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Abstract

We consider semilinear parabolic equations of the form

ut = uxx + f(u), x ∈ R, t > 0,

where f a C1 function. Assuming that 0 and γ > 0 are constant
steady states, we investigate the large-time behavior of the front-like
solutions, that is, solutions u whose initial values u(x, 0) are near γ
for x ≈ −∞ and near 0 for x ≈ ∞. If the steady states 0 and γ are
both stable, our main theorem shows that at large times, the graph of
u(·, t) is arbitrarily close to a propagating terrace (a system of stacked
traveling fonts). We prove this result without requiring monotonicity
of u(·, 0) or the nondegeneracy of zeros of f . The case when one or
both of the steady states 0, γ is unstable is considered as well. As
a corollary to our theorems, we show that all front-like solutions are
quasiconvergent: their ω-limit sets with respect to the locally uni-
form convergence consist of steady states. In our proofs we employ
phase plane analysis, intersection comparison (or, zero number) ar-
guments, and a geometric method involving the spatial trajectories
{(u(x, t), ux(x, t)) : x ∈ R}, t > 0, of the solutions in question.
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1 Introduction

Consider the Cauchy problem

ut = uxx + f(u), x ∈ R, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ R, (1.2)

where f ∈ C1(R) and u0 ∈ C(R) ∩ L∞(R). We investigate the dynamics
of solutions of (1.1) with front-like initial data. This means that given two
zeros of f , say, 0 and γ > 0, we assume, roughly speaking, that supu0 and
lim infx→−∞ u0(x) are close to γ, and inf u0 and lim supx→∞ u0(x) are close
to 0. Our general hypotheses are formulated in Section 2; for the purpose of
the introduction, we assume the following more specific conditions:

0 ≤ u0 ≤ γ, lim
x→−∞

u0(x) = γ, and lim
x→∞

u0(x) = 0. (1.3)

It is well known that in the dynamics of front-like solutions traveling
waves play a prominent role. A traveling wave is a solution U of (1.1) of the
form U(x, t) = φ(x − ct), where c, the speed of the wave, is a real number
and φ, the profile of the wave, is a C2 function. Clearly, the profile function
must satisfy the ordinary differential equation

φxx + cφx + f(φ) = 0. (1.4)

If the profile function is monotone and bounded, then, by (1.4), the limits
w± := φ(±∞) ∈ R are zeros of f . In this case, we also refer to the solution
U as a traveling front (connecting w− and w+). We shall mostly deal with
fronts which are decreasing in x but note that the transformation x → −x
allows one to study in parallel increasing fronts: if U is a traveling front,
then Ũ(x, t) = U(−x, t) is also a traveling front with opposite speed and the
profile function φ̃ = φ(−x). A traveling wave (front) with the speed c = 0 is
also referred to as a standing wave (front).

Convergence properties of solutions of (1.1) to traveling fronts have been
widely studied and are well understood. The simplest situation occurs in the
bistable case, that is, when the constants 0 and γ are both linearly stable
steady states of the equation θ̇ = f(θ) and there is no other stable steady
states of this equation in the interval [0, γ]. Then it is known (see [11]) that
a traveling wave connecting γ and 0 exists, is unique up to translations—
in particular, its speed is uniquely determined—and it attracts all front-
like solutions of (1.1) (we will be more specific about the meaning of the
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attractivity below). In the monostable case, when f ′(γ) < 0 < f ′(0) and
f > 0 in (0, γ), the situation is more complicated. Several traveling fronts
connecting γ and 0 then exist, their speeds forming an interval (see the
pioneering papers [13, 19] or [2, 33]). In this case, for the convergence of
the solution of (1.1), (1.2) to a specific front, certain asymptotics of u0(x) as
x→∞ is needed (see [3, 4, 20, 32] for results on approach to traveling fronts
and [16, 15, 39] for examples of other behaviors). There are many extensions
of these classical results, see, for example, [2, 5, 14, 17, 21, 28, 29, 30, 32];
many more references can be found in the bibliographical notes of [33, Sect.
1.6] or in the surveys [37, 38].

It is also well-known that if there are other stable constant steady states
in the interval [0, γ], a traveling front connecting γ and 0 may not exist and
a family of traveling fronts is needed to describe the behavior of the solution
u(·, t) of (1.1), (1.2). This is the case, for instance, when [0, γ] decomposes
into closed subintervals [0, γ1], [γ1, γ], in each of which f is bistable and such
that the unique speeds c1 and c2 of the traveling fronts connecting γ1 to 0
and γ to γ1, respectively, satisfy 0 ≤ c2 < c1. Then there is no traveling front
connecting γ and 0 and the solution u with an initial datum as above is at-
tracted to the two fronts: for large t, the graph of u(·, t) has a part resembling
the front with the range in [0, γ1], another part resembling the front with the
range in [γ1, γ], and between these two parts the graph is flat and close to the
line {u = γ1}. Early results on the convergence of solutions to such systems
of traveling fronts (referred to as a “stacked combination of fronts”) can be
found in [11] and in the follow-up paper [12]. The assumptions in [11] are
rather mild as the initial datum u0 is concerned, however, the nonlinearity
is assumed to satisfy additional conditions, involving in particular the non-
degeneracy of the zeros 0, γ1, γ (see also [31] for an extension of this result
to monotone systems of reaction-diffusion equations). In [12], on the other
hand, it is assumed that the function u0 is monotone and the nondegeneracy
condition is replaced by weaker conditions. For monotone initial data, very
general results on convergence to a family of traveling fronts, under the name
“minimal systems of waves,” is proved in [33, Sect. I.1.5] (the original results
were given in [35]; see also [23] for similar convergence results for viscous con-
servation laws, where some nonmonotone initial data are allowed). Finally,
in the recent paper [9], which inspired our present work, the convergence
to a family of traveling fronts, “propagating terraces” in [9], was proved for
u0 equal to a step function, but with f = f(x, u) allowed to depend on x
periodically. In this case, the notion of a traveling wave has to be replaced
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by that of a pulsating wave.
In the present paper, we only consider the homogeneous problem. We

introduce a new technique, which allows us to prove the convergence to
propagating terraces under minimal requirements on f and u0. In partic-
ular, we do not assume any nondegeneracy conditions on the zeros of f and
any monotonicity property of u0. If the steady states 0 and γ are both sta-
ble, not necessarily asymptotically, with respect to the ordinary differential
equation (ODE) θ̇ = f(θ), then no conditions other than (1.3) are needed
(and even these are significantly relaxed). If 0 is unstable from above, then
some additional condition on u0, such as u0 ≡ 0 on an interval [m,∞) or a
sufficiently fast decay of u0(x) as x → ∞ is necessary, and that is the only
extra condition we need (similarly, we need an extra condition if γ is unstable
from below).

To give the reader a flavor of our results, we state here sample theorems
on approach to a propagating terrace assuming conditions (1.3). In the first
one, we assume, as in [9], the following propagation property:

(DGM) There is a compactly supported continuous function ū0 with values
in [0, γ) such that the solution ū of (1.1) with the initial condition
ū(·, 0) = ū0 satisfies

lim
t→∞
‖ū(·, t)− γ‖L∞loc(R) = 0. (1.5)

Theorem 1.1. Assume that (DGM) holds. Then there exist k ∈ N, numbers
c1 ≥ · · · ≥ ck > 0, and functions φ1, . . . , φk, such the following statements
are valid.

(i) For each j the function φj is a decreasing solution of equation (1.4) with
c = cj and the limits bj := φj(−∞), aj := φj(∞) satisfy the relations

a1 = 0, aj+1 = bj (j = 1, . . . , k − 1), bk = γ.

(ii) Let u0 be any continuous function satisfying (1.3). If 0 is unstable
from above for the equation θ̇ = f(θ), assume also that u0 ≡ 0 on an
interval [m,∞). Then there are C1 functions ζ1, . . . , ζk on (0,∞) with
the following properties:

(a) limt→∞ ζ
′
j(t) = 0 (j = 1, . . . , k);

5



(b) ζj(t) − ζj+1(t) → ∞ whenever j ∈ {1, . . . , k − 1} is such that
cj+1 = cj;

(c) as t→∞, one has

u(x, t)−

( ∑
j=1,...,k

φj(x− cjt− ζj(t))−
∑

j=1,...,k−1

aj+1

)
→ 0, (1.6)

where the convergence is uniform with respect to x ∈ R.

x0

γ

a2

a3

Figure 1: The graph of u(·, t) ≈
∑

j=1,...,k φj(·−cjt−ζj(t))−
∑

j=1,...,k−1 aj+1,
with k = 3, for large t

The family of traveling fronts Uj(x, t) = φj(x − cjt), j = 1, . . . , k, ap-
pearing in the theorem is what we call, following [9], a minimal propagating
terrace; more precisely, it is the minimal propagating terrace connecting γ
and 0. The reason for the name “propagating terrace” is apparent from the
graph of u(·, t) for large t (cp. Figure 1). The minimality property will be
defined in the next section.

In the special case when u0 is equal to a step function, Theorem 1.1
is a consequence of the main result of [9] which deals with periodically x-
dependent nonlinearities f = f(x, u). Note that (DGM) requires a certain
structure of f . In the homogeneous case considered here, this structure can
be described explicitly as follows. Set

F (u) :=

∫ u

0

f(s) ds. (1.7)

It is not difficult to show (see Proposition 2.12(iii) and Section 3.2 below)
that (DGM) is equivalent to the following condition on f :
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(F1) The point u = γ is a unique (global) maximizer of the function F in
[0, γ] and it is an isolated zero of f in [0, γ].

Condition (F1) implies in particular that the minimal propagating terrace
consists of finitely many traveling fronts with positive speeds. The case when
u = 0 is a unique maximizer of F


[0,γ]

and an isolated zero of f in [0, γ] is

analogous; this time, the minimal propagating terrace consists of finitely
many traveling fronts with negative speeds.

If neither (F1) nor the previous analogous case occur, the situation is
more complicated in that the traveling fronts in the minimal propagating
terrace may have positive, negative, as well as zero values. Nonetheless, a
conclusion similar to that in Theorem 1.2 still holds if all maximizers of F
are isolated critical points of F :

(F2) The function F has only finitely many maximizers in [0, γ] and all of
them are isolated zeros of f in [0, γ].

Theorem 1.2. Assume that (F2) holds. Then there exist k ∈ N, numbers
c1 ≥ · · · ≥ ck (not necessarily positive), and functions φ1, . . . , φk such that
the following statements are valid.

(i) For each j the function φj is a decreasing solution of equation (1.4) with
c = cj and the limits bj := φj(−∞), aj := φj(∞) satisfy the relations

a1 = 0, aj+1 = bj (j = 1, . . . , k − 1), bk = γ.

(ii) Let u0 any continuous function u0 satisfying (1.3). If 0 is unstable
from above for the equation θ̇ = f(θ), assume also that u0 ≡ 0 on an
interval [m,∞); and if γ is unstable from below for this ODE, assume
that u0 ≡ γ on an interval (−∞, n]. Then there are C1 functions
ζ1, . . . , ζk on (0,∞) such that conclusions (a)-(c) stated in Theorem 1.1
hold.

Compared to Theorem 1.1, the only difference in the statement of The-
orem 1.2, in addition to the hypotheses, is that the speeds cj are not all
positive. Note that, in view of statement (a), the cj are the asymptotic
speeds of the interfaces, or, transitions, in the graph of u(·, t) (cp. Figure 1).
Thus, cj > 0 means that the corresponding interface moves to the right and if
cj < 0 it moves to the left. If cj = 0, the interface moves with asymptotically
vanishing speed and its motion is determined by the corresponding function
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ζj(t). Note that, although ζ ′j(t)→ 0, ζj(t) itself may not be convergent and it
may even be unbounded. In fact, if cj = cj+1 for some j (which happens, for
example, if f


(aj+1,bj+1)

is a shift of f


(aj ,bj)
), then, according to statement

(b), at least one of the functions ζj, ζj+1 is unbounded. In Section 2.5, we
show that under certain generic conditions (including in particular the condi-
tion that cj 6= cj+1 for all j), the functions ζj are all convergent. Moreover, in
this generic case, the convergence in (1.6) is exponential. Naturally, the case
when one of the steady states 0, γ is unstable for the equation θ̇ = f(θ) is ex-
cluded in this convergence theorem. Even in a simple monostable case—with
the minimal propagating terrace consisting of just one traveling front—the
corresponding function ζj grows logarithmically to infinity [4].

Assuming still conditions (1.3) on u0, let us now consider a completely
general nonlinearity f ∈ C1 with f(0) = f(γ) = 0. The minimal propagating
terrace may now consist of infinitely many traveling fronts and it may also
have “gaps” if there are continua of maximizers of the function F (see Section
3.2). Therefore, the approach of the solution u to the minimal propagating
terrace cannot be expressed in such a simple way as in (1.6). Instead, we
formulate it in terms of the Ω-limit set of u:

Ω(u) := {ϕ : u(·+ xn, tn)→ ϕ for some sequences tn →∞ and xn ∈ R}.
(1.8)

Here, the convergence is in L∞loc(R) (the locally uniform convergence).
To explain how this limit set serves our purposes, let us first compare it

to the more traditional notion of the limit set, the ω-limit set of u in L∞loc(R):

ω(u) := {ϕ : u(·, tn)→ ϕ for some sequence tn →∞}. (1.9)

Heuristically speaking, the choice of the locally uniform convergence in (1.8)
and (1.9) means that the shape of u(·, t) for large times is being observed
through large, but finite, “windows.” In the case of ω(u), the observer is
stationary and accordingly only the behavior of u(·, t) in fixed compact re-
gions is captured in ω(u). On the other hand, in Ω(u), the shifts introduced
by xn mean that at any given time tn the observer can place the window to
any desired position and thereby see any finite piece of the graph of u(·, tn).
For example, to observe an interface moving with a constant speed c, one
can choose xn = ctn, which corresponds to using the usual moving coordi-
nate frame. When there is no preferred moving coordinate frame, as when
there are infinitely many speeds in the minimal propagating terrace, it is
reasonable, when examining the global shape of u(·, t), not to constrain the
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position of the windows, thus the sequence {xn} in the definition of Ω(u) is
completely arbitrary.

Clearly, ω(u) ⊂ Ω(u), but the opposite inclusion is not true in general. In
this paper, Ω(u) is employed much more frequently than ω(u), as our main
goal is to study the global shape of the front-like solutions at large times.
However, the structure of ω(u) is of interest as well and we will get back to
it below.

In the formulation of our next theorem, N is a (finite or countable) system
of open nonoverlapping subintervals of (0, γ) such that

ZN := [0, γ] \
⋃
I∈N

I ⊂ f−1{0}. (1.10)

Thus ZN consists of zeros of f , or, constant steady states of (1.1).

Theorem 1.3. For any function f ∈ C1 with f(0) = f(γ) = 0, there exist
a system N as above and families of numbers {cI : I ∈ N} and functions
{φI : I ∈ N} such that the following statements hold.

(i) For each I the function φI is a decreasing solution of equation (1.4)
with c = cI whose range is the interval I.

(ii) Let u0 any continuous function u0 satisfying (1.3). If 0 is unstable
from above for the equation θ̇ = f(θ), assume also that u0 ≡ 0 on an
interval [m,∞); and if γ is unstable from below for this ODE, assume
that u0 ≡ γ on an interval (−∞, n]. Then

Ω(u) = {φI(· − ξ) : I ∈ N , ξ ∈ R} ∪ ZN , (1.11)

where ZN is as in (1.10).

According to statement (i), the φI and cI are, respectively, the speeds
and profile functions of traveling fronts of (1.1). Again, they are coming
from the minimal propagating terrace associated with the nonlinearity f and
interval [0, γ], as defined in the next section. Relating to our discussion of
Ω(u) above, (1.11) can be interpreted as follows. Looking at any finite piece
of the graph of u(·, t) for large t, what one sees is either a flat part given by
one of the constants in ZN , or a part of the graph of the profile function φI ,
for some I ∈ N . In Section 2.2 and 2.3, we give further information on the
behavior of the solution near its interfaces for general f (see Theorems 2.11
and 2.19).

9



We emphasize that the minimal propagating terrace for the interval [0, γ]
is uniquely determined by the nonlinearity f . Accordingly, the set Ω(u) in
Theorem 1.1 and the traveling fronts Uj(x, t) = φj(x − cjt), j = 1, . . . , k,
in Theorems 1.1, 1.2, are independent of the solution u. What distinguishes
between different solutions are the functions ζj(t) in Theorems 1.1, 1.2 or
similar functions in Theorems 2.11 and 2.19 below.

The above theorems present a substantial generalization of earlier results
on convergence to propagating terraces in the homogeneous case. When (1.3)
is assumed, the theorems give a fairly complete description of the large-time
behavior of the solutions of (1.1), (1.2) for general nonlinearities. In the next
section, we push the generality even further by considering a larger class of
initial data. Our conditions on u0 formulated in (2.1)-(2.3) are easily seen to
be sharp for this kind of results.

We believe that our theorems on the structure and attractivity proper-
ties of minimal propagating terraces will be instrumental for further under-
standing of the dynamics of solutions of (1.1), and not just of the front-like
solutions (for example, in a sequel to [22], we will employ the present results
in a study of solutions with localized initial data). Here, we give one ap-
plication, still in the context of front-like solutions, concerning the (small)
ω-limit set of the solution u of (1.1), (1.2). We continue to assume (1.3)
(for more general initial data, ω(u) is examined in Section 2.4). We say the
solution u is convergent if ω(u) consists of a single function–necessarily a
steady state of (1.1), and quasiconvergent if ω(u) consists entirely of steady
states of (1.1). Convergence is the simpler of the two behaviors, but in
some sense—numerically, for example—quasiconvergent solutions are indis-
tinguishable from convergent solutions. Although they may not settle to any
particular steady state, they move very slowly at large times, with ut(·, t)→ 0
in L∞loc(R) as t→∞. Not all bounded solutions of (1.1) are quasiconvergent.
In fact, non-quasiconvergent solutions occur in equations of the form (1.1)
quite frequently: they exist whenever there is an interval [a, b] in which f is
bistable (see [24, 26]; a broader discussion of quasiconvergence can be found in
[27]). On the other hand, it was shown in [22] that the solution of (1.1), (1.2)
is quasiconvergent, if bounded, provided u0 ≥ 0 and u0(−∞) = u0(∞) = 0.
The following theorem says that the same is true if u0 satisfies (1.3).

Theorem 1.4. For any f ∈ C1 with f(0) = f(γ) = 0 and u0 ∈ C(R) sat-
isfying (1.3), the solution u of (1.1), (1.2) is quasiconvergent: ω(u) consists
of steady states. More precisely, ω(u) consists of constant steady states and
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decreasing standing waves of (1.1).

Note that in this theorem there is no additional assumption on u0 in
the case where one of the basic steady states 0, γ is unstable. Therefore,
Theorem 1.4 is not a direct consequence of the previous theorems. We shall
derive it from more general results on propagating terraces, as given in the
next section (see Subsection 2.4).

We now briefly discuss our method in the proof of the approach of solu-
tions to propagating terraces, highlighting in particular the new technique
that allows us to handle nonmonotone solutions without assuming any nonde-
generacy assumptions on f . Besides common tools like intersection compar-
ison (or zero number) arguments, our method is based on analysis of spatial
trajectories of solutions of (1.1). If u is a solution, then its spatial trajectory
at time t is the (not necessarily simple) curve τ(u(·, t)) := {(u(x, t), ux(x, t)) :
x ∈ R} ⊂ R2. Note that if u is a steady state, then its spatial trajectory is
independent of t and it is a trajectory, in the usual sense, of the first-order
system corresponding to the equation uxx+f(u) = 0. Likewise, if u is a trav-
eling wave, then its spatial trajectory is independent of t and it is a trajectory
of the first order system corresponding to the equation uxx + cux + f(u) = 0,
where c is the speed of the wave. In our proofs, we identify a class of trajecto-
ries of the equations uxx+cux+f(u) = 0, c ∈ R, which cannot be intersected
by the spatial trajectories τ(u(·, t)) if t is large enough. This way we show
that, as t→∞, τ(u(·, t)) is confined to an arbitrarily small neighborhood of
the spatial trajectories of traveling fronts coming from a minimal propagat-
ing terrace. From this, our theorems are derived via a unique-continuation
type argument. Although, due to the generality of the results, our proofs
are not short or simple, they are elementary to a large extent, with their key
building blocks provided by a phase plane analysis. We remark that in our
earlier work [25], we used similar techniques in a geometric proof of the con-
vergence to traveling fronts for bistable nonlinearities. An application of the
method of spatial trajectories can be seen there in a much simpler setting.

It may be instructive to compare our method with techniques used in
earlier proofs of the convergence to traveling fronts and families of traveling
fronts for monotone solutions. Given a solution u with ux < 0, one can
consider the function p(u, t) = ux(σ(u, t), t), where σ(·, t) is the inverse to
u(·, t). In [12], it is shown that p(u, t) satisfies a degenerate parabolic equation
and convergence theorems are proved there by comparison arguments for
this equation. Comparison techniques are also used in [33], although the
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underlying technical steps are proved in a different way, without reference
to the degenerate equation for p(u, t). Observe that for any t, the graph of
p(·, t) is in fact the spatial trajectory τ(u(·, t)) of u(·, t) as defined above.
Obviously, for the spatial trajectory to be such a graph, the monotonicity
of u(x, t) in x is necessary. In contrast, we work with spatial trajectories as
curves in R2, not necessarily graphs, thus we do not need the monotonicity
assumption.

The theorems stated above are consequences of more general results given
in the next section. Specifically, Theorems 1.1, 1.2 follow from Theorem
2.11(iii) (which treats the case when 0 and γ are both stable for the equation
θ̇ = f(θ)), Theorem 2.19(vi) (where either 0 is unstable from above or γ
is unstable from below), and Proposition 2.12 (which gives the finiteness of
the set of traveling fronts in the minimal propagating terrace and, under
hypothesis (DGM), also the positivity of the speeds). Theorem 1.3 follows
from Corollaries 2.10, 2.18; and Theorem 1.4 is contained in Theorem 2.20
and Remark 2.21(i).

The rest of this text is organized as follows. In the next section, we first
define the notions of a minimal system of waves and a minimal propagating
terrace, and recall their basic properties, as proved in [33]. Then we state
our main theorems, first in terms of the Ω-limit set of the solutions, then
in terms of minimal propagating terraces. These results are followed by a
general quasiconvergence theorem for front-like solutions. Section 2 concludes
with some theorems where a nondegeneracy assumption concerning zeros of
f and speeds of the traveling fronts is made. The convergence results in these
theorems are stronger than in the general case; in particular, they yield an
exponential rate of convergence to a propagating terrace.

Sections 4 and 6 contain the proofs of our main results. In the preliminary
Section 5, we recall several properties of the zero-number functional and the
Ω-limit sets of bounded solutions.

Section 3 is devoted to phase plane analysis of the equations uxx + cux +
f(u) = 0, c ∈ R. The main purpose of this analysis is to provide solutions
which can be used in intersection-comparison arguments in the proofs of
our main theorems. Such solutions are exhibited in Subsection 3.3, and we
believe that their usefulness goes beyond the scope of this paper—they may
come in handy in other studies of (1.1). Section 3 has two other parts where
we recall basic properties of trajectories of the equations uxx+cux+f(u) = 0,
c ∈ R, (Subsection 3.1) and give a more detailed description of the minimal
system of waves (Subsection 3.2).

12



Acknowledgment. The author is indebted to the anonymous referees for
their comments and suggestions leading to an improvement of the manuscript.

