptor,
andL represents the ligand.

Let ui; i = 1; : : : 4; denote the fractions in statesR;RL;RD andRDL,
respectively. Then in the symmetric form used by Katz and Thesleff, for
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whichk1 = k4 andk�1 = k�4, the governing equations are

du1
dt

= �(k1L+ k�2)u1 + k�1u2 + k2u3

du2
dt

= k1Lu1 � (k�1 + k�3)u2 + k3u4

du3
dt

= k�2u1 � (k1L+ k2)u3 + k�1u4

du4
dt

= k1Lu3 + k�3u2 � (k�1 + k3)u4:

When these equations are used to describe ligand binding to a receptor on
a channel13, the response consists of opening the channel, and it is there-
fore proportional to the fraction in those receptor states that correspond
to an open channel. In the Dd context Knox,et al. 15,16 assume that the
downstream activity is a weighted sum of all states of the receptor.

If the ligand concentration is a specified function of time then the dy-
namic behavior of the model can be obtained by solving this system of
linear differential equations (one equation of the above four can be elim-
inated because the fractions in the four states must sum to one). However
the symmetry in the transitions leads to a significant simplification. If one
definesx1 = u1+u3, x2 = u2+u4, x3 = u1�u3, x4 = u2�u4, then the
system splits into two two-dimensional systems that can be solved very
easily and analyzed in detail. We shall not pursue this here because, as we
remark later, this scheme has limited value in the context of adaptation of
the relay response of Dd.

In the remainder of this review we focus on the role of cAMP in Dd
development through late aggregation, and we begin by discussing the
biochemical aspects of signal transduction in the following section. Pre-
vious reviews on Dd are given in17{24.

2 Signal transduction inDictyostelium discoideum

2.1 Introduction

The social amoebaDictyostelium discoideumexemplifies the exploita-
tion of oscillatory signaling for self-organization and survival. These
cells normally live in forest soil, where they feed on bacteria25. Upon
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starvation, amoebae become chemotactically sensitive to cAMP and ac-
quire competence to relay cAMP signals within a period of six hours26.
After about eight hours, randomly located cells, called pacemakers, start
to emit cAMP periodically27, surrounding cells move towards the cAMP
source and relay the cAMP signal to more distant cells. Eventually the
entire population collects into mound shaped aggregates containing up to
105 cells. The mound elongates to form a slug, which topples over and
migrates over the substratum. Meanwhile the cells start to differentiate
into prestalk and prespore cells. Differentiation initially starts at random
in the mound stage, but by a combination of cell sorting and positional
signaling, the prestalk cells eventually end up in the anterior quarter of
the slug, while the prespore cells occupy the remaining posterior part.
When conditions for fruiting body formation are favorable, the slug tip
is extended upwards, the anterior prestalk cells become immobilized in a
central stalk tube, which the remaining cells use as a support for upward
movement. When the stalk has reached a certain length the prespore cells
mature into spores, which remain dormant until they are dispersed and
meet with conditions favorable for growth.

The autonomous production and relay of cAMP pulses by starving
cells results in a very efficient process of chemotactic aggregation, and
cAMP oscillations subsequently organize the transformation of mounds
into slugs, the migration of slugs over the substratum, and the culmina-
tion into fruiting bodies. These morphological changes are accompanied
by a program of stage- and cell-type-specific gene expression, which ulti-
mately causes amoebae to differentiate into accurately-regulated propor-
tions of spore and stalk cells (cf. Figure 5). Extracellular cAMP also
plays a crucial role in gene regulation during development. During ag-
gregation, cAMP pulses strongly accelerate expression of components
of the cAMP signaling system. During post-aggregative development
cAMP directly induces entry into the spore differentiation pathway, and,
by inducing the synthesis of a stalk-cell-inducing factor, DIF, cAMP is
also indirectly responsible for the differentiation of stalk cells.

The highly allosteric regulation of cAMP synthesis by adenylyl cy-
clase and its degradation by cAMP phosphodiesterase (PDE) are at the
core of oscillatory behavior. The progress in understanding the regula-
tion of both enzymes at the biochemical level has been accompanied by
the formulation of theoretical models describing the dynamics and poten-
tial for self-organization of the system. Adaptation of cAMP production
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Figure 5. A schematic of the temporal pattern of activation of genes in the devel-
opment of Dd.

is essential for oscillatory signaling and for relay during aggregation.�

Molecular genetic approaches have recently extended our understanding
of the complexity of adenylyl cyclase regulation and indicated that earlier
theories for adaptation are no longer tenable28. In this section we review
the current information on cAMP signaling in Dd and discuss mecha-
nisms that have been proposed for adaptation of responses controlling
oscillatory signaling and chemotaxis. In the following section we evalu-
ate the validity of existing theoretical models for oscillatory signaling and
present the biochemical framework of a model that is consistent with cur-
rent data. We then review models in which cell movement and oscillatory
signaling are incorporated to model the aggregation process.

�The response in Dd to an extracellular signal has many components that are described
later. In view of this multiplicity one must carefully define what is meant by adaptation.
The observables during the relay response are the intracellular cAMP, the secretion rate, the
rate of cell translocation, etc. Early studies showed that the relay response, among others,
returns to basal level in the face of constant cAMP stimuli, but this response is the end
result of numerous intracellular steps. However, if the intracellular phosphodiesterase that
degrades cAMP is not regulated then termination of the relay response requires that the rate
of cAMP production returns to the basal level, and hence that either the activity of adenylyl
cyclase or a component upstream of it adapts. The possible mechanisms for this adaptation
are discussed later. Similar remarks apply to the other pathways from stimulus to response.
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2.2 cAMP signal transduction

In higher organisms, a multitude of endocrine and paracrine signals
usually activate a limited number of responses in target cells. In Dd a
single extracellular signal, cAMP, activates almost all of the major rec-
ognized signaling pathways. cAMP is detected by at least four serpen-
tine cAMP receptors (cARs), which show different affinities and differ-
ent expression patterns during development. The high affinity receptors
cAR1 and cAR3 are first expressed before and during aggregation, re-
spectively29{31. The low affinity receptors cAR2 and cAR4 are expressed
in prestalk cells after aggregation32,33.

cAMP bound to cARs activates a number of rapid intracellular re-
sponses. On a time scale of seconds, cAMP induces excitation and adap-
tation of guanylyl cyclase. This results in transient accumulation of cGMP,
which ultimately controls myosin phosphorylation and pseudopod exten-
sion in the chemotactic response34{37. On a time-scale of minutes, cAMP
causes excitation and adaptation of adenylyl cyclase, resulting in synthe-
sis and secretion of a cAMP pulse. This constitutes the relay response.
In addition, cAMP raises intracellular Ca2+ levels directly by stimulating
Ca2+ influx38{40 and indirectly by activating a phospholipase C
 (PLC).
This enzyme catalyzes the conversion of phosphatidylinositolbisphos-
phate (PIP2) into diacylglycerol (DAG) and inositol 1,4,5-trisphosphate
(IP3), and the latter induces Ca2+ mobilization41{44. In addition, cAMP
transiently activates the MAP (mitogen-activated protein) kinase ERK2
with peak activity at 1 min45,46.

Activation of adenylyl cyclase, guanylyl cyclase and ERK2 by nanomo-
lar cAMP concentrations are mediated by cAR1 in the aggregation stage
of development47,45,46 but may well be mediated by other cARs at other
stages of development. Several responses such as cAMP-mediated Ca2+

influx, cAMP relay, and the cGMP response were shown to be mediated
by at least three of the four cARs (Kim,et al. , submitted).At least one
response, the cAMP-induced Ca2+ influx was shown to be mediated by
all four cARs40,48. cAMP activation of PLC occurs in the absence of both
cAR1 and cAR3 in aggregative cells, and since cAR2 and cAR4 are not
yet expressed at this stage, the possibility of a fifth cAR cannot be ex-
cluded. Adaptation of PLC is lost in cAR1 null mutants, which indicates
that here cAR1 only mediates the inhibitory input44,49.
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In addition to short term responses, which may principally be involved
in controlling chemotaxis and cAMP signaling, cAMP regulates the ex-
pression of almost all classes of developmentally-regulated genes. Veg-
etative and early genes are downregulated by cAMP, while genes asso-
ciated with the aggregation process are induced by nanomolar cAMP
pulses. Persistent stimulation with micromolar cAMP concentrations reg-
ulates expression of most postaggregative genes. Pharmacological stud-
ies have shown that all effects of extracellular cAMP are mediated by
cARs50{52 but due to functional redundancy of the different cARs, it has
as yet proved difficult to associate individual cARs with specific gene in-
duction events, except for induction of aggregative gene expression by
cAMP pulses, which is mediated by cAR153.

Activation of target proteins by serpentine receptors is generally medi-
ated by heterotrimeric G-proteins. These proteins consist of an� subunit
that harbors a GTP/GDP binding domain as well as intrinsic GTPase ac-
tivity, and a complex of a� and a
 subunit. The� subunit and the�

complex dissociate after ligand binding to receptors and each have the
potential to regulate the activity of (different) target proteins. Most but
not all responses mediated by cARs require G-proteins for further trans-
duction. Eight different G� genes have been identified, but for only two
of those (G2 and G1) has a role in cAMP signal transduction been es-
tablished. There is only a single G� gene in Dictyostelium and G� null
mutants distinguish between G-protein dependent and independent pro-
cesses54. Two G-protein-independent responses mediated by cARs have
been identified: cAMP-induced influx of Ca2+ ions and cAMP-induced
phosphorylation of cAR148,55. G2 plays a major role in cAMP signal
transduction: its� subunits mediate activation of both guanylyl cyclase
and PLC56,44, while its �
 subunits mediate activation of adenylyl cy-
clase.57 G1 is required for adaptation of PLC activation by cAMP44 and
possibly also for adaptation of guanylyl cyclase activation58.

Activation of both adenylyl cyclase and guanylyl cyclase by G2 is in-
direct; both require an interaction with distinct cytosolic factors59,60. The
Cytosolic Regulator of Adenylyl Cyclase, CRAC, contains a pleckstrin
homology (PH) domain that interacts with the G� subunit. It is hypoth-
esized that the dissociated G�
 complex, which is localized in the plas-
mamembrane, binds with free CRAC from the cytosol, and the complex
then activates adenylyl cyclase61,62. Adenylyl cyclase activation is sig-
nificantly reduced in null mutants for ERK263 and Ras-GEF, a guanine
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nucleotide exchange factor for the monomeric G-protein Ras64, indicat-
ing further complexities in regulation that are not yet understood. The
cytosolic regulator of guanylyl cyclase is a cGMP binding protein, that
activates guanylyl cyclase when not bound to cGMP, and inhibits the en-
zyme when bound to cGMP65.

2.3 Excitation and desensitization pathways for cAMP-induced responses

For many cAMP-induced responses in Dd, desensitization of the re-
sponse is as important as excitation. Desensitization describes the grad-
ual cessation of the response during persistent stimulation, or a reduc-
tion in responsiveness to subsequent stimuli. Complete desensitization
may consist of several components, such as loss of ligand binding ac-
tivity due to sequestration or phosphorylation, without loss of receptor
number, internalization and degradation of receptors (down-regulation)
and uncoupling of receptors and target proteins (adaptation). Cells regain
sensitivity if the stimulus is absent for a sufficient length of time. Degra-
dation of the stimulus is achieved by an extracellular PDE that can either
be secreted extracellularly or become anchored to the extracellular face
of the membrane66,67. Dictyostelium PDE is under complex regulation at
both the gene and the enzyme level. The PDE gene is controlled by three
different promoters, each of which controls expression at different stages
of development: (i.) a low level of expression during growth, (ii.) a high
level of expression during aggregation, and (iii.) a moderate level of ex-
pression that is restricted to prestalk cells in slugs68,69. Post-translational
modification of the PDE protein depends on extracellular cAMP levels,
with high cAMP levels favoring the formation of the extracellular over
the membrane-bound form70. PDE activity is furthermore regulated by
a glycoprotein inhibitor, PDI, which is secreted by the cells during the
first 8 hours of development. PDI can only inhibit the extracellular and
not the membrane-bound form of the enzyme, by increasing its KM from
5�M to 2 mM71. Expression of the PDI gene is inhibited by high cAMP
levels72.

Desensitization and re-sensitization of cells is essential for oscillatory
cAMP signaling and for orientation of cells in chemotactic gradients. In
addition, the expression of aggregative genes can only be induced by a
series of cAMP pulses and not by continuous stimulation. The kinetics
of excitation and adaptation of both adenylyl cyclase and guanyl cyclase
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were studied in great detail in the 1980’s by Devreotes and Van Haastert
and their coworkers, respectively. These studies provide the biochemical
description of the input-output behavior of the cells, but the components
of the excitation and adaptation pathways and their kinetic interactions
are still being characterized. We summarize the current knowledge of pu-
tative excitation and adaptation mechanisms in the following paragraphs.

2.4 Desensitization at the receptor level.

The kinetics of various events that occur at the receptor level are sum-
marized in Table 1 and compared with the excitation and adaptation ki-
netics of adenylyl- and guanylyl cyclase. During prolonged stimulation
with micromolar cAMP concentrations, cAR1 protein is down-regulated
by internalization and degradation73{76.

Down-regulation occurs with a half-time of 15-30 min and it takes
several hours for the cAMP receptor to re-accumulate after the cAMP
stimulus has been removed. This process is too slow to account for the
transient kinetics of responses that occur at a second or minute time-scale,
but may help cells to adjust themselves to the variations in signal ampli-
tudes at low or high cell density or during the transition to multicellular
aggregates, which is accompanied by cAR1 down-regulation75.

cAMP also induces more subtle receptor modifications. Kinetic stud-
ies indicate the presence of two major subpopulations of cAR1, the rapidly
dissociating A-sites (about 96% of total binding activity) and the slowly
dissociating B-sites77,84,85. In down-regulated cells, the A sites are lost
and cAMP can no longer activate adenylyl cyclase, but the B-sites and
cAMP activation of guanylyl cyclase are still present, which suggests
that the A-sites are responsible for adenylyl cyclase activation and the
B-sites for guanylyl cyclase activation74. During stimulation with nM
cAMP concentrations, the A-sites convert from a high affinity state AH

(KD = 60 nM) to a low affinity state AL (KD = 450 nM) with a half-time
of 9 s77. Similar alterations in affinity accompany spontaneous cAMP
oscillations in suspension and can be induced with either GTP or GDP
in cell lysates86,87. cAMP also induces a loss of ligand binding activ-
ity with a half-time of 1-3 min88. Additionally, cAMP receptors become
phosphorylated with a half-time of 2.5 min89,80. After removal of the
stimulus, receptors return to the unphosphorylated state with a half-time
of 6 min. These kinetics correlate well with adaptation and deadaptation
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Table 1. The rates of various receptor-level events in Dd

Response Half-time EC50 Half-life References

cAMP reversion

Down-regulation 15-30 min 10�M 1-2 h 73,76

AH to AL transition 9s 13 nM 2 min 77

Loss of ligand binding 1 min 25-50 nM 78,79

Phosphorylation cAR1 1-3 min 27 nM 4-6 min 80

Activation of AC 1 min 20-50 nM 8,47

Adaptation of AC 2-3 min 100 nM 3-4 min 9,81,82

Activation of GC 2s 10 nM 83

Adaptation of GC 2.4s 10 nM 1-2 min 82,83

of adenylyl cyclase (cf Table 1) and in view of the fact that activation of
adenylyl cyclase by�-adrenergic receptors adapts in a similar fashion,
phosphorylation was widely accepted to be the mechanism of adaptation.
However, recent studies show that removal of all phosphorylation sites
in cAR1 does not affect adaptation, although cAMP-induced loss of lig-
and binding no longer occurs78,90. Loss of ligand binding appeared to
be due to a reduction in cAR1 affinity and may therefore represent the
AH to AL transition91,28, albeit that the rate of the AH to AL transition
(t1=2 = 9 s) is much faster than that of loss of ligand binding and cAR1
phosphorylation (t1=2 = 1-3 min). Thus one can conclude that cAMP in-
duces cAR1 phosphorylation and consequent reduction of cAR1 affinity,
but neither phosphorylation nor the reduction in affinity are responsible
for adaptation of adenylyl cyclase.

The remaining 4% of cAR1 binding activity constitutes the B-sites,
which are considered to regulate guanylyl cyclase activation. During
cAMP stimulation the B-sites interconvert into three forms with differ-
ent off-rates, fast (F, 2.5 s), slow (S, 15 s) and super-slow (SS, 150s).
cAMP binds to BF, which converts to the BS form with a half-time of 3s.
BS converts without detectable delay into the BSS form, which slowly re-
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turns to the BF state. During stimulation with cAMP, the capacity of BS to
convert to BSS declines with a half-time of 3 s, while recovery of the BSS

form after removal of cAMP occurs with a half- time of 75 s84,85. These
kinetics agree with the adaptation and deadaptation kinetics of guanylyl
cyclase83,82. The conversions in the B-sites form the framework for the
cycle-adaptation model for guanylyl cyclase regulation (Figure 6): after
cAMP (L) binding, the receptor (R) cycles from an inactive state RL (BF )
to an active state R*L (BS) and activates the response during conversion
to the desensitized state RDL (BSS), which then slowly converts to the
inactive state RL92 . Apart from the correlation in kinetics, there are no
experimental data to support this model, and it is also not clear how adap-
tation is achieved in molecular terms. Nevertheless, as we shall discuss
below, this model reproduces the dynamics of the cGMP response best of
all the existing models.

Figure 6. The cycle adaptation model for GC. After Valkema and van Haastert92

.

To conclude, despite suggestive experimental evidence, adenylyl cy-
clase adaptation is not regulated at the level of receptor modification.
This is a viable possibility in the case of guanylyl cyclase activation, but
as we shall see below, additional processes contribute to its transient ki-
netics here.
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2.5 Post-receptor desensitization

Phospholipase CAdaptation of PLC appears to be simple, possibly
because it has been least intensively investigated. In Dd cells cAMP in-
duces a transient accumulation of IP3 that peaks at 5-15s41,93. In cell
lysates, a cAMP- and GTP-
-S-stimulated PLC activity can be detected94,
which is lost in G�2 null mutants44,56. Remarkably, activation is retained
in cAR1 null mutants and in cAR1/cAR3 double null mutants (44 and
Van Haastert, personal communication). Since neither cAR2 and cAR4
are expressed during aggregation, this suggests the existence of a fifth
cAR, a thus-far elusive cARx. The partial chemotactic antagonist 3’NH-
cAMP can inhibit, but not activate PLC, suggesting that it induces adap-
tation, but not excitation. The inhibitory effect of 3’NH-cAMP is lost in
cAR1 and G�1 null mutants44. Taken together, these data suggest that
cAMP acting on cARx and G�2 induces excitation of PLC, while cAMP
acting on cAR1 and G�1 induces adaptation by inhibiting PLC activity
(cf Figure 7). PLC additionally requires Ca2+ for activity, which could
be provided by the cAMP-induced Ca2+ influx or through autocatalytic
feedback from the IP3-induced Ca2+ release. It is at present not known
whether the Ca2+ requirement plays a critical role in cAMP regulation of
the enzyme95.