2 Main results

Throughout the paper our standing hypotheses on f are as follows:

(H) f is a (globally) Lipschitz function on R, γ > 0, f(0) = f(γ) = 0, and
f


[0,γ]
∈ C1[0, γ].

We assume the global Lipschitz continuity just for convenience. This is
at no cost to generality: since all our results concern a bounded solution, if
f(u) is merely locally Lipschitz, we can always modify it outside the range
of the solution to make it globally Lipschitz.

We denote by D0 and Dγ the sets of attraction with respect to the equa-
tion θ̇ = f(θ) of the equilibria 0 and γ. Recall that the set, or domain, of
attraction of an equilibrium ζ is the set of all initial values from which the
solution converges to ζ. This set trivially contains ζ, and it may or may not
contain other points depending on whether ζ is asymptotically stable from
above or from below. Specifically,

Dζ = {ζ} ∪ (ζ, ζ+) ∪ (ζ−, ζ), (2.1)

where (ζ, ζ+) is the maximal interval of this form on which f < 0 if such an
interval exists, otherwise (ζ, ζ+) = ∅. The set (ζ−, ζ) is defined in an anal-
ogous way (with f > 0 on (ζ−, ζ)). The notions of stability and asymptotic
stability of ζ ∈ f−1{0}, relative to the equation θ̇ = f(θ), are understood
in the usual Lyapunov sense (there is no need to introduce the stability of ζ
relative to (1.1)). Similarly we use the notions of stability of ζ from above
or from below. In terms of f , ζ is asymptotically stable from above for the
equation θ̇ = f(θ) if (ζ, ζ+) 6= ∅; it is stable from above if either (ζ, ζ+) 6= ∅
or there is a sequence ζn ∈ f−1{0} such that ζn ↘ ζ. Analogous conditions
characterize the stability from below. Unstable means not stable.

Our standing hypotheses on initial data u0 ∈ C(R)∩L∞(R) are as follows:

lim inf
x→−∞

u0(x) ∈ Dγ, sup
x∈R

u0(x) ∈ Dγ; (2.2)

lim sup
x→∞

u0(x) ∈ D0, inf
x∈R

u0(x) ∈ D0. (2.3)
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Thus supx∈R u0(x) may be greater than γ, as long as it is in Dγ. We do not
require the existence of the limit of u0(x) as x→ −∞; only that the inferior
and superior limits are both in Dγ (for the superior limit, this follows from
(2.2)). Of course, if γ is unstable both from above and below, condition (2.2)
reduces to the requirement that u0 ≤ γ and limx→−∞ u0(x) = γ. Similar
remarks apply to the equilibrium 0.

Recall that Ω- and ω-limit sets of a bounded solution u of (1.1) were
defined in (1.8) and (1.9). Since the solution u is determined uniquely by its
initial value u0, we sometimes use the symbols ω(u0), Ω(u0) for ω(u), Ω(u).
By standard parabolic regularity estimates, the set {u(x+·, t) : t ≥ 1, x ∈ R}
is relatively compact in L∞loc(R). This implies that both ω(u) and Ω(u) are
nonempty, compact, and connected in L∞loc(R) (see Subsection 5.1 below for
more details). Notice also that Ω(u) is invariant under translations: with
each ϕ it contains ϕ(· − ξ) for each ξ ∈ R.

2.1 Minimal systems of waves and propagating ter-
races

We first define, following [33], the notion of a minimal [0, γ]-system of waves.
We use the notation τ(φ) as in the introduction: if φ is a C1 function on an
interval J (usually J = R), we set

τ(φ) = {(φ(x), φx(x) : x ∈ J}. (2.4)

Definition 2.1. A [0, γ]-system of waves, or simply a system of waves if
there is no danger of confusion, is a continuous function R on [0, γ] with the
following properties:

(i) R(0) = R(γ) = 0, R(u) ≤ 0 (u ∈ [0, γ]);

(ii) If I = (a, b) ⊂ [0, γ] is a nodal interval of R, that is, a connected
component of the set R−1(−∞, 0), then there is c ∈ R and a decreasing
solution φ of (1.4) such that φ(−∞) = b, φ(∞) = a, and

{(u,R(u)) : u ∈ (a, b)} = τ(φ). (2.5)

Thus the graph of R between its successive zeros is given by the spatial
trajectory of a traveling front U (which is the same as the trajectory of its
profile function φ).
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Definition 2.2. A system of waves R0 is said to be minimal if for an arbi-
trary system of waves R one has

R0(u) ≤ R(u) (u ∈ [0, γ]).

By definition, the minimal system of waves is unique. As shown in [33,
Theorem 1.3.2], for any f satisfying (H), a minimal system of waves exists
and can be found as follows. For each u ∈ [0, γ], set

R0(u) = inf
φ
φ′(0), (2.6)

where φ is the decreasing profile function of a traveling front with the range
in [0, γ] such that φ(0) = u. The infimum is taken over all such φ; if no such
φ exists, one puts R0(u) = 0.

Additional basic properties of R0 are stated in the next theorem. We use
the following notation. If φ is a strictly monotone C1 function on an interval
J , then pφ is a function defined on the range of φ as follows:

pφ(u) = φx(x), where x ∈ J is the unique point with φ(x) = u. (2.7)

In other words, u 7→ pφ(u) is the function whose graph is given by the spatial
trajectory τ(φ). Note that with this notation, relation (2.6) reads as follows:

R0(u) = inf
φ
pφ(u). (2.8)

It is a simple observation, frequently used in classical studies of traveling
fronts and employed in this paper as well, that φ is a solution of (1.4) with
φ′ < 0 if and only if p = pφ(u) is a negative solution of the first-order equation

p′(u) = −f(u)

p(u)
− c. (2.9)

Theorem 2.3. For any f satisfying (H), there exists a unique minimal sys-
tem of waves R0. Moreover, R0 has the following properties:

(i) R−1
0 (0) ⊂ f−1(0);

(ii) If I1 = (a1, b1), I2 = (a2, b2) are nodal intervals of R0 with b1 ≤ a2,
and if c1, c2 are the speeds of the traveling fronts from Definition 2.1
corresponding to I1, I2, respectively, then c1 ≥ c2.
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(iii) If φ is the decreasing profile function of a traveling front with range
in [0, γ] and pφ is defined as in (2.7), then R0(u) ≤ pφ(u) for all u ∈
(φ(∞), φ(−∞)).

Statement (iii) follows directly from (2.8), but the other two statements
are not so trivial. Their proofs can be found in [33, Sect. 1.3] (related
results for monotone systems and multidimensional problems were proved in
[34, 36]). We remark, that the existence of a minimal system of waves with
finitely many zeros also follows from [11], if one assumes the existence of at
least one system of waves with finitely many zeros. Also, another result of
[11] can be rephrased as saying that a system of waves with finitely many
zeros is necessarily minimal if its speeds have the monotonicity property as
in statement (ii).

Statement (iii) in particular implies that, for any nodal interval I = (a, b)
of R0, the traveling front from Definition 2.1 has the minimal profile function
for all traveling fronts on that interval. More specifically, if c, φ are as in
Definition 2.1 and ψ is the decreasing profile function of another traveling
front with the same range I, then pφ ≤ pψ on I. Of course, this remark is of
relevance only in the case of nonuniqueness, disregarding spatial translations,
of traveling fronts with range I. It is well known (see [33, Theorem 1.3.14])
that the nonuniqueness can occur only if either a is unstable from above and
b is stable from below, or a is stable from above and b is unstable from below,
where the stability is relative to the equation θ̇ = f(θ). In the former case,
the speed c is necessarily positive and in the latter case it is negative (see
[33, Theorem 1.3.14]). Moreover, in both cases of nonuniqueness the speed c
is extremal in the following sense.

Theorem 2.4. Let R0 be the minimal system of waves, I = (a, b) a nodal
interval of R0, and let c, φ be as in Definition 2.1. If ψ and c̃ 6= c are,
respectively, the decreasing profile function and speed of another traveling
front with range I, then necessarily c 6= 0 and the following statements hold.
If c > 0, then c̃ > c (that is, c is the minimal speed for the interval I); and
if c < 0, then c̃ < c (c is the maximal speed for the interval I).

This is proved in [33], see Theorem 1.3.8 and Part 2 of Theorem 1.3.14
in that monograph.

Let R0 be the minimal system of waves. We denote by N the (countable)
set of all nodal intervals of R0. Since R0 is single-valued, for each I ∈ N
the speed c = cI and the solution φ = φI in Definition 2.1(ii) are determined

16



uniquely if we postulate

φ(0) =
a+ b

2
. (2.10)

This way we obtain the families of speeds and profile functions corresponding
to R0:

{cI : I ∈ N}, {φI : I ∈ N}. (2.11)

We define a natural ordering on N :

I1 < I2 if I1 = (a1, b1), I2 = (a2, b2) and b1 ≤ a2, (2.12)

and write I1 ≤ I2 if I1 = I2 or I1 < I2. Since two different nodal intervals of
R0 cannot overlap, N is simply ordered by this relation. By Theorem 2.3(ii),

if I1 < I2, then cI1 ≥ cI2 . (2.13)

Also, by the definition of R0 and Theorem 2.3(i), the boundary points a, b
of any interval (a, b) ∈ N are in R−1

0 (0) ⊂ f−1(0). However, not all elements
of R−1

0 (0) \ {γ} are boundary points of nodal intervals of R0. Indeed, R−1
0 (0)

may have accumulations points and it may even contain intervals. More
information on the set R−1

0 (0) is given in Propositions 2.12 and 3.11 below
(see also Figure 5 in Section 3.2).

Consider now the family of traveling fronts UI(x, t) = φI(x− cIt), I ∈ N .
We refer to this family as the [0, γ]-minimal propagating terrace or simply
the minimal propagating terrace, as the interval [0, γ] is fixed. Compared
to [9], where the name originates, our definition is broader in that we allow
the set N to be infinite and the family of speeds {cI : I ∈ N} to include
both positive, negative, as well as zero values. If the set R−1

0 {0} is finite
and the speeds cI are all positive, then the minimal propagating terrace,
as defined here, is essentially the same concept as in [9]. Indeed, in this
case, the properties of a minimal systems of waves as given by Definition
2.2 and statements (ii), (iii) of Theorem 2.3(ii) translate to the defining
properties of a minimal propagating terrace, as given in [9]. In particular,
the property stated in Theorem 2.3(iii) can be interpreted as a steepness
property introduced in [9]. Note, however, that in [9] propagating terraces
are considered in a more general framework of spatially periodic equations
and pulsating traveling fronts.
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Below we use the following notation

N+ := {I ∈ N : cI > 0},
N− := {I ∈ N : cI < 0},
N 0 := {I ∈ N : cI = 0}.

(2.14)

2.2 The case where 0 and γ are both stable

In this subsection, we assume the following stability conditions

(S) For the equation θ̇ = f(θ), the equilibrium 0 is stable from above and
the equilibrium γ is stable from below.

The stability assumed here is not necessarily asymptotic. In particular, f
may vanish on a neighborhood of 0 or γ in [0, γ].

Our first results in this subsection describe the Ω-limit sets of the solution
of (1.1), (1.2). In Theorem 2.7, we make an assumption on the structure of
the nonlinearity, to avoid certain degeneracies, and show that Ω(u) is as in
Theorem 1.3 from the introduction: it consists of the profile functions from
the minimal propagating terrace and constant steady states. In this theorem,
no conditions other than (2.2)-(2.3) are assumed on u0. These conditions on
u0 are sharp; one can show easily by counterexamples that the conclusion of
Theorem 2.7 does not hold in general if any of the conditions in (2.2)-(2.3)
is violated. On the other hand, in Theorem 2.9 we impose slightly stronger
assumptions on u0, but there the only assumptions on the nonlinearity are
(H) and (S). We do have a result, Theorem 2.5, on Ω(u) in the completely
general case, when no assumptions on f or u0 other than (H), (S) and (2.2),
(2.3) are made. It is somewhat weaker, but still interesting and consequential.
Moreover, one can use it in combination with other conditions on f or u0 to
obtain the stronger conclusion as in Theorems 2.7, 2.9. The last theorem of
this subsection, Theorem 2.11, shows in detail how the global shape of the
solutions for large times is described in terms of the minimal propagating
terrace.

Throughout the subsection R0 is the minimal system of waves (for the
interval [0, γ]) and {cI : I ∈ N}, {ϕI : I ∈ N} are the corresponding families
of speeds and profile functions, as introduced above (see (2.11)).

We start with the most general theorem assuming only the standing hy-
potheses and condition (S).
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Theorem 2.5. Assume that (in addition to (H)) hypothesis (S) is satisfied.
Then, given any u0 ∈ C(R) satisfying (2.2), (2.3), one has

R−1
0 {0} ∪ {φI(· − ξ) : I ∈ N , ξ ∈ R} ⊂ Ω(u0),

Ω(u0) ⊂R−1
0 {0} ∪ {φI(· − ξ) : I ∈ N , ξ ∈ R} ∪ {φ̂I(· − ξ) : I ∈ N 0, ξ ∈ R},

(2.15)
where N 0 is as in (2.14) and, for each I ∈ N 0, φ̂I(x) = φI(−x) (x ∈ R).

In this theorem and similar statements below, each constant from R−1
0 {0}

is identified with the constant function taking that value.
Recall that I ∈ N 0 means that cI = 0. Thus, for I ∈ N 0 the function φI

is a (decreasing) standing front of (1.1) and φ̂I is an increasing standing front.
Compared to Theorem 1.3 in the introduction, the conclusion of Theorem
2.5 is weaker in that it allows for the possibility that Ω(u0) contains some
increasing standing fronts. Of course, this is an issue only when N 0 6= ∅, that
is, when the minimal propagating terrace does include some standing fronts.
We have no examples with φ̂I actually contained in Ω(u0) for some solutions
u satisfying (2.2), (2.3), but are not able to rule this possibility out in the
general setting of Theorem 2.5. We will do this under additional conditions
on f or u0 (see Theorems 2.7, 2.9 below).

Remark 2.6. Clearly, by the translation invariance of Ω(u0), if one can show
that

φ̂I 6∈ Ω(u0) (I ∈ N 0), (2.16)

then (2.15) gives

Ω(u0) = R−1
0 {0} ∪ {φI(· − ξ) : I ∈ N , ξ ∈ R}. (2.17)

Theorem 2.7. Assume that (S) is satisfied. Assume further that either
N 0 = ∅ or the sets N+, N− are both nonempty. Then for each u0 ∈ C(R)
satisfying (2.2), (2.3) relation (2.17) holds.

The extra conditions in this theorem concern the nonlinearity f only.
They can be expressed explicitly in terms of the function

F (u) :=

∫ u

0

f(s) ds (2.18)

as follows.
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Proposition 2.8. One has N 0 = ∅ if and only if the set of the global maxi-
mizers of F in [0, γ] is an interval [γ∗, γ

∗] (reducing possibly a single point)
for some γ∗ ≤ γ∗. One has N+ 6= ∅ if and only if 0 is not a global maximizer
of F in [0, γ], and N− 6= ∅ if and only if γ is not a global maximizer of F in
[0, γ].

This is proposition is proved in Section 4. Note in particular that condi-
tion N 0 = ∅ is generic (it is satisfied by an open and dense set of functions
f in “reasonable” topologies).

If N 0 6= ∅ and one of the sets N+, N− is empty, then, in view Theorem
2.3(ii), the minimal propagating terrace has standing waves on its “top” or
“bottom.” This gives us some technical difficulties and to prove the stronger
conclusion (2.17) in this case we need additional conditions on u0. Simple
sufficient conditions include conditions (1.3) from the introduction, as well
as the following slightly more general conditions:

u0 ≥ lim
x→∞

u0(x) ∈ D0, (2.19)

u0 ≤ lim
x→−∞

u0(x) ∈ Dγ (2.20)

(see Corollary 2.10 below). Note that (2.19), (2.20) hold in particular if u0 is
a continuous monotone function satisfying (2.2), (2.3), or if u0 is sandwiched
between two shifts of such a monotone function.

We now formulate more general hypotheses on u0, which do not require
the existence of the limits u0(±∞). To motivate these hypotheses, recall that
we are trying to show that (2.16) holds. Now, if for some I = (a, b) ∈ N 0

one has φ̂I ∈ O(u), then (2.15) can be used to show, as we do in Section
6.7, that for any α ∈ (a, b)∩ f−1{0} the function u(·, t)−α has several zeros
whose mutual distances diverge to ∞ as t → ∞. We can rule this scenario
out, using a comparison argument, if lim supx→∞ u0(x) and lim infx→−∞ u0(x)
bound the values of u0 at points between zeros of u0 − α. For this reason,
we make the following assumptions concerning elements I = (a, b) ∈ N 0 (if
N 0 6= ∅) (cp. Figure 2).

(Z0) There is α ∈ f−1{0} ∩ (a, b) such that

lim sup
x→∞

u0(x) ≤ min
x≤y0

u0(x), where y0 = max{x ∈ R : u0(x) = α}.

(2.21)
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(Z1) There is β ∈ f−1{0} ∩ (a, b) with

lim inf
x→−∞

u0(x) ≥ max
x≥y1

u0(x), where y1 = min{x ∈ R : u0(x) = β}.
(2.22)

x0

γ

α

y0 x0

γ

β

y1

Figure 2: The figures illustrate conditions (Z0) (top) and (Z1).

We will require these conditions to be satisfied for certain I ∈ N 0, as
specified below. Let us make a few comments on the conditions. First of all,
if I = (a, b) ∈ N and cI = 0, so that there is a standing front with range
(a, b), then the interval (a, b) necessarily contains zeros of f . If α is any such
zero, then, by assumptions (2.2), (2.3),

lim sup
x→∞

u0(x) < α < lim inf
x→−∞

u0(x).

Therefore, the value y0 in (2.21) is well defined and so is minx≤y0 u0(x). A
simple sufficient condition for (2.21) is that the function u0−α has a unique
zero. Clearly, if (2.21) holds for some α ∈ f−1{0} ∩ (0, γ), then it holds for
any α̃ ∈ f−1{0} ∩ (0, γ) with α̃ ≥ α. Thus, if N 0 6= ∅ and the set N 0 has a
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minimal element I0 with respect to the ordering (2.12), then (Z0) holds for
any I ∈ N 0, provided it holds for I = I0. Analogous comments apply to
condition (Z1).

In the next theorem, the assumptions on f are complementary to the
assumption of Theorem 2.7: N+ 6= ∅ and one of the sets N+, N− is empty.

Theorem 2.9. Assume that (H) and (S) hold and let u0 ∈ C(R) satisfy
(2.2), (2.3). Assume further that one of the following hypotheses (a1)–(a3)
holds.

(a1) N 0 6= ∅, N+ 6= ∅ = N−, and (Z1) holds for each I ∈ N 0.

(a2) N 0 6= ∅, N+ = ∅ 6= N−, and (Z0) holds for each I ∈ N 0.

(a3) N+ = ∅ = N− (that is, cI = 0 for all I ∈ N ) and for each I = (a, b) ∈
N conditions (Z0), (Z1) hold with α = β.

Then relation (2.17) holds.

This theorem applies in particular to initial data satisfying (2.19), (2.20):

Corollary 2.10. The statement of Theorem 2.9 remains valid if instead of
(a1)–(a3) one assumes that conditions (2.19), (2.20) are satisfied.

Proof. If N 0 = ∅ or N+ 6= ∅ 6= N+, then Theorem 2.7 applies. Assume that
N 0 6= ∅ and one of the sets N+, N− is empty. Clearly, conditions (2.19),
(2.20) imply that (2.21) holds for any α ∈ (0, γ) and (2.22) holds for any
β ∈ (0, γ). In particular, for each I = (a, b) ∈ N 0 conditions (Z0), (Z1)
hold with α = β. Therefore Theorem 2.9 applies and we obtain the desired
conclusion.

The next theorem gives a formulation of the main results of this subsection
in terms the minimal propagating terrace.

Theorem 2.11. Assume that hypothesis (S) holds and u0 ∈ C(R) satisfies
(2.2), (2.3). Let u be the solution of (1.1), (1.2). The following statements
are valid:

(i) For each I = (a, b) ∈ N with cI 6= 0 there is a C1 function ζI defined
on some interval (sI ,∞) such that the following statements hold:

(a) limt→∞ ζ
′
I(t) = 0 (I ∈ N );
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(b)
(
(a+ b)/2− u(x+ cIt+ ζI(t), t)

)
x > 0 (x ∈ R \ {0}, t > sI);

(c) limt→∞
(
u(·+ cIt+ ζI(t), t)− φI

)
= 0, locally uniformly on R;

(d) if I1, I2 ∈ N , I1 < I2, and cI1 = cI2 6= 0, then ζI1(t)− ζI2(t)→∞
as t→∞;

(ii) If (2.16) holds (as in Theorem 2.7, Theorem 2.9, or Corollary 2.10),
then statement (i) is valid without the restrictions cI 6= 0, cI2 6= 0. In
this case, the following holds as well:

(e) if {(xn, tn)} is any sequence in R2 such that tn →∞ and for each
I ∈ N one has

lim
n→∞

|cItn + ζI(tn)− xn| =∞,

then there exist a subsequence {(xnk
, tnk

)} and ξ ∈ R−1
0 {0} such

that
lim
k→∞

u(xnk
+ ·, tnk

) = ξ,

locally uniformly on R.

(iii) If (2.16) holds and the set R−1
0 {0} is finite, say

R−1
0 {0} = {a1, . . . , ak+1}, with 0 = a1 < a2 < · · · < ak+1 = γ, (2.23)

then N = {I1, . . . , Ik} with Ij = (aj, aj+1), j = 1, . . . , k, and, as t →
∞, one has

u(x, t)−
( ∑
j=1,...,k

φIj(x− cIj t− ζIj(t))−
∑

1≤j≤k−1

aj+1

)
→ 0 (x ∈ R),

(2.24)
uniformly on R.

Statement (d) is included here for reference; it is in fact implicitly con-
tained in statement (c). Note that although the functions ζI satisfy (a), they
are not convergent in general, see Remark 2.24(i) below. In Subsection 2.5,
we prove the convergence of the ζI under some nondegeneracy conditions on
the function f .

Statement (ii) can be summarized as saying that for large t the graph
of u(·, t) has flat parts corresponding to u(·, t) being close to a constant on
a large interval, and interfaces whose shape is roughly given by the graphs
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of the functions φI(· − cIt − ζI(t)), I ∈ N . Note that in (e) the limit ξ
may not be uniquely determined by the sequence {xn, tn} even if the points
xn stay between two successive interfaces. Indeed, the minimal propagating
terrace may have a “gap,” or, in other words, R0 may vanish on an interval.
By Theorem 2.7, all constants ξ from that interval are elements of Ω(u0).
Therefore, a suitably chosen sequence {xn, tn}, will have subsequences along
which different limits ξ occur in (e).

In the following proposition we give sufficient conditions for the setR−1
0 {0}

to be finite.

Proposition 2.12. Let R0 be the minimal [0, γ]-system of waves, and {cI :
I ∈ N}, {ϕI : I ∈ N} the corresponding families of speeds and profile
functions. The following statements are valid.

(i) If {Ij} is a strictly monotone (infinite) sequence in N , then cIj → 0.
Consequently, the set N is finite if for some ε > 0 one has |cI | ≥ ε for
all I ∈ N .

(ii) Assume that the function F (u) =
∫ u

0
f(s) ds has only finitely many

maximizers in [0, γ] and all of them are isolated zeros of f in [0, γ].
Then the set R−1

0 {0} is finite. If, moreover, F has a unique maximizer
ξmax in [0, γ], then cI 6= 0 for each I ∈ N .