Guanylyl cyclaseStimulation of cells with either cAMP or the bacterial
chemoattractant folate induces a rapid transient accumulation of intra-
cellular cGMP which peaks at 10s96,97. cAMP activation of guanylyl
cyclase is lost in cAR1 null and in G�2 null mutants47,98,56. Folate acti-
vation is lost in G�4 null mutants, indicating that its activation pathway
is distinct from that of cAMP99. This is confirmed by observations that
prestimulation with cAMP desensitizes cells for a second cAMP stimu-
lus, but not for a folate stimulus83;100. Multiple mechanisms contribute to
the transient kinetics of the response: Figure 8 (i.) cGMP is rapidly de-
graded by a cGMP-stimulated cGMP-phosphodiesterase (cGMP-PDE);
in null mutants for this enzyme, the cGMP response is elevated and pro-
longed34,35. (ii.) Guanylyl cyclase activity is inhibited by Ca2+ with an
IC50 of 200 nM101. Concentrations within this range are easily reached
by Ca2+ influx or IP3-induced Ca2+ mobilization. (iii.) Adaptation at the
receptor level. Here a number of possibilities were explored: (a.) linear
adaptation, where after ligand binding the receptor first enters into an ac-
tivated and then a desensitized state, and goes back to the free state via
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Figure 7. Excitation and adaptation of PLC. cAMP binding to cAMP receptor
RX induces dissociation of the stimulatory G-protein, G2 into its� and�
 sub-
units. The� subunit activates PLC, which catalyzes the production of IP3 and
DAG from PIP2. IP3 binds to Ca2+ channels in the endoplasmic reticulum, facil-
itating opening of the channels (see Tanget al.12 for a review of models of this
process), and Ca2+ ions exert positive feedback on PLC activity. The adaptation
pathway is activated by cAMP binding to cAMP receptor R1, which activates the
inhibitory G-protein G1 to inhibit PLC in an as yet unknown manner.

the same route. (b.) Box adaptation: both in the free and occupied state
the receptor can inter-convert into two forms, all four forms displaying
different activities15, this scheme is represented in Figure 4. (c.) The
cycle adaptation model, based on the inter-conversion of the B-sites (see
Figure 6). Numerical values of the parameters of all reactions involved
in activation of guanylyl cyclase and in the three modes of terminating
the response were incorporated in a quantitative model to test the relative
contributions of the three mechanisms. The model showed that inhibition
of guanylyl cyclase activation by Ca2+ influx and Ca2+ mobilization, in
combination with cGMP activation of cGMP-PDE cannot reproduce the
rapid transient kinetics of the response. cGMP levels increase rapidly,
but decline very slowly. All three schemes for adaptation at the recep-
tor level showed transient kinetics, but only the cycle adaptation model
could reproduce experimental data that the kinetics of the response are
independent of the stimulus concentration92.
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Figure 8. Excitation and adaptation of guanylyl cyclase. cAMP induces the
inactive cAMP receptor form R1F to convert into RS1 , which induces dissocia-
tion of the stimulatory G-protein G2. The G�2 subunit, in combination with the
cGMP binding protein, cGBP, activates guanylyl cyclase (GC) to produce cGMP.
Multiple processes terminate the response: (i.) RS

1 converts to the desensitized re-
ceptor form RSS1 , which inhibits GC in an unknown manner, (ii.) cGMP binds to
the cGBP, causing cGBP to translocate from the membrane to the cytosol, which
terminates activation of GC. (iii.) cGMP activates a cGMP dependent cGMP
phosphodiesterase (cGMP-PDE), which rapidly degrades cGMP. (iv.) Ca2+, mo-
bilized by other cAMP activated signaling pathways, inhibits GC directly.

Recently a fourth potential mechanism for adaptation of guanylyl cy-
clase was uncovered. A cytosolic cGMP binding protein is required for
guanylyl cyclase activation in its native state, but becomes an inhibitor of
guanylyl cyclase, when bound to cGMP65. The quantitative contribution
of this response to the three others has not yet been evaluated. Folate- and
cAMP-induced cGMP responses are not additive, suggesting that both
use the same guanylate cyclase pool. In combination with observations
that cells that are adapted to folate can still respond to cAMP, this sug-
gests that the major contribution to total desensitization is adaptation at
the receptor level and not at the level of guanylyl cyclase itself100.

Adenylyl cyclasecAMP induces cAMP production in intact cells which
peaks at 2-3 min and returns to basal levels within 3-8 min8. Prestim-
ulation with cAMP leaves cells desensitized to the same stimulus for a
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couple of minutes81. Activation of adenylyl cyclase by cAMP is medi-

Figure 9. Excitation and adaptation of adenylyl cyclase. cAMP binding to cAMP
receptor R1 induces dissociation of G2 into its�2 and�
2 subunits. Dissociation
exposes PH (pleckstrin homology) binding sites on�
2 which bind to the PH do-
main of CRAC. CRAC serves as an adaptor which links�
2 to adenylyl cyclase
A (ACA), which is then activated. The Ras guanine nucleotide exchange factor,
Ras-GEF has an essential, but as yet nebulous, role in ACA activation. cAMP
is rapidly secreted to the exterior of the cell, where it is degraded by both an
extracellular (ePDE) and membrane bound (mPDE) cyclic nucleotide phospho-
diesterase activity. ePDE can be inhibited by a glycoprotein PDI that is secreted
as long as cAMP levels are low. ACA activation is hypothesized to be terminated
by R1 activation of an inhibitory G protein Gi, whose�i or �
i subunits prevent
or terminate dissociation of G2.

ated by cAR1 and the�
 subunits of G247,57. The liberated�
 complex
is considered to bind to the pleckstrin-homology domain of CRAC and to
recruit CRAC from the cytosol to the plasmamembrane61,62,102. In other
systems, target proteins that are activated by�
’s usually harbor an in-
trinsic pleckstrin homology domain103,104. CRAC is therefore considered
as an adaptor that links the Dd�
’s to adenylyl cyclase. In ras-GEF null
mutants, GTP-
-S no longer generates CRAC binding sites, suggesting
that ras-GEF is essential for formation of free�
 subunits.

It is as yet far from clear how adaptation of adenylyl cyclase is achieved.
Figures 9 10 summarize what is known. In cAR1 null mutants, adapta-
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tion of adenylyl cyclase is lost, while excitation requires higher cAMP
concentrations, because it can be taken over by the low levels of cAR3
that are present in the cells. This indicates that both excitation and adap-
tation are mediated by cAR1105,47. This would agree perfectly with the
scheme for adaptation by receptor phosphorylation that was discussed
above, which is now undermined by findings that cells with mutated re-
ceptors, that cannot be phosphorylated, adapt normally90. Other recent
experiments also indicate that receptor modification is not sufficient to
cause adaptation: GTP-
-S activates G-proteins directly and bypasses
the requirement for receptor activation. However, in cells that were pres-
timulated by cAMP, GTP-
-S activation of adenylyl cyclase is lost105.
It appeared that in prestimulated cells GTP-
-S can no longer generate
CRAC binding sites, which suggests that the occupied cARs interfere
with the formation of free�
s62.

Figure 10. A schematic of the major steps in cAMP signaling at which various
processes occur.

Experiments with pertussis toxin, an agent that causes ADP-ribosylation
and inactivation of G-proteins in vertebrates, suggest that an inhibitory
G- protein mediates adaptation of adenylyl cyclase. In pertussis-toxin-
treated cells, cAMP production in response to a constant stimulus is no
longer transient and a second response can be triggered shortly after an
initial response has been evoked. It was concluded that in the presence
of pertussis toxin, adaptation no longer occurred because the inhibitory
G-protein was inactivated. Both receptor phosphorylation and activation
and adaptation of guanylyl cyclase were normal in pertussis toxin treated
cells106,107. There is as yet no candidate gene for an inhibitory G-protein,
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since none of the eight cloned G-proteins carries the consensus sequence
for ADP-ribosylation. The evidence for involvement of an inhibitory G-
protein would be corroborated if it could be demonstrated that pertussis
toxin would annihilate the inhibitory effect of cAMP prestimulation on
the GTP-
-S induced formation of CRAC binding sites. For the present,
adaptation by an inhibitory G-protein remains an attractive possibility.

3 Models of signal transduction, relay and oscillations in
Dictyostelium discoideum

There are several aspects to signal transduction and relay that every
plausible model must capture. Firstly, the elegant experiments by De-
vreoteset al. 7{9 show that when the extracellular cAMP in a perfusion
chamber undergoes a step increase, the transduction/relay system pro-
duces a pulse of cAMP in response and then adapts to the new constant
extracellular level (cf the response predicted by the Tang-Othmer model
shown in Figure 1(a): the experimental result is very similar). In addi-
tion, a system that is adapted to one stimulus level maintains sensitivity
to further stimulation (cf Figure 1(b)). These results imply that a mini-
mal model of the transduction/relay system in which the rates of change
of intracellular state variables depend only on the present state of the
system must incorporate at least two intracellular variables, one which
adapts in the sense that it returns to its basal level after stimulation, and
one variable which effects the adaptation but itself does not return to its
pre-stimulation level. Certainly the primary intracellular variable should
be cAMP, but the second intracellular variable in such a minimal model is
not easily determined. The system discussed in the Introduction has some
of the necessary features of a minimal model; there one can identifyu1
with cAMP and leave the identity of the second variable unspecified. As
we noted earlier, this model is excitable but it also shows a graded re-
sponse. It can however be too robust, depending on the functionf . For
example, iff is a linear function of the stimulus and excitation is fast
relative to adaptation, then the response is essentially proportional to the
stimulus. Thus a 10-fold step in the stimulus will produce an approxi-
mately 10-fold increase in the response, but this is not what is observed in
Dd (cf 1(b)). Certainly there is always saturation in the transduction/relay
system not exhibited by this simple scheme whenf is a linear function,
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but as we shall see later, it can be incorporated by makingf a saturating
function of the stimulus level.

Experimental results on the dynamics of cellular suspensions provide
data for further tests of any model. Suspension experiments differ from
perfusion experiments because the extracellular cAMP concentrations are
not clamped, and thus self-stimulation of the cells can occur. One can
predict on theoretical grounds that such a positive feedback loop may
produce oscillations if coupled with a mechanism that terminates the re-
sponse. If cyclic AMP is added to the suspension at a sufficiently high
rate the oscillations are suppressed completely. This is consistent with
the observations of Devreoteset al. 7{9 discussed previously, since the
two experimental configurations are essentially the same in this case.

3.1 A comparison of existing models

Twenty years ago models of relay and oscillations in Dd were highly
speculative because little data on the molecular interactions that govern
oscillatory signaling were available. One of the earliest models108 was
based on positive feedback of the products of the enzymes adenylyl cy-
clase (cAMP) and ATP-pyrophosphohydrolase (5’AMP) on ATP degra-
dation and cAMP synthesis, respectively. The model also included PDE
and could generate periodic oscillations of cAMP synthesis with a period
of 3-5 minutes. However in this model there was no role for extracel-
lular cAMP; the oscillations were generated through interactions of the
intracellular components. Thus this model could not display adaptation
or other necessary features, and it was replaced by a model based on
receptor-mediated positive feedback of cAMP on adenylyl cyclase acti-
vation109,110. In both models ATP depletion by cAMP production was
required to sustain oscillatory behavior, but it is known that the produc-
tion of nanomolar cAMP pulses has little effect on the millimolar ATP
concentrations, that are produced by respiration, and thus these models
are no longer viable. A more abstract two-component model which di-
rectly incorporates adaptation of cAMP production by making the rate
of synthesis proportional to rate of change of extracellular cAMP, rather
than to the level of extracellular cAMP itself, was formulated at about
the same time111. Though it is far removed from the biochemistry as it is
now known, this model is capable of reproducing several key aspects of
Dd behavior.
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Several second generation models were based on the observations by
Devreotes and coworkers that the kinetics of adenylyl cyclase adaptation
and deadaptation correlated well with those of cAR1 phosphorylation and
dephosphorylation. As noted earlier, Knoxet al. 15 formulated a model
for adaptation (called the K-model hereafter) that was based on the as-
sumption that in the presence of ligand, receptors can exist in four inter-
convertible states, each of which contributes with a certain weight to a
downstream activity (cf Figure 4). Thus the ‘physiological’ response is
given by

R =

4X
i=1

aiui

where as before,ui is the fraction in theith state. If an intracellular
effector binds to each form of the receptor and the total amount of effec-
tor is constant, then the weightai is taken to be the affinity constant of
the ith receptor state for the effector. Thus this model assumes that the
binding of effector occurs according to Figure 11. For Dd, theRD and
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Figure 11. A minimal network associated with the K model.

RDL forms represent the phoshorylated states of the receptor. The vari-
ous rate constants for the interconversions and the dissociation constants
of theRD andR forms were experimentally determined80,89 and used to
calculate the weight factors, which were treated as association constants
of the receptor with adenylyl cyclase. When simulated numerically, the
model could generate activity in response to a change in extracellular
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cAMP and adapt on an appropriate time scale. However, the assump-
tion that the weights are simply theKDs for binding to the enzyme is a
serious limitation; it is based on the assumption that the various forms
of the receptor do not bind ligand when bound to effector, or in other
words, that there are no horizontal transitions in the lower tier in Figure
11. Moreover, the analysis assumes implicitly that the various forms of
the effector-receptor complex do not bind to other intracellular compo-
nents, for otherwise these species are coupled to the intracellular species
and the analysis presented is no longer valid. While this assumption is ap-
propriate in the original context of ligand binding to membrane channels,
it is less appropriate in the context of Dd ligand binding.

To formulate a model for oscillatory signaling, Barchilon and Segel112

embedded the model for adaptation by receptor modification into the
Goldbeter-Segel109 model described above. Oscillations and signal re-
lay could be generated, but only by using parameter values that deviated
substantially from the experimentally-determined values80. Martiel and
Goldbeter113 used a modification of the K-model, and assumed that only
theRL form can activate adenylyl cyclase. Since some form of positive
cooperativity was required to generate oscillatory behavior, they further
assumed that only a dimerized form ofRL, in which twoRL units first
associate, could activate the enzyme. Intra- and extracellular PDE ac-
tivity and cAMP secretion were also incorporated in the form used in
the Goldbeter-Segel model. This model (hereafter referred to as the MG
model) successfully simulates certain aspects of relay and oscillatory be-
havior of cells in a semi-quantitative fashion. While it can be tuned to
predict the response to a single stimulus, it does not correctly reproduce
the response to a sequence of step increases such as are used in the per-
fusion experiments114. Moreover, in contrast to experimental data7, both
the MG and K model show incomplete adaptation at low stimulus con-
centrations (see also92). However, these deficiencies might have been
remedied and considering the fact that receptor modification was gener-
ally accepted as the cause of adaptation, the MG model was until recently
widely used as the framework for models on aggregation behavior and
slug morphogenesis115{117. However, in view of the experimental evi-
dence discussed above the MG model is no longer valid for several rea-
sons, the major ones being: (i.) receptor modification by phosphorylation
is not essential for adaptation, and (ii.) adaptation of adenylyl cyclase oc-
curs at the level of production of free�
’s and not at the level of receptor
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activation. Thus it is certainly necessary to incorporate G-proteins into
any model that is to be biochemically-realistic.

At about the same time as the box adaptation models were proposed,
Monk, Rapp and Othmer118,4 formulated a model for adaptation that was
based on inhibition of adenylyl cyclase by the cAMP induced Ca2+ influx
and Ca2+ mobilization from internal stores. This model, as modified in
Monk and Othmer119, could reproduce full adaptation over a wide con-
centration range as well as repeated responses to a stepwise increase in
stimulus concentration. Earlier data suggested that Ca2+ inhibits cAMP
relay in Dd, and Ca2+ inhibition of mammalian adenylyl cyclases is well
documented. However, recent experiments show no direct inhibitory ef-
fects of Ca2+ on Dd adenylyl cyclase120 .

Caffeine inhibits cAMP-induced activation of Dd adenylyl cyclase and
decreases the excitability of the cells121. To study whether cAMP produc-
tion by adenylyl cyclase could be responsible for adaptation, cells were
pretreated with caffeine, while being exposed to a first stimulus and then
challenged with a second stimulus in the absence of caffeine. Despite the
fact that no cAMP was synthesized in response to the first stimulus, the
cells still adapted and could not respond to the second stimulus9. This
indicates that adaptation is independent of adenylyl cyclase activation.

Evidence for the involvement of G-proteins in signal transduction led
Tang and Othmer5 to propose a model based on G-proteins. This model,
which will be described in more detail later, involves two G-proteins: a
stimulatory one, Gs, whose� subunit activates the cyclase and an in-
hibitory one, Gi, that competitively interferes with the stimulatory path-
way to prevent activation of Gs. The TO model reproduces excitation
and adaptation kinetics and relay quantitatively correctly, but since the
competitive interference occurs at the level of the receptor, it cannot ex-
plain the recent observations on adenylyl cyclase regulation in cAR1 null
mutants. However, with some minor alterations the model can be turned
into a scheme that is consistent with the known biochemical steps. (i.)
Recent data indicate that cAR1 mediates both excitation and adaptation
of adenylyl cyclase47. This poses a problem for the TO model unless the
association of the receptors with the other membrane components alters
their affinity for Gs and/or Gi. Alternatively, if Rs and Ri are in fact the
same unit then there is no reason why the activated Gi would preferen-
tially bind to the receptor unless it is modified during ligand binding. The
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same cAR for Gs and Gi activation is possible if, instead, Gi interferes
with a process downstream of cAR. Since adaptation was shown to in-
terfere with generation of CRAC binding sites, this could be the site of
inhibition by Gi rather than at Rs. (ii.) It is assumed that the CRAC
binding sites are the free G2�
s62. Since activation of Gis will also yield
Gi�
s, one must therefore assume that these are different from the G2�
s
and cannot generate CRAC binding sites. This difference would have to
reside in the
 subunit or in some post-translational modification of�. In
Figure 12, we present the TO model and a modified form of the TO model
(SO), that is consistent with current data. Here cAR1 activates both G2

Figure 12. Models for regulation of adenylyl cyclase by stimulatory and in-
hibitory G-proteins. Occupancy of the stimulatory receptor Rs activates adenylyl
cyclase AC via the G� subunits of the G-protein G2. Binding of cAMP to the
inhibitory receptor produces an activated G-protein that interacts with Rs and
prevents its activation of G2. In the alternative SO model, Rs is the same species
as Ri, theGi� orGi�
 terminates dissociation of G2.

and Gi and either the Gi� or Gi�
 inhibits the activity of the G2�
s. This
could for instance occur if either component of Gi would activate a GT-
Pase activating protein (GAP), that would act on G2 to accelerate GTP
hydrolysis and reassociation with G2�
. GAPs, though formerly associ-
ated with inactivation of monomeric G-proteins, were recently shown to
act on heterotrimeric G-proteins as well122. For Gi to inactivate dissoci-
ation of G2, we have to assume that formation of the LR*Gi complex is
slower than that of the LR*G2 complex. Alternatively one could assume
that the delay in Gi activation is the result of some form of cAR1 modi-
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fication with Gi only binding to the modified form. Not all components,
such as Ras-GEF, that are known to be involved in adenylyl cyclase acti-
vation are incorporated in this scheme. This would be very difficult since
we do not know the function of these components in adenylyl cyclase ac-
tivation. Since Ras-GEF seem to be required for the formation of CRAC
binding sites, it could also be a putative target for Gi.