(iii) If condition (DGM) from the introduction is satisfied, then the assump-
tion of statement (ii) is satisfied with the unique maximizer ξmax = γ;
in this case one has cI > 0 for each I ∈ N .

This proposition is proved in Section 4.

2.3 The case where one of the steady states 0, γ is
unstable

We next consider the case where either 0 is unstable from above, or γ is
unstable from below. Here and below, the stability is with respect to the
equation θ̇ = f(θ).

If 0 is unstable from above, that is, f > 0 on some interval (0, δ), then
R0 < 0 on this interval (see Theorem 2.3(i)). Hence N contains an interval
I = (0, b) with b > 0. Of course, I is then the minimal element of N in the
ordering (2.12). The corresponding traveling front UI = φI(x− cIt) connects
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the positive steady state b to 0. Necessarily, b is stable from below, cI > 0,
and cI is the minimal speed for all traveling fronts connecting b and 0 (see
Theorem 2.4). We define γ0 to be 0 if 0 is stable from above; if it is unstable
from above, we define γ0 to be the value b identified above. Similarly, if γ is
unstable from below, then N contains an interval I := (a, γ) with a < γ and
cI < 0. We define γ1 to be this value a if γ is unstable from below; otherwise
we set γ1 = γ.

Let now R0 be the minimal [0, γ]-system of waves, and {cI : I ∈ N},
{ϕI : I ∈ N} the corresponding families of speeds and profile functions
Using the definition of a minimal system of waves, one verifies easily that
R̃0 := R0


[γ0,γ1]

is the minimal [γ0, γ1]-system of waves. Its families of speeds

and profile functions are {cI : I ∈ Ñ}, {ϕI : I ∈ Ñ}, where

Ñ := {I ∈ N : I ⊂ (γ0, γ1)}. (2.25)

The following theorem extends Theorem 2.5 (it gives a new result if one
of the instabilities γ0 > 0 or γ1 < γ occurs; otherwise it just recovers the
statement of Theorem 2.5).

Theorem 2.13. Assume that u0 ∈ C(R) satisfies (2.2), (2.3). Then

R−1
0 {0} ∪ {φI(· − ξ) : I ∈ Ñ , ξ ∈ R} ⊂ Ω(u0),

Ω(u0) ⊂ R−1
0 {0} ∪ {φI(· − ξ) : I ∈ Ñ , ξ ∈ R}

∪ {φ̂I(· − ξ) : I ∈ N 0, ξ ∈ R} ∪ Ω0 ∪ Ω1,

(2.26)

where φ̂I(x) = φI(−x), Ω0 is a set of functions with range in (0, γ0), and Ω1

is a set of functions with range in (γ1, γ).

Remark 2.14. Similarly as in Remark 2.6, if (2.16) holds, that is, φ̂I 6∈ Ω(u0)
for any I ∈ N 0, then (2.26) is the same as

Ω(u0) = R−1
0 {0} ∪ {φI(· − ξ) : I ∈ Ñ , ξ ∈ R} ∪ Ω0 ∪ Ω1. (2.27)

Sufficient conditions for (2.16) similar to Theorems 2.7, 2.9 will be given
in Theorem 2.17. Here we mention a simple sufficient condition, which is
sometimes convenient to use: for some ξ > 0 one has u0(x + ξ) ≤ u0(x)
(x ∈ R). To see that this condition is indeed sufficient for (2.16), apply the
comparison principle to obtain u(· + ξ, t) ≤ u(·, t) for all x ∈ R and t > 0.
This implies that ϕ(ξ) ≤ ϕ(0) for each ϕ ∈ Ω(u0), hence the increasing
functions φ̂I cannot be contained in Ω(u0).
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If at least one of the instabilities γ0 > 0 or γ1 < γ occurs, Theorem 2.13
and related results in Theorems 2.17 and 2.19 below only describe the part of
the graph of u(·, t) contained in the strip {γ0 < u < γ1}. Without additional
assumptions regarding the behavior of u0(x) as x → ±∞, not much more
can be said about about the remaining part of the graph or the sets Ω0,
Ω1. Even in the simplest situation when f > 0 in [0, γ] (in which case Ω(u0)
reduces to Ω0), it is known that the solution does not in general approach any
traveling front. It may oscillate between fronts with different speeds [15, 39]
or it may even propagate faster than any traveling front [16]. As is also well
known (see [32, 33], for example), in this simple case, one can guarantee that
the solution approaches a traveling front by imposing a specific decay rate of
u0(x) as x→∞. For the convergence to the traveling front with the minimal
speed, one can assume that u0 has a faster exponential decay rate than that
traveling front, or, to have a condition independent of f , that u0 vanishes on
an interval (m,∞). Under similar conditions, we will prove the approach of
solutions to the minimal propagating terrace. For simplicity, we will assume
that u0(x) vanishes identically for x ≈ ∞ (or γ − u0(x) vanishes identically
for x ≈ −∞), but this can be replaced by a condition on a sufficiently fast
exponential decay of u0(x), see Remark 6.7 below. Our techniques can also
be used to prove the convergence to a propagating terrace, not necessarily the
minimal one, with a specific front at the bottom of the terrace (for monotone
initial conditions, results to that effect are proved in [33]), but such results
are not pursued here. In the next two theorems, we make the following
assumptions on u0 strengthening (2.2) or (2.3) (or both).

(U) In the case γ0 > 0 (that is, when 0 is unstable from above for the
equation θ̇ = f(θ)), we assume that u0 ≥ 0 and u0 ≡ 0 on an interval
[m,∞); and in the case γ1 < γ (that is, when γ is unstable from below
for θ̇ = f(θ)), we assume that u0 ≤ γ and u0 ≡ γ on an interval
(−∞, n].

Theorem 2.15. Assume that u0 ∈ C(R) satisfies (2.2), (2.3) and hypotheses
(U) is in effect.

(i) If γ0 > 0, then the set Ω0 in Theorem 2.13 is given by

Ω0 = {φI∗(· − ξ) : ξ ∈ R},

where I∗ = (0, γ0) (I∗ is the minimal element of N ).
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(ii) If γ1 < γ, then the set Ω1 in Theorem 2.13 is given by

Ω1 = {φI∗(· − ξ) : ξ ∈ R},

where I∗ = (γ1, γ) (I∗ is the maximal element of N ).

Of course, statement (ii) is completely analogous to statement (i) (in fact,
it can be deduced from (i) by a suitable transformation reversing the roles
of 0 and γ). These results and Theorem 2.13 yield a description of Ω(u0) in
terms of the minimal propagating terrace, as in Theorem 2.5:

Corollary 2.16. Assume that u0 ∈ C(R) satisfies (2.2), (2.3) and hypothesis
(U) is in effect. Then

R−1
0 {0} ∪ {φI(· − ξ) : I ∈ N , ξ ∈ R} ⊂ Ω(u0),

Ω(u0) ⊂R−1
0 {0} ∪ {φI(· − ξ) : I ∈ N , ξ ∈ R} ∪ {φ̂I(· − ξ) : I ∈ N 0, ξ ∈ R}.

(2.28)
If (2.16) holds, then (2.28) reduces to

Ω(u0) = R−1
0 {0} ∪ {φI(· − ξ) : I ∈ N , ξ ∈ R}. (2.29)

Here are sufficient conditions for the stronger conclusion (2.29).

Theorem 2.17. Assume that either γ0 > 0 or γ1 < γ; u0 ∈ C(R) satisfies
conditions (2.2), (2.3); and hypothesis (U) is in effect. In case N 0 6= ∅,
assume further that the following two conditions are satisfied:

(b1) If γ0 = 0 (and γ1 < γ), then either N+ 6= ∅ or (Z0) holds for each
I ∈ N 0.

(b2) If γ1 = γ (and γ0 > 0), then either N− 6= ∅ or (Z1) holds for each
I ∈ N 0.

Then (2.29) holds.

This result in particular applies if (2.19), (2.20) are satisfied:

Corollary 2.18. Let the hypotheses of Corollary (2.16) be satisfied with the
stronger hypotheses (2.19), (2.20) in place of (2.2), (2.3). Then (2.29) holds.

Proof. If N 0 = ∅, then, trivially, (2.16) holds, and we obtain (2.29) from
Corollary (2.16). If N 0 6= ∅, then, as already mentioned in the proof of
Corollary 2.10, relations (2.19), (2.20) imply that for each I ∈ N 0 conditions
(Z0), (Z1) hold. Therefore, Theorem 2.17 applies and we obtain (2.29).

27



We conclude this subsection with a theorem similar to Theorem 2.11
describing the shape of the solution in terms of the minimal propagating
terrace.

Theorem 2.19. Assume that u0 ∈ C(R) satisfies (2.2), (2.3). Let u be the
solution of (1.1), (1.2). The following statements are valid:

(i) If γ0 > 0 (that is, 0 is unstable from above), then, denoting I∗ :=
(0, γ0) ∈ N , one has cI∗ > 0 and, for any c ∈ [0, cI∗) and x0 ∈ R,

lim inf
x≤x0, t→∞

u(x+ ct, t) ≥ γ0. (2.30)

(ii) If γ1 < γ (that is, γ is unstable from below), then, denoting I∗ :=
(γ1, γ) ∈ N , one has cI∗ < 0 and, for any c ∈ (cI∗ , 0] and x0 ∈ R,

lim sup
x≥x0, t→∞

u(x+ ct, t) ≤ γ1. (2.31)

(iii) For each I ∈ Ñ with cI 6= 0 there is a C1 function ζI defined on some
interval on (sI ,∞) such that the following statements hold:

(a) limt→∞ ζ
′
I(t) = 0;

(b)
(
(a+ b)/2− u(x+ cIt+ ζ(t), t)

)
x > 0 (x ∈ R \ {0}, t > sI);

(c) limt→∞
(
u(·+ cIt+ ζI(t), t)− φI

)
= 0, locally uniformly on R;

(d) if I1, I2 ∈ Ñ , I1 < I2, and cI1 = cI2 6= 0, then ζI1(t)− ζI2(t)→∞
as t→∞.

(iv) If (2.16) holds (as in Theorem 2.17 or Corollary 2.18), then statement
(iii) is valid without the restrictions cI 6= 0, cI2 6= 0.

(v) If (2.16) holds and hypothesis (U) is in effect, then statement (iii)
remains valid without the restrictions cI 6= 0, cI2 6= 0 and with Ñ
replaced by N . Moreover, the following statement holds as well:

(e) if {(xn, tn)} is any sequence in R2 such that tn →∞ and for each
I ∈ N one has

lim
n→∞

|cItn + ζI(tn)− xn| =∞,
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then there exist a subsequence {(xnk
, tnk

)} and ξ ∈ R−1
0 {0} such

that
lim
k→∞

u(xnk
+ ·, tnk

)− ξ = 0,

locally uniformly on R.

(vi) If the assumptions of statement (v) are satisfied and the set R−1
0 {0} is

finite, say

R−1
0 {0} = {a1, . . . , ak+1}, with 0 = a1 < a2 < · · · < ak+1 = γ, (2.32)

then N = {I1, . . . , Ik} with Ij = (aj, aj+1), j = 1, . . . , k, and, as t →
∞, one has

u(x, t)−
( ∑
j=1,...,k

φIj(x− cIj t− ζIj(t))−
∑

1≤j≤k−1

aj+1

)
→ 0 (x ∈ R),

(2.33)
uniformly on R.

2.4 The ω-limit set and quasiconvergence

Using the above results on propagating terraces, we now prove that the solu-
tion u (whose initial condition satisfies (2.2), (2.3)) is quasiconvergent in the
sense that its ω-limit set with respect to L∞loc(R) consists of steady states of
(1.1). For some background in quasiconvergence and examples of bounded
solutions which do not have this property, we refer the reader to [24, 26, 27].
On the other hand, see [22] for a general quasiconvergence theorem for the
nonnegative bounded solutions u with u(·, 0) ∈ C0(R).

Theorem 2.20. Assume that u0 ∈ C(R) satisfies (2.2), (2.3). Then the ω-
limit set ω(u0) consists of steady states of (1.1). More precisely, it consists
of constant steady states and standing fronts.

Remark 2.21. (i) The statement allows for the possibility that some in-
creasing standing fronts are contained in ω(u0). If (2.16) holds, then
we can say more precisely that ω(u0) consists of constant steady states
and decreasing standing fronts. This is the case, for example, if the
stronger conditions (2.19), (2.20) on u0 are assumed (see Corollaries
2.10, 2.18).
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(ii) In Section 2.5, we show that under some explicit generic conditions on
f , for any u0 satisfying (2.2), (2.3) the solution u of (1.1) is convergent:
ω(u0) consists of a single state state (see Remark 2.24(ii) for a more
specific statement).

Proof of Theorem 2.20. Let γ0 ≥ 0, γ1 ≤ γ, and Ñ be as in the previous
subsection. Since ω(u0) ⊂ Ω(u0), by Theorem 2.13, we have

ω(u0) ⊂ R−1
0 {0} ∪ {φI(· − ξ) : I ∈ Ñ , ξ ∈ R}

∪ {φ̂I(· − ξ) : I ∈ N 0, ξ ∈ R} ∪ Ω0 ∪ Ω1

(2.34)

(see the Theorem 2.13 for the meaning of φ̂I , Ω0, and Ω1). Statements (i)
and (ii) of Theorem 2.19 imply that all functions in ω(u0) have the range in
[γ0, γ1]. Thus, we can delete Ω0, Ω1 in (2.34). In other words, ω(u0) consists
of constant steady states from R−1

0 {0}, standing waves (which are also steady
states of (1.1)), and, possibly, translates of φI , for some I ∈ Ñ with cI 6= 0.
In order to complete the proof, we just need to show that the last possibility
does not occur.

Assume that, to the contrary, φI(·+ ξ) ∈ ω(u0) for some ξ ∈ R and some
I ∈ Ñ with cI < 0 (the case cI > 0 can be ruled out in a similar way). Then,
for some sequence tn →∞ one has in particular

u(0, tn)→ φI(ξ). (2.35)

Fixing any x0 > ξ, we have by Theorem 2.19(iii)(c) that

u(x0 + cItn + ζI(tn), tn)→ φI(x0) < φI(ξ). (2.36)

Since cI < 0 and ζI(t)/t → 0 as t → ∞ (cp. Theorem 2.19(iii)(a)), from
(2.35) and (2.36) we infer that for each large enough n there is xn such that
x0 + cItn + ζI(tn) < xn < 0 and

φI(x0) < u(xn, tn) < φI(ξ), ux(xn, tn) ≥ 0. (2.37)

Passing to subsequences, we may assume that u(xn + ·, tn) → ψ in C1
loc(R)

for some ψ ∈ Ω(u0). By (2.37),

φI(x0) ≤ ψ(0) ≤ φI(ξ), ψ′(0) ≥ 0. (2.38)

However, by Theorem 2.13, each ψ ∈ Ω(u0) whose range intersects the range
of φI is a translate of φI (recall that the range of φI is I, a nodal interval
of R0). Thus ψ is a translate of φI , but then ψ′(0) ≥ 0 is impossible. This
contradiction completes the proof.
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2.5 Locally uniform convergence to a specific front and
exponential convergence

We continue to assume the standing hypothesis (H). Let R0, N , and Ñ be as
above. Recall, that N = Ñ if the stability hypothesis (S) is satisfied. Also
recall that the order relation on N is defined in (2.12).

In this section, we show that under a nondegeneracy assumption on f ,
the functions ζI in Theorems 2.11, 2.19(iii) are convergent. Moreover, in a
suitable moving coordinate frame, the solution converges locally uniformly
to a specific front from the minimal propagating terrace with an exponential
rate. Similar results have been proved in [11] for minimal propagating ter-
races with two bistable levels and different speeds. In [31] such a result was
proved for monotone systems with finitely many bistable levels with nonde-
generate equilibria and mutually distinct speeds (cp. Theorem 2.23 below).

Our first result here is somewhat different; we prove the locally uniform
convergence to a shift of a specific front φI , assuming just that a := φI(∞)
and b := φI(−∞) are nondegenerate stable zeros of f and that the speeds
of the neighboring fronts of φI are different from cI . We do not require any
such conditions for the other intervals J ∈ N ; they do not even have to be
bistable intervals for f .

Before stating our theorem, we need to introduce some notation. Let
I = (a, b) ∈ Ñ . If a > 0 and f ′(a) < 0, then a is an isolated zero of f and
R0. Therefore, the following element of N is well defined:

I := max{J ∈ N : J < I}. (2.39)

Similarly, if f ′(b) < 0 and b < γ, we define

Ī := min{J ∈ N : J > I}. (2.40)

These are the immediate “neighbors” of I in N .
We now fix I = (a, b) ∈ Ñ and make the following assumptions:

(N) f is of class C1 in a neighborhood of [a, b] (this is an extra assumption
only if a = 0 or b = γ), f ′(a) < 0, f ′(b) < 0; and if a > 0, then cI 6= cI
(hence, cI > cI); and if b < γ, then cĪ 6= cI (hence, cĪ < cI).

Define c−I and c+
I as follows:
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c−I =

−∞ if b = γ,

cĪ + cI
2

if b < γ,

c+
I =

 ∞ if a = 0,

cI + cI
2

if a > 0.

(2.41)

Obviously, c−I < cI < c+
I .

Theorem 2.22. Assume that (in addition to (H)) hypothesis (N) is satisfied
for some I ∈ Ñ and let c−I , c+

I be as above. Let u be the solution of (1.1),
(1.2), where u0 ∈ C(R) satisfies (2.2), (2.3). Then there are constants η ∈ R,
κ > 0, and ϑ > 0 such that for all sufficiently large t > 0 one has

u(x, t) ≥ b− κe−ϑt (x < c−I t), (2.42)

|u(x, t)− φI(x− cIt− η)| ≤ κe−ϑt (c−I t < x < c+
I t), (2.43)

u(x, t) ≤ a+ κe−ϑt (x > c+
I t). (2.44)

The proof of Theorem 2.22 is given in Section 6.9. Similarly as in [31]
(see also [8]), we derive the locally uniform convergence property (2.43) from
a uniform convergence property for solutions of an auxiliary asymptotically
autonomous problem.

We conclude the section with an exponential convergence result under
the following global hypothesis.

(G) f is of class C1 in a neighborhood of [γ0, γ1], f ′(ξ) < 0 for each ξ ∈
R−1

0 {0} ∩ [γ0, γ1], and the speeds cI , I ∈ N , are mutually distinct.

For the meaning of γ0 ≥ 0 and γ1 ≤ γ see Subsection 2.3. Recall in particular
that

Ñ := {I ∈ N : I ⊂ (γ0, γ1)}.
Note that the nondegeneracy assumption in (G) is satisfied if all left and

right global maximizers of the function F in [0, γ] are nondegenerate zeros
of f (cp. Section 3.2). Hypotheses (G) implies that the set R−1

0 {0} is finite,
hence, the sets Ñ and N are finite. We can write

R−1
0 {0} ∩ [γ0, γ1] = {b1, . . . , bk+1}, with γ0 = b1 < b2 < · · · < bk+1 = γ1,

(2.45)
and then Ñ = {I1, . . . , Ik} with Ij = (bj, bj+1), j = 1, . . . , k.
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Theorem 2.23. Assume that hypotheses (H), (G) are satisfied and let bj,
j = 1, . . . , k+ 1, and Ij, j = 1, . . . , k, be as above. Then, for each u0 ∈ C(R)
satisfying (2.2), (2.3), there are constants ηj, j = 1, . . . , k, and ϑ > 0 such
that

lim
t→∞

eϑt sup
c−Ik

t<x<c+I1
t

∣∣u(x, t)−
( ∑
j=1,...,k

φIj(x− cIj t− ηj)−
∑

1≤j≤k−1

bj+1

)∣∣ = 0.

(2.46)

This theorem is a direct consequence of Theorem 2.22. Notice that if
γ0 = 0 and γ1 = γ, that is, the equilibria 0, γ are stable for the equation
θ̇ = f(θ), then N = Ñ , c−Ik = −∞, and c+

I1
= ∞. Thus (2.46) gives the

uniform convergence on R with the exponential rate. In this case, Theorem
2.23 is a special case of [31, Theorem 2.2] for monotone systems, save for
the minor detail that it is assumed in [31] that 0 ≤ u0 ≤ γ (it is rather
straightforward to modify the proof in [31] so that it also covers the more
general assumptions (2.2), (2.3)).

Remark 2.24. (i) The assumption that the speeds cI are mutually dis-
tinct is necessary in Theorem 2.23. Indeed, relation (2.46) in particular
implies that the functions ζI(t) in Theorem 2.19(iii) are convergent.
However, if cI1 = cI2 for some I1, I2 ∈ Ñ , I1 < I2, then, by Theorem
2.19(iii)(d), ζI1(t) − ζI2(t) → ∞. Hence, in this case, ζI1 , ζI2 cannot
both be convergent.

(ii) Under the assumptions of Theorem 2.23, the solution u is convergent
in L∞loc(R): ω(u) consists of a single function ϕ. Specifically, if cI = 0
for some (unique) I ∈ N , then ϕ is a shift of φI , and if cI 6= 0 for
all I ∈ N , then ϕ is a constant in R−1

0 {0}. This follows directly from
(2.46).

3 Phase plane analysis

In this section we are concerned with solutions of the equation

vxx + cvx + f(v) = 0, (3.1)

and trajectories of the corresponding planar system

vx = w, wx = −cw − f(v). (3.2)
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Unless specified otherwise, by a solution of (3.1) or (3.2) we always mean a
maximally defined solution. Such solutions are all global (defined on R), by
the global Lipschitz continuity of f , as assumed in the standing hypothesis
(H).

For the sake of convenience, throughout the section we assume the fol-
lowing slightly stronger standing hypotheses

(H’) f ∈ C1(R), f ′ is bounded on R, γ > 0, f(0) = f(γ) = 0.

Thus, we assume that f is of class C1 on R, not just on [0, γ] as assumed
in (H). This will spare us some cumbersome formulations when considering
the flow of (3.2) near the equilibria (0, 0), (γ, 0) if only one-sided derivatives
of f at 0 and γ are defined. Obviously, if (H) holds, one can achieve (H’)
by a modification of f outside the interval [0, γ]. It is important to note,
however, that all results of this section which will be used in the proofs of
our theorems concern the behavior of solutions of (3.1) while they stay in
[0, γ]. Of course, such results are unaffected by any modification of f outside
[0, γ].

We start with basic results concerning trajectories of (3.2) (Subsection
3.1). Then, in Subsection 3.2, we give a more detailed description of the
minimal system of waves. Finally, in Subsection 3.3, we exhibit a class of
trajectories not intersecting the graph of R0. These trajectories will be used
in the intersection-comparison arguments in the proofs of our theorems; they
are key ingredients of our method.

3.1 Basic properties of the trajectories

For later reference, we recall several elementary properties of solutions of
(3.1). Most of these results are available in the literature in some form, but
for the sake of completeness or perspective we often include the proofs, or
brief sketches and references.

For a solution ψ of (3.1), τ(ψ) denotes its trajectory in R2 (cp. (2.4)).
We also use the notation pψ introduced in (2.7). As mentioned in the intro-
duction, for strictly monotone solutions, τ(ψ) is the graph of the function
pψ.