Ultimately the correct model can only be formulated after a complete
elucidation of all the components of AC regulation and their dynamic
interactions. The MG model, the RMO and MO models, and the TO
models for oscillations in suspensions have been used as frameworks to
model generation of cAMP waves in aggregation fields and slugs, and
with incorporation of cell movement to model the processes of aggrega-
tion and slug morphogenesis. As described above, none of these models
has the correct molecular background and it may yet take a while before
all molecular interactions involved in adenylyl cyclase regulation are elu-
cidated. Should work on oscillatory behavior be arrested until this distant
goal is achieved? We think not. Wave propagation and cell aggregation
reflect the behavior of the system at the supra-cellular level. Provided that
the model faithfully reproduces the input-output behavior of the cells, it
is at this level for most purposes not essential to know how that behavior
is exactly produced.

3.2 Relay and oscillations in a toy model

It is often difficult, even in relatively simple models, to understand
quantitatively how properties such as adaption arise in a model, and how
changing the balance between different processes changes the dynamics.
Therefore, before discussing a realistic model for adaptation and relay in
Dd, we analyze a toy model that contains some of the essential features
but is still very easy to understand. Consider the equations (6) for adap-
tive behavior given earlier, but modified so as to shift the basal level of
u1:

du1
d�

= (f(S(�))� (u1 + u2) + 10)=�e
(8)

du2
d�

= (f(S(�))� u2)=�a:

Given a suitable choice forf(�), theu1 component shows adaptive behav-
ior analogous to that of cAMPi in Dd. Letuo stand for the cAMPo: then
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a suitable choice for the transduction functionf is

f(S(�)) =
auo

a1 + uo
:

One interpretation of this form is that the intracellular signal is propor-
tional to the fraction of cAR1 receptors occupied with cAMP.

In order to use this system to gain insight into suspensions, we have
to add an equation for the evolution of cAMPo. This equation should
describe the changes in cAMPo due to secretion and to degradation by
membrane-bound phosphodiesterase (mPDE) and extracellular phospho-
diesterase (ePDE), and we do this as follows.

duo
d�

= (a2u1 � a3uo
a4 + uo

� a5u
2
o)=�c (9)

The first term represents the change in cAMPo due to secretion, while the
last two describe degradation.

For a suitable choice of the parameters these three equations can mimic
both the perfusion and suspension experiments for Dd. In Figure 13(a)
we show the adaptive response of (8) to a step change inuo, while in
Figure 13(b) we show that the three-dimensional system consisting of
(8) and (9) can be made oscillatory with a suitable choice ofa3. If the
strength of the feedback loop is decreased sufficiently by increasing either
a3 or a5 sufficiently, the system has a stable steady state and no periodic
oscillations. Thus this simple system displays the essential characteristics
of the relay and suspension behavior in Dd. Next we describe some of
the behavior of the Dd model.

3.3 Relay and oscillations in the TO model

At present the TO model reproduces the input-output behavior of cells
most accurately and is closest to a biochemically-correct model, and
therefore we shall use it in our discussion of relay, oscillations, wave
propagation and cell aggregation. The main steps in the signal trans-
duction and cAMP production components of this model are shown in
Figure 14. In the model there are three major pathways in the trans-
duction of and adaptation to an extracellular cAMP signal (L) in per-
fusion experiments. In the stimulus pathway, cAMP binds to receptors
Rs, and the complexLRs catalyzes the activation of the stimulatory G-
protein G0s. This in turn binds with the inactive form of adenylyl cy-
clase (UC) and produces the activated form of adenylyl cyclase (G0

sAC).
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Figure 13. (a) The step response of (8). We impose a step change inuo from 0
to 0.5 beginning at t=1. Parameter values:a = 30:; a1 = 1:; �e = 0:05; �a = 0:5
In (b) we use the same parameters and in addition seta2 = 0:6; a3 = 10:; a4 =
0:6; a5 = 0:05; �c = 0:25.

A GTP-ase activity intrinsic to the� subunit of the G-protein termi-
nates the activation. In the inhibitory pathway, an inhibitory G-protein
G0
i is produced by analogous steps. However, the symmetry between

the pathways is broken at this point, because G0
i binds withLRs, and

in this bound formLRs cannot activate Gs. Finally in the pathway for
the production and secretion of cAMP, the activated adenylyl cyclase
(G0

sAC) catalyzes the turnover of ATP to intracellular cAMP (cAMPi).
cAMPi in turn is hydrolyzed by intracellular phosphodiesterase (iPDE)
or is secreted into the extracellular medium(cAMP �

o ). Here the ‘�’ on
cAMP �

o is to distinguish the secreted cAMP from the stimulatory cAMP
in the perfusion solution, which is denoted byL. The biochemical re-
actions as well as kinetic parameters involved are given in Figure 14.
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(i) The Stimulus Pathway
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Figure 14. The kinetic steps in the Tang-Othmer model

These steps are applicable in the context of perfusion experiments; addi-
tional steps must be added to account for cAMP degradation in the extra-
cellular medium in the context of suspension experiments. The interested
reader is referred to the original papers for details5,123.

If it was necessary to retain differential equations for all species in this
scheme there would be a very large number of equations and it would
be difficult to obtain qualitative insights into the system. Fortunately
however, parameter estimates show that some steps are fast compared
to others. As a result, one can reduce the governing equations for well-
mixed suspensions to five primary variables, which are shown in Figure
15, using the mathematical technique of singular perturbations (which is
related to the pseudo-steady-state hypothesis (PSSH) for fast reactions)
. Details of how this reduction is done can be found in the original pa-
pers, where the reduction was done in two steps, first to eight variables5
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and then to five123. In the reduced scheme shown in Figure 15 there are
four internal variables, compared with the minimal number of two as dis-
cussed earlier. For perfusion experiments the extracellular cAMP is a
specified function of time and the system reduces to four equations. The
components of primary interest in the following equations are the intra-
and extracellular cAMP, whose concentrations are denoted byCi andCo,
respectively. The variableswi, i = 1,2,3 represent intermediate species in
the signal transduction pathway, as shown in Figure 15. In the follow-
ing equations Greek letters and lower casec’s represent constants. The
definitions of the following parameters differ from those used earlier123:
L5 = (l�5 + l�5)=(l5[ATP ]), �5 = 
5=(1 + L5) = 2:4, L7 = l1=(l�1 + l2)
and�7 = 1 + L7 = 1:091; the remaining parameter values are the same
as those in Tang and Othmer123. Many of the parameters in this model
can be obtained from the literature, but the remainder must be estimated.
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s ACG
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cAMP
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LR s G
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Figure 15. The reduced network for the five primary variables in the TO scheme.
The symbolsCi , Co andwi i = 1,2,3 beside a species corresponds to the symbol
used in the equations at (10).

dw1
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= �4u2(1� w1)� w1

dw2
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To illustrate the interpretation of terms in these equations, consider the
fourth equation, that for the change in cAMPi. The first term represents
the production of cAMPi via the activated cyclase, the second term rep-
resents the basal production of cAMPi, and the third term represents the
rate at which cAMPi is secreted. As a result of applying the PSSH, some
rapidly-varying variables are related to others via algebraic equations.
Most are eliminated completely, but it is convenient to retain some of
these quantities for the purpose of explaining how the system functions.
They are the fraction of Rs bound, the amount of activated Gs, and the
fraction of Ri bound, which in dimensionless form are given by

u1 =
�0Co + (�5 � �0Co)w3
�1 + �0Co + �4w2

u2 =
�2�3c1u1(1� w1)

1 + �4 + �2�3c1u1 � �4w1

u4 =
�0Co

�1 + �0Co
:

A qualitative description of how this system responds to stimuli is as
follows. Suppose first that cAMPo is clamped, and that the system is
adapted to a given level of cAMPo. A change in cAMPo is reflected in
the stimulatory (inhibitory) pathway via a change in the term�oCo (�oCo)
that appears in the fractionu1 (u4) of stimulatory (inhibitory) receptors
bound with ligand. On the stimulatory side, this input is immediately re-
flected in a change inu2 (G0

s) because the activation is fast. This increases
the amount of activated cyclase (w1), and this in turn produces more
cAMPi and the relay response. Simultaneously, but on a slightly slower
time scale, the inhibitory pathway activates the inhibitory G-proteinGi ,
which competitively interferes with the production ofG0

s, and hence the
activation of the cyclase. This interference then leads to adaptation in the
model, and the combination of relay and adaptation qualitatively explains
the response in the context of perfusion experiments. When cAMPo

is not clamped a positive feedback loop is created via the secretion of
cAMPi. Depending on how it is tuned, this feedback system leads either
to amplification of a pulse of cAMPo or to sustained oscillations. Using
experimentally-determined parameters where possible, and estimates for
the remaining parameters, this system predicts a time course of cAMP
levels and secretion rates that agrees both qualitatively and quantitatively
with experimentally-observed results in perfusion and suspension exper-
iments.
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In Figure 1 we show the response to a single step change and to a
four-step increase in cAMPo in a simulated perfusion experiment, using
the TO model123. The response shown there is based on experimental
parameters where they are known, and one sees that the system does not
adapt fully at large stimuli. However this can be corrected by a simple
modification of the dynamics. In Figure 16 we show the response when
the speed of the inhibitory channel is reduced by a factor of 10 and the
sensitivity to cAMPo, as reflected in�o and�o, is reduced. One sees there
that adaptation is very good at all stimulus levels, both for cAMPi and the
secretion rate. Clearly the relative peak heights change as compared with
Figure 1, but the results shown are still well within the experimentally-
observed range. In any case, the cAMP and secretion responses peak at
about 1 min after stimulation, which is as observed experimentally124.

Figure 16. The cAMPi (a) and secretion rate (b) predicted by the TO model when
the dynamics are modified as described in the text. The total secretion over 20
minutes for the rate shown in (b) is1:42 � 107 molecules.

To understand how the dynamics may vary with the developmental
stage of the cell, we note that there are several parameters which are
known to vary with the developmental stage (cf. section 2). Follow-
ing starvation the sensitivity to cAMPo increases, and in the model this
is reflected by an increase in the parameter
2

123. Three qualitatively-
distinct types of dynamics have been found in numerical simulations of
suspensions for different values of
2. When
2 is small the system is
not excitable, as judged by the amplification of a cAMP pulse. As
2
increases the cells become excitable and hence relay competent. Finally
a stable oscillation arises when
2 exceeds a critical value, and the sta-
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ble oscillatory response persists over a wide range of
2. This behavior
matches the experimentally-observed stages of Dd cells.

For a fixed
2, the intensity of the response to a stimulus is determined
by the strength and duration of that stimulus,i.e., the response is graded.
In Figure 17 we show the responses for fixed
2 = 0:175 and differ-
ent concentrations in the stimulus. At stimulus levels of0:001�M/min,
0:005�M/min, 0:01�M/min, and0:1�M /min, the corresponding maxi-
mum extracellular cAMP levels reached are0:09�M, 0:38�M, 0:62�M,
and1:09�M. From this we see that although this system is excitable in the
usual sense, the threshold for cAMP stimuli is not sharp; as the intensity
of the stimulus increases the secretion rate and hence the extracellular
cAMP increases in a graded manner. This happens in other systems as
well. For instance, in cardiac myocytes calcium stimuli open RyR chan-
nels in the sarcoplasmic reticulum membrane. While they are open, these
channels release stored calcium into the cytoplasm, which increases in a
graded manner in response to stimuli125,11.

Figure 17. Graded responses of extracellular cAMP for different levels of the
cAMP stimulus. Square wave stimuli of extracellular cAMP of four different
amplitudes are applied att = 2 min for 0:5 min duration. No clear threshold
exists for the system. The amplitudes of stimuli are0:001 (dashed line),0:005
(solid line)0:01 (dashed line), and0:1 (solid line).
2 = 0:175 in all cases.

As cells age the amount of adenylyl cyclase expressed increases, and
for sufficiently large
2 a suspension oscillates periodically, as is shown
in Figure 18(a). In this figure the time delay between a peak of the intra-
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cellular cAMP and the extracellular cAMP is about 0.5 minutes, which
agrees with the experimental results reported in126,127. The amplitudes
of the oscillations are in the same range as the experimental data, which
are shown in Figure 18(b). Of course the period of the oscillations varies

Figure 18. (a) Periodic oscillations in a numerical simulation of suspension ex-
periments for
2 = 0:4. Solid line: intracellular cAMP; dashed line: extracellular
cAMP. (b) Experimental measurements of intracellular(�) and extracellular(4)
cAMP concentration. Redrawn from Figure 2 of Gerisch and Wick126.

as the parameters in the model are changed, and in Figure 19 we show
this variation for two of the most important parameters, the excitability
(as measured by
2), and the density of the cells in suspension. One sees
in Figure 19(b) that the period decreases significantly at higher densities.
Although it has not been checked explicitly, similar density dependence
probably exists in aggregation fields as well.

3.4 Stochastic effects in signal detection

The preceding models all assume that the system is deterministic, but
certainly the number of cAMP molecules near a cell fluctuates, hence the
number of bound receptors and downstream components all fluctuate. In
this section we address the importance of fluctuations on the extracellular
side of the signal detection/transduction pathway.

For concreteness we represent a cell as a cylinder of radiusro = 5:5�
and 2� high, immersed in a fluid layer of that height. To determine
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Figure 19. (a) The dimensionless period of the oscillatory solutions as a function
of the excitability parameter
2. (b) The dependence of the period on the cell
density for a fixed
2 = 0:3. Filled circles denote stable solutions and open circles
denote unstable solutions. To convert dimensionless time to minutes divide by
3.75

whether fluctuations in the number of cAMP molecules are significant
we have to decide what an appropriate sampling volume is for a cell.
For instance, if we assume that a cell samples a distancero from its lat-
eral surface then the volume sampled is570�3 and at a concentration of
10�10M there are only 34 molecules in this volume. Is this a realistic
sampling volume? This depends on how quickly a receptor can ‘process’
a molecule it binds. For a cAR1 receptor the off rate is� 0:45 sec�1 77,
and therefore the mean lifetime of the bound state is� 2 sec. A molecule
that begins a random walk in the cylindrical shell betweenro andr1 has
a mean lifetime in that shell that is determined byr1, and a better esti-
mate of the sampling volume is to chooser1 so that the mean lifetime in
the shell is equal to the mean lifetime of the bound receptor. This choice
means that on average a molecule remains in the shell long enough so
that the receptor will be free at least once during the molecule’s sojourn
through the shell. How do we computer1?

In their paper on the physics of signal detection by cells, Berg and
Purcell128 do essentially this problem, and one finds that the ratio� � r1

ro
satisfies the equation

8D�B
r2o

+ 3 = 4
ln �

�2 � 1
+ �2 (11)

whereD is the diffusion coefficient of cAMP and�B is the lifetime of
the bound receptor�. If we assume that�B = 2 sec,D = 10�6cm2=sec

�When rearranged, this expression gives the mean lifetime of a particle in the cylindrical
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(a conservative estimate) andro = 5:5�, then we find that the solution of
(11) is

� � 7:5

i.e. r1 � 7:5 ro. Thus the sampling volume is about 55 times the vol-
ume of the cell. At a cAMP concentration of10�10M there are� 620
molecules in this volume, while at10�6M there are� 6� 106 molecules
in this volume.

How important are the fluctuations in the number of cAMP molecules
and the number of bound receptors? The binding step is

cAMP +R
k1*)
k�1

cAMP �R (12)

and it is estimated that there are between5 � 104 and1 � 105 recep-
tors per cell79. Suppose we assume there are105 receptors. Then at the
lowest concentration there are about 160 receptors per molecule in the
sampling volume, while at10�6M there are 10 cAMP molecules per re-
ceptor. In the former case one can treat the number of unbound receptors
as a constant, since at most about1% are bound, while in the latter case
the number of free cAMP molecules can be treated as a constant.

These two extremes allow for a simplified treatment of the birth-death
process defined by the binding reaction (12), in that eitherR or cAMP
can be considered constant, thereby reducing the second-order stochastic
process to a first-order processy. Suppose thatR is large compared to
cAMP; then the steady state probability that a cAMP molecule is bound
is given by

pc =
k1R0

k�1 + k1R0

whereR0 is the total number of receptors, and thus the probability that a

shell betweenro andr1, assuming that there is no flux at the inner boundary, zero concen-
tration at the outer boundary, and a uniform concentration in the vertical direction. In effect,
the boundary condition at the outer cylinder means that any particle that hits this boundary
is lost forever.

yThe measured on-rate for cAMP binding,� 7:5�10
6 /M-sec77 , is one to two orders of

magnitude below the rate expected for a diffusion-limited reaction129 . Thus the controlling
rate step is the binding of cAMP to cAR1.
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receptor is bound is given by

pr =
k1N0

k�1 + k1R0

:

whereN0 is the total number of cAMP molecules. If we assume that the
receptors are independent, then the number of cAMP molecules bound,
and hence the number of receptors occupied is binomially distributed
with mean� = N0pc and variance�2 = N0pc(1 � pc). Therefore the
coefficient of variation is

p
�2

�
=

1p
N0

(1� pc)

pc
:

WhenN0 � 600 the fluctuations may be significant, but they are certainly
insignificant whenN0 = 106. If the binding is strong enough they may
even be insignificant at10�10M . The intermediate cases, in which the
concentration of receptors and free cAMP molecules are comparable, and
which are the most important, requires a more detailed analysis that has
not yet been done. Nonequilibrium effects and the effects of diffusion
limitations are discussed by several authors130{132.

4 Microscopic and macroscopic aspects of Dd aggregation

Aggregation following starvation begins when individual cells or groups
of cells begin to release cAMP periodically. Nearby cells sense this sig-
nal and respond to it either by moving toward the source of the signal,
or by both relaying the signal and moving toward its source, depend-
ing on whether they are only competent for chemotaxis or competent
for both relay and chemotaxis. If relay-competent Dd cells are spread
over an agar surface, two-dimensional waves of extracellular and intra-
cellular cAMP can be observed133{135. The waves of extracellular cAMP
travel across the field in the form of either target patterns (expanding
concentric waves), or spiral waves with rotating cores. Different types
of interacting wave patterns, such as interacting target patterns and co-
existing spiral waves of the same or of the opposite rotation, are found
experimentally. Several examples of this are shown in Figure 20. The
extracellular cAMP wave rises from a level of less than� 0:001 �M
to a peak value of0:1 � 1 �M in a medium with a cell density of106

cells � cm�2. In either a spiral wave or a concentric wave, the distance
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Figure 20. Examples of the wave patterns observed during the aggregation of
Dd. In (a) the light bands represent cells that are moving while the dark bands
represent stationary cells. From Newell134 (with permission). (b) From Siegert
and Weijer121(with permission).

between two traveling fronts is1 � 4mm. The speed of these waves is
� 300�600�m�min�1, and the time between two successive wave fronts
is 6-10 minutes133,136. The traveling cAMP waves serve as the chemo-
tactic signal to induce aggregation of the cells, which move toward the
center at about10� 15 �m=min 137{139.

Given an accurate description of the input-output behavior of individ-
ual cells, one can address a number of questions concerning signal prop-
agation and cell movement in aggregation. Several that will be discussed
here are as follows.

1. Can individual cells be pacemakers and initiate traveling waves un-
der normal conditions of early aggregation, or is it necessary for
two or more cells to come into close proximity in order to initiate a
wave?

2. What determines whether the traveling waves of cAMPo are ax-
isymmetric target patterns or spiral waves?
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3. What are the details of the signal seen by a cell (front-to-back
cAMP ratio, etc), how do cells orient themselves in a traveling
wave, and how do they solve the ‘back-of-the-wave’ problem? Do
cells measure spatial gradients, temporal gradients, both, or neither
in determining how to move?

4. How accurately must cells determine the optimal direction of move-
ment, or said otherwise, how sloppy can they be in the choice of
direction and still aggregate effectively?

5. How should the rules for individual movement, primarily the choice
of direction and speed of movement, be incorporated in a contin-
uum description of aggregation?

We begin with the first of these in the following section.

4.1 Pacemakers in aggregation fields

One aspect of understanding aggregation concerns the origin of the
pacemaker sites in aggregation fields. The proportion of cells that can
signal autonomously saturates at a small fraction of the total popula-
tion about 21 hours after starvation begins27. In wild type populations it
has been estimated that 0.01% to 0.1% of a population becomes a pace-
maker27, and whether or not a cell becomes a pacemaker may depend
on its position in the cell cycle when starvation begins140. At present it
is not known whether the pacemakers consist of single cells or whether
it is necessary that small clumps of cells form before pacemaker activ-
ity can begin. From a theoretical standpoint the question is whether a
model predicts that a single cell in the plane can generate periodic waves
of cyclic AMP. Whether or not this is possible depends on the relative
importance of degradation by extracellular phosphodiesterase, diffusion
from the cell, and the rate of secretion of cyclic AMP. One expects that if
diffusion and extracellular degradation are very slow the cell will simply
adapt to the level of cyclic AMP at the cell surface and it will not generate
waves. At the other extreme, if extracellular degradation and diffusion are
rapid the level of extracellular cyclic AMP can be maintained uniformly
low, and again one expects no periodic release of cAMP. However, if the
combined effect of extracellular degradation and diffusion is moderate,
there may be sufficient self-stimulation, followed by adaptation and de-
cay of extracellular cyclic AMP, to lead to periodic emission of waves.
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In DeYounget al.141 it is shown, using the MO model for the intracel-
lular dynamics, that a single cell can serve as a pacemaker in the sense
that it releases cAMP periodically. Since this model provides a good de-
scription of the input-output behavior of cells, and since the question of
whether a single cell oscillates relies only on this and not on the details
of the intracellular dynamics, one expects that in reality a single cell in a
low-density aggregation field can release cAMP periodically, but this has
not been established experimentally.

This theoretical prediction shows that a single cell can function as a
pacemaker in the sense that it attracts cells within the chemotactic range,
irrespective of whether those cells relay the signal, but it does not prove
that a single cell can elicit the traveling waves that characterize long-
range signaling. For the latter it is necessary that both the frequency and
the amplitude of the periodic stimulus lie in the correct range. Thus we
must digress briefly to review some of the experimental results concern-
ing relay in aggregation fields. Firstly, assuming that each cyclic AMP
signal from the pacemaker initiates a traveling target pattern wave, the
period of the pacemaker should be the same as the period for target pat-
terns close to the center. Alcantara and Monk142 report periods of 3-10
minutes, and these periods are also consistent with observations of spi-
ral waves reported in133. The results given in DeYounget al.141 show
that the period predicted by the model is in the range of 5 - 10 minutes,
except near the onset of oscillations, which agrees well with the obser-
vations. Secondly, it is observed that below a certain critical density in
the range of� 2:5� 4� 104 cells/cm2 143,144 there is no long range sig-
naling and the aggregation field decomposes into many small territories.
Thus there is a maximum cell-cell separation above which signal relay
cannot occur. From critical density measurements Gingle143 and Cohen
and Robertson145 estimate this distance to be about 75�. Alcantara and
Monk report a somewhat smaller distance of 57� on the basis of time
lapse photography.

The existence of an upper limit to the spacing for relay stems from the
fact that when the cAMP concentration at the cell surface is too low the
cell will not produce a sufficiently large pulse of cyclic AMP. This effect
is also predicted by either the MO or the TO model, which for the latter is
shown in Figure 17. Assuming that a cell relays once the signal exceeds
a certain magnitude, regardless of the time above threshold, Gingle143

estimates that the ratio of the critical concentration for relay to the total
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amount of cyclic AMP emitted by a cell in a relay burst is between 0.9 and
1.9�105 cm�3. Using the estimate that a single cell emits107 molecules
during relay146, we obtain an estimate for the critical concentration of
approximately3� 10�9 M.

A more direct measurement of sensitivity to external stimuli is pro-
vided by the perfusion experiments of Devreotes, et al.8 where a small
but measurable secretion response is obtained with a stimulus as low as
10�10 M cyclic AMP, although a half maximal relay response is not ob-
served until the stimulating concentration is about5� 10�8 M. These ex-
periments are designed to minimize the influence of free and membrane
bound phosphodiesterase, so Devreotes, et al.’s results can be interpreted
as showing that a signal of at least a10�10 M is needed at the cell surface
for relay. In aggregation fields membrane-bound phosphodiesterase de-
grades the signal and greatly alters the external cyclic AMP profile close
to the cell147, and for this reason we cannot use Devreotes’ results as a
direct measure of the critical average concentration for relay in aggrega-
tion.

Another unknown aspect of the stimulus-response coupling is the mag-
nitude-duration relationship for threshold signals. Devreotes and Steck8

report that the maximal relay response occurs about 1-2 minutes after
stimulus, which provides an upper limit to the time a stimulus must be
held in order to provoke a full response. Alcantara and Monk142 report a
delay of about 12 seconds between the stimulation of a cell by a wave and
the onset of the relay response, while Cohen and Robertson145 estimate
that the delay is approximately 15 seconds.

In Figure 21(a) the maximum concentration of extracellular cyclic AMP
during one period is shown as a function of the distance from the cell
center for various values of ePDE, the diffusible form of the extracellu-
lar PDE. These curves are obtained using the MO model, in which the
parameterVPE is a measure of the ePDE activity, the nominal value of
which is 5000. In the figure we see that the maximum concentration ex-
ceeds10�9M up to a distance of 50� for all values of ePDE shown, and
exceeds this level as far as 75� if VPE � 30000. In Figure 21(b) we show
the temporal profiles of the cyclic AMP concentration60� from the cell
center for several values of the ePDE concentration. From this figure one
can estimate the signal duration above a fixed level for different values of
VPE and the distance from the cell. For instance, the cyclic AMP concen-

220



tration at60� from the cell exceeds10�10M for 30 seconds for all values
of VPE shown. According to our discussion in the previous paragraph,
the concentrations at75� are at the low end of the range of concentra-
tions that will induce relay, but at60� they are significantly higher. Thus
the predicted signaling range of a single cell is approximately60� 75�,
which is in the experimentally-observed range.
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Figure 21. (a) The maximum concentration as a function of distance for different
activity levels of ePDE. The curves are for 1, 3, 6, 9 and 12 times the nominal
ePDE activity. (b) The concentration as a function of time 60� from the cell
surface for the nominal value of ePDE activity (solid line), six times the nominal
value (dashed line), and twelve times the nominal value (chain line). (Modified
from DeYounget al.141.)

In summary we can say that the MO model (and undoubtedly others)
predicts that a single cell can induce relay signaling in fields of relay com-
petent cells. Moreover, the signaling range and period of the single cell
pacemaker are in good agreement with experimental observations. This
prediction is consistent with the results of Glazer and Newell144, who
found that fields of non-relaying cells could be induced to form small ag-
gregates by seeding the fields with wild type cells. Glazer and Newell
estimate that as many as one in five wild-type cells can serve as aggrega-
tion centers, but of course they could not test whether single cells induce
long-range relaying.
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4.2 Traveling waves in the absence of cell motion

4.3 Cell-basedvscontinuum models

Earlier models ofDd aggregation fields can be grouped into two major
categories: those that treat the cells as discrete units and those which use a
continuum description for the cell density. Although both types of models
have given some insight into the aggregation process, they all have limita-
tions which preclude a detailed analysis of the questions we raised earlier.
The models developed by Parnas and Segel148, MacKay149 and Vasieva
et al.150 fall into the first category. The first two of these are similar in
that in each the cells are treated as black boxes, which when stimulated,
output a fixed amount of cAMP. No description of signal transduction,
cAMP production, or adaptation is incorporated, but diffusion of cAMP
is taken into account. The model of Parnas and Segel is in one space
dimension and can only address the questions of how the cell decides
when to move and, in a very simplistic manner, which direction the cell
moves. MacKay’s model is two dimensional and can reproduce the ob-
served streaming patterns, the effect of two competing pacemakers and
can generate spiral waves. These models are a first step in the model-
ing process, but the rules are formal and not based on a mechanistic de-
scription of signal detection, transduction, cAMP production, and cAMP
secretion. In more recent modeling by Vasievaet al.150 the diffusion of
cAMP is not even incorporated; instead a cellular automaton model with
rules that determine which neighbors are activated is used . They are able
to reproduce streaming patterns and find self-sustaining sources of exci-
tation, but because the model is purely formal, little can be said about its
relevance toDd aggregation.

The models developed by Keller and Segel151, Nanjundiah152, Levine
and Reynolds153; Vasiev et al.154 and by Höfer et al.155 fall into the
second category. The Keller-Segal and Nanjundiah models use formal
kinetics since little was known about cAMP dynamics at the time they
were formulated. Keller and Segel propose that aggregation is the result
of a diffusive instability that develops in the aggregation field, but there
is clear experimental evidence that aggregation is initiated and controlled
by individual pacemaker cells or small groups of cells. In particular, their
analysis predicts that spatial inhomogeneities of the size of the entire field
grow most rapidly, and this is not observed. Instead, as we discussed
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above, the prevailing opinion is that aggregation results from randomly-
located pacemaker cells that arise during maturation of the cells. Nan-
jundiah uses a similar model to analyze the onset of streaming in aggre-
gation, a topic that will be discussed later. The Levine and Reynolds and
Höfer et al. models are based on a modified form of the MG model for
cAMP production and signaling, whereas Vasievaet al. use a modified
FitzHugh-Nagumo model for these processes. When the MG model is
used the parameters which describe the behavior in suspensions must be
changed by orders of magnitude to reproduce the observed waves156, but
there is no suggestion in the literature that such changes are realistic. The
FitzHugh-Nagumo model incorporates none of what is known about sig-
nal transduction and cAMP production inDd. Furthermore, since H¨ofer
et al.155 and Levine and Reynolds153 use continuum chemotaxis equa-
tions to describe cell motion, additional assumptions are needed to incor-
porate adaptation of the tactic component of the movement, as will be
discussed later.

The attraction of continuum models is that it is somewhat easier to ob-
tain analytical insights from continuum descriptions with simplified local
dynamics, and the computational algorithms needed to simulate the evo-
lution are relatively simple. In the following section we present some
results for waves in one and two space dimensions, using the TO model,
under the assumption that the cells are immobilized. Thus these results
apply very early in aggregation when cell movement is not yet signifi-
cant. Results from a model that incorporates cell motion and exhibits the
patterns of aggregation seen experimentally will be discussed later.

4.4 Traveling waves in one and two space dimensions

We consider both a one-dimensional and a two-dimensional spatial
domain, and in order to obtain a simple mathematical model, we make
the following assumptions.

� There are sufficient cells present in the medium so that the field can
be considered as a continuum and the cells represented by a con-
tinuous density function. In the absence of movement this density
function is constant throughout the domain.

� The concentrations ofePDE andmPDE are uniform in space and
time, and are also represented by a density function.
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� Extracellular cAMP is the only diffusible chemical in the system.

� The cell density� is constant and uniform throughout the domain;
the cells are supposed to be immobile.

Under these assumptions, the governing equation for cAMPo is

@Co
@�

= D�Co +
�

1� �

�
sr(Ci)� 
7Co

Co + 
6
� 
9Co
Co + 
8

�
(13)

whereD is the dimensionless diffusion coefficient for cAMP and� is the
Laplace operator, which reflects the diffusive transport, for the domain in
question. The dimensional diffusion coefficientDo has been measured
as 4.4-5.0� 10�6 cm2�s�1 157{159 in aqueous solution, but we will use
D = 2.5� 10�6 cm2� s�1 in our calculations since it is expected to be
lower in the presence of cells. The dimensionless diffusion coefficient is
defined asD � Do=k5L

2 whereL is a characteristic dimension of the
system. The remaining equations are the same ordinary differential equa-
tions as the first four equations given in (10), except that all the variables
are functions of both timet and spacex. We will use a homogeneous
Neumann (no-flux) boundary condition in all simulations, which corre-
sponds to cells spread on an agar surface embedded in a Petri dish.

The density of cells is typically around105 cells�cm�2 in wave prop-
agation experiments. The lower limit of the density for propagation is
� 2:5 � 104 cells �cm�2, and the largest density used is� 106 cells �
cm�2 133,142. If one uses the conversion procedure given in Monk and
Othmer114, this gives a range for the dimensionless density� of 0:031 to
1:25. A value for� higher than1 simply means that more than one layer
of cells is present on average, and depends of course on the assumptions
made in the conversion. The standard value we use in the following sim-
ulations is� = 0:14, or 1:12 � 105 cells cm�2, except where otherwise
noted.

First consider a circular disk of radius 1 cm, which we denote [0,1]
in dimensionless form. As we saw in the context of suspensions, the
parameters
2 and� have a significant affect on the dynamics, and the
same can be expected in aggregation fields. In the results discussed below
we choose the parameters as in the standard TO model123, except for
2,
which is specified as follows. In the disk of radius [0,.05] we set
2 = 0:4
to make cells there pacemakers, were they to be placed in a suspension
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at the same density. In the annulus of radius between 0.10 and 1.0 we
set
2 so as to make the cells there excitable, and we then interpolate
between these regions with a cubic spline� Thus the pacemaker region
initiates waves periodically, and if the medium is sufficiently excitable
they propagate throughout the disk.

The wave speed as a function of the excitability, as reflected by
2,
is shown in Table 2 for two values of the diffusion coefficient. For
� �� 0:155 waves fail to propagate, and for� �� 0:177 the entire
medium is oscillatory. Alcantara and Monk142 report speeds in the range

Table 2. The wave speed as a function of
2 for two values of the cAMP
diffusion coefficient

Speed microns/min


2 D = 2:5� 10�6 D = 5:0� 10�6 Ratio

0.157 0 0 -

0.158 0 297 -

0.159 188 319 1.70

0.160 225 329 1.43

0.165 218 400 1.42

0.170 312 588 1.87

0.1725 329 615 1.87

0.175 338 625 1.85

of 200 � 400�m/min for the first wave through a medium and lower
speeds for later waves, while Siegert and Weijer report speeds in the
range300 � 600�m/min136. As the cells progress in development the
wave speed increases, and this is reflected in the model by the change in

2: as
2 increases, the system becomes more excitable and can support
more rapidly propagating waves. The values given in Table 2 reflect the
steady state wave speed for the given parameters, which is achieved after

�In the results in the following table we use a smooth variation of parameters to avoid
possible artifacts of discontinuities in relation to wave block.
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several waves have passed through the medium. In cases where prop-
agation fails, the medium may propagate a single wave and then block
succeeding waves. In the last column of the table we show the ratio of
the speed forD = 5:0� 10�6 cm2/sec to that atD = 2:5� 10�6 cm2/sec.

A scaling argument applied to the equation

@u

@t
= D�u� �f(u) (14)

shows that the quantity
p
D� is a characteristic speed, and as a result, one

may expect roughly square root dependence on the diffusion coefficient.
If the nonlinearity isf = (u�u1)(u�u2)(u�u3) (the so-called bistable
nonlinearity) the speed of a traveling front in one space dimension is
given by

c =

r
D�

2
(u1 + u3 � 2u2): (15)

One sees in the table that at intermediate values of
2 the speed follows
a ‘square-root ofD’ law, but at higher
 the speed increases almost in
proportion toD. The lower cutoff for propagation increases withD and
therefore the first ratio in the table is not meaningful in this regard.

The density of cells in the aggregation field also has a significant ef-
fect on the speed, as is shown in Figure 22. The lower limit for propa-
gation is� � 0:05, which corresponds to a cell density of about4 � 104

cells/cm2. This is higher than the lowest observed cutoff for propagation,
but agrees with Glazer and Newell’s observations144. This cutoff does not
depend significantly on the diffusion coefficient, nor does it change sig-
nificantly if the number of grid points used in the numerical computations
is doubled. An analysis of how the waves fail show that they propagate
for a short distance from the pacemaker, but then die out because relay
fails. A comparison of (14) and (13) would suggest that the speed varies
with the density as

p
�=(1� �), but this does not predict propagation

block at a finite density. Qualitatively a more appropriate dependence isp
�� �0, where�0 is the density at which waves are blocked. One also

sees that there is a maximum in the wave speed as a function of density at
� � 0:6, which is not predicted by the ‘square root of density’ dependence
of the speed. Such density dependence was observed by Alcantara and
Monk142, but the experimentally-observed maximum occurs at a lower
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density than in the model. Of course the speed at high densities may not
be physically realistic since the underlying model takes no account of
cell-cell interactions.
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Figure 22. (a) The wave speed as a function of the density for
2 = 0:175.
To convert the density to cells per cm2 multiply the numbers on the abcissa by
8� 105. (b) The dispersion curves for the TO model for
2 = 0:175 and different
densities. The curves shown are for� = 0.8, 0.4, 0.2, 0.14 and 0.1 from left to
right. The waves are stable on those portions of the curves on which the speed is
an increasing function of the period. The curves for� = 0:4 and� = 0:8 cross at
a speed of about500 microns/minute.

It is known that the period/speed characteristics of both the pacemaker-
initiated waves described here and the spiral waves to be discussed later
lie close to the dispersion curve for periodic traveling waves114 (cf Fig-
ure 22(b)), and thus some insight into the effect of density on wave prop-
agation is obtained by calculating these dispersion curves for different
densities. The dispersion curves are computed according to the procedure
described elsewhere160,114, and the results for five distinct densities are
shown in Figure 22(b). The range of periods of naturally-occurring pace-
makers is 3-10 minutes, and under the conditions used here the periods
are in the range of 4-8 minutes. One sees in that figure that a high density
field can propagate higher frequency waves than low density fields, and
are thus more likely to propagate every wave initiated by a pacemaker,
rather than gating the waves. In particular, one sees that at� = 0:8 a wave
speed of 300 microns/min corresponds to a temporal period of about 3.5
mins, whereas at a density of 0.1 the medium will not propagate a wave
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of that speed. It should also be noted that for a small interval of periods
there are two stable traveling waves for densities around� = 0:14.

In the previous discussion the traveling waves were stimulated by a
pacemaker, but in an excitable medium waves can be generated by a
steady source as well. In Figure 23 we show the extracellular cAMP
along a radius of the disk for two situations: one in which the central core
is a pacemaker and the other in which the central core secretes cAMP at
a high steady rate. In Figure 23(a) the disk of radius 0.05 is a pacemaker
and the remainder of the unit disk is excitable. The pacemaker region
generates an oscillation of maximum external cAMP� 1:0�M , and this
triggers a wave in the excitable region with a peak cAMP concentration
far from the center, averaged over the intra- and extracellular phases, of
� 0:34�M, which is in the range reported by Tomchik and Devreotes133

for spiral waves. At higher cell densities the amplitude of extracellular
cAMP increases significantly, just as in suspensions. If we increase
2
further so that the ‘pacemaker’ region is no longer oscillatory, but in-
stead releases cAMP at a high rate, then the steady source triggers waves
in the excitable region (Figure 23(b)). These results show that travel-

Figure 23. The extracellular cAMP concentration along a radius through an
outwardly-propagating target pattern. In (a) the central disk is a pacemaker and
the curves represent the wave at timet (solid line) andt + 2 (dashed line). The
wave has a temporal period of 6.62 minutes, a spatial period of 0.216 cm and a
speed of 325 microns/minute. In (b)
2 = 0:6 in the central disk, which leads to a
high, steady production of cAMP. Periodic waves are initiated at a radius of about
0.1, and have a temporal period of 7.8 minutes, a spatial period of 0.27 cm and
a speed of 346 microns/minute. The solid and dashed lines in (b) are the cAMP
concentration att andt + 2. The shape and duration of the extracellular waves
should be compared with that shown in Tomchik and Devreotes133.

ing waves can be elicited either by a an oscillatory pacemaker or by a
large time-independent input of cAMP. This coincides with observations
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by Durston161, who suggested that in later aggregation the center of an
aggregate emits cAMP at a high steady rate.