In the following lemma (see also Figure 3), we consider the solutions of
(3.1) satisfying the initial conditions

ψ(0) = ξ, ψ′(0) = η. (3.3)
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Lemma 3.1. Assuming that ξ ∈ [0, γ], η 6= 0, and c1 ≤ c2, let ψ1, ψ2 be the
solutions of (3.1) (3.3) with c = c1, c = c2, respectively. Then there is ε > 0
such that

pψ1(u) < pψ2(u) (u ∈ (ξ − ε, ξ)),
pψ1(u) > pψ2(u) (u ∈ (ξ, ξ + ε)),

(3.4)

(if c1 < c2) or pψ1 ≡ pψ2 (if c1 = c2).

0

  τ(ψ1)

v

w

  τ(ψ2)

0

  τ(ψ1)

v

w

  τ(ψ2)

Figure 3: The intersecting trajectories τ(ψ1), τ(ψ2) correspond to speeds
c1 < c2, respectively.

Proof. Since η 6= 0, the functions pψ1 , pψ2 are defined in a neighborhood of
u = ξ and satisfy there equations (2.9) with c = c1, c = c2, respectively. This
implies (3.4) if c1 < c2. If c1 = c2, the uniqueness for the Cauchy problem
gives pψ1 ≡ pψ2 .

If ζ is a zero of f , we set

λ±(c) :=
−c±

√
c2 − 4f ′(ζ)

2
. (3.5)

These are the eigenvalues of the linearization of the right hand side of (3.2)
at the equilibrium (ζ, 0).

We next examine solutions ψ of (3.1) such that

ψ(x)→ ζ as x→∞, ψ′(x) < 0 for x ≈ ∞, (3.6)

or
ψ(x)→ ζ as x→ −∞, ψ′(x) < 0 for x ≈ −∞. (3.7)

It is a well known elementary observation that (3.6) implies that the corre-
sponding solution (ψ, ψ′) of (3.2) converges to the equilibrium (ζ, 0); similarly
for (3.7).
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Solutions of (3.1) satisfying (3.6) or (3.7) can exist only if the eigenvalues
λ±(c) are real, that is, if either f ′(ζ) ≤ 0, or f ′(ζ) > 0 and |c| ≥

√
2f ′(ζ)

(otherwise (ζ, 0) is a focus and we could not have the required monotonicity).
In the next two lemmas, we assume f ′(ζ) ≤ 0. Note that, in this case

λ−(c) < 0 ≤ λ+(c) (c > 0), λ−(c) ≤ 0 < λ+(c) (c < 0). (3.8)

Lemma 3.2. Let ζ be a zero of f with f ′(ζ) ≤ 0, and let λ±(c) be the
eigenvalues as in (3.5). If c > 0, then the following statements are valid:

(pi) There is a solution ψ of (3.1), unique up to translations, such that
(3.6) together with the following relation are satisfied

lim
x→∞

ψ′(x)

ψ(x)− ζ
→ λ−(c). (3.9)

(pii) If ψ is a solution of (3.1) satisfying (3.6) but not (3.9), then

lim
x→∞

ψ′(x)

ψ(x)− ζ
→ 0. (3.10)

A necessary and sufficient condition (in the case f ′(ζ) ≤ 0 considered
here) for the existence of such a solution is that f ′(ζ) = 0 (that is,
λ+(c) = 0) and f(u) > 0 for all u > ζ sufficiently close to ζ (that is, ζ
is unstable from above for the equation θ̇ = f(θ)).

(piii) If ψ is a solution of (3.1) satisfying (3.7), then

lim
x→−∞

ψ′(x)

ψ(x)− ζ
→ λ+(c). (3.11)

Necessarily, such a solution ψ is unique up to translations; a sufficient
condition for its existence is f ′(ζ) < 0.

Proof. (Alternative arguments can be found in [2, 33].) It is well known (see
[33, Theorem 1.3.3], for example) that if ψ(x) 6= ζ for large x and ψ(x)→ ζ
as x→∞, then the limit on the left-hand side of (3.9) exists and is equal to
one of the eigenvalues λ±(c). This can also be interpreted as the convergence
of the solution (ψ(x), ψ′(x)) to the equilibrium (ζ, 0) in an eigendirection:

(ψ(x)− ζ, ψ′(x))

|(ψ(x)− ζ, ψ′(x))|
→ ± (1, λ)

|(1, λ)|
, (3.12)
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where λ = λ−(c) or λ = λ+(c) (note that (1, λ±(c)) is an eigenvector corre-
sponding to the eigenvalue λ±(c)).

The relations λ−(c) < 0 ≤ λ+(c) imply that the stable manifold W s of
the equilibrium (ζ, 0) of (3.2) is one-dimensional and it is tangent at (ζ, 0) to
(1, λ−(c)). The set W s\{(ζ, 0)} consists of two trajectories, one of them gives
a solution ψ satisfying (3.6), (3.9) (the latter follows from the tangency of W s

to (1, λ−(c))). The other trajectory in W s \ {(ζ, 0)} yields a solution which
is increasing to ζ, and there are no other trajectories having the asymptotics
(3.12) with λ = λ−(c). By this we have proved statement (pi). Also, we
see that if a solution ψ satisfies (3.6) but not (3.9), then (3.12) holds with
λ = λ+(c) (this implies (3.10) in the case λ+(c) = 0 considered below).

Now, if λ+(c) > 0, then (ζ, 0) is a hyperbolic saddle and there are no so-
lutions satisfying (3.6) other than those in W s. Thus condition λ+(c) = 0 is
necessary for the existence of such a solution. Assuming λ+(c) = 0, the equi-
librium (ζ, 0) has a one-dimensional local center manifold W c. It is tangent
at (ζ, 0) to the eigenvector (1, λ+(c)) = (1, 0), hence it can be parameterized
by the v-coordinate, which also defines a natural ordering on W c. A neces-
sary and sufficient condition for the existence of a solution approaching (ζ, 0)
in the direction (−1, 0) is that the equilibrium (ζ, 0) is asymptotically stable
from above on W c. This condition in particular requires that (ζ, 0) be an
isolated equilibrium from above in W c; in other words f must be of one sign
in an interval (ζ, ζ + ε) with ε > 0. Considering the direction of the flow on
the v axis, one shows easily that if f < 0 in (ζ, ζ + ε), then (ζ, 0) is unstable
from above on W c, whereas if f > 0 in (ζ, ζ + ε) then it is asymptotically
stable from above. This completes the proof of statement (pii).

For the proof of (piii), we note that the equilibrium (ζ, 0) has a one-
dimensional local center-unstable manifold W cu (W cu is the center manifold
or the unstable manifold, according to whether f ′(ζ) = 0 or f ′(ζ) < 0). This
manifold is tangent to (1, λ+(c)), and it has the property that if ψ is a solution
of (3.1) such that ψ(x) → ζ as x → −∞, then (ψ(x), ψ′(x)) ∈ W cu for all
large negative x. Applying this to the solution in (piii) and using ψ′ < 0,
we obtain (3.11). The fact that the solution is unique up to translations
follows from the one-dimensionality of W cu (alternatively, one can consult
[33, Lemma 1.3.1] for a simple uniqueness argument). If f ′(ζ) < 0, then
(ζ, 0) is a hyperbolic saddle and one of the trajectories on W u \{(ζ, 0)} gives
a solution satisfying (3.7), (3.11).

Here are analogous statements for c < 0, which we include without proofs.
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Lemma 3.3. Let ζ be a zero of f with f ′(ζ) ≤ 0, and let λ±(c) be the
eigenvalues as in (3.5). If c < 0, then the following statements are valid:

(ni) There is a solution ψ of (3.1), unique up to translations, such that
(3.7) together with the following relation are satisfied

lim
x→−∞

ψ′(x)

ψ(x)− ζ
→ λ+(c). (3.13)

(nii) If ψ is a solution of (3.1) satisfying (3.7) but not (3.13), then

lim
x→−∞

ψ′(x)

ψ(x)− ζ
→ 0. (3.14)

A necessary and sufficient condition (in the case f ′(ζ) ≤ 0) for the
existence of such a solution is that f ′(ζ) = 0 (that is, λ−(c) = 0) and
f(u) < 0 for all u < ζ sufficiently close to ζ (that is, ζ is unstable from
below for the equation θ̇ = f(θ)).

(niii) If ψ is a solution of (3.1) satisfying (3.6), then

lim
x→∞

ψ′(x)

ψ(x)− ζ
→ λ−(c). (3.15)

Necessarily, such a solution ψ is unique up to translations; a sufficient
condition for its existence is f ′(ζ) < 0.

In the next lemma, we consider the case with real negative eigenvalues
λ±(c).

Lemma 3.4. Let ζ be a zero of f with f ′(ζ) > 0, and let c >
√

2f ′(ζ). Then
the following statements are valid:

(i) There is a solution ψ of (3.1), unique up to translations, such that
(3.6) and (3.9) are satisfied.

(ii) There is also a solution ψ of (3.1) satisfying (3.6) but not (3.9). Each
such solution satisfies

lim
x→∞

ψ′(x)

ψ(x)− ζ
→ λ+(c). (3.16)
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Proof. Under the given assumptions, the equilibrium (ζ, 0) is a stable node
of (3.2) with two distinct eigenvalues: λ−(c) < λ+(c) < 0. The argument
for the existence and uniqueness of the solution in (i) is similar as in the
proof of Lemma 3.2(pi); just this time, one uses the strong stable manifold,
which is a one-dimensional invariant manifold tangent to the eigenvector
(1, λ−(c)), in place of the stable manifold. (For alternative arguments see
[33, Theorem 1.3.4], for example). The solutions of (3.2) which stay outside
the strong stable manifold and approach (ζ, 0), do so in the direction of
either (1, λ+(c)) or −(1, λ+(c)). Since the stable manifold of (ζ, 0) is two-
dimensional, we can find solutions converging in either of these directions,
which implies statement (ii).

We include without proof analogous results for c < 0. Note that in this
case λ+(c) > λ−(c) > 0.

Lemma 3.5. Let ζ be a zero of f with f ′(ζ) > 0, and let c < −
√

2f ′(ζ).
Then following statements are valid:

(i) There is a solution ψ of (3.1), unique up to translations, such that
(3.7) and (3.13) are satisfied.

(ii) There is also a solution ψ of (3.1) satisfying (3.7) but not (3.13). Each
such solution satisfies

lim
x→−∞

ψ′(x)

ψ(x)− ζ
→ λ−(c). (3.17)

Remark 3.6. (i) The results in the previous lemmas can be equivalently
formulated in terms of the function pψ. For example, for the solution
ψ satisfying (3.9) the function pψ satisfies

pψ(u)↗ 0, (pψ)′(u)→ λ−(c), (3.18)

as u→ ζ, whereas for a solution ψ satisfying (3.10), one has

pψ(u)↗ 0, (pψ)′(u)→ 0. (3.19)

This follows from the definition of pψ (see (2.7)): for u = ψ(x), one has

pψ(u)

u− ζ
=

ψ′(x)

ψ(x)− ζ
.
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(ii) The stable manifold of the equilibrium (ζ, 0), as used in the proof of
Lemma 3.2(i), depends continuously on c > 0. This can be stated in
terms of the function pψ as follows. Stressing the dependence on c > 0,
let p̂(u, c) = pψ(u), where ψ = ψc is as in Lemma 3.2(i) (note that pψ

is independent of the choice of the translation of ψ). Then p̂(u, c) is
continuous in c: if c0 > 0 and p̂(·, c0) is defined on an interval [ζ, d]
(with p̂(ζ, c0) = 0), then, for c ≈ c0, p̂(u, c) is also defined on [ζ, d] and
p̂(u, c)→ p̂(u, c0) as c→ c0, uniformly on [ζ, d]. An analogous remark
applies to the solutions in Lemma 3.3.

(iii) From the existence of the limit of the function ψ′(x)/(ψ(x) − ζ), one
can make conclusions about the asymptotics of the functions ψ(x)− ζ
and ψ′. For example, if ψ is as in (3.16), then one can show easily (see
[33, Section 1.5.3]) that the following holds:

lim
x→∞

log |ψ(x)− ζ|
x

= λ+(c).

Using this and (3.16), one obtains in particular that for each ε > 0
there is x1 ∈ R such that

e(λ+(c)−ε)x < |ψ(x)− ζ|, |ψx(x)| < e(λ+(c)+ε)x (x ≥ x1). (3.20)

We next consider solutions of (3.1) satisfying

lim
x→−∞

v(x) = b lim
x→∞

v(x) = a, v′ < 0. (3.21)

Recall that

F (u) =

∫ u

0

f(s) ds. (3.22)

Lemma 3.7. Assume that 0 ≤ a < b ≤ γ, f(a) = f(b) = 0.

(i) If c > 0 and a solution of (3.1), (3.21) exists, then f(u) > 0 for all
u < b sufficiently close to b and

F (u) < F (b) (u ∈ [a, b)). (3.23)

(ii) If c < 0 and a solution of (3.1), (3.21) exists, then f(u) < 0 for all
u > a sufficiently close to a and

F (u) < F (a) (u ∈ (a, b]). (3.24)
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(iii) If c = 0, then a solution of (3.1), (3.21) exists if and only if

F (u) < F (a) = F (b) (u ∈ (a, b)). (3.25)

These results are contained in Theorems 1.3.9-1.3.11 of [33]. We just
remark that the relations (3.23)-(3.25) also follow from the monotonicity
properties of the function u2

x/2 + F (u), as discussed below.
In the next lemma, we consider perturbations of the solution v as in (3.21)

(see Figure 4).

0 a b v

w

 c0 0 a b v

w

 c0 

c < c0     c > c0     

Figure 4: . The heteroclinic trajectory for c = c0 corresponds to the solution
v as in (3.21). The trajectories for c 6= c0 correspond to the solutions in
Lemma 3.8, assuming that the speed c0 extremal as in Remark 3.9(i).

Lemma 3.8. Let a, b be as in Lemma 3.7. Assume that for some c0 ∈ R a
solution v of (3.1), (3.21) with c = c0 exists.

(i) For each c < c0 there is a solution ψ of (3.1) such that ψ(x) → b as
x→ −∞, ψ′(x) < 0 for x ≈ −∞, and

pψ(u) < pv(u) (u ∈ (a, b)). (3.26)

(ii) For each c > c0 there is a solution ψ of (3.1) such that ψ(x) → a as
x→∞, ψ′(x) < 0 for x ≈ ∞, and

pψ(u) < pv(u) (u ∈ (a, b)). (3.27)

Proof. We only prove statement (i); the proof of (ii) is analogous. Given any
c < c0, one can construct ψ as follows. Take a sequence νn ↘ 0, and let
ψn be the solution of (3.1) with ψn(0) = b, ψ′n(0) = −νn. By Lemma 3.1,
pψn(u) < pv(u) for all u ∈ (a, b). It can be proved that, as n → ∞, the
limit of the functions pψn , is the function pψ corresponding to a solution ψ
with the stated properties. The details of this elementary construction can
be found in [33, Sect 1.2.2] or [2].
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Remark 3.9. (i) In Lemma 3.8(i), if c0 is the minimal (or unique) speed
for the interval (a, b) in the sense that there is no traveling front with
range (a, b) and speed c < c0, then relation (3.26) obviously holds
on the semiclosed interval [a, b) when we define pv(a) = 0. This in
particular applies if (a, b) = I for some I ∈ N+ ∪ N 0 (see Theorem
2.4). Similarly, if c0 is the maximal speed for the interval (a, b) (in
particular, if (a, b) = I for some I ∈ N− ∪ N 0) then (3.27) holds on
(a, b] (pv(b) = 0).

(ii) If c0 > 0, then Lemma 3.7(i) implies that f ′(b) ≤ 0. Therefore, for each
c ∈ (0, c0), the solution ψ in Lemma 3.8(i) is a solution, determined
uniquely up to translations, as in Lemma 3.2(piii) with ζ = a. Similarly,
if c0 < 0 and c ∈ (c0, 0), the solution in Lemma 3.8(ii) is a solution as
in Lemma 3.3(niii)

Finally, we include some results concerning the role of the functional

H(v, w) :=
w2

2
+ F (v). (3.28)

If (v, vx) is a solution of (3.2), then

dH(v(x), vx(x))

dx
= −cv2

x. (3.29)

Thus, if c > 0, then H is decreasing along nonstationary solutions; and if
c < 0, then−H is decreasing. In other words, if c 6= 0, then either H or−H is
Lyapunov functional of (3.2). This implies that each bounded nonstationary
orbit of (3.2) is a heteroclinic orbit between two (distinct) equilibria (cp. [33,
Theorem 1.3.2]).

For c = 0, (3.2) is a Hamiltonian system with the Hamiltonian H. Each
trajectory of (3.2) is contained in a level set of H. Note that the level sets
of H are symmetric about the v-axis.

System (3.2) with c = 0 has only four types of bounded trajectories (or,
orbits): equilibria—all of them on the u-axis, nonstationary periodic orbits
(or, closed orbits), homoclinic orbits, and heteroclinic orbits. This follows
easily from the symmetry of the level sets of H and the fact that in the half-
plane {w > 0} the v component of the solutions is increasing, whereas in
w < 0 it is decreasing. Thus, orbits with more than one intersection with the
v-axis are periodic orbits. Any nonstationary bounded orbit with exactly one
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intersection with the v-axis is a homoclinic orbit and a bounded orbit which
does not intersect the v-axis at all is a heteroclinic orbit. We view orbits as
subsets of R2, although our descriptive terminology, like periodic solutions,
reflects properties of the corresponding solutions of (3.2). This should cause
no confusion.

Lemma 3.10. Let c = 0. Assume that Σ ⊂ [0, γ]×R is a compact, connected
set, which is invariant under the flow of (3.2).

(i) If Σ does not contain any nonstationary periodic orbit of (3.2) (so it
consists of equilibria, homoclinic orbits, and heteroclinic orbits), then
H is constant on Σ.

(ii) If Σ is a heteroclinic or homoclinic loop (that is, a Jordan curve consist-
ing of a homoclinic orbit and its limit equilibrium, or of two homoclinic
orbits and their limit equilibria), then there is a sequence of periodic
orbits On contained inside the loop such that

dist((ξ, η),On)→ 0 as n→∞ ((ξ, η) ∈ Σ). (3.30)

Statement (i) is a part of [22, Lemma 3.1]. We just remark that, with no
effect on the validity of the statement, one can modify f(u) outside [0, γ] so
as to achieve that it has the same shape near u = ±∞ as assumed in [22].
Statement (ii) is a part of Lemma 3.2 in [22].

3.2 A more detailed description of the minimal system
of waves

Throughout the section, R0 is the minimal system of waves (for the interval
[0, γ]). The existence of R0 together with its basic properties are stated in
Theorem 2.3. Here we give a more detailed description of R0.

Let {cI : I ∈ N}, {φI : I ∈ N} be the families of speeds and profile
functions corresponding to R0, as defined in Section 2. As in (2.14),

N+ = {I ∈ N : cI > 0},
N− = {I ∈ N : cI < 0},
N 0 = {I ∈ N : cI = 0}.

Of course, some of these sets may be empty.
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If N+ 6= ∅, we further define

γ∗ := sup
⋃
I∈N+

I (3.31)

= sup{b ∈ (0, γ] : N+ contains the interval (a, b) for some a ∈ [0, b)}.

If N+ = ∅, we set γ∗ = 0. Similarly, we set γ∗ = γ if N− = ∅. If N− 6= ∅,
we define

γ∗ := inf
⋃
I∈N−

I (3.32)

= inf{a ∈ [0, γ) : N− contains the interval (a, b) for some b ∈ (a, γ]}.

By the continuity of R0, we have R0(γ∗) = R0(γ∗) = 0. Consequently, γ∗, γ
∗

are zeros of the function f = F ′ (cp. Theorem 2.3).
We say that a critical point ξ ∈ [0, γ] of F is a left-global maximizer of F

in [0, γ] (or, simply, a left-global maximizer) if

F (v) ≤ F (ξ) (0 ≤ v < ξ). (3.33)

If the first inequality in (3.33) is strict, we say ξ is a strict left-global max-
imizer. Similarly we define (strict) right-global maximizers. Note that we
count 0 as a strict left-global maximizer and γ as a strict right-global maxi-
mizer.

We denote by Γ−, Γ+, Γ0 the sets of strict left-global, strict right-global,
and global maximizers, respectively. Obviously, Γ− ∪ Γ0, Γ+ ∪ Γ0 consist of
left-global and right-global maximizers, respectively.

Proposition 3.11. The following statements are valid.

(i) 0 ≤ γ∗ ≤ γ∗ ≤ γ;

(ii) one has

R−1
0 {0} ∩ [γ∗, γ

∗] ⊂ Γ0, (3.34)

R−1
0 {0} ∩ [0, γ∗] ⊂ Γ−, (3.35)

R−1
0 {0} ∩ [γ∗, γ] ⊂ Γ+; (3.36)

(iii) for each I = (a, b) ∈ N one has

cI > 0 if and only if b ≤ γ∗, (3.37)

cI < 0 if and only if γ∗ ≤ a, (3.38)

cI = 0 if and only if γ∗ ≤ a < b ≤ γ∗; (3.39)

44



(iv) each of the sets R−1
0 {0}∩ [0, γ∗], R

−1
0 {0}∩ [γ∗, γ] is finite or countable,

γ∗ is the only possible accumulation point of the set R−1
0 {0} ∩ [0, γ∗],

and γ∗ is the only possible accumulation point of R−1
0 {0} ∩ [γ∗, γ];

(v) statement (i) of Proposition 2.12 holds: If {Ij} is a strictly monotone
(infinite) sequence in N , then cIj → 0.

The proof of Proposition 3.11 is given below, following some preliminary
results. Figure 5 illustrates some possibilities of how R0 can look like.

u0 γ

c > 0 c < 0

u0 γ
c > 0 c < 0

u0 γ

c > 0 c < 0

c = 0 

u0 γ

c > 0 c < 0c = 0 

Figure 5: Possible graphs of R0, with the signs of the speeds of the corre-
sponding traveling fronts indicated. The first figure corresponds to a generic
case—finitely many fronts with nonzero speeds; the other figures depict some
“degenerate” cases.

Remark 3.12. Obviously, F ′′(ξ) ≤ 0 if ξ ∈ Γ− ∪ Γ0 ∪ Γ+ and ξ ∈ (0, γ).
Hence statement (ii) of Proposition 3.11 implies that

f ′(ξ) = F ′′(ξ) ≤ 0 (ξ ∈ R−1
0 {0} ∩ (0, γ)). (3.40)

Lemma 3.13. For any I = (a, b) ∈ N one has

|cI | ≤ 2
√
‖f ′‖L∞(I); (3.41)

if cI ≥ 0, then F (u) < F (b) (u ∈ (a, b)); (3.42)

if cI ≤ 0, then F (u) < F (a) (u ∈ (a, b)). (3.43)

Proof. Recall that cI is the speed of a traveling front, namely, φI , whose range
is the interval I. Moreover, either it is the unique speed for the interval I
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or it is extremal as specified in Theorem 2.4. Estimate (3.41) now becomes
a well-known classical result (see [33, Theorem 1.3.14] and formula (2.22) in
[33, Theorem 1.2.3]). Relations (3.42), (3.43) follow from Lemma 3.7.

Recall that we have defined the ordering on N by (2.12).

Lemma 3.14. Let I0 = (a0, b0) ∈ N .

(i) If I0 ∈ N+ (i.e., cI0 > 0), then the set {I ∈ N : I < I0} is finite and
R0 does not vanish identically on any (nonempty) open subinterval of
[0, a0].

(ii) If I0 ∈ N− (i.e., cI0 < 0), then the set {I ∈ N : I > I0} is finite and
R0 does not vanish identically on any open subinterval of [b0, γ].