Another aspect of interest concerns the interaction of pacemakers of
different frequencies. In Figure 24(a) we show a contour plot of the
cAMP level lines in thex � t plane for a system in which a fast pace-
maker is turned on after a slow one has had sufficient time to organize
the entire field. In the figure there is a slow pacemaker at the five cen-
tral grid points of 200 total grid points. This pacemaker has parameters
�2 = 0:2; �5 = 0:1; 
2 = 0:4; 
6 = 1:16, and
9 = 9:17 and others stan-
dard, which gives a period of� 18:2 minutes. After 20 minutes a faster
pacemaker is turned on at the single grid point atx = 0:125. One sees
in Figure 24(a) that the faster pacemaker dominates in the interval [0,
0.5], but waves that emanate there rarely propagate through the slower
pacemaker. Atx = 0:75 (Figure 24(b)) the wave is very erratic, perhaps
chaotic. The pattern of interaction that results depends very heavily on
the strength of the slower pacemaker. For instance, if the slower pace-
maker occupies only one grid point at the center it will be completely
entrained by the faster pacemaker.

It is possible that the foregoing results on wave blocking are artifacts
that stem from the fact that the domain is one dimensional. One might
anticipate that in two space dimensions the fastest pacemaker dominates
far from other pacemakers, even though it may not suppress slower ones.
However, the situation can be more complicated, as is shown in Figure 25.
There we show three oscillating centers interacting in a1 cm x 1 cm
domain. The fastest pacemaker is centered around(0:5; 0:67) and has a
period of4:8min. The two slower pacemakers are centered at(0:33; 0:33)
(period = 11.6 min) and(0:33; 0:67) (period = 18.2 min), respectively.
The radii for all three pacemakers is0:05. One sees in panel (a) that
the slower pacemakers may or may not break the waves emanating from
the fastest pacemaker, depending on when they fire. The broken wave
shown in panel (b) begins to curl up and initiate a double spiral later,
but the next wave from the fast pacemaker kills the nascent spiral (not
shown). However, if the fast pacemaker were turned off at the appropriate
time, perhaps because of cell movement, the broken wave would form a
fully-developed spiral. Other mechanisms of spiral generation will be
discussed in a later section.
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Figure 24. Phase locking and gating of waves. There is a slow pacemaker of
period� 18:2 minutes at five grids points centered aroundx = 0:5. For the first
20 minutes this is the only pacemaker, but then a faster pacemaker (period� 7:2
minutes) situated at the single pointx = 0:125 is turned on. In (a) we show
the contours of extracellular cAMP in thex� t plane fort between100 and200
minutes. In (b) we show the extracellular cAMP concentration atx = 0:75, where
the local dynamics are excitable, for the entire time of the experiment. The first
three waves atx = 0:75 have the period of the central pacemaker, but thereafter
the pattern becomes erratic.
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Figure 25. Phase locking of pacemakers in two space dimensions. Waves from a
fast pacemaker located at(0:5; 0:67) interact with two slower pacemakers located
at (0:33; 0:33) and(0:33; 0:67), respectively (a) T = 11 mins. (b) T = 20 mins.

In Figure 26 we show a stable spiral wave computed on a 1.5 cm�
1.5 cm domain, using parameters which make the medium excitable but
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not oscillatory. In this figure there are no pacemakers in the system, and
the wave was initiated by using a broken plane wave for initial data in
a narrow strip extending halfway across the region, while setting the re-
mainder of the region to the rest state. The period of this spiral is approx-
imately 5.8 min and the wave speed is460�m/min far from the center,
which gives a spatial wave length of about 2.3 mm. The radius of the
core is�0.1 mm. These results are in the range of experimental results
obtained by Grosset al. 162, by Tomchik and Devreotes133, and Siegert
and Weijer136.

Figure 26. An example of a single spiral in a field of immobilized cells (from
Tang and Othmer123).

The spiral appears to move rigidly around a fixed point in the aggre-
gation field. At present there is no adequate theoretical framework for
predicting the period and geometry of such a rigidly rotating spiral, al-
though computational114 and experimental162 evidence indicates that the
period of a spiral is usually lower than that of target patterns in the same
medium. A linear theory, based on equations of the form

�
@u

@t
= �2D�u+ f(u; v)

@v

@t
= g(u; v)

whereu andv are scalar functions of time and space and� is a small
parameter, was proposed by Zykov163 and analyzed by a number of au-
thors164,165. In these studies,f andg are assumed to be such that the
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local dynamics are excitable, as in the Fitzhugh-Nagumo equations. The
aim of the theoretical analysis is to infer properties of spiral waves from
known properties of one dimensional waves, and in particular, from the
dispersion relation. Consider a contouru(x; t) = u whereu is fixed. At
each time this contour is a curveC(t) with a curvature denoted by�(x; t)
and a normal velocity denotedVn(x; t). The main prediction of the linear
theory is that, for bounded curvature the leading term in the expansion of
Vn in powers of� is

Vn = Vn + �D�: (16)

Far from the center of the spiral� ! 0 and thereforeVn ! Vn: How-
ever in this limit the wave motion is asymptotically planar and thus one
expectsVn to lie on the dispersion relation for one dimensional waves.
Unfortunately, there is at present no way of determiningVn a priori.

The relation (16) has been tested numerically for the MO model (the
details of how this is done can be found in the original paper114) and
some of the results are shown in Figure 27. In (d) the quantityVn =
Vn �D�, which is the normal velocity corrected for curvature (the factor
� is absorbed into the diffusion constant). When the linear theory holds
this line will be horizontal. Clearly the linear theory does hold for arc
lengths less than about 0.4 and for arc lengths greater than about 0.55.
That the linear theory does not hold around the center of the spiral is not
surprising, since the curvature is large there. Perhaps more surprising is
the fact that the linear approximation works well at the back of the wave
much closer to the center than on the front of the wave. Further work is
needed to clarify conditions under which the linear theory is applicable.

Another situation in which the curvature of the wavefront might play
an important role is when axisymmetric waves in two space dimensions
are initiated from a localized source. From (16) one sees that if this re-
lation for the normal velocity holds then a wave initiated at a stimulation
site may be blocked if the curvature is too large (i. e. if the radius of the
site is too small). The role of curvature in cAMP waves in Dd has been
studied experimentally by Foersteret al.135, who measured the normal
velocity of an outward propagating circular wave. Their data is re-plotted
in Figure 28, and if the straight line fit to it is extrapolated to zero nor-
mal velocity, it predicts a critical radius for block of about 185�. If
this extrapolation were valid then a single pacemaker, or even a group of
pacemakers lying in a disk of radius less than 185�, could not initiate a
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Figure 27. The curvature and normal velocity for the1 � 10�8M cyclic AMP
concentration contour of the spiral computed using the MO model114. In (a) we
show this contour in a 0.5cm� 0.5cm square of the aggregation field. The marks
� and the associated numbers indicate the arc length along the curve, which has
been normalized so that the total arc length of the curve is one. The normal
velocity (b) and curvature (c) of the contour as a function of arc length along the
contour. The small oscillations in this and (b) correlate with points at which the
contour is parallel to the finite difference grid. (d) The normal velocity corrected
for curvature via (16). From Monk and Othmer114.

wave. However, this contradicts both the earlier theoretical work and the
experimental observations, and shows again that further work on the role
of curvature in propagation is needed.
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Figure 28. A plot of the normal velocity as a function of the curvature for out-
ward propagating waves, using the data in Figure 4 of Foersteret al.135. The
x-intercept of a straight-line fit to this data predicts a critical radius of 185 mi-
crons. It is clear that a straight-line fit is inappropriate, even over the limited
range of the data, but at present higher-order terms in the expansion (16) that
could account for the deviation from a straight line have not been computed.

In addition to target patterns and single spirals, another wave pattern
commonly-observed experimentally is a pair of coexisting co- or counter-
rotating spiral waves (cf. Figure 20(b)). Such waves can be reproduced
with the foregoing model, either by the mechanism discussed earlier, or
by using appropriate initial data. However, it is not understood how the
various types of spirals are initiated in the laboratory. The large propor-
tion of spiral waves observed in experiments may be due to variations in
the parameters between cells and other inhomogeneities in the medium,
or to interaction between pacemakers (cf. Figure 25), rather than any
special initial conditions. The cell density may not be uniform, the de-
velopmental stage of cells may be different, the cell population may not
be homogeneous genetically, and of course the cells are mobile. Compu-
tations discussed later, in which the cells are allowed to aggregate, show
that it is possible to initiate spirals under those conditions, even when
cells are identical.

Various other mathematical models of the single cell dynamics have
been used for the purpose of simulating the observed 2-dimensional wave
patterns166,114,135,115. All can produce qualitatively correct results for
suitable parameter choices, and Monk and Othmer114 showed that if a
model represents the stimulus-response behavior of an individual cell cor-
rectly, then the wave patterns will also be reproduced.
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4.5 Cell motion and aggregation

Thus far we have discussed signal detection, transduction, relay and
wave propagation in aggregation fields of immobilized cells, but of course
some form of directed or non-random cell movement is essential for ag-
gregation. This leads to another aspect of signal detection and trans-
duction, which is whether, and if so how, cells can extract directional
information from an extracellular field. For instance, the motion of flag-
ellated bacteria such asE. coliconsists of a series of more-or-less straight
runs, punctuated by tumbles during which cells choose a new direction.
These bacteria move at a fixed speed, but they extend their run length
when moving up the gradient of an attractant. Since they are small they
probably cannot discriminate spatial differences in the concentration of
an attractant on the scale of a cell length, and they simply choose a new
direction more or less at random167,168. The propensity of a flagellum
to rotate clockwise or counterclockwise, and hence the probability of a
run or tumble, is biased by an intracellular signal whose level is deter-
mined by inputs from all receptors, and thus reflects an average signal
over the cell surface6. However, it is conceivable that larger cells such
as Dd are able to extract directional information from the extracellular
cAMP distribution. Since the cAMP distribution is a scalar field, di-
rectional information can only be obtained from this field byeffectively
taking measurements at two points in space, but how might this be done?

Signal detection and response for the purpose of movement control in-
volves the same general steps as shown in Figure 2, except for the last
step of signal relay. In the present context the internal response consists
of changes in the velocity of motion, which may involve both changes
in direction and in speed, and perhaps changes in the frequency at which
a cell makes a decision as to whether to change velocityy. We have al-
ready indicated thatE. coli alters the frequency of directional changes as
a function of the stimulus level, and later we discuss similar evidence for
Dd. For the present, a simple but quite accurate description of motion
is obtained if we ignore any random component of movement, neglect
acceleration, and assume that the velocity changes only at discrete points

yStrictly speaking, there is no unique velocity by which to characterize motion of a cell,
since it deforms as it moves and there is frequently significant relative motion of various
parts169 . However when cells translocate, as opposed to merely quivering in place, the
motion is usually described in terms of the motion of the centroid, and we follow this
convention.
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in time. Under these assumptions the trajectory of a cell comprises a
sequence of straight-line paths punctuated by turns or changes of speed.
Within this descriptive framework one can distinguish two major types
of responses to the cAMP field; those for which the response depends
only on the local scalar field, perhaps averaged over the cell surface, and
those that depend on local directional information. Any of the former is
classified as akinesisand any of the latter as ataxisz. According to this
classification, the bacterial response to a spatially nonuniform signal is a
chemokinesisx. On the other hand, a Dd cell changes direction in pro-
portion to the disparity between its present direction and the local cAMP
gradient (see below) and changes speed as well; thus the Dd response
comprises both chemotaxis and chemokinesis.

In the absence of cAMP stimuli Dd cells extend pseudopods in random
directions, perhaps as a method for determining a favorable direction, and
aggregation competent cells respond to cAMP stimuli with characteristic
changes in their morphology. The first response is suppression of exist-
ing pseudopods and rounding up of the cell (the ‘cringe response’), which
occurs within about 20 secs and lasts about 30 secs. Under uniform ele-
vation of the ambient cAMP this is followed by extension of pseudopods
in various directions, and an increase in the motility138,171. A localized
application of cAMP elicits the cringe response followed by a localized
extension of a pseudopod near the point of application of the stimulus172.
This type of stimulus is similar to what a cell experiences in a cAMP
wave.

Cells also respond to static gradients of cAMP. Fisheret al.139 show
that cells move faster up a cAMP gradient than down, and that the ma-
jority of turns made by a cell are spontaneous (although there is a slight
depression in the frequency of turns when the cell moves up the gradient).
However, the magnitude and direction of a turn is strongly influenced by
the gradient in that there is a strong tendency to lock onto the gradient{.
Furthermore, chemotaxis is not affected by the absence of relay (treating

zThese terms are used with varying degrees of precision in the literature; see Alt and
Hoffman170 for a detailed taxonomy of the terminology used to describe changes in motive
behavior in response to stimuli.

xSometimes described as aklinokinesis, since the response involves a change in the
frequency of turning, whereas a change in the speed is called anorthokinesis170 .

{That chemotaxis is involved is disputed by Vicker173 , who believes that accumulation
of cells in static gradients is due to ortho- and klinokinesis.
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cells with caffeine suppresses relay174 but has no effect on their chemo-
tactic ability139). The ability of larger cells such as Dd to apparently
‘measure’ concentration differences over the length of the cell body has
lead to various proposals as to how this might be done, some of which
are discussed later. First however we discuss a discrete cell description of
aggregation in which movement is governed by formal rules and several
continuum descriptions in which movement is described phenomenolog-
ically.

4.6 Discrete and continuum models of cell aggregation

4.7 A discrete cell model for aggregation

A mixed discrete/continuum model in which the cells are treated as
individual units and the extracellular cAMP is described by a continuum
reaction-diffusion equation has been developed175. A detailed descrip-
tion of signal transduction and adaptation is possible in such a model,
and movement rules based on the intracellular dynamics can be explored.
Such a model comprises two main parts: (i) the mechanism for signal
transduction and cAMP relay response, for which the TO model is used,
and (ii) the cell movement rules. The equations for the intracellular dy-
namics of theith cell can be written as a system of the form

dwi

d�
=Gi(wi; Co); (17)

wherewi is a vector whose componentswi
j , j = 1,� � � ,4, represent the

intracellular quantities in the TO model for theith cell, andCo represents
extracellular cAMP. In this model the cells are treated as discrete points,
and thus the analog of (13) is the partial differential equation

@Co(x; �)

@�
= �1r2Co(x; �) � 
̂9

Co(x; �)

Co(x; �) + 
8

+

NX
i=1

Vc
Vo
�(x� xi)

�
sr(wi4)� 
7

Co(x; �)

Co(x; �) + 
6

�
(18)

Herexi denotes the position of theith cell, the first term represents diffu-
sion of cAMP, the second represents the degradation of cAMP by extra-
cellular phosphodiesterase, and the summation represents the localized
sources and sinks of cAMP at the cells.
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The second component of the model involves the cell movement rules,
which determine when motion is initiated, how the direction is deter-
mined, and how long movement persistsk. In reality only the probability
of each step is determined, but in the simulations the following determin-
istic rules are used175: (i) the cell moves in the direction of the gradient
of cAMP when the motion was started; (ii) the cell moves at a speed
of 30 microns per minute142. Various rules for initiating movement and
determining its duration were explored. As is shown in Dallon and Oth-
mer175, formal rules based on a fixed duration of movement can produce
aggregation. However, if the duration is too short aggregation does not
occur, but by adding other mechanisms such as directional persistence
the problem can be corrected. For example, when the duration is set
at 20 seconds, which is an experimentally-observed turning time177, the
cells do not aggregate successfully. By adding cell polarization178 or a
memory of recently-encountered gradients, the aggregation patterns are
restored. Because the cAMP signal a cell sees is very rough, the cell may
move away from the aggregation center, and the simulations indicate that
the cell must commit to a direction for a sufficient length of time to suc-
cessfully aggregate.

However formal rules based on a fixed duration of movement ignore
experimental facts described earlier because there is no coupling between
the intra- or extracellular environment and the duration of movement. For
example, if the profile of the cAMP wave is altered due to changes in pa-
rameters, a rule based on fixed durations might predict that cells continue
to move after the wave has passed. One cannot rule out this possibil-
ity, and we show an example later of how this might apply for a cer-
tain mutant. However the choice of duration is probably determined by
one or more intracellular variables, and an outline of a detailed model
of how cells might choose the direction of motion and the length of a
‘run’ will be described later. Such a model has not been analyzed as
yet, and it would probably be computationally prohibitive to include it
in the simulations at present. Instead, more realistic rules based on in-
ternal variables were developed as follows175. It is known that cAMP
activates the cGMP pathway via G proteins in addition to activating the
cAMP production pathway179. It is also known that cGMP is near the
beginning of the chemotactic response pathway and that cGMP produc-

kvan Duijn and van Haastert176 have shown that locomotion and orientation are con-
trolled separately in Dd.
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tion adapts to the cAMP stimulus on a time scale of about 10-15 seconds.
If cGMP adapts to extracellular cAMP levels then downstream compo-
nents will also adapt, perhaps on a longer time scale, except in unusual
circumstances. Thus it is assumed in the model that there is a down-
stream ‘motion controller’, the identity of which is not known. However,
it must be used in such a way that the cell moves only when cAMP is
increasing, for it is known that wild-type cells only move in the rising
phase of the cAMP wave. In the absence of detailed information about
the controller dynamics, we used as a stand-in a quantity in the cAMP
pathway that has the appropriate time course. This mechanism is bio-
logically more realistic than thead hocrules and it gives results which
match very well with experimental results (cf. Figure 29(a)). This rule
shows how a cell can respond to temporally-increasing cAMP levels by
predicating motion on a threshold of an intracellular variable, and it also
solves the ‘back-of-the-wave’ problem, in that a cell does not respond to
the receding cAMP wave after it passes, even though it sees a positive
gradient on the back side of the wave. These simulation results support
the conclusion reached by Sollet al.180, that cells seem to orient during
the beginning of the wave of cAMP and then move in a relatively blind
fashion. The simulations also show that aggregation is very robust with
respect to the accuracy with which the correct direction must be selected.
For example, Figure 29(c) shows cells can aggregate successfully, albeit
more slowly, as long as the cells choose their direction within the cor-
rect half space determined by the gradient and a line orthogonal to it175.
When there are many pacemakers the aggregation field breaks up into a
number of smaller fields, although certainly not equal in number to the
number of pacemakers present (cf. Figure 29(d)). These computations
show that single cells can be pacemakers, in agreement with the theo-
retical analysis described earlier, but they also show that many of these
pacemakers will be entrained by others. Whether or not an individual
pacemaker can continue to oscillate in the face of periodic signals from
other sources is a function of how large an aggregate it has recruited, and
hence how strong a signal it emits, differences between its frequency and
that of other sources, and the initial distribution of cells. As yet there is
no theoretical analysis that enables one to predict when it will survive,
but it is an important question because the answer would shed light on
the breakup of waves by pacemakers and hence on the origin of spirals.
This will be discussed further in a later section.
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Figure 29. Examples of the aggregation patterns which form using the discrete
cell model. In (a) cell movement is governed by an internal variable that adapts,
in (b) cells move for 500 seconds to simulate the streamer mutants34,181 and in
(c) the direction of movement is randomly perturbed by up to 90 degrees from
the direction of the local gradient. In (a), (b) and (c) there is a single pacemaking
region in the center, but in (d) there are 0.1% pacemakers randomly-placed in
the aggregation field initially, and cells move according to the rules in (a). All
simulations are shown at 150 minutes, the domain is 1 centimeter by 1 centimeter
with 200 grid points in each direction, and the number of cells used corresponds
to a volumetric density of about 0.2. (From Dallon and Othmer175.