Proof. We only prove (i), the proof of (ii) being completely analogous.
Assuming that the set M := {I ∈ N : I < I0} is infinite, we find a

sequence {Ij} in M with |Ij| → 0, where |I| stands for the length of the
interval I. By (3.41) and the fact that f vanishes at the end-points of Ij
(see Theorem 2.3(i)), one has cIj → 0. Hence, for some j, cIj < cI0 , in
contradiction to (2.13). This contradiction shows that M is finite.

We prove the second statement in (i). In view of the finiteness of M,
it is sufficient to prove that if I = (a, b), I ∈ M ∪ {I0}, then R0 cannot
vanish identically on any interval of the form (a− ε, a) with ε > 0. Suppose
it does. Then also f ≡ f ′ ≡ 0 on J := (a − ε, a). Fix any ζ ∈ J . For
c ∈ (0, cI ] consider the solution ψ = ψc of (3.1) as in Lemma 3.2(pi). Take
first c = cI . Since the trajectories τ(ψ) and τ(φI) cannot intersect (these are
trajectories of the same autonomous system (3.2)), the minimality of R0, as
stated in Theorem 2.3(iii), implies that there is x0 such ψ′ < 0 on [x0,∞) and
ψ(x0) = b. For the function pψ defined in (2.7) this means that pψ < 0 on
(ζ, b] (and pψ(ζ) = 0). Using the continuous dependence on c (cp. Remark
3.6(ii)), we find c < cI , c ≈ cI , such that the corresponding function pψ

c
is

negative on (ζ, b] as well. Take now c0 := cI , v := φI in Lemma 3.8(i) and
let ψ̃ be the solution in the conclusion of Lemma 3.8(i) with the same c < cI
as above. The trajectory of this solution cannot intersect the trajectory of
ψc (again, these are trajectories of the same equation). Therefore, in view
of (3.26) and Remark 3.9(i), we necessarily have ψ̃′ < 0 on R and ψ̃(x)→ ξ
as x → ∞ for some ξ ∈ [ζ, a). This is a contradiction to the minimality
property of R0. The proof is now complete.
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Proof of Proposition 3.11. If N+ 6= ∅, take any I0 = (a0, b0) ∈ N+. By
Lemma 3.14, there is k ∈ N such that

{I ∈ N : I < I0} = {I1, . . . , Ik}.

We choose the labels so that Ik < · · · < I1 < I0. Obviously, these interval
comprise all nodal intervals of R0


[0,b0]

. In other words, R0 vanishes identi-

cally on [0, b0] \ ∪j=0,...kIj. By Lemma 3.14, R0


[0,b0]

does not vanish on any

open subinterval of (0, b0), therefore,

0 = ak and bj = aj−1 (j = 1, . . . , k), (3.44)

where the aj and bj are defined by Ij = (aj, bj), j = 1, . . . , k.
Since cIj ≥ cI0 > 0 (by (2.13)), (3.42) gives

F (u) < F (bj) (u ∈ (aj, bj); j = 0, . . . , k). (3.45)

Using these relations and (3.44), we obtain that the points bj are strict left-
global maximizers, hence

R−1
0 {0} ∩ [0, b0] = {0, bk, . . . , b0} ⊂ Γ−. (3.46)

Since the above results are valid for an arbitrary I0 ∈ N+, it is clear
that the set R−1

0 {0} ∩ [0, γ∗] is finite or countable, γ∗ is its only possible
accumulation point (it is the accumulation point precisely if the set N+ is
infinite), and (3.35) holds. Moreover, γ∗ is a strict left- global maximizer
itself: γ∗ ∈ Γ−. Analogous arguments show that γ∗ ∈ Γ+, it is the only
possible accumulation point of the set R−1

0 {0} ∩ [γ∗, γ], this set is finite or
countable, and (3.36) holds. We have hereby proved that statement (iv) of
Proposition 3.11 holds. From γ∗ ∈ Γ− and γ∗ ∈ Γ+, we have γ∗ ≤ γ∗, hence
the relations (i) are valid. Statement (iii) follows directly from the definition
of γ∗, γ

∗.
We next show that (3.34) holds, thus completing the proof of statement

(ii). It follows from (3.39) that the graph of R0


[γ∗,γ∗]

in the (v, w)-plane

consists of trajectories of system (3.2) with c = 0 (some of these trajectories
are equilibria). Since R0 is continuous, the graph is a connected compact set
in [0, γ]× R. Therefore, by Lemma 3.10(i), the Hamiltonian w2/2 + F (v) is
constant on the graph. Consequently, the function F is constant on the set
R−1

0 {0} ∩ [γ∗, γ
∗]. Since γ∗ is a left-global maximizer and γ∗ is a right-global

maximizer, this set consists of global maximizers, that is, (3.34) holds.
Statement (i) follows from (3.41), as already noted above. The proof is

now complete.
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In the next lemma, we recall a result on the asymptotics of the profile
functions φI .

Lemma 3.15. Given I = (a, b) ∈ N+∪N−; set ζ := a if cI > 0 and ζ := b if
cI < 0. Then the profile function ψ := φI satisfies (3.9) or (3.13), according
to whether cI > 0 or cI < 0, respectively (λ±(c) is as in (3.5) with c = cI).

Proof. (Alternative arguments can also be found in [2, 33]). Assume for
definiteness that cI > 0; the case cI < 0 is analogous. Note that, due to the
monotonicity of φI , the eigenvalues λ±(cI) are necessarily real.

Assume first that f ′(a) ≤ 0 (note that, by (3.40) this holds, except pos-
sibly for the case a = 0).

If (3.9) is not satisfied, then (3.10) must hold. We show that this leads
to a contradiction. For c̃ ∈ (0, cI ], let ψ̃ be the solution of (3.1) with the
asymptotics (3.9), where c is replaced with c̃. For u > a, u ≈ a, we then
have

pψ(u) > pψ̃(u)

(cp. Remark 3.6(i)). If c̃ = cI , this relation has to remain valid for all
u ∈ (0, b], since the trajectories τ(ψ), τ(ψ̃) cannot intersect and ψ̃ cannot
converge to b as x → −∞, by the minimality property of R0. The same
relation is then true for c̃ < cI , c̃ ≈ cI . Fix such a c̃ and take any c ∈ (c̃, cI).
Using Lemma 3.8(i) and Lemma 3.1, we find a solution ψ0 of (3.1) such that

pψ(u) > pψ0(u) > pψ̃(u) (u ∈ (a, b)), (3.47)

ψ0(−∞) = b. By (3.47), this solution also satisfies ψ0(∞) = a and we have
a contradiction to the minimality property of R0.

Assume next that f ′(a) > 0, hence, necessarily a = 0. Since the eigenval-
ues λ±(cI) are real (by the monotonicity of ϕI), we have cI ≥ 2

√
f ′(0). Now,

the limit on the left-hand side of (3.9) (with ζ = 0) exists and equals one of
the eigenvalues λ±(cI). If cI = 2

√
f ′(0), then λ−(cI) = λ+(cI), hence (3.9)

(with c = cI) holds trivially. If cI > 2
√
f ′(0), then, assuming that (3.9) does

not hold, one can take c̃ ∈ (2
√
f ′(0), cI) and repeat the arguments above to

get a contradiction.

Using the previous lemma, we get the following uniqueness result.

Lemma 3.16. Let I = (a, b) ∈ N+ ∪ N−. Then the following statements
are valid.
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(i) Let ψ be a solution of (3.1) with c ≤ cI such that for some b̄ ∈ (a, b)
one has

pψ(u) ≤ pφI (u) (u ∈ (a, b̄)), (3.48)

and ψ(x)→ a as x→∞ (i.e. pψ(u)→ 0 as u↘ a). Then necessarily
c = cI . Moreover, one has pψ ≡ pφI (a, b̄), except possibly in the case
when a = 0, f ′(0) > 0, and cI = 2

√
f ′(0).

(ii) Let ψ be a solution of (3.1) with c ≥ cI such that for some ā ∈ (a, b)
one has

pψ(u) ≤ pφI (u) (u ∈ (ā, b)), (3.49)

and ψ(x)→ b as x→ −∞ (i.e. pψ(u)→ 0 as u↗ b). Then necessarily
c = cI . Moreover, one has pψ ≡ pφI on (ā, b), except possibly in the
case when b = γ, f ′(γ) > 0, and cI = 2

√
f ′(γ).

Note that the exceptional case f ′(0) > 0 and cI = 2
√
f ′(0), is precisely

the case when the eigenvalues λ±(c) in (3.5) with c = cI , ζ = 0 are both
equal to 2

√
f ′(0). In this case, the conclusion pψ ≡ pφI may fail, depending

on the nonlinearity.

Proof. We only prove statement (i); the proof of (ii) is analogous.
Consider first the exceptional case: a = 0, f ′(0) > 0, and cI = 2

√
f ′(0).

Then for c < cI , the eigenvalues λ±(c) in (3.5) (with ζ = 0) are imaginary,
hence no solution ψ with the assumed properties can exist.

We proceed assuming that if a = 0, then either f ′(0) ≤ 0, or f ′(0) > 0
and cI > 2

√
f ′(0). Note that, by (3.40), we have f ′(a) ≤ 0 if a > 0.

Take first c = cI . We show that pψ ≡ pφI on (a, b̄). If f ′(a) ≤ 0 and
cI < 0, this identity follows directly from the uniqueness statement of Lemma
3.3(niii) (with ζ = a). If f ′(a) ≤ 0 and cI > 0, then the identity follows from
Lemma 3.15 (which gives the asymptotics of φI), Lemma 3.2(pi) (which
gives the uniqueness of the solution which such asymptotics), and Lemma
3.2(pii) (which shows that no other solution ψ(x) approaching a as x → ∞
can satisfy (3.48), see also Remark 3.6). If a = 0 and f ′(0) > 0 (note
that in this case cI > 0, see the remarks preceding Theorem 2.4), then the
assumption cI > 2

√
f ′(0) guarantees that λ−(cI) < λ+(cI) < 0 (again the

eigenvalues correspond to ζ = 0). The previous argument applies when one
uses statements (i), (ii) of Lemma 3.4 in place of statements (pi), (pii) of
Lemma 3.2.
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Suppose now that c < cI . We need to show that no solution ψ with
the assumed properties exists. Assume it does. Then, by Lemma 3.1, the
inequality (3.48) has to be strict. Pick any u0 ∈ (a, b̄) and take a solution ψ̃
of (3.1) with c = cI such that

pψ(u0) < pψ̃(u0) < pφI (u0).

By Lemma 3.1, we necessarily have

pψ(u) < pψ̃(u) < pφI (u) (u ∈ (a, u0)),

which implies that ψ(x)→ a as x→∞. This contradicts the validity of the
conclusion for c = cI proved above.

3.3 Some trajectories out of the minimal system of
waves

As in the previous subsection, R0 is the minimal [0, γ]-system of waves, and
{cI : I ∈ N}, {φI : I ∈ N} are the families of speeds and profile functions
corresponding to R0. We also use the notation N±, N 0 introduced in (2.14).
In accord with (2.4), we denote by τ(R0) the graph of the function w = R0(v)
in the (v, w)-plane.

This subsection contains key technical ingredients of the proofs of our
main results. We identify here a class of solutions of (3.1) which will be
used in intersection comparison arguments with a solution u of (1.1). As we
will show in Subsection 6.2, the spatial trajectories of these solutions have to
become disjoint from the spatial trajectories τ(u(·, t)) as t → ∞. Thus, we
want to find a “large” set of such solutions of (3.1), thereby narrowing the
possibilities where τ(u(·, t)) can be located for large times. The pairs (c, ψ),
ψ being a solution of equation (3.1) (on R), that will work for us are of the
following types (see Figure 6).

(A1) ψ is a nonconstant periodic solution with 0 < ψ < γ (hence, necessarily,
c = 0).

(A2) There are x1 < x2 such that

ψ(x) ∈ (0, γ) (x ∈ (x1, x2)),

ψ(xi) ∈ {0, γ}, (i = 1, 2),

|ψ′(x)| > 0 (x ∈ [x1, x2]).

(3.50)
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(A3p) For some I0 = (a, b) ∈ N+, x0 < x̂, and ζ ∈ [a, b) ∩ (0, b), one has
c < cI0 and

ψ(x0) = 0, ψ′(x0) > 0,

0 < ψ(x) < b, ψ′(x) > 0 (x ∈ (x0, x̂)),

a < ψ(x) < b (x ∈ (x̂,∞)),

lim
x→∞

(ψ(x), ψ′(x)) = (ζ, 0).

(3.51)

(A3n) For some I0 = (a, b) ∈ N−, x̌ < x0, and ζ ∈ (a, b] ∩ (a, γ), one has
c > cI0 and

ψ(x0) = γ, ψ′(x0) > 0,

a < ψ(x) < γ, ψ′(x) > 0 (x ∈ (x̌, x0)),

a < ψ(x) < b (x ∈ (−∞, x̌)),

lim
x→−∞

(ψ(x), ψ′(x)) = (ζ, 0).

(3.52)

For the case when ζ = 0 is unstable from above for the equation θ̇ = f(θ)
(hence, f ′(0) ≥ 0), we will also need pairs (c, ψ) of type (A3p0), as described
below. Recall that for c ≥ 2

√
f ′(0)

λ±(c) =
−c±

√
c2 − 4f ′(0)

2
(3.53)

(this is formula (3.5) with ζ = 0). The eigenvalues are real if c ≥ 2
√
f ′(0).

This always applies to c = cI0 , if I0 = (0, b) ∈ N+ for some b > 0, since there
is then the decreasing solution φI0 of (3.1) with φI0(∞) = 0.

(A3p0) For some b > 0 and x0 ∈ R, one has I0 = (0, b) ∈ N+,

c > 2
√
f ′(0), λ+(c) > λ−(cI0), (3.54)

and the following relations are satisfied

0 < ψ(x) < b (x ∈ (x0,∞)),

ψ(x0) = 0, ψ′(x0) > 0,

lim
x→∞

(ψ(x), ψ′(x)) = (0, 0),

ψ has the asymptotics (3.16) (with ζ = 0).

(3.55)
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Figure 6: The graph of R0 and the trajectories of solutions ψ of type (A2),
(A3p), (A3n), (A3p0). In the (A3p) figure, the example on the left—with
the limit equilibrium (a, 0)—is valid only if a > 0. Similarly, the example on
the left in (A3n) is valid only if b < γ.

Lemma 3.10(ii) will be our main source of solutions of type (A1). Solu-
tions of type (A2) will be found using the following result. Recall, that γ0,
γ1 were defined in Section 2.3. We have γ0 > 0 if 0 is unstable from above
for the equation θ̇ = f(θ). In that case I∗ = (0, γ0) is the minimal element
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of N and we have
cI∗ ≥ cI (I ∈ N ), cI∗ > 0 (3.56)

(see (2.13) and the remarks preceding Theorem 2.4). Similarly, γ1 < γ if γ
is unstable from below for this ODE and then I∗ = (γ1, γ) is the maximal
element of N , and

cI∗ ≤ cI (I ∈ N ) cI∗ < 0. (3.57)

Lemma 3.17. Let ξ ∈ [0, γ], η < R0(ξ), and let ψ be the solution of (3.1),
(3.3) for some c ∈ R. Then the following statements are valid.

(i) Assume that ξ ∈ [a, b] for some I := (a, b) ∈ N and c ≥ cI . If f ′(γ) > 0
assume also that c > cI∗ (by (3.57), this is satisfied in particular if
c > cI or c = 0). Then there is x1 ≤ 0 such that

ψ(x1) = γ, and ψ′(x) < 0 (x ∈ [x1, 0]). (3.58)

(ii) Assume that ξ ∈ [a, b] for some I := (a, b) ∈ N and c ≤ cI . If f ′(0) > 0
assume also that c < cI∗ (by (3.56), this is satisfied in particular if
c < cI or c = 0). Then there is x2 ≥ 0 such that

ψ(x2) = 0, and ψ′(x) < 0 (x ∈ [0, x2]). (3.59)

(iii) Assume that ξ ∈ [0, γ] \ ∪I∈NĪ and c = 0. Then there are x1 < x2 such
that (3.58) and (3.59) hold.

Proof. Out of statements (i), (ii), we only prove (ii); the proof of (i) is anal-
ogous. Assume the hypotheses of (ii) are satisfied.

Consider the following region the (v, w)-plane:

G− := {(v, w) : 0 < v < γ, w < R0(v)}. (3.60)

The boundary of G− consists of the graph τ(R0) and the half-lines {(0, w) :
w < 0}, {(γ, w) : w < 0}. By assumption, one has (ξ, η) ∈ G− or (ξ, η) is
contained in one of the two half-lines (in the latter case one has a = 0 or
b = 0). Replacing (ξ, η) by a nearby point on the trajectory τ(ψ), we may
assume without loss of generality that (ξ, η) ∈ G−. Since R0 ≤ 0 and R0 = 0
only at zeros of f , one verifies easily that if the conclusion of statement (ii)
is not true, then one of the following two possibilities has to occur:
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(a) There is x0 > 0 such that (ψ(x), ψ′(x)) ∈ G− for x ∈ [0, x0) and

(ψ(x0), ψ′(x0)) ∈ τ(R0) ∩ {(v, w) : w < 0}.

(b) One has (ψ(x), ψ′(x)) ∈ G− for x ∈ [0,∞) and

(ψ(x), ψ′(x))→ (ζ, 0) ∈ τ(R0) as x→∞. (3.61)

To complete the proof, we need to rule both these possibilities out.
We start with (a). Assume that it holds. Then, in particular, ψ′ < 0 in

[0, x0] and (ψ(x0), ψ′(x0)) = (u0, R0(u0)) for some u0 with R0(u0) < 0. Thus
there is a nodal interval J ∈ N of R0 such that u0 ∈ J . Near (u0, R0(u0)), the
graph of τ(R0) then coincides with the trajectory τ(φJ) of the corresponding
profile function. Since u0 = ψ(x0) < ψ(0) = ξ ∈ [a, b] = Ī, we have J ≤ I in
the ordering of N . Hence, by (2.13), cJ ≥ cI . Now, in terms of the functions
pψ, pφ

J
, possibility (a) means that there is ε > 0 such that

pψ(u0) = pφ
J

(u0), pψ(u) < pφ
J

(u), (u ∈ (u0, u0 + ε)).

Since ψ is the solution of (3.1) with c ≤ cI , these relations yield a contradic-
tion to Lemma 3.1. Possibility (a) is thus ruled out.

Assume that (b) holds. Obviously, ζ ∈ R−1
0 {0} and ζ ≤ a < b. Therefore,

if ζ is the left end point of some interval J ∈ N+ ∪N−, then cJ ≥ cI ≥ c. In
this situation, we immediately get a contradiction from Lemma 3.16(i) (in
case ζ = 0 and f ′(0) > 0, the lemma applies due to the extra assumption
c < cI∗). Now, Proposition 3.11(iii),(iv) implies that ζ is necessarily the left
end point of some J ∈ N+ ∪ N− if ζ < γ∗, or ζ > γ∗, or ζ = γ∗ and the set
N− is finite. Hence, in these cases we are done.

We next consider the case of ζ = γ∗ with N− infinite (in particular, a
cannot be equal to γ∗, so a > γ∗). Proposition 3.11(iv) guarantees that there
is an interval J ∈ N− (in fact, infinitely many of them) such that J < I.
Therefore, c ≤ cI ≤ cJ < 0. If we now replace η with a slightly larger value
in (−∞, R0(ξ)), then the solution from the new initial condition, with the
same c, can no longer converge to γ∗ by the uniqueness result in Lemma
3.3(niii) (the lemma applies to ζ = γ∗ because γ∗, being a maximizer of
F


[0,γ]
, satisfies f ′(ζ) ≤ 0). Thus, to the new initial condition we can apply

the arguments above and get a contradiction.
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It remains to consider the case γ∗ ≤ ζ < γ∗ (which can occur only if
γ∗ < γ∗). Since γ∗ ≤ ζ ≤ a < b, we have c ≤ cI ≤ 0 (cp. Proposition
3.11(iii)). Therefore, by (3.29), the function

H(ψ(x), ψ′(x)) =
(ψ′(x))2

2
+ F (ψ(x)) (3.62)

is monotone nondecreasing. If a ≥ γ∗, then there is x0 ≥ 0 such that ψ(x0) =
γ∗, ψ′(x0) < 0 (the latter follows from (ψ(x0), ψ′(x0)) ∈ G−). Consequently,

F (γ∗) < H(ψ(x0), ψ′(x0)) ≤ H(ζ, 0) = F (ζ), (3.63)

contradicting the fact that γ∗ is a global maximizer of F . If a < γ∗, then,
since γ∗ ≤ ζ ≤ a, we have I = (a, b) ⊂ (γ∗, γ

∗) (cp. Proposition 3.11(iii))
and b itself is a global maximizer of F


[0,γ]

(Proposition 3.11(ii)). Also,

cI = 0, which implies that H is constant on the closure of the trajectory
τ(φI). Therefore,

F (b) = H(b, 0) ≤ H(ξ, R0(ξ)),

since (ξ, R0(ξ)) is on the trajectory τ(φI). Similarly as in (3.63), using the
nondecrease of H along the trajectory of ψ and the relation η < R0(ξ), we
obtain

H(ξ, R0(ξ)) < H(ξ, η) = H(ψ(0), ψ′(0)) ≤ H(ζ, 0) = F (ζ).

Combining the above inequalities, we have contradicted the maximality of
F (b).

Thus, possibility (b) leads to a contradiction in all cases. The proof of
statement (ii) in now complete.

Assume now that c = 0 and ξ is as in statement (iii). We prove that
(3.59) holds for some x2; the proof of the existence of x1 satisfying (3.58) is
analogous and is omitted.

By Proposition 3.11, we necessarily have ξ ∈ [γ∗, γ
∗] and one of the fol-

lowing possibilities has to occur:

(c) There is a sequence of intervals In = (an, bn) in N+ ∪ N 0 such that
bn ↗ ξ.

(d) There is ξ0 ∈ [0, ξ) such that [ξ0, ξ] ⊂ R−1
0 {0}.
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If (c) holds and n is large enough, then, clearly, the trajectory τ(ψ) contains
the point (bn, η̃) for some η̃ < 0. Replacing (ξ, η) by (bn, η̃) and applying
statement (ii) (which is legitimate since c = 0 and cIn ≥ 0), we find x2 ≥ 0
such that (3.59) holds.

Assume now that (d) holds and take the minimal ξ0 with the indicated
property. Since R−1

0 {0} ⊂ f−1{0}, we have f ≡ 0 on [ξ0, ξ]. Since also c = 0,
equation (3.1) tells us that ψ′ ≡ const = η < 0, as long as ψ(x) remains in
[ξ0, ξ]. If ξ0 = 0, this implies, trivially, that (3.59) holds for some x2 ≥ 0. If
ξ0 > 0, we simply replace (ξ, η) by (ξ0, η) ∈ τ(ψ) and note that then either
(c) or statement (ii) applies due to the minimality of ξ0. This completes the
proof of statement (iii).

Corollary 3.18. Let ξ ∈ [0, γ] and η < R0(ξ). Then for some c ∈ R the
solution ψ of (3.1), (3.3) has the following property. There are x1 < x2 such
that

ψ(x1) = γ, ψ(x2) = 0, and ψ′(x) < 0 (x ∈ [x1, x2]). (3.64)

Hence, ψ is a solution of type (A2).

Proof. If ξ is as in Lemma 3.17(iii), the conclusion follows immediately upon
taking c = 0. Otherwise, ξ ∈ [a, b] for some I := (a, b) ∈ N .

Take first c = cI and observe that the hypotheses of at least one of the
statements (i), (ii) of Lemma 3.17 are satisfied. Indeed, if that were not
the case, we would have f ′(0) > 0, f ′(γ) > 0, and cI∗ ≤ c ≤ cI∗ . This is
impossible, however, because cI∗ > 0 > cI∗ (see (3.56), (3.57)).

Assume for definiteness that the hypotheses of Lemma 3.17(i) are satisfied
(the other case is analogous). Then (3.58) holds for some x1 ≤ 0. Clearly,
this remains valid (with a possibly different x1 ≤ 0) if we perturb c slightly.
We can thus take c < cI , c ≈ cI , such that (3.58) holds. With this new choice
of c, the hypotheses of statement (ii) of Lemma 3.17 are satisfied. Hence,
(3.59) holds as well, and consequently (3.64) holds for some x2 > x1.

Remark 3.19. With ψ and c as in Corollary 3.18, the function ψ̂(x) :=
ψ(−x) is a solution of (3.1) with c replaced by −c and

ψ̂(−x2) = 0, ψ̂(−x1) = γ, and ψ̂′(x) > 0 (x ∈ [−x2,−x1]). (3.65)

Hence, ψ̂ is also a solution of type (A2).

Solutions of types (A3p), (A3n), and (A3p0) will be found using the
following lemma (and the analogous results of Lemma 3.22). In its statement,
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we consider a solution ψc of (3.1) whose existence is guaranteed by Lemma
3.2(pi) (the solution is unique up to translations).

Lemma 3.20. Assume that I = (a, b) ∈ N+; in case a = 0 assume also that
f ′(0) ≤ 0. For any c > 0 let ψc(x) be a solution of (3.1) satisfying (3.6),
(3.9) with ζ := a. If δ > 0 is sufficiently small, then for each c ∈ (cI − δ, cI)
the solution ψc satisfies (3.51) with some x0 = x0(c), x̂ = x̂(c) (and with
ζ = a). Moreover, after replacing ψc by a translation such that its critical
point x̂ is put at x = 0 (and x0 < 0), the following statements are valid:

(i) The function c 7→ ψc(0) is continuous, increasing, and ψc(0) → b as
c↗ cI .

(ii) For any c1, c2 ∈ (cI − δ, cI) with c1 < c2, the trajectories

{(ψci(x), ψcix (x)) : x ∈ (x0(ci),∞)}, i = 1, 2,

are disjoint, and each of them is disjoint from the trajectory τ(φI).

(iii) If ϕc denotes the restriction of ψc to the interval [0,∞) (where ψc is
decreasing), then, given any u0 ∈ (a, b), the function pϕ

c
is defined on

(a, u0] for all c < cI sufficiently close to cI and one has

pϕ
c

(u)→ pφI (u) as c↗ cI (3.66)

uniformly on (a, u0].

Remark 3.21. Although not used below, this remark will further clarify
what happens as c ↗ cI . By elementary considerations similar to those
given in the proof of Lemma 3.28 below, one can show that, as c ↗ cI ,
the trajectories {(ψc(x), ψcx(x)) : x ∈ (x0(c),∞)} approach in the Hausdorff
distance the set composed of the trajectory τ(φI), the point (b, 0), and a
trajectory of (3.2) with c = cI in the center-stable manifold of (b, 0) (cp.
Figure 7).

The proof of Lemma 3.20 is given below after some preliminary results.
Here are analogous statements for N−, which we include without proof.

Lemma 3.22. Assume that I = (a, b) ∈ N−; in case b = γ assume also that
f ′(γ) ≤ 0. For any c ∈ (cI , 0) let ψc(x) be a solution of satisfying (3.7) and
(3.13) with ζ := b (see Lemma 3.3(ni)). If δ > 0 is sufficiently small, then
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Figure 7: The trajectory of ψc for c < cI , c ≈ cI > 0.

for each c ∈ (cI , cI + δ) the solution ψc satisfies (3.52) with some x0 = x0(c),
x̌ = x̌(c) (and with ζ = b). Moreover, after replacing ψc by a translation such
that its critical point x̌ is put at x = 0 (and x0 > 0), the following statements
are valid:

(i) The function c 7→ ψc(0) is continuous, decreasing, and ψc(0) → a as
c↘ cI .

(ii) For any c1, c2 ∈ (cI , cI + δ) with c1 < c2, the trajectories

{(ψci(x), ψci2 (x)) : x ∈ (−∞, x0(ci))}, i = 1, 2,

are disjoint, and each of them is disjoint from the trajectory τ(φI).

(iii) If ϕc denotes the restriction of ψc to the interval (−∞, 0] (where ψc

is decreasing), then, given any u0 ∈ (a, b), the function function pϕ
c

is
defined on [u0, b) for all c > cI sufficiently close to cI and one has

pϕ
c

(u)→ pφI (u) as c↘ cI (3.67)

uniformly on [u0, b).

The following relations will come in handy in the proof of Lemma 3.20
and other places below.

Lemma 3.23. Assume that ζ ∈ f−1{0} and λ±(c) are as in (3.5). If f ′(ζ) ≤
0, then

λ−(c2) < λ−(c1) and λ+(c2) ≤ λ+(c1) (c2 > c1 ≥ 0). (3.68)

If f ′(ζ) > 0, then

λ−(c2) < λ−(c1), λ+(c2) > λ+(c1) (c2 > c1 ≥ 2
√
f ′(ζ)). (3.69)
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These relations follow by simple estimates of the derivatives of the eigen-
values λ±(c):

dλ±(c)

dc
=

1

2

(
−1± c√

c2 − 4f ′(ζ)

)
The following result will also be used in the proof of Lemma 3.20.

Lemma 3.24. (i) For each I = (a, b) ∈ N+ there is ν > 0 with the
following property. If ξ ∈ (b − ν, b), η > R0(ξ), and ψ is the solution
of (3.1), (3.3) for some c ∈ [0, cI ], then there is x0 < 0 such that

ψ(x0) = 0, ψ′(x0) > 0, and ψ(x) ∈ (0, b) (x ∈ (x0, 0]); (3.70)

moreover, if η > 0, then ψ′ > 0 in [x0, 0]; and if R0(ξ) < η ≤ 0, then
ψ has a unique critical point x̂ in [x0, 0] and ψ′′(x̂) < 0.

(ii) For each I = (a, b) ∈ N− there is ν > 0 with the following property.
If ξ ∈ (a, a + ν)], η > R0(ξ), and ψ is the solution of (3.1), (3.3) for
some c ∈ [cI , 0], then there is x0 > 0 such that

ψ(x0) = γ, ψ′(x0) > 0, and ψ(x) ∈ (a, γ) (x ∈ (0, x0]); (3.71)

moreover, if η > 0, then ψ′ > 0 in (0, x0]; and if R0(ξ) < η ≤ 0, then
ψ has unique critical point x̌ in [0, x0] and one has ψ′′(x̌) > 0.

Proof. We only prove statement (i); the proof of (ii) is analogous.
By Lemma 3.7(i) there is ν > 0 such that

f(u) > 0 (u ∈ [b− ν, b)). (3.72)

Since b is a strict left-global maximizer of F (cp. Proposition 3.11(ii),(iii)),
we can make ν smaller so that, moreover,

F (v) < F (u) (u ∈ [b− ν, b], v ∈ [0, u)). (3.73)

To show that statement (i) holds with this ν, assume that ξ, η, c and ψ,
satisfy the stated conditions.

First, we consider the case η > 0. We show that there is x0 = x0(c) < 0
such that ψ(x0) = 0 and ψx > 0 in [x0, 0] (in particular, relations (3.70)
hold). In other words, we want to show that as −x increases, (ψ(x), ψx(x))
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leaves the first quadrant Q+ := {(v, w) : v > 0, w > 0} through the positive
w-axis. If this is not true, then (ψ(x), ψx(x)) either hits the v-axis at some
finite x̄ < 0 or it stays in Q+ and converges as x→ −∞ to some equilibrium
(θ, 0) with θ ∈ [0, b). Consider the former: there is x̄ < 0 such that ψx(x̄) = 0
and (ψ(x), ψx(x)) ∈ Q+ for x ∈ (x̄, 0]. Then, using the fact that the function
H in (3.62) is nonincreasing (since c ≥ 0, cp. (3.29)), we obtain

F (ψ(x̄)) = H(ψ(x̄), 0) ≥ H(ψ(0), ψx(0)) =
η2

2
+ F (ξ) > F (ξ), (3.74)

a contradiction to (3.73). A similar argument shows that ψ(x) cannot con-
verge to any θ ∈ [0, b) as x → −∞ (this would give F (θ) > F (ξ)). Hence,
the conclusion of statement (i) holds if η > 0.

Consider now the case η ≤ 0. We claim that there is x ≤ 0 such that
ψx(x) = 0. Indeed, if not, then ψx < 0 for all x < 0 and ψ(x) converges as
x→ −∞ to some θ ∈ f−1{0}. Since c ∈ [0, cI ], necessarily, θ ≤ b (by Lemma
3.1, τ(ψ) stays above τ(φI)). The case θ = b is excluded by the uniqueness
statement in Lemma 3.2(piii) and the existence result in Lemma 3.8(i). Thus,
θ < b and this contradicts (3.72). This proves our claim. Obviously, if
x̂ ∈ (−∞, 0) is the critical point of ψx with minimal absolute value, then
ψ(x) ∈ (ξ, b) for each x ∈ [x̂, 0). Moreover, by (3.72), f(ψ(x̂)) > 0, hence,
by equation (3.1), ψ′′(x̂) < 0. In particular, x̂ is an isolated zero of ψx. Thus
for any y > x̂ sufficiently close to x̂, the solution ψ̃ := ψ(· − y) satisfies the
conditions in statement (i) with η > 0. Using what we have already proved
for the case η > 0, we find x0 < 0 such that the relations (3.70) are satisfied
and x̂ is the unique critical point of ψ.

Proof of Lemma 3.20. We have f ′(a) ≤ 0 (this is an assumption if a = 0; if
a > 0, it holds automatically by (3.40)).

Recall that ψc identified in the assumptions of the Lemma 3.20 is the
solution, unique up to translations, which is decreasing for large x and has
the asymptotics (3.9) (with ζ = a). Also, its trajectory τ(ψc) is contained
in the stable manifold W s of the equilibrium (a, 0) (cp. the proof of Lemma
3.2(i)). For c = cI , the function ψc coincides, after a suitable translation,
with φI (see Lemma 3.15); thus τ(ψcI ) is a heteroclinic orbit from (b, 0) to
(a, 0). Using the continuity of W s with respect to c, by taking c < cI , c ≈ cI ,
we can find points on τ(ψc) arbitrarily close to (b, 0). More specifically, for
each c < cI , c ≈ cI , there is yc ∈ R such that the following relations are valid:

ψcx(x) < 0 (x ≥ yc), ψc(yc) = b− ν/2, (3.75)
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where ν is as Lemma 3.24(i). Moreover, for any c1, c2 ≈ cI with c1 < c2 < cI
we have

pψ
c1 (u) > pψ

c2 (u) > pφI (u) (3.76)

on any interval (a, b̄] ⊂ (a, b) on which pψ
c1 , pψ

c2 are both defined. This
follows from the relations λ−(c2) < λ−(c1) < λ−(cI) (see (3.68)), the asymp-
totics (3.9) (cp. Remark 3.6(i)), and Lemma 3.1. In particular, taking
b̄ = b− ν/2, we see from (3.75), (3.76) that Lemma 3.24(i) applies to the so-
lution ψ := ψc(· − yc). This shows that for some x0 = x0(c) < yc, ψ

c satisfies
(3.51) with ζ = a. Clearly, ψc has a critical point somewhere in (x0(c), yc)
and by Lemma 3.24(i) this critical point is unique. We now replace ψc by a
translation, if necessary, so that x = 0 is the critical point.

The continuity of the stable manifold W s with respect to c guarantees
that ψc(0) depends continuously on c. Since τ(ψc) contains points arbitrarily
close to (b, 0), we have that ψc(0) → b as c ↗ cI . This and (3.76) prove
statement (i) of Lemma 3.20.

Statement (ii) follows from (3.76) and Lemma 3.1.
For statement (iii), we note that the function pψ

c
is defined on the interval

(a, ψc(0)]. By statement (i), this intervals includes (a, u0] ⊂ (a, b) if c is
close enough to cI . Therefore, the uniform convergence (3.66) is just an
interpretation of the continuous dependence of the stable manifold W s on c
(cp. Remark 3.6(ii)). The proof is complete.

In the following results, we identify a set of points (ξ, η) ∈ R2 which lie
on trajectories of solutions of types (A2), (A3p), or (A3p0). To elucidate
the significance of the regions formed by such point, recall that our goal is
to constraint possible locations of the spatial trajectories τ(u(·, t)), t ≈ ∞,
of the solution of (1.1), (1.2). When we show that τ(u(·, t)) cannot intersect
the trajectory of any solution which is of type (A2), (A3p), or (A3p0), then
τ(u(·, t)) has to be disjoint from the identified regions.

For any interval J ⊂ [0, γ], we denote

SJ := {(v, w) ∈ R2 : v ∈ J}. (3.77)

Proposition 3.25. (i) Assume that I = (a, b) ∈ N+. In case a = 0,
assume also that θ = 0 is stable from above for the equation θ̇ = f(θ).
Then there is ε > 0 with the following property. For each (ξ, η) ∈
S(b−ε,b] \ τ(R0) one can find c ∈ R and a solution ψ of (3.1) such that
(ξ, η) ∈ τ(ψ) and either (A2) holds or (A3p) holds with I0 = I.
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(ii) Assume that I = (a, b) ∈ N−. In case b = γ, assume also that θ = γ is
stable from below for the equation θ̇ = f(θ). Then there is ε > 0 with
the following property. For each (ξ, η) ∈ S[a,a+ε) \ τ(R0) one can find
c ∈ R and a solution ψ of (3.1) such that (ξ, η) ∈ τ(ψ) and either (A2)
holds or (A3n) holds with I0 = I.

(iii) Assume that I = (0, b) ∈ N+ for some b ∈ (0, γ] and that θ = 0 is
unstable from above for the equation θ̇ = f(θ). Then there is ε > 0
with the following property. For each (ξ, η) ∈ S(b−ε,b] \ τ(R0) one can
find c ∈ R and a solution ψ of (3.1) such that (ξ, η) ∈ τ(ψ) and either
(A2) holds or (A3p0) holds with I0 = I.

We will only prove statements (i), (iii); the proof of (ii) is analogous to
the proof of (i) and is omitted. We carry out some steps of the proofs of
these results in the following lemmas.

Lemma 3.26. Assume that I = (a, b) ∈ N+ and let

B := {(v, w) : v ∈ (a, b), R0(v) ≤ w ≤ −R0(v)}. (3.78)

If (ξ, η) ∈ S[0,γ] \B, then there is c ∈ R such that the solution of ψ of (3.1),
(3.3) satisfies (A2).

Proof. This follows directly from Corollary 3.18 and Remark 3.19.

Lemma 3.27. Assume that I = (a, b) ∈ N+, c ≥ cI , and let B be as in
(3.78). If (ξ, η) ∈ B\τ(φI) and ψ is the solution of (3.1), then (ψ(x), ψ′(x)) ∈
IntB for all x > 0. Moreover, there is µ > 0 such that if (ξ, η) ∈ S(b−µ,b) ∩
B \ τ(φI), then ψ′(x) ≤ 0 for some x ≥ 0.

Proof. The first statement (the invariance of B) follows directly from Lemma
3.1, upon noting that the graph of R0


(a,b)

coincides with τ(φI), and the

graph of −R0


(a,b)

coincides with τ(φ̂I), where φ̂I(x) := φI(−x) is a solution

of (3.1) with c = −cI < 0 < cI .
Let now µ ∈ (0, ν], where ν is as in Lemma 3.24(i) and such that also

(3.72) is satisfied. We prove that the second statement is satisfied for this µ.
Consider the solution ψ with (ξ, η) satisfying the given conditions. If ψ′(x) >
0 for all x > 0, then ψ(x)→ ζ, as x→∞, for some ζ ∈ (b− µ, b] ∩ f−1{0}.
Necessarily, ζ = b, for there are no zeros of f in (b − µ, b) (see (3.72)). To
rule this possibility out, we employ the functional H (see (3.28), (3.29)). It
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decreases along (ψ, ψx), as c ≥ cI > 0, whereas it increases along (φ̂I , φ̂
′
I).

Now, by Lemma 3.24(i), the trajectory τ(ψ) intersects τ(φ̂I). Therefore,
since (b, 0) is the limit of (φ̂I(x), φ̂′I(x)), as x → ∞, it cannot at the same
time be the limit of (ψ(x), ψx(x)) as x→∞.

Lemma 3.28. Assume that the hypotheses of Lemma 3.20 are satisfied and
let a sufficiently small δ > 0 and ψc, c ∈ (cI − δ, cI), be as in that lemma.
Then there is ε > 0 such that, with B as in (3.78), one has

B ∩ S(b−ε,b] \ τ(R0) ⊂
⋃

c∈(cI−δ,cI)

τ(ψc). (3.79)

Proof. It follows directly from Lemma 3.20 that (3.79) holds for some ε > 0
if B is replaced by

B−0 := {(v, w) : v ∈ (a, b), R0(v) ≤ w ≤ 0}. (3.80)

Thus, we only need to prove that (3.79) holds if B is replaced by B+ :=
B \ B−0 . This follows, by a simple continuity argument, if we can prove
that (3.79) holds if B is replaced by τ(−R0), the graph of −R0. Note that
τ(−R0)∩S(b−ε,b) coincides with τ(φ̂I)∩S(b−ε,b), where φ̂I(x) = φI(−x). Pick
c0 ∈ (cI − δ, cI). Using Lemma 3.20 and the continuity of solutions with
respect to parameters and initial data, the following properties are easily
established. For each c̄ ∈ (c0, cI) the set

Pc̄ :=
⋃

c∈(c0,c̄)

τ(ψc) ∩ τ(φ̂I)

is a curve in τ(φ̂I) with the end points at τ(ψc0) ∩ τ(φ̂I), τ(ψc̄) ∩ τ(φ̂I).
Moreover, Pc̄ is increasing in c̄ with respect to the set inclusion. Thus, as
c̄↗ cI , the end point τ(ψc̄)∩ τ(φ̂I) approaches a limit (ξ, η), and all we need
to prove is that (ξ, η) = (b, 0). We show this by contradiction. Assume that
(ξ, η) 6= (b, 0). Then (ξ, η) is on the trajectory τ(φ̂I). As shown in Lemma
3.27, the trajectory of the solution of (3.2), (3.3) with c = cI intersects the
v-axis at some point (ξ0, 0) with ξ0 < b. But then, by continuity, for all
c ≈ cI , τ(ψc) intersects the v-axis at a point near (ξ0, 0), in contradiction to
Lemma 3.20(i). This contradiction completes the proof.

Proof of Proposition 3.25, Part 1. Here, we prove statement (i) of Propo-
sition 3.25 assuming that a > 0. Since f ′(a) ≤ 0 (see (3.40)), Lemmas
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3.20, 3.28 apply. Observe that (A3p) holds with I0 = I = (a, b), ψ = ψc,
c ∈ (cI − δ, cI), if δ ∈ (0, cI) and ψc are as in Lemma 3.20. The conclusion of
statement (i) now follows directly from Lemmas 3.26, 3.28.

Lemma 3.29. Let I = (a, b) ∈ N+. Suppose that c > 0 and ψ is a solution
of (3.1) such that for some x0 < x̂ < x̄ the following relations are satisfied
(cp. Figure 8):

ψ(x0) = 0, ψ′(x) > 0 (x ∈ [x0, x̂)), ψ(x̂) < b, ψ′(x̂) = 0, (3.81)

ψ′(x) < 0 (x ∈ (x̂, x̄)), ψ(x̄) ∈ (a, b), ψ′(x̄) = 0. (3.82)

Then a < ψ(x) < b for all x ≥ x̄ and, as x → ∞, one has (ψ̂(x), ψ̂x(x)) →
(ζ, 0) with ζ ∈ (a, b).

  τ(ϕI)
0 γa b 

  τ(ψ)

v

w

Figure 8: The trajectory of the solution as in Lemma 3.29.

Proof. Relations (3.82) (and the fact that (ψ, ψx) is not an equilibrium)
imply that (ψ(x), ψx(x)) crosses the v-axis at the point (ψ(x̄), 0). Once
(ψ(x), ψx(x)) is in the half-plane {(v, w) : v > 0}, ψ is increasing. Since
τ(ψ) does not have self-intersections, relations (3.81) imply that (ψ(x), ψx(x))
must cross the v-axis at some point (q, 0) between (ψ(x̄), 0) and (ψ(x̂), 0)
and enter the lower half-plane {(v, w) : v < 0}. Once there, ψ is decreas-
ing. Continuing by similar arguments, one shows easily that the function
x→ (ψ(x), ψx(x)) is bounded on (x̄,∞), with ψ(x̄) ≤ ψ(x) ≤ ψ(x̂), and that
its limit equilibrium (ζ, 0) is between (ψ(x̄), 0) and (ψ(x̂), 0) (the limit equi-
librium exists, as mentioned in Subsection 3.1, since c > 0). In particular,
we have ζ ∈ (a, b).
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Proof of Proposition 3.25, Part 2. Here we assume that a = 0. We prove
statement (i) of Proposition 3.25 (assuming that θ = 0 is stable from above,
hence, in particular, f ′(0) ≤ 0), and also prove statement (iii) under the
assumption that f ′(0) = 0. The proofs share some arguments, so, for now, we
just assume that I = (0, b) ∈ N+ and f ′(0) ≤ 0 with no further assumption
on the stability of 0.

By Lemma 3.26, all points in (ξ, η) ∈ S[0,γ] \ B, with B as in (3.78), are
covered by trajectories of type (A2). Thus, we only need to consider points
in B. Let ε > 0 be as in Lemma 3.28. Fix any point

(ξ, η) ∈ B ∩ S(b−ε,b) \ τ(R0). (3.83)

By Lemma 3.28, (ξ, η) ∈ τ(ψc0) for some c0 ∈ (cI − δ, cI). We claim that if
c ∈ (c0, cI) is sufficiently close to c0 and ψ is the solution of (3.1), (3.3), then
(A3p) holds if θ = 0 is stable from above and (A3p0) holds if it is unstable
from above (we take I0 = I in (A3p) and (A3p0)).

To prove the claim, we first note, appealing to Lemma 3.20 and the conti-
nuity of solutions with respect to c, that relations (3.81) hold for some points
x0 < x̂ (depending on c). By Lemma 3.1, as long as ψ′(x) < 0, (ψ(x), ψ′(x))
stays between τ(φI) and the v-axis. Therefore, one of the following possibil-
ities occurs:

(a) ψx < 0 on (x̂,∞) and, as x → ∞, one has ψ(x) → ζ for some ζ ∈
f−1{0} ∩ [0, b);

(b) there is x̄ > x̂ such that relations (3.82) hold.

If alternative (b) occurs, then, using Lemma 3.29, we conclude that (A3p)
holds. If (a) occurs, then (A3p) holds if we can verify that ζ > 0. We now
show that this is indeed the case if θ = 0 is stable from above for the equation
θ̇ = f(θ). Indeed, under this stability assumption, statements (pi), (pii) of
Lemma 3.2 imply that if (a) holds with ζ = 0, then up to a translation,
ψ = ψc, or, in other words, τ(ψ) = τ(ψc). This is impossible, however,
as the trajectories τ(ψc) and τ(ψc0) are disjoint (see Lemma 3.20(ii)) and
(ξ, η) ∈ τ(ψ)∩τ(ψc0). Thus, under the stability assumption we are done and
the proof of statement (i) of Proposition 3.25 is complete.