4.8 Continuum descriptions of chemotaxis

Many theoretical analyses of chemotaxis begin by supposing that the
movement of cells released at a point in a uniform environment can be
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described as an uncorrelated, unbiased random walk of noninteracting
particles on a sufficiently long time scale. In an appropriate continuum
limit the cell density�, measured in units of cells/Ln, where L denotes
length and n=1,2 or 3, satisfies the diffusion equation

@�

@�
= Dc��: (19)

HereDc is the diffusion coefficient of cells, and as before,� is the
Laplace operator. In this equation the cell flux is given by

j = �Dcr�; (20)

wherer denotes the gradient operator. The flux has units of cells/(Ln�1-
time), and thus unit-wise it is a density times a velocity. If we define the
average particle velocity via the relationj = �u then we see that for pure
diffusive spread

u = �Dc
r�
�

= �Dcrln �: (21)

In the presence of an attractant the simplest description of cell motion is
obtained by adding to the diffusive flux a directed component to obtain

j = �Dcr�+ �uc (22)

whereuc is the macroscopic chemotactic velocity. The taxis is positive
or negative according asuc is parallel or anti-parallel to the direction of
increase of the chemotactic substance.

In the absence of cell division or death the resulting evolution equation
for the density is

@�

@�
= r � (Dcr�� �uc); (23)

and this is frequently called a chemotactic equation. In addition to this
equation, the density must satisfy the conservation conditionZ




�(x; t)dx =

Z



�(x; 0)dx (24)

where
 is the aggregation field. Unless the distribution of the chemotac-
tic substance is fixed, (23) must be augmented by an evolution equation
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for this substance and perhaps other internal variables. In the context of
Dd aggregation these additional equations are the same as those for wave
propagation in an immobilized field, except that the cell density depends
on both space and time.

The earliest derivation that relates the chemotactic velocity to proper-
ties of individual cells is apparently due to Patlak182, who used kinetic
theory arguments to expressuc in terms of averages of the velocities and
run times of individual cells. His formulation also led to a variable dif-
fusion coefficient. Alt183 has also pursued the kinetic theory approach
and has shown how to relate the chemotactic velocity to the gradient of
an attractant or repellent whose concentration isc. He finds that (in our
notation) the flux is approximately given by

j = �Dcr�+ ��(c)rc (25)

= �Dcr�+ ���(c) (26)

where� is a primitive of�. The function�(c) is called the chemotactic
sensitivity, and the chemotactic velocity is given by

uc = �(c)rc = r�(c): (27)

When� > 0 the tactic component of the flux is in the direction ofrc
and the taxis is positive.

Since Patlak’s derivation, other more phenomenological approaches to
the derivation of the chemotactic sensitivity or chemotactic velocity have
been taken. For example, Keller and Segel184 postulated that the chemo-
tactic velocity is given by (27) and later151 related the chemotactic sen-
sitivity to the frequency of reversals of a particle moving along the real
line. Nanjundiah152 considers several forms for the sensitivity, Segel185

incorporated receptor dynamics into the Keller-Segel model, and Pate
and Othmer186 derived the velocity in terms of forces exerted by the cell.
Starting from Newton’s law for the motion of a point particle, neglecting
inertial effects, and assuming that the motive force exerted by a cell is a
function of the attractant concentration, they showed how the chemotactic
sensitivity is related to the rate of change of the force with attractant con-
centration. In this formulation the dependence of the flux on the gradient
of the attractant arises from the difference in the force exerted in different
directions due to different attractant concentrations. Experimental sup-
port for this comes from work of Finneyet al.178, who show that as many
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pseudopods are produced down-gradient as up, but those up-gradient are
more successful in generating cell movement.

There have been many studies of chemotaxis equations in which the
chemotactic species is diffusible. Nanjundiah152 was apparently the first
to suggest that aggregation could be viewed as the development of a sin-
gularity. This viewpoint was developed by Childress and Percus187, and
there have been many studies of these equations since then188{191. Oth-
mer and Stevens192 studied the aggregation of myxobacteria such asMyx-
ococcus xanthus, whose life cycle is quite similar that of Dd, and found
that when the chemotactic substance is non-diffusible, a variety of stable,
spatially nonuniform solutions (i. e. , solutions which show aggregation)
may exist for different choices of the chemotactic sensitivity. This work
shows that within the framework of models based on a continuum den-
sity function, stable aggregation can occur with only local modulation of
the transition rates, that is, without long range signaling via a diffusible
chemical.

The above descriptions are continuum descriptions in that they can
only be expected to hold in the presence of slow variations in the attrac-
tant concentration and the cell density. However, none of these descrip-
tions incorporate adaptation into the chemotactic response, but there are
several ways in which this can be done. For instance, one could simply
postulate that the flux relation takes the form

j = �Dcr�+ ��(ct)rc (28)

wherect denotes the time derivative ofc. If �(0) = 0 then this relation
predicts that the chemotactic component of the flux vanishes when the
attractant field is time-invariant. A generalization of this in whichct is
replaced by an intermediate variable has been used by H¨ofer et al.193,
who show that such a model produces aggregation patterns very similar
to those shown in Figure 29.

A significant problem in deriving equations such as (25) is to how
translate microscopic responses of individual cells to the continuum level,
and one approach to this problem that incorporates more of the micro-
scopic details builds on the kinetic theory approach used earlier182,183,194.
The diffusion equation can be derived as the limit of a random jump pro-
cess, called a space jump process, in which the particle takes fixed jumps
in space at fixed time intervals, by letting the space step sizeh and the
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time step�t go to zero in such a way that the ratioh2=�t is a constant,
namelyDc. Chemotaxis can be incorporated in this approach, but an al-
ternative stochastic process that may be more appropriate than the space
jump process to describe the motion of Dd cells is called the velocity-
jump process183,194. In this process the velocity, rather than the spatial
position, changes by random jumps. The prototypical organisms whose
motion can be described as a velocity jump process are the flagellated
bacteria, the best studied of which isE. coli. As we mentioned earlier,E.
coli alternates two basic behavioral modes, a more or less linear motion
called a run, and a highly erratic motion called tumbling, the purpose
of which is to reorient the cell. Run times are typically much longer
than the time spent tumbling, and when bacteria move in a favorable di-
rection (i.e., either in the direction of foodstuffs or away from harmful
substances) the run times are increased further. During a run the bacteria
move at approximately constant speed in the most recently chosen di-
rection. New directions are generated during tumbles, and when bacteria
move in an unfavorable direction the run length decreases and the relative
frequency of tumbling increases. The distribution of new directions is not
quite uniform on the unit sphere; it has a some bias in the direction of the
preceding run. The effect of alternating these two modes of behavior,
and in particular, of increasing the run length when moving in a favorable
direction, is that a bacterium executes a three-dimensional random walk
with drift in a favorable direction when observed on a sufficiently long
time scale168,195,196.

The chemotactic motion of Dd is more complicated, in that Dd cells
change both the direction and the speed in the presence of cAMP139. As
we indicated earlier, the directional changes are not randomly chosen, but
rather, are chosen so as to align the cell with the direction of the stimulus.
In the following paragraphs we describe a formulation that is sufficiently
general to include these behaviors, as well as the involvement of internal
cell variables in the description of motion. Details of this approach are
given elsewhere194,197.

We suppose that the internal dynamics that describe signal detection,
transduction, processing and response are described by the system

dc

dt
= g(c; Co): (29)

wherec is the vector of internal variables (concentrations, etc) andCo
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is the chemotactic substance (Co is extracellular cAMP for Dd aggrega-
tion). In the TO model there are four internal concentration variables
in the cAMP transduction pathway, but for describing chemotaxis one
would have to formulate a model for the cGMP pathway. The form of this
system can be very general but it should always have the ‘adaptive’ prop-
erty that the steady-state value of the appropriate internal variable (the
‘response regulator’) is independent of the stimulus, and that the steady
state is globally attracting with respect to the positive cone ofRm. A
simple system which models the essential features of an adaptive system
was given earlier.

In cases such as bacterial chemotaxis the cells do not significantly alter
the signal, they only react to it. However Dd amoeba modify the chemo-
tactic field when they relay the signal, and for such systems one has to
augment (29) by an evolution equation forCo. If transport is only via
diffusion then this equation takes the form

@Co
@t

= D�C0 + f(�(x; t); c; Co): (30)

Let p(x;v; c; t) be the density function for individuals in a2n + m-
dimensional phase space with coordinates(x;v; c) wherev, which takes
values inRn, is the velocity. Thenp(x;v; c; t) dx dv dc is the number
density of individuals with position betweenx andx + dx, velocity be-
tweenv andv+dv, and internal state betweenc andc+dc. The quantity

�(x; t) =

Z
p(x;v; c; t) dv dc (31)

is the density of individuals atx, whatever their velocity and internal
state. If we neglect external forces such as gravity then the evolution ofp
is governed by the partial differential equation

@p

@t
+rx � vp+rc � _cp = R; (32)

whereR is the rate of change ofp due the random choice of velocity. In
view of (29) this can be written in the equivalent form

@p

@t
+rx � vp+rc � gp = R: (33)
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We assume that the only contribution to the right-hand side arises from a
process that generates random velocity changes, and we suppose that this
process is a Poisson process of intensity�, where� may depend upon
the internal variables, or at least on the response regulator��. Thus��1

is a mean run length time between the random choices of direction. In
the case of Dd� decreases slightly when the cell moves upgradient. The
net rate at which individuals enter the phase-space volume at(x;v; c) is
given by

��p+ �

Z
T (v;v0)p(x;v0; c; t) dv0: (34)

The kernelT (v;v0) gives the probability of a change in velocity from
v0 to v, given that a reorientation occurs, and thereforeT (v;v0) is non-
negative and normalized so that

R
T (v;v0) dv = 1: This normalization

condition expresses the fact that no individuals are lost during the process
of changing velocity.

In light of the foregoing assumptions, (33) becomes

@p

@t
+rx � vp+ g � rcp = ��p� (rc � g) p+ �

Z
T (v;v0)p(x;v0; t) dv0:

(35)

From this one sees that the dependence on the internal state adds both a
drift term with velocityg and a source or sink of strengthrc � g. Sinceg
depends on the stimulusCo(x) this velocity and source strength depend
explicitly on the spatial position.

For most purposes one does not need the distributionp, but only its first
few velocity moments. The first two are the number density�(x; t) in-
troduced previously, and the macroscopic chemotactic velocityuc(x; t),
which is defined by

�(x; t)uc(x; t) �
Z
p(x;v; t)v dv dc: (36)

��Recent data suggest that this is an oversimplification; cells do not choose new directions
via a Poisson process. Instead there appears to be an intrinsic periodicity to the extension
of pseudopods, at least in un-stimulated amoeba198,199 . Such behaviors can be taken into
account by introducing other state variables, but we shall not pursue this here.
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If we integrate (35) overv andc we find that� satisfies the conservation
equation

@n

@t
+rx � �uc = 0: (37)

The problem is to relate the chemotactic velocityuc to more funda-
mental quantities such as the internal and external state and to perhaps
derive flux relations such as (25). This has not been done for any real-
istic problem that incorporates internal state variables since the analysis
is difficult, but an indication of what is to be expected, using the cartoon
model of adaptation described earlier, is given in Othmer197. We can
however describe a simpler system that applies when the external gra-
dient of cAMP is fixed, as in the experiments of Fisheret al.139. This
analysis suggests that Vicker’s173 conclusion concerning aggregation in
a static gradient is partially correct.

Suppose that a particle moves along thex-axis at a speeds�(x) that
depends onx and its direction of travel, as in the experiments cited earlier,
and that at random instants of time it reverses direction. Further, suppose
that this “velocity-reversing” process is a Poisson process with constant
intensity�, i.e. the rate of reversal per unit time is�. Further, letp�(x; t)
be the probability density of particles that are at(x; t) and are moving to
the right (+) and left (-). Thenp�(x; t) satisfy the equations

@p+

@t
+
@(s+p+)

@x
= ��p+ + �p�

(38)
@p�

@t
� @(s�p�)

@x
= �p+ � �p�:

These equations are obtained from (35) when there are no internal vari-
ables and only two velocities. The probability that a particle is at(x; t)
is p(x; t) � p+(x; t) + p�(x; t), and the probability flux isj � (s+p+ �
s�p�). These satisfy the equations

@p

@t
+
@j

@x
= 0

(39)
@j

@t
+ �j = �s+ @

@x
(s+p+)� s�

@

@x
(s�p�) + �(s+p� � s�p+)
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and the initial conditionsp(x; 0) = p0(x); j(x; 0) = j0(x), wherep0 and
j0 are determined from the initial distribution ofp+ andp�. When the
speed is constant the resulting model was first analyzed by Goldstein200,
and subsequently by Kac201, McKean202, Segel203 and Othmeret al.194.

Suppose we consider the system (39) on the interval (0,1) and impose
Neumann (no-flux) boundary conditions at both ends. We wish to know
under what conditions, if any, these equations have time-independent,
nonconstant solutions forp� whens� are not constants. Under steady
state conditions the first equation implies thatj is a constant, and the
boundary conditions imply thatj � 0. Therefores+p+ = s�p�, and the
second equation reduces to

@

@x
(s+p+) = �p+

s+ � s�

s�
= �s+p+

s+ � s�

s+s�
: (40)

This is a first order equation forp+ whose solution is

p+(x) =
s+(0)p+(0)

s+(x)
e
�

Z x

0

s+ � s�

s+s�
d�
� p+(0)F+(x); (41)

and therefore the condition of vanishing flux givesp� as

p�(x) =
s+(0)p+(0)

s�(x)
e
�

Z x

0

s+ � s�

s+s�
d�
� p+(0)F�(x): (42)

The constantp+(0) is determined by the global conservation conditionZ 1

0

(p+(�) + p�(�))d� = p+(0)

Z 1

0

(F+(�) + F�(�))d� = N; (43)

where N is the total number of cells in the unit interval. The details of the
spatial distribution depend on the functional form of the speedss�, but
in any case we have

p(x) � p+(x) + p�(x) =

 
Ns+(0)R 1

0
(F+(�) + F�(�))d�

!�
1

s+(x)
+

1

s�(x)

�

� exp

�
�

Z x

0

s+ � s�

s+s�
d�

�
; (44)
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and therefore

p0(x) = �Ao

�
s+(x)0

(s+(x))2
+

s�(x)0

(s�(x))2
+ �

�
1

(s+(x))2
� 1

(s�(x))2

��

� exp

�
�

Z x

0

s+ � s�

s+s�
d�

�
; (45)

whereAo represents the quantity in the first parentheses in (44). From
this one can determine how the distribution ofs� affects the distribution
of p. In particular, ifs� are not constant thenp� are also nonconstant.
This is most easily seen ifs+(x) = s�(x), for then it follows directly
from (44) that cells accumulate at the minima of the speed distribution.
In any case, this simple model shows that cells can aggregate in a time-
independent gradient by only modifying their speed. It is also easy to
show that they cannot accumulate if the speed is constant but the turning
rate� is a function ofx (i. e. if only local information is used to determine
the rate of turning). However, they can aggregate if the turning rate is not
constant and also depends on the direction of motion. Thus orthokinesis
is sufficient to produce steady state aggregation irrespective of whether or
not it is directionally biased. In contrast, klinokinesis is not if the turning
rate is unbiased, but it is if the turning rate is directionally biased.

5 The chemotactic signal

The preceding descriptions are either macroscopic and phenomeno-
logical, or microscopic but still treat cells as point particles. Thus neither
approach can address a number of basic questions about cell movement
in aggregation and in the slug, including the microscopic issues of how
a cell decides when to move, how it determines the direction in which
to move, and how long it moves. A number of proposals as to how a
cell orients have been made, and they can be classified into one of the
following.

� A spatial gradient sensing mechanism, in which the cell measures
the concentration difference or the difference in the number of oc-
cupied receptors between front and back204{206,23.

� The differential force mechanism described earlier, which leads to
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an expression for the macroscopic chemotactic sensitivity in terms
of the sensitivity of the force exerted to the level of attractant186,207.

� The ‘pseudo-spatial’ mechanism in which cells extend pseudopods
and convert the spatial gradient in attractant sensed into a temporal
rate of change of attractant208.

� A spatio-temporal threshold mechanism, in which the orientation
is determined by an internal gradient that is created by the spatial
variation of the extracellular attractant. If there is adaptation in
the chemotatic signal transduction pathway, then the internal gra-
dient will decay, even in the presence of a steady external gradient,
unless cells move. Internal gradients are known to exist in newt
eosinophils where the development of a calcium gradient is neces-
sary for cell polarization209,210.

These mechanisms are clearly not all independent, and advocates of
one or the other are more or less specific as to how cells ‘measure’ spa-
tial gradients or temporal changes. Indeed it would be more appropriate
to classify the mechanisms in terms of what characteristics of the signal
determine the response, thereby removing the necessity for measurement
by the cell. Numerous experiments205,177,172,139,173 have been designed
to determine which of these mechanisms are used to determine how to
move, e. g. whether it is the local spatial or a temporal gradient, but
the results are inconclusive, in part because the spatio-temporal charac-
teristics of the signal seen by a cell are not known. Later we discuss
some results obtained from a mathematical model for signaling between
two relay-competent cells based on a geometrically-realistic representa-
tion of the cells. The model accurately reflects the spatial and temporal
scales in signaling and the spatial localization of key enzymes, and thus
the solutions of the governing equations should accurately reflect the spa-
tial characteristics of the signal near the cell membrane, as well as in the
cytoplasm. First however we discuss previous theoretical work aimed at
understanding which mechanism is used.

5.1 Previous analyses of the chemotactic signal

Previous theoretical analyses of signaling ignore the membrane bound
phosphodiesterase completely211,212 or distribute the phosphodiesterase
activity uniformly in space213,113,119,5. Models of aggregation have also
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either ignored the mPDE149,157,153,154,214, distribute the phosphodiester-
ase activity uniformly in space148,193 or ignore the cAMP dynamics com-
pletely150. While the approach of distributing the phosphodiesterase ac-
tivity uniformly in space may represent the average rate of degradation
adequately, it does not yield the detailed spatial distribution of attractant
in the immediate neighborhood of a cell.

Some of the earliest experimental support for the hypothesis that cells
respond to the spatial gradient stems from the work of Matoet al.204.
These authors used the chemotactic drop assay, in which drops of cAMP
are placed near a droplet of cell suspension containing about 500 cells,
and the distances at which 50% of the cells respond for a given cAMP
concentration are measured. A log-log plot of the number of cAMP
moleculesvs the threshold distance yields an approximately straight line
in Matoet al. ’s experiments, the best fit slope of which is 1/4.25. The au-
thors interpret this to mean that cells probably respond to the spatial gra-
dient, and to understand how they reach this conclusion and why other in-
terpretations are also possible, we present some of their theoretical anal-
ysis.