We now assume that θ = 0 is unstable from above for the equation
θ̇ = f(θ) (hence, our assumption f ′(0) ≥ 0 now reduces to f ′(0) = 0). In this
case, we first show that alternative (a) holds if c ∈ (c0, cI) is close enough
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to c0. Indeed, the instability assumption implies that f > 0 in the interval
(0, d) for some d > 0. By continuity, if c > c0 is close enough to c0, then
there is x̃ such that ψ(x̃) ∈ (0, d), ψ′(x̃) < 0. Thus, for the alternative (b) to
occur, (ψ(x), ψ′(x)) would have to cross the v-axis somewhere on the segment
(0, d)× {0}. However, due to f > 0, the direction of the vector field on this
segment makes this impossible.

Thus, alternative (a) holds, as claimed. By the uniqueness statement of
Lemma 3.2(pi), if ψ has the asymptotics (3.9) (with ζ = 0), then necessarily
τ(ψ) = τ(ψc). However, as already noted above, this is impossible by Lemma
3.20(ii). Thus, by Lemma 3.2(pii), ψ must have the asymptotics (3.10) (which
is the same as (3.16) when f ′(0) = 0). Also, since cI > c and f ′(0) = 0,
λ+(c) = 0 > λ−(cI). We conclude that (A3p0) holds. This completes the
proof of statement (iii) in the case f ′(0) = 0.

Proof of Proposition 3.25, Part 3. If remains to complete the proof of state-
ment (iii) of Proposition 3.25 in the case f ′(0) > 0.

Recall that, since the solution φI(x) converges to 0 and is decreasing, the
eigenvalues λ±(cI) are real, that is, cI ≥ 2

√
f ′(0)). We will be working with

c > cI this time (thus achieving (A3p) is no longer an option) and want to
show that (A3p0) holds. Note that

λ−(c) < λ−(cI) (3.84)

for c > cI (see (3.69)) and that Lemma 3.4 with ζ = 0 applies.
Fix a positive number d such that f > 0 in (0, d).
Let ν and µ be as in Lemmas 3.24 and 3.27, respectively. We will use the

following claim. There is ε > 0 with ε < min{ν, µ} such that if (ξ, η) is as
in (3.83), then the solution of (3.1), (3.3) with c = cI satisfies ψ(x) ↘ 0 as
x→∞.

Suppose for a while the claim is true. We prove that statement (iii) holds
for such ε. As in Part 2 of the proof, we only need to consider points (ξ, η)
satisfying (3.83). Fix any such point. Using Lemmas 3.24(i) and 3.27 for
c = cI , and then the continuity with respect to c, we obtain that for each
c > cI , c ≈ cI the solution ψ of (3.1), (3.3) satisfies relations (3.81) for some
x0 < x̂ (depending on c). Moreover, (ψ(x), ψ′(x)) ∈ B for all x ≥ x̂ (see
Lemma 3.27). Therefore, using the claim and the continuity with respect to
c, we obtain that if c > cI is sufficiently close to cI , then (ψ(x), ψ′(x)) enters
the “wedge”

V := {((r, s) ∈ R2 : 0 < r < d, R0(r) < s < 0}. (3.85)
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The invariance of B and the direction on the vector field on the segment
(0, d) × {0} then implies that (ψ(x), ψ′(x)) stays in V for all large x and
approaches (0, 0) as x→∞.

Now, ψ(x) cannot have the asymptotics (3.9) (with ζ = 0). Otherwise,
(ψ(x), ψx(x)) could not stay in V (above τ(φI)) for all large x because of
the asymptotics of φI (see Lemma 3.15) and the relation (3.84) (cp. Remark
3.6(i)). Therefore, by Lemma 3.4, ψ(x) has the asymptotics (3.16). This
shows that relations (3.55) are all satisfied. Moreover, by (3.69), we have
λ−(cI) ≤ λ+(cI) < λ+(c), hence all conditions in (A3p0) are satisfied.

It remains to prove the claim. Let V be as in (3.85). Set ξ0 := min{ν, µ}/2.
If η0 ∈ (R0(ξ0), 0) is sufficiently close to R0(ξ0) (so (ξ0, η0) is close to τ(φI)),
then the solution (ψ0(x), ψ′0(x)) of (3.2) with c = cI and (ψ0(0), ψ′0(0)) =
(ξ0, η0) enters the wedge V . Then it stays in V for all large x and ap-
proaches (0, 0) as x → ∞. This follows, as above, from the invariance of
B and the direction on the vector field on the segment (0, d) × {0}. Since
(ξ0, η0) ∈ S(b−ν,b) ∩ B, it follows from Lemma 3.24 that the trajectory τ(ψ0)

intersects τ(φ̂I). Consider now the region B1 in B whose boundary consists
of pieces of the trajectories τ(φ̂I), τ(ψ0), τ(φI), and the point (b, 0) (see Fig-
ure 9). Clearly, B1 contains the set B ∩ S(b−ε,b) \ τ(R0) for some ε ∈ (0, ξ0).
For any (ξ, η) ∈ B ∩S(b−ε,b) \ τ(R0), let ψ be the solution of (3.2), (3.3) with
c = cI . By Lemma 3.27, one has ψ′(x) ≤ 0 for some x. Since the trajectories
τ(ψ0), τ(ψ), and τ(φI) of (3.2) with c = cI cannot not intersect, we have
ψ′(x) < 0 for large x and (ψ(x), ψ′(x)) → (0, 0) as x → ∞. The claim is
proved.

  τ(ϕI)

0 γb 

  τ(ψ0)

v

w

Figure 9: The shaded region depicts the region in the set B, as described in
Part 3 of the proof of Proposition 3.25.
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Remark 3.30. (i) Let us summarize how solutions ψc from Lemma 3.20
were used in the proof of Proposition 3.25(i) in order to find pairs (c, ψ)
satisfying (A3p) with I0 = I. For c < cI , c ≈ cI , we took ψ either equal
to ψc (Part 1 of the proof of Proposition 3.25 dealing with the case
a > 0) or a small perturbation of ψc (Part 2 of the proof concerning
the case a = 0 when it is stable from above). Since ψc(∞) = a and
ψc(0)↗ b as c↗ cI , we can choose c < cI and ψ satisfying (A3p) and
the following relations with any desired proximities

ψ(0) ≈ b, ψ(x) ≈ a for some x > 0. (3.86)

This observation will be useful below.

(ii) Similarly, in the proof of Proposition 3.25(iii), we have found pairs
(c, ψ), with c > cI or c < cI , such that ψ(0) ∈ (b − ε, b) and (A3p0)
holds with I0 = I (see Part 2 of the proof for the case f ′(0) = 0 and
0 unstable from above, and Part 3 for the case f ′(0) > 0). Of course,
taking ε > 0 small, we achieve ψ(0) ≈ b with any desired proximity
(and we have ψ(∞) = 0 by (A3p0)).

The solutions in the following lemma (see also Figure 10) will be useful
in estimating the speed of propagation of solutions of (1.1).

0 a b v

w

 0 a b v

w

  

  τ(ψc) ~

  τ(ψc) -

Figure 10: The trajectories of the solutions in Lemma 3.31

Lemma 3.31. Let I = (a, b) ∈ N . The following statements hold.

(i) For each c < cI , there is a solution ψ̄c of (3.1) such that for some
x0 = x0(c) one has

ψ̄c(x0) = 0;

ψ̄cx < 0 on (−∞, x0];

lim
x→−∞

ψ̄c(x) = b.
(3.87)
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(ii) If cI > 0, then for each c ∈ (0, cI) there is a solution ψ̃c of (3.1) such
that for some x1 = x1(c), x2 = x2(c) with x1 < 0 < x2 one has

ψ̃c(x1) = ψ̃c(x2) = 0;

ψ̃cx > 0 on [x1, 0); ψ̃cx < 0 on (0, x2];

ψ̃c(0) < b; and ψ̃c(0)→ b as c↗ cI .

(3.88)

Proof. (i) We apply Lemma 3.8 with c0 = cI , v = φI . Given c < cI , we take
ψ̄c = ψ, where ψ is as in Lemma 3.8(i). Using relation (3.26) and Lemma
3.17(ii), we find x0 = x0(c) that ψ̄c satisfies (3.87).

(ii) Assume that cI > 0 and let ν be as in Lemma 3.24(i). Given c ∈
(0, cI), choose ξ = ξ(c) ∈ (b − ν, b) with b − ξ < cI − c (so that ξ(c) → b as
c ↗ cI). Set η := R0(ξ) < 0, so that the point (ξ, η) is on the trajectory
τ(φI), and let ψ be the solution of (3.1), (3.3). Using first Lemma 3.1 and
then Lemma 3.17(ii), we find x̄2 such that ψ′(x) < 0 on [0, x̄2] and ψ(x̄2) = 0.
Next, for s < 0 sufficiently close to 0 we have ψ′ < 0 on [s, 0], and, by
Lemma 3.1, R0(ψ(s)) < ψ′(s). Therefore, Lemma 3.24(i) applies to the
initial condition (ψ(s), ψ′(s)). Consequently, replacing ψ by its translation
so that its maximum point is placed at x = 0, we obtain a solution ψ̃c with
all the desired properties.

0 a b v

w

 0 a b v

w

  

  τ(ψc) ~

  τ(ψc) -

γ γ

Figure 11: The trajectories of the solutions in Lemma 3.32

Here are analogous results, without proof, for the left-end point (see Fig-
ure 11).

Lemma 3.32. Let I = (a, b) ∈ N . The following statements hold.
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(i) For each c > cI , there is a solution ψ̄c of (3.1) such that for some
x0 = x0(c) one has

ψ̄c(x0) = γ;

ψ̄cx < 0 on [x0(c),∞);

lim
x→∞

ψ̄c(x) = a.

(3.89)

(ii) If cI < 0, then for each c ∈ (cI , 0) there is a solution ψ̃c of (3.1) such
that for some x1 = x1(c), x2 = x2(c) with x1 < 0 < x2 one has

ψ̃c(x1) = ψ̃c(x2) = γ;

ψ̃cx < 0 on [x1, 0); ψ̃cx > 0 on (0, x2];

ψ̃c(0) > a; and ψ̃c(0)→ a as c↘ cI .

(3.90)

4 Proofs of Propositions 2.8, 2.12

Proof of Proposition 2.8. By statements (ii), (iii) of Proposition 3.11 and
Lemma 3.7(iii), one has I = (a, b) ∈ N 0 if and only if a, b are global maxi-
mizers of F in [0, γ] and F < F (a) = F (b) in (a, b). This clearly implies the
first statement of Proposition 2.8.

Now, if N+ 6= ∅, then Proposition 3.11(ii) implies that 0 is not a maxi-
mizer of F in [0, γ]. Conversely, if 0 is not a global maximizer of F in [0, γ],
then, in the notation of Proposition 3.11, we have 0 < γ∗ ≤ γ∗ ≤ γ. This
and Proposition 3.11(iv) imply that the set N contains an interval I = (0, b)
for some 0 < b ≤ γ∗. By Proposition 3.11(iii), cI > 0, that is N+ 6= ∅. The
proof of the statement regarding N− is analogous.

Proof of Proposition 2.12. Statement (i) of Proposition 2.12 is a part of Propo-
sition 3.11(v). We prove the remaining two statements.

Assume, as in statement (ii), that F (u) has only finitely many maximizers
in [0, γ] and all of them are isolated zeros of f in [0, γ]. By Proposition
3.11(ii), γ∗ is the smallest and γ∗ the largest of these maximizers, and the
set R−1

0 {0} ∩ [γ∗, γ
∗] is finite. Further, since γ∗, γ

∗ are not accumulations
points of R−1

0 {0} ⊂ f−1{0}, statements (ii) and (iv) of Proposition 3.11
imply that the whole set R−1

0 {0} is finite. If, moreover, ξmax is the unique
global maximizer of F in [0, γ], then ξmax = γ∗ = γ∗. Therefore, according
to Proposition 3.11(iii), we have cI 6= 0 for each I ∈ N . This completes the
proof of statement (ii).
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To prove statement (iii), assume that condition (DGM) from the intro-
duction is satisfied. Then, in particular, γ is asymptotically stable from
below as an equilibrium of the equation θ̇ = f(θ). Indeed, by the compari-
son principle, its domain of attraction contains the interval (max ū0, γ]. Of
course, γ is necessarily an isolated critical point of F in [0, γ]. Therefore,
there is a ∈ [0, γ) such that I := (a, γ) ∈ N . We claim that cI > 0. Indeed,
assume to the contrary that cI ≤ 0. Consider the profile function φI . It
has the limits φI(−∞) = γ, φI(∞) = a. Since ū0 has compact support and
ū0 < γ, there is x0 > 0 such that

ū0(x) < φI(x− x0) (x ∈ R). (4.1)

Take now the traveling front U(x, t) = φI(x − cIt − x0). By (4.1) and the
comparison principle, for the solution of ū of (1.1) with the initial condition
ū(·, 0) = ū0 we have

ū(x, t) ≤ U(x, t) (x ∈ R, t > 0).

Using cI ≤ 0 and φI(∞) = a, we obtain from this that lim supt→∞ ū(x, t) ≤ a,
in contradiction to (DGM).

Thus cI > 0 as claimed. Proposition 3.11 now implies that γ∗ = γ∗ = γ.
As remarked above, this means that γ is the unique global maximizer of F
in [0, γ]. This completes the proof of statement (iii).

5 Preliminaries on the limit sets and zero

number

In this section we recall several results concerning the Ω-limit sets and the
zero number functional.

5.1 Properties of Ω(u)

Consider the Cauchy problem

ut = uxx + cux + f(u), x ∈ R, t > 0, (5.1)

u(x, 0) = u0(x), x ∈ R, (5.2)

71



where f ∈ C1(R), c ∈ R, and u0 ∈ C(R). The Ω-limit set of a bounded
solution u is defined as in (1.8) and denoted by Ω(u) or Ω(u0). It will be
useful to remember that if u is a bounded solution of (1.1), then the function
ũ(x, t) := u(x+ct, t) is a bounded solution of (5.1). Clearly, u and ũ have the
same initial value at t = 0 and Ω(u) = Ω(ũ). In other words, if u0 is given,
then Ω(u0) is independent of the choice of c in the problem (5.1), (5.2).

Assume that the solution u of (5.1), (5.2) is bounded. Then, the usual
parabolic regularity estimates imply that the derivatives ut, ux, uxx are
bounded on R × [1,∞) and they are globally α-Hölder on this set for each
α ∈ (0, 1). The following results are standard consequences of this regularity
property: Ω(u0) is a nonempty, compact, connected subset of L∞loc(R). More-
over, in (1.8) one can take the convergence in C1

loc(R), and Ω(u0) is compact
and connected in that space as well. The latter implies that the set

KΩ(u) := {(ϕ(x), ϕx(x)) : ϕ ∈ Ω(u0), x ∈ R}

is connected in R2.
We now recall the invariance property of Ω(u0). Let ϕ ∈ Ω(u), so that

u(xn+·, tn)→ ϕ for some sequence {(xn, tn)} with tn →∞. Then, passing to
a subsequence if necessary, one shows easily that the sequence u(xn+ ·, tn+ ·)
converges in C1

loc(R2) to a function U which is an entire solution of (5.1) (that
is, a solution of (5.1) on R2). Obviously, U(·, 0) = ϕ.

Finally, we note that Ω(u0) is also translation-invariant: with each ϕ ∈
Ω(u0), Ω(u0) contains the whole translation group orbit of ϕ, {ϕ(· + ξ) :
ξ ∈ R}. This follows directly from the definition of Ω(u0). Combining the
translation invariance with the compactness of Ω(u0), we get that the set
KΩ(u) is compact in R2.

5.2 Zero number

Here we consider solutions of the linear equation

vt = vxx + cvx + a(x, t)v, x ∈ R, t ∈ (s, T ), (5.3)

where −∞ < s < T ≤ ∞, a is a bounded measurable function on R× [s, T ),
and c is a constant. In the next section we use the following fact, often
without notice. If u, ū are bounded solutions of the nonlinear equation (5.1)
with a Lipschitz nonlinearity, then their difference v = u− ū satisfies a linear
equation (5.3).
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We denote by z(v(·, t)) the number, possibly infinite, of the zero points
x ∈ R of the function x → v(x, t). The following intersection-comparison
principle holds (see [1, 6]).

Lemma 5.1. Let v ∈ C(R × [s, T )) be a nontrivial solution of (5.3) on
R× (s, T ). Then the following statements hold true:

(i) For each t ∈ (s, T ), all zeros of v(·, t) are isolated.

(ii) t 7→ z(v(·, t)) is a monotone nonincreasing function on [s, T ) with val-
ues in N ∪ {0} ∪ {∞}.

(iii) If for some t0 ∈ (s, T ), the function v(·, t0) has a multiple zero and
z(v(·, t0)) <∞, then for any t1, t2 ∈ (s, T ) with t1 < t0 < t2 one has

z(v(·, t1)) > z(v(·, t2)). (5.4)

If (5.4) holds, we say that z(v(·, t)) drops in the interval (t1, t2).

Remark 5.2. The previous lemma clearly implies that if z(v(·, s0)) < ∞
for some s0 ∈ (s, T ), then z(v(·, t)) can drop at most finitely many times in
(s0, T ), and if it is constant on (s0, T ), then v(·, t) has only simple zeros for
each t ∈ (s0, T ).

Corollary 5.3. Assume that v is a solution of (5.3) such that for some
s0 ∈ (s, T ) one has

lim inf
|x|→∞

|v(x, s0)| > 0. (5.5)

Then there is t0 ∈ (s, T ) such that for t ∈ [t0, T ) the function v(·, t) has only
simple zeros, and their number is finite z(v(·, t)) and independent of t.

Proof. Since the zeros of v(·, s0) are isolated, (5.5) implies that there is only
a finite number of them. The conclusion now follows directly from Lemma
5.1 and Remark 5.2.

We shall also use the following property related to the monotonicity of
the zero number:

Lemma 5.4. Let v be a solution of (5.3), and s < t1 < t2 < T . Assume
that z0 ∈ R is a zero of v(·, t2) = 0. Then there is a continuous function σ
on [t1, t2] such that u(σ(t), t) = 0 for all t ∈ [t1, t2] and σ(t2) = z0.
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For the proof see [10, Section 2].
The next lemma shows that the property for a solution to have multiple

zeros is robust.

Lemma 5.5. Assume that v is a nontrivial solution of (5.3) such that for
some s0 ∈ (s, T ) the function v(·, s0) has a multiple zero at some x0, that is,
v(x0, s0) = vx(x0, s0) = 0. Assume further that for some δ, ε > 0, vn is a
sequence in C1([x0− δ, x0 + δ]× [s0− ε, s0 + ε]) which converges in this space
to the function v. Then for all sufficiently large n the function vn(·, t) has a
multiple zero in (x0 − δ, x0 + δ) for some t ∈ (s0 − ε, s0 + ε).

This can be proved using a version of Lemma 5.1 on a small interval
around x0 and the implicit function theorem, see [7, Lemma 2.6] for details.
Note that the vn are not required to be solutions of any equation.

6 Proofs of the main theorems

Throughout this section we assume that the standing hypotheses (H) are
satisfied. In addition, we make the following hypothesis:

f > 0 in (−∞, 0); f < 0 in (γ,∞). (6.1)

Carefully note that this extra assumption is at no cost to generality. Indeed,
in all our theorems, we assume that the initial datum u0 of the solution
considered satisfies, at the least, conditions (2.2), (2.3). This means that
η− ≤ u0 ≤ η+ for some η− ≤ 0, η+ ≥ γ, with the property that if η− < 0, then
f > 0 in [η−, 0) (that is, η− is in the domain of attraction of 0), and if η+ > γ,
then f < 0 in (γ, η+]. By the comparison principle, η− ≤ u(x, t) ≤ η+ for
all x ∈ R and t ≥ 0. Hence, we can modify f outside the interval [η−, η+]
containing the range of the solution so as to achieve (6.1). In some cases—for
example, if f(u) ≥ 0 for u < 0, u ≈ 0—after such a modification f may not
be of class C1 in a full neighborhood of 0, even if the original nonlinearity was,
but this is of no concern (cp. hypothesis (H1)). We remark that all results
from Section 3 that will be used in this section only concern the behavior
of solutions of (3.1) while they stay in [0, γ] (see relations (3.88)-(3.89) and
statements (A1)-(A3p0) in Subsection 3.3). These, of course, are unaffected
by any modification of f outside [0, γ] made here or in Section 3.

The advantage we gain from assumption (6.1) is that we can now assume
a certain behavior of solutions (3.2) once they leave the strip S[0,γ] = {(v, w) :
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v ∈ [0, γ]}. This will simplify the exposition slightly. Specifically, assumption
(6.1) implies that for any c ∈ R, the quadrants

Q1 := {(v, w) : v ≥ γ, w ≥ 0} \ {(γ, 0)},
Q3 := {(v, w) : v ≤ 0, w ≤ 0} \ {(0, 0)}

are positively invariant for system (3.2) in the sense that if a solution satisfies
(v(0), w(0)) ∈ Qi, for i = 1 or i = 3, then for all x > 0 one has (v(x), w(x)) ∈
IntQi (the interior of Qi). Similarly, the quadrants

Q2 := {(v, w) : v ≤ 0, w ≥ 0} \ {(0, 0)},
Q4 := {(v, w) : v ≥ γ, w ≤ 0} \ {(γ, 0)}

are negatively invariant. From these properties, we get the following infor-
mation on the solutions ψ as in (A2), (A3p), (A3n), or (A3p0) (see Section
3.3).

if (A2) holds, then |ψ′| > 0 on R; (6.2)

if (A3p) or (A3p0) holds, then ψ′ > 0 on (−∞, x0]; (6.3)

if (A2n) holds, then ψ′ > 0 on [x0,∞). (6.4)

Also, if ψ̄c, ψ̃c are as in Lemmas 3.31, 3.32, then

ψ̄cx(x) < 0 (x ∈ R), |ψ̃cx(x)| > 0 (x ∈ R \ {0}). (6.5)

In the remainder of this section we assume that u is a solution of (1.1),
(1.2) with the initial datum satisfying conditions (2.2), (2.3). Also, R0 stands
for the minimal [0, γ]-system of waves, τ(R0) for its graph, and {cI : I ∈ N},
{φI : I ∈ N} for the corresponding families of speeds and profile functions.

6.1 Some estimates: behavior at x = ±∞ and propa-
gation

Lemma 6.1. One has

lim
t→∞

(lim inf
x→−∞

u(x, t)) = lim
t→∞

(sup
x∈R

u(x, t)) = γ, lim
t→∞

(lim sup
x→−∞

|ux(x, t)|) = 0;

(6.6)

lim
t→∞

(lim sup
x→∞

u(x, t)) = lim
t→∞

(inf
x∈R

u(x, t)) = 0, lim
t→∞

(lim sup
x→∞

|ux(x, t)|) = 0.

(6.7)
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Proof. We prove (6.6) and omit the proof of (6.7), which is completely anal-
ogous. It is sufficient to prove the first two relations in (6.6), the second one
then follows by standard parabolic regularity estimates for the function γ−u
(which solves a linear equation (5.3)).