Consider the half-spacez � 0 in three dimensions and suppose thatN
molecules are released instantaneously at the origin att = 0. If there are
no reactions that degrade this substance then the distribution at any later
time is given by

c(r; t) =
2N

(4�Dt)
3
2

e�r
2=4Dt (46)

whereD is the diffusion coefficient andr is the distance from the origin.
Matoet al.measured the threshold distance for 50% response of amoeba
in the droplet as a function of the concentration in the cAMP drop, which
is interpreted as measuring a thresholdr in (46) for different values ofN .
At any fixed distancer > 0 the cAMP concentration, the local gradient,
and the local rate of change of cAMP in time all go through a maximum as
a function of time, but they do so at different times, and the relationship
betweenr andN when this occurs is different for the three quantities.
One readily finds that

@c
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= c(r; t)
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2Dt

�
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From these one finds that the maxima ofc, @c=@r and@c=@t with respect
to t occur at
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(51)
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D
(53)

respectively. Thus a cell sees the maximum rate of change in time first,
then the maximum spatial gradient, and finally the maximum concentra-
tion. These are used to interpret the experimental data as follows.

If the time to a maximum ofc, @c=@r and@c=@t, respectively, is sub-
stituted into the foregoing expression for that quantity, one obtains the
following dependence of the maximum values on the amount released
and the distance from the source.

c(r; t)max =
0:66N

r3
(54)

j@c
@r
jmax =

0:5827N

r4
(55)

and �
@c

@t

�
max

=
0:947ND

r5
(56)
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Note that only the maximum of the time rate of change depends explicitly
on the diffusion coefficient.

If d is the distance at which 50% of the amoeba respond for a given
N, then (54)-(56) define threshold values for the concentration, spatial
gradient and temporal rate of change, respectively. Letdmin = 0:95mm
andNmin = 10�14 be the smallest threshold distance at the smallest
number of molecules used in the experiments; then one can normalize
the data and obtain the following expression from (55).

d

dmin
=

1

4
log

N

Nmin
+

1

4
log

0:5827Nmin

rC� � d4min

HererC� is the threshold gradient for a50% response. Similar expres-
sions can be derived for the other quantities, but the coefficients are differ-
ent. A straight line fit to a log-log plot of the experimentally-obtained nor-
malized threshold distance versus the normalized amount released yields
the reciprocal of the exponent of ther dependence. Matoet al.find that
the slope is 1/4.25 for their experimental data, which is closer to the value
of 1/4 for the maximum gradient than the value 1/5 for the maximum rate
of change in time. On this basis they conclude that a cell responds to the
spatial gradient. However this conclusion is predicated on the assump-
tion that diffusion occurs in a half space, whereas in reality the system
is a layer of finite thickness. If one recomputes the solution for diffusion
in a vanishingly thin layer (i. e. in two space dimensions) one finds that
the maximum rate of change is proportional tor�4 ! Thus one could also
interpret the results as showing that the cells respond to the temporal gra-
dient, since the exponent of ther dependence for the actual system will
roughly lie between 4 and 5.� Further insight into how a cell decides to
move can only be gained by knowing the details of the signal it sees, and
a model that provides them is described in the next section.

5.2 A model for cell-cell signaling and orientation

Relay-competent cells must quickly decide on the direction in which
to move after receiving a signal, since they will relay the signal and
thus obliterate any directional information in the extracellular cAMP dis-
tribution. It is known that the cGMP pathway, which is important in

�In fact, the solution for a layer of finite thickness involves an infinite series and the
N � r relationship is not easy to extract. Thus the argument is somewhat heuristic.
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controlling the cell motion83,215,34, responds on a faster time scale than
does the cAMP pathway, and that the intracelllular cGMP peaks about
10-15 seconds after stimulation92. In order to gain some insight into
the mechanism by which the cell determines a direction to move, we
first analyze the interactions between the various extracellular processes
in the early stages of signaling. In the model presented here cells are
endowed with specified volumes and boundaries, and thus the model
should provide a realistic description of the signal seen by a cell. Such
information is essential for understanding what aspects of the spatio-
temporal signal trigger the chemotactic response. By adapting the TO
model, which provides a good input-output relation for individual cells,
the numerically-computed signal should closely approximate the signal
seen by an aggregation-competent cell.

As shown in Figure 30, the cells are modeled as cylinders on the plane,
and diffusion and degradation of cAMP occurs both within each cell and
in the region exterior to the cells. Signal transduction and cAMP produc-
tion occur at the boundary of each cell, and secretion occurs across that
boundary. In this section one cell functions as the signaler by releasing
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diffusion and degradation

Signal detection and transduction, 

cAMP production, and secretion

cAMP

Figure 30. A top view of the geometric arrangement of the two cells and the
processes that are incorporated in the model. All concentrations are assumed to
be uniform in the vertical direction.

cAMP with a specified time course, and the other cell serves as the re-
ceiver but does not release cAMP. This is a realistic model for the early
stages since a single cell can be a pacemaker141, and each cell relays the
signal. A more detailed model in which both cells are active is developed
in Dallon and Othmer216.

254



To determine the cAMP concentration in the region exterior to the
cells, we must solve the reaction-diffusion equation

@w5
@�

= D1r2w5 � 
̂9
w5

w5 + 
8
(57)

exterior to the cells, with boundary conditions

�D1n̂ � rw5 = �
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w5 + 
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(58)
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w5
w5 + 
6

�
(59)

on @
2. Here@
i is the boundary of theith cell, n̂i is a vector normal
to @
i with respect to the exterior domain andK�1 = Vc � Avogadro’s
number. The functionF (t) takes into account not only the release of
cAMP by the signaling cell, but also enzymatic degradation by mPDE on
the cell surface. It is taken to be a piecewise linear function defined by

F (t) =

8>>><
>>>:

Fmt 0 � t < 1

Fm(2� t) 1 � t � 2

0 otherwise

(60)

wheret is in minutes andFm is set at2�107 molecules per cell per minute
2 217,126. The signaling is turned on for two minutes because this is the
nominal signaling period in response to a step change in extracellular
cAMP.H is the Heaviside function, which is defined as

H(t) =

8<
: 0 t < 0

1 t � 0
(61)

BecauseF takes into account the degradation by mPDE, the effect of
mPDE must be turned on separately when the signal is terminated att = 2
minutes, which accounts for the term involvingH(t).
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5.3 Numerical Results

Attenuation of the cAMP signal transmitted from a signaling cell to a
receiver is due to both diffusive spread of the signal and hydrolysis due
to the phosphodiesterase present. The interplay of these factors is com-
plex, particularly when the distance between signaler and receiver is also
varied. This was first shown in a model with no intracellular dynam-
ics developed by Pate, et al.147. We first consider diffusive signaling
between two cells in the presence of mPDE and the absence of ePDE
(the effects of ePDE are small in most cases216). The value of the effec-
tive Michaelis constant for mPDE, which we denoteKmPDE, has a re-
ported range of 0.5�M to 20.0�M218,219. At the lowest affinity reported
(KmPDE = 20:0�M ) 
6 = 11:6, while at the highest reported affinity
(KmPDE = 0:5�M ) 
6 = 0:29. The use of these values will produce
chemical profiles which bracket the true profiles seen by a cell. In addi-
tion, the low-affinity results should closely approximate the profiles when
mPDE is completely blocked.

In the following figures the center-to-center spacing between the sig-
naling and receiving cells is 30 microns, which is approximately half the
maximum separation at which aggregation by long-range signaling oc-
curs143,220. Figure 31 displays the concentration profile 12 seconds after
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Figure 31. The concentration profile of cAMP when one cell is signaling and the
receiver is inactive. The large dashed rectangles represent the cells: signaling cell
on the left and the receiver on the right. In (a)
6 = 11:6, while in (b)
6 = 0:29.
All the profiles shown are at12 seconds after the onset of signaling. The solid
line is the cAMP concentration along the radius passing through the center of the
receiver, and the dashed line is the cAMP concentration in the antipodal direction.

the start of the 2 minute secretion period. The time at which to display
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the profiles was chosen for two reasons: (a) cells can certainly orient
within 20 seconds after receiving a stimulus177 (and faster in some re-
ports), which indicates that the choice of direction is made in this time
frame, and (b) the cGMP signal, which is involved in chemotaxis, peaks
about 10-15 seconds after stimulation.

In Figure 31 the solid curve gives the concentration profile along the
half-line extending from the center of the signaling cell through the cen-
ter of the receiving cell, while the dashed line shows the profile along
the antipodal direction. Although the cAMP concentration is ultimately
monotonically decreasing in both directions, there are distinct differences
locally due to the presence of the receiving cell. In Figure 31(a) the local
cAMP gradient is decreased in magnitude near the receiver as compared
to the opposite direction. Due to the “diffusive shadow” created by the
receiving cell, both the difference between the front and rear concentra-
tions and the front/rear ratio of cAMP concentrations increases over that
of the unperturbed field in the same spatial region. (Front will always
refer to that point on the receiving cell closest to the signaling cell, rear
to the point furthest away.) Thus the mere presence of the receiving cell
amplifies any chemotactic signal based on a front-to-back concentration
difference when compared with the field generated by the signaling cell
alone.

To understand the effect of mPDE on the profiles we reduce the effec-
tive Michaelis constant toKmPDE = 0:5�M, which makes
6 = 0:29. In
comparing Figure 31(a) with Figure 31(b), we see that the cAMP levels
are everywhere lowered in the latter due to increased enzymatic degrada-
tion, and there is a distinctive sharpening of the cAMP spatial gradient
between the signaling and receiving cell (solid line), as was suggested
previously on the basis of a less detailed model221. In fact the concen-
tration at the receiving cell has been decreased by more than a factor of
2 as compared to either the concentration in the antipodal direction or to
the concentration at the receiving cell in the presence of lower mPDE ac-
tivity. Thus the presence of mPDE can have a major effect on the cAMP
profiles, both at a fixed time, and as we shall see shortly, on the temporal
profiles.

The effect of mPDE may extend a substantial distance from the re-
ceiving cell, as is shown by the level curves in Figure 32. One can see
that the concentration level lines are nearly circular when the affinity of
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mPDE is low (panel (a)), but in the high-affinity case the level sets are
severely distorted (panel (b)). In fact, in the latter case the receiving cell
is located at a local minimum of the cAMP concentration: the concentra-
tion increases significantly in the direction normal to the boundary of the
receiving cell at all points on the boundary. This is further emphasized
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Figure 32. A contour plot of the cAMP concentration in an 85 micron square
region 12 seconds after the onset of signaling. The cells are 30 microns apart,
the signaling cell is the circle on the left and the receiving cell is the circle on the
right. In panel (a)KmPDE = 20:0�M and in panel (b)KmPDE = 0:5�M . The
contours in (a) from highest (dark) to lowest are101:75 nM, 101:50 nM, 101:25

nM, 10 nM, 100:75 nM and in (b) they are the same with one additional contour
of 100:5 nM.
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Figure 33. The derivative of cAMP concentration with respect to the outward
normal at the surface of the receiving cell forKmPDE = 0:5�M . The signaling
cell is in the direction Theta = 1.0

by the graph in Figure 33, which shows that the spatial gradient in cAMP
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concentration normal to the receiving cell surface is everywhere positive,
with a maximum value in the direction of the signaling cell. This is easily
understood given the presence of mPDE on the cell membrane, but had
been overlooked prior to the work of Pate et al.147. It should be noted that
the maximum gradient seen by the receiver, which is� 2� 103 nM/mm,
is far larger than either the static gradients of� 10nM/mm used experi-
mentally139 or the average gradient of� 100 nM/mm in an aggregation
wave123.

To better characterize the cAMP signal at the receiving cell, we show
the front (solid line) and rear (dashed line) cAMP concentrations at the
receiving cell as a function of time in Figure 34, and the front/rear cAMP
ratio as a function of time in Figure 35.
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Figure 34. The concentration of cAMP plotted as a function of time for the same
conditions as apply to Figure 32. The solid line corresponds to the concentration
at the front of the cell, and the dashed line denotes the concentration at the back
of the cell. Note the difference in the scales for the cAMP concentration in the
two panels.

The detailed information given in these figures on the spatio-temporal
cAMP signal seen by a cell may shed light on the precise nature of the
chemotactic signal. The characteristics of the solution shown in the fig-
ures, as well as the front-to-rear ratio of the rate of change of cAMP, have
been suggested by one or more authors to be important in determining
the chemotactic response. However it is very unlikely that the ratio of the
rates of change at front and back is used. Dallon and Othmer216 show
that this ratio is essentially constant during the early phase of signaling,
and peakswhen both rates of change are negative. Moreover, the peak
occurs far too late to provide reliable information for orientation.
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Figure 35. The ratio of front and back cAMP concentrations at the receiving
cell’s surface for the time plots in Figure 34. The solid line is the ratioKmPDE =
0:5�M and the dashed line is the ratio forKmPDE = 20:0�M . The inset shows
the short-time behavior of the ratios.

Earlier we described two other mechanisms that might plausibly be
used, a spatial gradient sensing mechanism, in which the cell measures
the concentration difference or the difference in the number of occupied
receptors between front and back204{206,23, and a ‘pseudo-spatial’ mecha-
nism in which cells extend pseudopods and convert the spatial gradient in
attractant sensed into a temporal rate of change of attractant208. However,
Figures 31, 32 and 33 show that in the presence of significant mPDE ac-
tivity the cell sees an increase in the attractant ineverydirection. This
result does not preclude the use of either mechanism, but the problem of
choosing a direction in which to move becomes harder for the cell and
thus orientation becomes less reliable. Using either of these mechanisms,
the problem is not to choose between favorable and unfavorable direc-
tions, as would be the case in the presence of a monotonic concentration
profile across the cell, but rather that of selecting the best direction when
all are favorable.

It is evident from a comparison of (a) and (b) of Figures 31 and 34
that the increased affinity of mPDE leads to a decrease in the absolute
front-to-rear concentration difference across the receiving cell by a factor
of two over that with a lower affinity mPDE. However, the peak front-to-
backratio of cAMP increases by a factor of nearly two when compared
to that which exists for the low affinity mPDE (cf. Figure 35). Thus,
this ratio provides a better signal characteristic to use for initiating the
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chemotactic response than the local gradient at the surface211. Moreover,
it is clear that this extracellular cAMP ratio can be transduced into an in-
tracellular gradient of a species such as cGMP, and this can provide the
directional information needed by a cell for orientationy. This mechanism
also frees the cell of the problem associated with the fact that the cAMP
concentration near the cell is increasing outwardly in all directions. Fur-
thermore, the front/back ratio peaks at about 7 secs (cf. inset in Figure
35), which enables the cell to choose a direction for movement before it
swamps the signal with the relay response.

These results suggest that mPDE may increase the efficiency of ori-
entation by amplifying the front/back ratio of extracellular cAMP, and
hence the steepness of an intracellular gradient of cGMP or other com-
ponents in the chemotactic pathway. However the results also show that
this is not necessary, particularly if the intracellular transduction steps
amplify the end-to-end differences significantly. This could be done, for
example, by a highly cooperative step in the chemotactic pathway.

Chemotaxis, and the extraction of directional information from a noisy
signal that it requires, is used by many other types of cells, and a great
deal of work has been done toward understanding the effects of noise in
the signal. This and other aspects of signal detection have been reviewed
by numerous authors222{226.

6 Mechanisms for the generation of spirals and streams in
aggregation

6.1 Formation of spiral waves

Spiral waves are the dominant pattern of aggregation in many labo-
ratory experiments, but it is not understood how they arisein vivo. As
we showed earlier, in the continuum description they can be initiated by
using special initial conditions, but they can also arise spontaneously in
the discrete cell model. Using a random initial cell density, Dallon and
Othmer175 found that they are generated by a pacemaker that initiates ax-
isymmetric (target pattern) waves which then break up into a spiral when

yComputational results216 demonstrate that intracellular cAMP exhibits a significant
gradient, and since it responds more slowly than cGMP, the same is undoubtedly true for
cGMP or other species that respond more rapidly than cAMP.

261



they encounter a low density region. They discovered that spirals do not
form when the initial density is too low, but they do form at a sufficiently
high density (� � 0:4) (cf figure 36). Laboratory experiments also sug-
gest that the average density is an important factor in the formation of
spirals227, and the computational experiments support these findings. To
understand the density effect one must understand two aspects: (i) how
spiral waves are initiated, and (ii) when can they coexist with a pace-
maker.

Figure 36. The cAMP wave for a simulation in which a spiral wave arises sponta-
neously in a field with a pacemaker at the center. In (a)t = 95 and the pacemaker
fires before the spiral wave arrives. In (b)t = 110 and the spiral has entrained the
pacemaker, at least temporarily. (From Dallon and Othmer175.)

Durston161 was one of the first to consider theoretically how waves
can be broken during aggregation, and Leeet al. 227 observe that spi-
rals form at disrupted wave fronts that arise from wave-wave interactions
and from inhomogeneities in the system. However it is not understood
why density is an important factor in determining whether or not spirals
will form. In the simulations shown in Figure 36 wave-wave interac-
tions are not important, since there is only one pacemaking region. At
low average densities a local low density region usually elongates in the
direction of propagation as streams form on either side of the region. Ini-
tially the cAMP wave will start to curl as it travels around the region on
both sides, but then the two pieces rejoin at the rear to form a distorted,
yet connected wave front. At higher average densities the computational
results suggest that passive spread of cAMP through the low density re-
gion is rapid enough to trigger a wave on the downstream side of the
low density region before the main wave reaches that side. Initiation of
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this secondary wave can then alter the cAMP environment sufficiently to
break the primary wave and form a spiral. A natural question is why this
process depends on the average density, and the explanation is as follows.
At sufficiently low average densities the passive spread of cAMP never
produces a superthreshold signal at the downstream side and the primary
wave rejoins smoothly there, but at sufficiently high densities the pas-
sive spread can trigger a secondary wave. Long-range spread of cAMP
through the low density region is possible because of the smaller effect of
mPDE there. While this provides a qualitative explanation for the origin
of spirals, further work is needed to quantify the effect and to determine
whether this is an important mechanism for break-up (others are given
below).

Once a wave is broken and a spiral is formed, it must be able to coexist
with a pacemaker, at least for a period of time, unless the pacemaker dies.
It has been shown previously that a pacemaker can coexist with a spiral
wave indefinitely in other excitable systems10, but no theoretical explana-
tion of this was given. It is known that for both pacemaker-initiated waves
and spiral waves, their speed and period is such that the combination lies
close to the dispersion curve for periodic traveling waves (Figure 22(b)),
and thus some insight into the effect of density on coexistence is obtained
by comparing the dispersion curves for different densities given in Fig-
ure 22(b).

The range of periods of naturally-occurring pacemakers is 3-10 min-
utes, and under the conditions used here the periods are in the range of 4-6
minutes. As a result, one can see from this figure that a high density field
is more likely to propagate every wave initiated by a pacemaker, rather
than gating the waves. Secondly, it is clear that higher density fields prop-
agate stable waves over a much wider range of speed for pacemaker pe-
riods in the range used here, and thus coexistence between distinct types
of waves is more likely at high densities. In particular, a spiral wave and
an axisymmetric wave are more likely to coexist for some time in a high-
density field. Such coexistence is essential to provide time for a spiral to
develop in a field forced by a pacemaker. Once it is fully developed, it
may or may not completely entrain the pacemaker. An alternative to co-
existence is that the pacemaker dies when the local cell density grows too
large, something which we have observed in computational experiments.

There are several other possible mechanisms that may lead to the for-
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mation of spiral waves. It is known that cells may become pacemakers as
aggregation proceeds, and therefore there is a possibility that randomly-
located pacemakers may release pulses of cAMP and thereby break a
traveling wavefront. This is unlikely to happen after waves are well-
established in the field, because a single cell does not release enough
cAMP to disrupt a well-established wave. However, this may be impor-
tant in early aggregation when the waves are not yet well-established and
the competition between pacemakers already produces partial fragmen-
tation of waves. This idea could be tested by random additions of cAMP
pulses to an early aggregation field, something which is more easily done
using a computational model than in the laboratory.

Another recent suggestion for the origin of spirals that relies on ran-
dom variations in early aggregation is due to Palsson and Cox117. These
authors add spatial and temporal noise to the levels of the cAMP phospho-
diesterase inhibitor in order to create local pacemakers that break wave-
fronts and create spirals. In their approach, which is formally identical
to that in the preceding paragraph, a local increase in PDI, the inihibitor
of PDE, gives rise to a cAMP pulse, and since the cells do not all secrete
PDI at the same time, this can explain the random spontaneous cAMP
pulses that are observed, and which may break wavefronts. Heterogene-
ity of cell parameters has also been suggested as a mechanism of spiral
formation228.

Finally, Levineet al.229 postulate a third mechanism for the origin of
spiral waves based on what they call genetic feedback. It is known that
in early aggregation several genes are induced by nanomolar pulses of
cAMP (cf. Figure 5), and Levineet al.assume that the excitability of a
cell changes with time according to a first-order equation of the form

dE

dt
= ��E + �Co (62)

whereE is the excitability andCo is the extracellular cAMP concentra-
tion. Thus during a transient increase of cAMP the excitability increases,
but after the cAMP level decreases the excitability decays to a level set
by the basal cAMP level (which in reality depends on the excitability,
but in the model only the threshold cAMP level for secretion depends
on the excitability). The authors prescribe rules for the cAMP produc-
tion and secretion and simulate the resulting equations. They find that
the use of (62) in conjunction with an equation for cAMP dynamics can
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produce large-scale spirals, whereas uniform increases in the excitability
of all cells produces a more fragmented aggregation field that contains
many spirals. However their model seems implausible since it requires
that the excitability vary on a time-scale of minutes, and in particular, that
it increases in a cell that experiences the temporal cAMP profile charac-
teristic of a traveling wave. This is incompatible with the observation that
stimulatory effects of a series of cAMP pulses on gene expression occur
with a half-time of several hours53.

Thus there is no experimentally-established mechanism for spiral wave
formation, but there are several plausible theoretical suggestions, all of
which rely on random variations in the aggregation field, either in the
cell density, or in parameters that can locally produce pacemakers that
disrupt wavefronts. Further work is needed to more rigorously establish
the mechanisms, both from the experimental and the theoretical side.

6.2 The origin of streaming

The final aspect to be discussed concerns the origin of streams during
aggregation. In Figure 37 we show the distribution of cells at two times.
It is clear in the right panel that the streams first develop close to the pace-
maker, and then grow outward. Also noteworthy is the branching pattern
in the streams, and in particular, that there is no dominant length scale in
the streams: streams form at every length scale and their structure may
be approximately fractal. In this section we discuss several theoretical
mechanisms proposed to explain their formation.

It is easy to produce an heuristic argument that shows why the uniform
cell distribution should be unstable to sufficiently large disturbances. Cells
move in the direction of higher cAMP and produce it as well; therefore a
disturbance that creates a large enough density or cAMP nonuniformity
will induce cell movement and this will in turn reinforce the nonunifor-
mity. Moreover, the variations in density or concentration will be rein-
forced with each passing cAMP wave. Thus there is no doubt that large
variations in density can lead to streaming; where current theories differ
is whether the uniform distribution is stable or unstable to small distur-
bances. Dallon and Othmer175 provide computational evidence that a
perfectly uniform initial distribution of identical cells will not develop
streams, and they give several heuristic reasons to assist in understanding
these results. Firstly, it is known that there is a diffusional component to
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Figure 37. The evolution of streams during aggregation. The top panel shows
an early, relatively-uniform field with a pacemaker at the center, and the bottom
panel shows the development of streams at a later stage. Note that the streams
are most pronounced near the pacemaker, and that there is little stream formation
near the boundary of the dish. (From Raper230.)

cell motion, and this will tend to stabilize the uniform distribution. Dif-
fusion is not explicitly included in the model, but it can be shown that the
numerical procedure introduces it via the truncation errors. Secondly, it is
known that the transduction pathway to the locomotory machinery adapts
to the extracellular cAMP signal, and this fact is included in their model.
As a result of adaptation, disturbances that vary slowly over time will not
be amplified by cell movement. Finally, there is a threshold in the cAMP
gradient of� 10 nM=mm231 below which the cells do not chemotact.
These three factors, diffusion, adaptation and a threshold, all mitigate
against amplification of small disturbances, and Dallon and Othmer175

conjecture that the streams result from a finite-amplitude instability. This
is currently under investigation232.

Other numerical evidence that supports their conjecture is as follows.
In a simulation with a uniform initial cell density of 0.2, streaming oc-
curs after a period two to three times longer than when a random initial
density is used. In order to test for edge effects a simulation on a cylinder
with a central (axially) band of pacemaker cells was done. The initial
conditions were uniform around the cylinder and cells within0:05 cm
of the center were made oscillatory. In this simulation the cells moved
toward the center line, uniformly in the transverse direction, for at least
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100 minutes,i. e. , there was no streaming before this time. After this
time the pacemaker region begins to break up, which causes streaming in
the nearby field. The far field structure remains largely unaffected for at
least 50 minutes more. Thus they conclude that linear instabilities, if they
exist at all, do not effect the aggregation patterns on a time scale that is
relevant to aggregation under normal conditions.

This conclusion differs from the conclusion reached by others using a
continuum description of the cell density. Levine and Reynolds153 find
that for a different model streaming is due to a linear instability in the gov-
erning equations. These authors use a continuum description and show
that planar traveling waves can be unstable to perturbations of wavelength
greater than approximately 8 mm, but stable otherwise. They conclude
that a streaming instability can occur, but their results show that it is a
very long wavelength instability and thus would probably not be seen
on the scale of normal aggregation patterns. Moreover, in the mecha-
nism they suggest the growing modes are not stationary in space, but
rather, they propagate outward with the cAMP waves as their amplitude
increases. Thus the maximum growth will be seen at the outer boundary
of the domain, which implies that streams will develop first near the outer
boundary. However, as we pointed out earlier, streaming develops first in
the center and later at the periphery.

Vasievet al.154, who also use a continuum model for the cell density,
conclude that a necessary condition for the development of streams is that
the initial density be nonuniform. However, they did not addresses the
question as to whether or not the uniform distribution is stable to small
amplitude disturbances. These authors suggest that the major factor in
stream formation is a change in the speed of the cAMP wave as density
varies. As can be seen in Figure 22(a), the speed increases with density,
at least up to moderate densities (in Vasievet al. ’s model the speed is
monotonic increasing for all densities), and this may be an important fac-
tor. Höfer and Maini233 incorporate this idea and the curvature-velocity
relationship given in (16) into a simplified model on which some analysis
can be done.� They also conclude that plane cAMP waves can become
unstable to transverse perturbations, but as in the Reynolds-Levine analy-

�It should be noted that these authors incorporate the� in that equation into the diffusion
coefficient, which is therefore a scaled version of the true diffusion coefficient.
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sis, the disturbances propagate outward as they grow and thus the largest
amplitude will be seen on the outer boundary.

Thus the existing simplified models make predictions that are at vari-
ance with the experimental observations and with the computational re-
sults obtained using a discrete cell model, and further work is needed to
resolve this issue.

7 Conclusion

Much less is understood about the later stages of development, includ-
ing the formation of the mound, the migration of the slug, pattern for-
mation, cell sorting and regulation during migration, and the formation
of the fruiting body. Some important problems for future study are the
following.

1. Understanding adenylyl cyclase regulationAt present there is
still uncertainty concerning the detailed molecular interactions that
produce adaptation of adenylyl cyclase. Here, more experimental
data are required before a biochemically correct model for oscilla-
tory signaling can be formulated.

2. Understanding cell locomotion and orientation in response to
chemotactic stimuli The chemotactic signal is ultimately trans-
lated into cytoskeletal rearrangements, that lead to pseudopod ex-
tension and cell locomotion234{236. cAMP affects the state of myosin
phosphorylation through the cGMP signaling pathway36,37; regula-
tion of guanylyl cyclase is complex and shows at least three levels
of desensitization92. Since desensitization involves both rapidly
(Ca2+, cGMP ) and slowly diffusing (cytosolic proteins that reg-
ulate guanylyl cyclase activity) molecules101,65, integration of this
input could provide the cells with spatio-temporal information on
the chemoattractant gradient (cf. Section 4). cAMP also regulates
actin polymerization by an as yet unknown signaling pathway. Clearly,
much experimental work is still required to identify both the signal
transduction and cytoskeletal components of the chemotactic re-
sponse and to understand their interactions. Even when all molec-
ular components are identified, the highly complex network that
specifies their interactions interaction can probably only be under-
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stood by a quantitative approach. Single cell models of the type
developed by Bottino237 will be useful in this respect since models
of actin polymerization can be incorporated.

3. Understanding cAMP signaling after aggregationA fairly large
body of evidence indicates that oscillatory cAMP signaling contin-
ues after aggregation and controls the morphogenetic cell move-
ment that leads to formation of migrating slugs and culminating
fruiting bodies. The apical tip of mounds and slugs, which has the
properties of a classical embryological organizer, is thought to exert
this function in Dictyostelium by acting as an autonomous cAMP
oscillator. At the onset of multicellular development one essentially
goes from two-dimensional to three dimensional wave patterns,
the latter confined to hemispherical mounds and cylindrical slugs.
Advanced imaging techniques show optical density waves shaped
armed spiral patterns similar to spiral cAMP waves in aggregation
fields238. Cells appear to respond to these waves with rotary move-
ment around the aggregate center. Interrupted cell movement remi-
niscent of chemotaxis to cAMP pulses was observed in slug poste-
riors, whereas rotary movement is the predominant movement pat-
tern in slug anteriors239,240. It was concluded that during slug for-
mation the two-dimensional spiral evolves into a three -dimensional
scroll wave at the slug tip, which degenerates into a planar wave at
the posterior, due to reduced excitability in this region. These three-
dimensional wave patterns could be generated in a cylindrically-
shaped ‘computational slug’ using the MG model241, but the di-
ameter used was much larger than it is in reality, and thus it is not
clear whether existing modesl will predict that scroll waves can ex-
ist in a slug. Further, in slugs the major components of the cAMP
signaling system, such as cAMP receptors, adenylyl cyclase and
extracellular PDE are quite substantially downregulated after ag-
gregation242,75,243. This downregulation may reflect the fact that
much higher cAMP levels can be achieved with lower cAMP out-
put by individual cells, due to the high cell density in aggregates.
The high affinity cAMP receptor cAR1, which is present in large
numbers in aggregating cells, decreases significantly after aggre-
gates have formed, and the intermediate affinity receptor cAR3 and
low affinity receptors cAR2 and cAR4 are now expressed in dif-
ferent domains in the slug244. All cARs can potentially mediate
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excitation and adaptation of adenylyl cyclase, and so may regulate
this enzyme during postaggregative development (Kim, J.Y., Bor-
leis, J. and Devreotes, P.N. submitted). One can only speculate
as to whether this actually occurs and what the effects of coupling
adenylyl cyclase to lower affinity cARs might be. Future studies are
required to establish to what extent current models for oscillatory
cAMP signaling in early development can reproduce the cell move-
ment patterns observed during multicellular developments and if
not, what adjustments are required. In parallel, experimental data
on the input/output behavior of the cAMP signaling system and the
biochemical characteristics of its components should be collected
to determine whether such adjustments are realistic.

4. Understanding cell movement in streams, mounds and slugs
Little as we understand the translation of chemotactic signals into
directed movement of individual cells, there are additional prob-
lems in understanding cell movement in multicellular structures.
A major question is whether cells use the same system for loco-
motion, i. e. pseudopod extension and retraction of the rear end.
Cell tracking of a few labeled cells in streams and mounds shows
that this is probably the case245{249,238. During aggregation cells
become progressively more adhesive and a possible role of cell ad-
hesion in cell movement should be considered. Cell adhesion may
e.g. be important to generate traction, and there is probably also a
function for the muccopolysaccharide sheath in generating traction
and maintaining structural integrity. From the modeling standpoint
one question is whether the motion of the slug can be described ad-
equately by continuum models such as are used by Vasievet al.250.
A further question is how the ‘rules’ for the motion of individual
cells should be incorporated into continuum models?

4. Interactions between cell movement and cell differentiationIn
the period just after starvation, cell differentiation is essentially lin-
ear and cells differ only with respect to the extent in which they
express markers of preaggregative development. After aggregates
have formed, intercellular signaling induces the cells to differenti-
ate into two distinct differentiation pathways. On one hand, extra-
cellular cAMP produced by oscillatory signaling triggers prespore
differentiation and synthesis of morphogens such as the stalk induc-
ing factor DIF. On the other, the differentiation state of the cells has
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a profound effect on its signaling properties. The components of
the cAMP signaling system are drastically downregulated, particu-
larly in prespore cells243. The differentiated cells sort by differen-
tial chemotaxis, and by so doing they create separate domains with
different signaling properties. This in turn will affect cell move-
ment and further differentiation and maturation of the differenti-
ated cell types. In order to completely understand Dictyostelium
development at the molecular level, this complex network has to
be experimentally mapped and theoretically understood. This is
clearly not within easy reach, but some progress has been made251.
In view of the fact that current molecular genetic approaches are
rapidly uncovering hitherto unknown components of signaling sys-
tems, whose function and interactions are more easily understood
because of the excellent experimental accessibility of the system, a
complete understanding of Dictyostelium may be obtained within
the not too distant future.
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[193] Höfer, T, Sherratt, J. A, & Maini, P. K. (1995)Proc. Roy. Soc. Lond B259,
249–257.

[194] Othmer, H. G, Dunbar, S. R, & Alt, W. (1988)J. Math. Biol.26, 263–298.

[195] Koshland, D. E. (1980)Bacterial Chemotaxis as a Model Behavioral Sys-
tem. (Raven Press, New York, NY, USA).

[196] Berg, H. (1983)Random Walks in Biology. (Princeton University Press,
Princeton, NJ, USA).

[197] Othmer, H. G. (1997) A model for chemokinesis and chemotaxis with
internal state and adaptation. In preparation.

[198] Killich, T, Plath, P. J, Wei, X, Bultmann, H, Rensing, L, & Vicker, M. G.
(1993)J. Cell Sci.106, 1005–1013.

[199] Shenderov, A & Sheetz, M. (1997)Biophys. J.72, 2382–2389.

[200] Goldstein, S. (1951)Quarterly J. Mech. Appl. Math.VI , 129–156.

[201] Kac, M. (1974)Rocky Mtn J. Math.3, 497–509.

[202] McKean, H. (1967)J. Math. Physics75, 1–10.

[203] Segel, L. A. (1978)Mathematical models for cellular behaviored. Levin,
S. A. (MAA, Washington), pp. 156–190.

[204] Mato, J. M, Losada, A, Nanjundiah, V, & Konijn, T. M. (1975)PNAS72,
4991–4993.

[205] Mato, J. M, Krens, F. A, Van Haastert, P. J. M, & Konijn, T. M. (1977)
PNAS74, 2348–2351.

[206] Zigmond, S. H. (1978)J. Cell Biol.77, 269–287.

[207] Othmer, H. G & Pate, E. F. (1987)A model for pattern formation in Dicty-
ostelium discoideumeds. Teramoto, E & Yamaguti, M. (Springer-Verlag,
Berlin), pp. 224–233.

[208] Gerisch, G, Hulser, D, Malchow, D, & Wick, U. (1975)Phil. Trans. Roy.
Soc. Lond.272, 181–192.

280



[209] Gilbert, S. H, Perry, K, & Fay, F. S. (1994)J. Cell Biol.127, 489–503.

[210] Brundage, R. A, Fogarty, K. E, & Fay, F. S. (1991)Science254, 703–706.

[211] Gerisch, G, Malchow, D, Huesgen, A, Nanjundiah, V, Roos, W, & Wick,
U. (1975)Cyclic AMP reception and cell recognition inDictyostelium
discoideum eds. McMahon, D & Fox, C. F. (Benjamin, New Yokr, NY),
pp. 76–88.

[212] Rossier, C, Eitle, E, Van Driel, R, & Gerisch, G. (1980)Biochemical
regualtion of cell development and aggregation inDictyostelium discoid-
eum eds. Gooday, G. W, Lloyd, D, & Trinci, A. P. J. (Society for General
Microbiology, Cambridge University Press, Cambridge, UK), pp. 405–
427.

[213] Pate, E & Odell, G. (1981)J. Theor. Biol.88, 201–239.

[214] Savill, N & Hogeweg, P. (1997)J. Theor. Biol.184, 229–235.

[215] Kuwayama, H, Ishida, S, & Van Haastert, P. J. M. (1993)J. Cell Biol.123,
1453–1462.

[216] Dallon, J & Othmer, H. G. (1997) A continuum analysis of the chemotactic
signal seen byDictyostelium discoideum. J. Theor. Biol., To appear.

[217] Roos, W, Nanjundiah, V, Malchow, D, & Gerisch, G. (1975)FEBS Letters
53, 139–142.

[218] Malchow, D, Fuchida, J, & Nanjundiah, V. (1975)Biochem. Biophys. Acta
385, 421–428.

[219] Green, A & Newell, P. (1975)Biochem. J.140, 313–322.

[220] Konijn, T. M & Raper, K. B. (1961)Dev. Biol.3, 725–756.

[221] Nanjundiah, V & Malchow, D. (1976)J. Cell Sci.22, 49–58.

[222] Futrelle, R. (1982)J. Cell. Biochem.18, 197–212.

[223] Zigmond, S. H. (1989)Curr. Opin Cell Biol (AOE)1, 80–86.

[224] Tranquillo, R. T. (1990) inBiology of the Chemotactic Response, eds.
Armitage, J. P & Lackie, J. M. (Cambridge University Press, New York),
pp. 35–75.

[225] Schnitzer, M. J, Block, S. M, Berg, H. C, & Purcell, E. M. (1990)Strate-
gies for chemotaxiseds. Armitage, J. P & Lackie, J. M. pp. 15–34.

[226] Wilkinson, P. C. (1996)Methods10, pp. 74–84.

[227] Lee, K, Cox, E. C, & Goldstein, R. E. (1996) Competing patterns of sig-
nalling activity inDictyostelium discoideum. Preprint.

[228] Lauzeral, J, Halloy, J, & Goldbeter, A. (1997)PNAS94, pp. 9153–9158.

281



[229] Levine, H, Aronson, I, Tsimring, L, & Truong, T. V. (1996)PNAS93, pp.
6382-6386.

[230] Raper, K. B. (1984)The Dictyostelids. (Princeton University Press), pp.
126–127.

[231] Fisher, P. R. (1990)Cell Biol. 1, 87–97.

[232] Othmer, H. G., Lilly, B. & Dallon, J. C. (1998) Pattern formation in a
cellular slime mold. To appear.
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