One easily finds a nonincreasing continuous function ū0 satisfying condi-
tions (2.2), (2.3) such that ū0 ≤ u0. The solution of (1.1) with the initial da-
tum ū0 is denoted by ū. By the comparison principle, ū ≤ u and ū(x, t) is non-
decreasing in x for each t ≥ 0. Therefore, the limit ρ(t) := limy→−∞ ū(y, t)
exists for each t ≥ 0. The function ρ is continuous on [0,∞) and it solves the
equation ρ̇ = f(ρ) on (0,∞) (see, for example, [33, Theorem 5.5.2]). Since
ū0 satisfies (2.2), we have ρ(0) ∈ Dγ. Therefore, ρ(t) → γ, as t → ∞. This
yields a lower estimate. For an upper estimate, we let ζ0 := supu0 ∈ Dγ and
take the solution θ̇ = f(θ) with θ(0) = ζ0. Then θ(t) ≥ u(·, t) for all t > 0,
and θ(t)→ γ, as t→∞. Combining these estimates we obtain (6.6).

Relations (6.6), (6.7), and the definition of Ω(u) immediately give the
following.

Corollary 6.2. The constant steady states 0 and γ are elements of Ω(u),
and 0 ≤ ϕ ≤ γ for each ϕ ∈ Ω(u).

The next lemma is an estimate of the speed of propagation of the solution
to or above a constant b, and decay to or below another constant a.

Lemma 6.3. (i) Assume that I = (a, b) ∈ N+. Then for every c < cI
and x0 ∈ R one has

lim inf
x≤x0, t→∞

u(x+ ct, t) ≥ b. (6.8)

(ii) Assume that I = (a, b) ∈ N−. Then for every c > cI and x0 ∈ R one
has

lim sup
x≥x0, t→∞

u(x+ ct, t) ≤ a. (6.9)

Proof. We prove statement (i), the proof of (ii) is analogous. Since (6.8) is a
lower estimate, it is sufficient to prove it for nonincreasing functions u0. (In
the general case, the result then follows from the comparison principle, upon
taking a nonincreasing continuous function ū0 ≤ u0 satisfying conditions
(2.2), (2.3) and ū0 ≤ u0). Thus, we may continue assuming that u(·, t) is
nonincreasing for each t ≥ 0.
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Take a sequence cn ↗ cI and let ψn := ψ̃cn be as in Lemma 3.31(ii). Given
any ε > 0, we can choose n such that cn > c and maxψn = ψn(0) ∈ (b− ε, b).
Since ψn is negative outside a compact interval (see Lemma 3.31 and (6.5)),
using (6.6), (6.7) we find positive constants t0 and y0 such that

u(x+ cnt0, t0) > ψn(x− y0) (x ∈ R).

Now, the functions u(x + cnt, t) and ψn(x − y0) satisfy the same equation,
equation (5.1) with c = cn. The comparison principle therefore gives

u(x+ cnt, t) > ψn(x− y0) (x ∈ R, t ≥ t0).

Using the monotonicity of u(·, t), we in particular obtain

u(x+ ct, t) ≥ u(y0 + cnt, t) > ψn(0) > b− ε (x ≤ y0 + (cn − c)t, t ≥ t0).

Since cn > c and ε can be taken arbitrarily small, it is clear that (6.8) holds
for any x0.

In the case when 0 is unstable from above for the equation θ̇ = f(θ), the
following estimate will be useful.

Lemma 6.4. If u0 satisfies the additional hypotheses u0 ≥ 0 and u0 ≡ 0 on
some interval [m,∞), then for all (finite) t1 > t0 > 0 and µ > 0, there is a
constant κ > 0 such that

u(x, t) ≤ κe−µx (x ∈ R, t ∈ [0, t1]), (6.10)

|ux(x, t)| ≤ κe−µx (x ∈ R, t ∈ [t0, t1]). (6.11)

Proof. It is sufficient to prove the estimate for u; (6.11) then follows from
parabolic regularity estimates (possibly, after making κ larger).

The assumption u0 ≥ 0 and the comparison principle imply that u ≥ 0.
Since u is bounded and f(0) = 0, we have |f(u(x, t))| ≤ Mu(x, t) for some
constant M ≥ 0. Therefore, by comparison,

u(x, t) ≤ eMtv(x, t), (6.12)

where v is the solution of vt = vxx with v(·, 0) = u0. Since u0 ≡ 0 on (m,∞),
for each x ∈ R and t > 0 one has

0 ≤ v(x, t) =
1√
4πt

∫ m

−∞
e−
|x−s|2

4t u0(s) ds.
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The substitution r = (s− x)/
√

4t then yields

0 ≤ v(x, t) ≤
‖u0‖L∞(R)√

π

∫ m−x√
4t

−∞
e−r

2

dr.

Using this, (6.12), and some elementary considerations, one shows that (6.10)
holds if κ is sufficiently large.

6.2 A key lemma: no intersection of spatial trajecto-
ries

A key step in the proof of our theorems is the next lemma. It says that
asymptotically, as t → ∞, the spatial trajectory τ(u(·, t)) has to become
disjoint from the trajectory τ(ψ) of any solution ψ of (3.1) satisfying one of
the statements (A1)-(A3n) listed in Section 3.3.

Lemma 6.5. Let ψ be a solution of (3.1) for some c ∈ R. Assume that one
of the statements (A1)-(A3n) holds. Then for each ϕ ∈ Ω(u) one has

τ(ϕ) ∩ τ(ψ) = ∅. (6.13)

Proof. For the whole proof, we fix ψ and c satisfying one of the statements
(A1)-(A3n) .

First of all we show that ψ 6∈ Ω(u). In view of Corollary 6.2, this is
obvious if ψ is of type (A2)-(A3n), for in this case ψ assumes either negative
values or values greater than γ. Assume now that ψ is a nonconstant periodic
solution of (3.1) (in particular, c = 0). Then there is an equilibrium (α, 0) of
(3.1) inside the closed curve τ(ψ). Clearly, the function ψ − α has infinitely
many zeros, all of them simple, due to the uniqueness for the Cauchy problem
for (3.1). Also, the assumption 0 < ψ < γ gives 0 < α < γ. If ψ ∈ Ω(u), then
there are sequences xn ∈ R and tn →∞ such that u(·+ xn, tn)− α→ ψ− α
in L∞loc(R). This implies that lim z(u(·, tn)− α)→∞. However, Lemma 6.1
implies that |(u(x, t) − α)| > 0 if |x| and t are large enough. Therefore, by
Corollary (5.3), z(u(·, t)−α) is finite and independent of t if t is large enough.
This contradiction shows that ψ ∈ Ω(u) cannot hold. Thus, ψ 6∈ Ω(u) is
proved in all cases.

We now prove (6.13) in the cases (A1)-(A3p); the proof in the case (A3n)
is omitted as it is analogous to the proof for (A3p).
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We argue by contradiction. Assume that for some ϕ ∈ Ω(u) one has
τ(ϕ) ∩ τ(ψ) 6= ∅. This means that there is y0 such that the function ϕ −
ψ(· − y0) has a multiple zero. Replacing ϕ by a translation (which is still
an element of Ω(u)) and ψ by a translation (which is also a solution of (3.1)
satisfying the same condition from (A1)-(A3p) as ψ), we may assume without
loss of generality that

x = 0 is a multiple zero of ϕ(x)− ψ(x). (6.14)

Let now ũ(x, t) = u(x+ ct, t), so that ũ and ψ satisfy the same equation
(5.1). Recalling that Ω(ũ) = Ω(u) (see Sect. 5.1), we choose sequences
xn ∈ R and tn → ∞ such that ũ(· + xn, · + tn) → U in C1

loc(R2), where
U is an entire solution of (5.1) with U(·, 0) = ϕ. Since ψ 6≡ ϕ (because
ψ 6∈ Ω(u)), V := U − ψ is a nontrivial entire solution of a linear equation
(5.3). Therefore, (6.14) and Lemma 5.5 imply that for all sufficiently large n

ũ(·+ xn, sn + tn)− ψ has a multiple zero zn ≈ 0 for some sn ∈ (−1, 1).
(6.15)

We first find a contradiction if the sequence {xn} contains a bounded
subsequence. Passing to a subsequence of (xn, tn), we may then assume that
xn → x0 for some x0 ∈ R. Then, by parabolic estimates, ũ(· + xn, · + tn) −
ũ(·+x0, ·+ tn)→ 0 in C1

loc(R2). Hence, ũ(·+x0, ·+ tn)−ψ has the same limit
V := U−ψ and, as in (6.15), we conclude that the function ũ(·+x0, sn+tn)−ψ
has a multiple zero near x = 0 for some sn ∈ (−1, 1). However, using Lemma
6.1, one shows easily that under any of the conditions (A1)-(A3n) (see also
(6.2)-(6.4)), there is t0 such that |(ũ(x, t0) − ψ(x))| > 0 for all x ≈ ±∞.
Hence, by Corollary 5.3, for large t the function ũ(· + x0, t) − ψ has only
simple zeros and we have a contradiction.

Next, we seek a contradiction in the case |xn| → ∞.
Assume first that (A1) holds (and c = 0). Let ρ > 0 be the minimal

period of ψ. Write xn = knρ + σn, where kn ∈ Z and σn ∈ [0, ρ). We
may assume, passing to a subsequence if necessary, that σn → σ0 ∈ [0, ρ].
Then, by parabolic estimates, ũ(·+ xn, ·+ tn)− ũ(·+ knρ+ σ0, ·+ tn)→ 0 in
C1
loc(R2). Hence, ũ(· + knρ + σ0, · + tn) − ψ has the same limit V := U − ψ

as ũ(· + knρ + xn, · + tn) − ψ. Therefore, as in (6.15), we conclude that the
function ũ(·+ knρ+ σ0, sn + tn)− ψ has a multiple zero near x = 0 for some
sn ∈ (−1, 1). This means, since ψ ≡ ψ(· − knρ), that ũ(· + σ0, t) − ψ has a
multiple zero for t = tn + sn → ∞. This is impossible by Corollary 5.3 (as
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we already saw at the beginning of this proof). Thus, under condition (A1),
we have derived a contradiction, as desired.

Now assume that (A2) holds. By (6.2), if we fix a small constant δ > 0,
then there is ε > 0 such that the following relations hold:

|ψ′(x)| > ε (x ∈ [x1 − δ, x2 + δ]),

ψ(x) ∈ R \ (−ε, γ + ε) (x ∈ R \ [x1 − δ, x2 + δ]).
(6.16)

By Lemma 6.1, there are positive constants r, t0 such that |ũ(x, t0) − γ| +
|ũx(x, t0)| < ε for x < −r and |u(x, t0)| + |ux(x, t0)| < ε if x > r. It follows
(using |xn| → ∞) that for all sufficiently large n the function ũ(·, t0)−ψ(·−xn)
has a unique zero. Clearly, by (6.6), (6.7), z(ũ(·, t)−ψ(· − xn)) ≥ 1 for all t,
hence the equality must hold here by the monotonicity of the zero number
(see Lemma 5.1). The unique zero of ũ(·, t) − ψ(· − xn) has to be simple
for all t > t0 (see Remark 5.2). Since this holds for all sufficiently large n,
we can choose n so that also tn + sn > t0. We thus have a contradiction to
(6.15).

Finally, we assume that (A3p) holds (and continue to assume that |xn| →
∞). The possibility xn → ∞ can be treated as in the previous case. One
finds t0 such that z(ũ(·, t0) − ψ(· − xn)) = 1 for all sufficiently large n, and
then arguments similar to the ones above yield a contradiction. We proceed
assuming that xn (replaced by a subsequence) converges to −∞. By (A3p),
we have c < cI0 for some I0 = (a, b) ∈ N+ and there is ε > 0 such that
b− ε > ψ everywhere. By (6.8), there is t0 such that

ũ(x, t) > b− ε (x ≤ 0, t ≥ t0).

This implies that if t is large enough, then all zeros of ũ(·, t)− ψ(· − xn) are
located in (0,∞). In particular, if zn ≈ 0 is a multiple zero as in (6.15), then
zn + xn ≥ 0, which is absurd when xn → −∞. With this last contradiction,
the proof is complete.

A similar result concerning condition (A3p0) is proved in the following
lemma.

Lemma 6.6. Assume that I0 = (0, b) ∈ N+ for some b ∈ (0, γ] and θ = 0 is
unstable from above for the equation θ̇ = f(θ). Assume further that u0 ≥ 0
and u0 ≡ 0 on an interval (m,∞). Let ψ be a solution of (3.1) for some c
such that statement (A3p0) holds. Then for each ϕ ∈ Ω(u) one has

τ(ϕ) ∩ τ(ψ) = ∅. (6.17)
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Proof. As before, we let ũ(·, t) = u(·+ ct, t).
According to (A3p0), ψ satisfies (3.16) with λ+(c) > λ−(cI0), and ζ = 0.

This implies (see Remark 3.6(iii)) that for some δ > 0 and x1 ∈ R one has

ψ(x), −ψx(x) > e(λ−(cI0 )+δ)x (x ≥ x1). (6.18)

On the other hand, given any t > 0, Lemma 6.4 yields a constant κ = κ(t)
such that

u(x, t), |ux(x, t)| ≤ κeλ
−(cI0 )x (x ∈ R). (6.19)

Further, with x0 as in (A3p0) (see also (6.3)), we have

(x− x0)ψ(x) > 0, (6.20)

and there are constants δ, ε > 0 such that

ψ′(x) > ε (x ∈ [x0 − δ, x0 + δ]). (6.21)

We note, first of all, that the above inequalities imply that for each fixed
t0 > 0 one has |(ũ(x, t0) − ψ(x))| > 0 for all x ≈ ±∞. Indeed, for x ≈ ∞
this follows from (6.18), (6.19); and for x ≈ −∞ it follows from (6.20) and
the fact that ũ > 0 (which is a consequence of the assumption u0 ≥ 0 and
the comparison principle). Therefore, by Corollary 5.3, z(ũ(·, t)−ψ) is finite
for each t > 0.

We next show that there is t0 > 0 such that for all y ∈ R with sufficiently
large |y| and for all t ≥ t0 one has

z(ũ(·, t)− ψ(· − y)) = 1. (6.22)

Once this is done, essentially the same arguments as given in the proof of
Lemma 6.5 for the case (A2) can be used to prove (6.17); these details are
left to the reader.

We first show that

z(ũ(·, t)− ψ(· − y)) ≥ 1 (t > 0, y ∈ R). (6.23)

Indeed, since ũ ≥ 0, (6.20) implies that ũ(x, t) > ψ(x − y) if x is negative
and sufficiently large (depending on y). On the other hand, relations (6.19),
(6.18) give the opposite inequality if x is positive and sufficiently large. This
proves (6.23).
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For the rest of the proof, we fix t0 such that

lim inf
x→−∞

ũ(x, t0) > sup
x∈R

ψ(x)

(t0 exists by Lemma 6.1 and the relations in (A3p0), (6.3)). Relations (6.19),
(6.18) then clearly imply that (6.22) holds for t = t0 if y is negative and
sufficiently large. Consequently, by (6.23) and the monotonicity of the zero
number, (6.22) continues to hold for all t ≥ t0. Similarly, using (6.19), (6.18),
and (6.21), one shows easily that if y > 0 is sufficiently large, then (6.22) for
holds for t = t0, hence for all t ≥ t0. The proof is now complete.

Remark 6.7. The above proof shows how the assumption that u0 ≡ 0 on
[m,∞) is used; see (6.18), (6.19). In fact, this assumption is used here and in
other arguments below only via estimates on u, as given in Lemma 6.4. Thus,
the assumption can be replaced by any other assumption which guarantees
a sufficiently fast exponential decay of u(x, t) as x→∞.

6.3 The spatial trajectories of the functions in Ω(u)

Set

KΩ(u) :=
⋃

ϕ∈Ω(u)

τ(ϕ) = {(ϕ(x), ϕx(x)) : ϕ ∈ Ω(u), x ∈ R}. (6.24)

This is a compact, connected subset of R2 (cp. Sect. 5.1). The definition of
Ω(u) implies via a simple compactness argument that KΩ(u) can be equiva-
lently defined by

KΩ(u) = {(ξ, η) ∈ R2 : (u(xn, tn), ux(xn, tn))→ (ξ, η)

for some sequences tn →∞ and xn ∈ R}.
(6.25)

Our ultimate goal is to prove that KΩ(u) = τ(R0). The following lemma
is the first step in that direction. Recall that γ∗ and γ∗ were introduced in
(3.31), (3.32), and SJ in (3.77).

Lemma 6.8. The following statements hold.

(i) For each ξ ∈ R−1
0 {0} one has

KΩ(u) ∩ {(ξ, η) : η ∈ R} = {(ξ, 0)}. (6.26)
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(ii) τ(R0) ∩ S[γ∗,γ∗] ⊂ KΩ(u) ∩ S[γ∗,γ∗] ⊂ τ(R0) ∪ τ(−R0).

(iii) Assume that I = (a, b) ∈ N+. In case a = 0, assume also that θ = 0 is
stable from above for the equation θ̇ = f(θ). Then there is ε > 0 such
that

KΩ(u) ∩ S(b−ε,b) = τ(φI) ∩ S(b−ε,b). (6.27)

(iv) Assume that I = (a, b) ∈ N−. In case b = γ, assume also that θ = γ is
stable from below for the equation θ̇ = f(θ). Then there is ε > 0 such
that

KΩ(u) ∩ S(a,a+ε) = τ(φI) ∩ S(a,a+ε). (6.28)

(v) Assume that I = (0, b) ∈ N+ for some b ∈ (0, γ] and that θ = 0 is
unstable from above for the equation θ̇ = f(θ). Assume also that u0

satisfies the additional assumptions u0 ≥ 0, u0 ≡ 0 on some interval
(m,∞). Then there is ε > 0 such that

KΩ(u) ∩ S(b−ε,b) = τ(φI) ∩ S(b−ε,b). (6.29)

Proof. Lemma 6.1 guarantees that if ξ ∈ (0, γ), then for each sufficiently
large t, there is x(t) such that u(x(t), t) = ξ, ux(x(t), t) ≤ 0. This implies
the following property of KΩ(u):

For each ξ ∈ (0, γ) there is η ≤ 0 such that (ξ, η) ∈ KΩ(u). (6.30)

To prove statement (i), take an arbitrary ξ ∈ R−1
0 {0}. If ξ = 0 or

γ, Corollary 6.2 gives (0, 0), (γ, 0) ∈ KΩ(u). There is no (0, η) ∈ KΩ(u)
with η 6= 0, for that would imply the existence of a function ϕ ∈ Ω(u)
with ϕ(0) = 0, ϕ′(0) = η 6= 0. The range of such a function cannot be
contained in [0, γ], hence, ϕ 6∈ Ω(u) by virtue of Corollary 6.2. Thus, (6.26)
is proved for ξ = 0 and similarly one proves it for ξ = γ. Let now ξ ∈ (0, γ).
Since R0(ξ) = 0, Lemma 6.5, Corollary 3.18, and Remark 3.19 imply that
(ξ, η) 6∈ KΩ(u) for any η 6= 0. This and (6.30) imply (6.26). Statement (i) is
proved.

Statements (iii) -(iv) are proved in a similar fashion. Lemma 6.5 and
Proposition 3.25 imply that, for some ε > 0, (6.27)-(6.28) hold with the
equality signs replaced by the inclusions ⊂. Using this and (6.30), we see
that these inclusions have to actually be equalities. The same arguments
can be repeated for the proof of statement (v), only this time one also uses
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Lemma 6.6, in addition to Lemma 6.5 and Proposition 3.25. Statements
(iii)-(v) are thus proved.

Lemma 6.5, in conjunction with Corollary 3.18 and Remark 3.19, further
implies that

KΩ(u) ∩ S[γ∗,γ∗] ⊂ B := {(v, w) : v ∈ [γ∗, γ
∗], R0(v) ≤ w ≤ −R0(v)}.

In view of this and (6.26), to prove the second inclusion in statement (ii), we
just need to show that KΩ(u) cannot contain interior points of B. Suppose
it does; let (ξ, η) be such a point. Then ξ ∈ I for some I = (a, b) ∈ N 0 and
(ξ, η) is inside the heteroclinic loop of (3.1) (with c = 0) formed by τ(φI),
τ(−φI), and the equilibria (a, 0), (b, 0). By Lemma 3.10, there is a periodic
orbit τ(ψ) of (3.1) inside this loop, with (ξ, η) inside the closed orbit τ(ψ).
Since (ξ, η) ∈ KΩ(u) and KΩ(u) also contains the points (0, 0), (γ, 0), which
are outside τ(ψ), the connectedness of KΩ(u) implies that KΩ(u) contains a
point on τ(ψ). This means that there is φ ∈ Ω(u) such that τ(φ)∩τ(ψ) 6= ∅, in
contradiction to Lemma 6.5. This contradiction proves the second inclusion
in (ii). Combining this with (6.30), we next obtain the first inclusion in (ii).
The proof is now complete.

6.4 Ω(u) contains the minimal propagating terrace

With Lemma 6.8 at hand, we are in position we prove the following inclusions.
Recall that the set Ñ ⊂ N was introduced in (2.25). It differs from N only
if 0 is unstable from above for the equation θ̇ = f(θ) or γ is unstable from
below for this equation. In particular, if I = (0, b) is as in as in statement
(v) of Lemma 6.8, then I ∈ N \ Ñ .

Lemma 6.9. For each I ∈ Ñ one has φI ∈ Ω(u). Moreover, if the assump-
tions of statement (v) of Lemma 6.8 are satisfied and I = (0, b) is as in that
statement, then also φI ∈ Ω(u).

In the proof of this lemma the following unique-continuation result will
be useful.

Lemma 6.10. Let I ∈ N , c := cI , and let U be a solution of (5.1) on some
time interval (s, T ). Assume that there exist t0 ∈ (s, T ) and an open set
G ⊂ R2 such that

∅ 6= τ(U(·, t0)) ∩G ⊂ τ(φI). (6.31)

Then there is θ ∈ R such that U ≡ φI(·+ θ).
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Proof. Set ϕ := U(·, t0). Relations (6.31) imply that there exists x0 ∈ R with
the following property. For each x ≈ x0 there is ϑ(x) such that

ϕ(x) = φI(ϑ(x)), ϕ′(x) = φ′I(ϑ(x)). (6.32)

Since φ′I < 0, the value ϑ(x) is defined uniquely, and the implicit function
theorem implies ϑ ∈ C1. Differentiating the first identity in (6.32) and
comparing to the second one, we obtain that ϑ′ ≡ 1. Thus, in a neighborhood
of x0 we have ϕ ≡ φI(· + θ) for some θ ∈ R. Consider now the function
V := U − φI(· + θ). It is a solution of a linear equation (5.3) on the time
interval (s, T ), and V (·, t0) vanishes on a neighborhood of x0. By Lemma
5.1, this is possible only if V ≡ 0, that is, U ≡ φI(·+ θ).

Remark 6.11. Clearly, if c = cI = 0, then Lemma 6.10 remains valid, with
the same proof, if φI(x) is replaced by φ̂I(x) = φI(−x).

Proof of Lemma 6.9. Assume that I = (a, b) ∈ Ñ or I = (0, b) ∈ N \ Ñ is
as in the statement (v) of Lemma 6.8. Using Lemma 6.8, we find a point
(ξ0, η0) ∈ τ(φI) and a neighborhood G of (ξ0, η0) such that

G ∩KΩ(u) = G ∩ τ(φI). (6.33)

In particular, (ξ0, η0) ∈ KΩ(u), which implies that there is ϕ ∈ Ω(u) and
x0 ∈ R such that (ϕ(x0), ϕ′(x0)) = (ξ0, η0). Then τ(ϕ) ∈ KΩ(u) and (6.33)
gives

(ξ0, η0) ∈ G ∩ τ(ϕ) ⊂ τ(φI). (6.34)

Take now the entire solution U of (3.1) with c = cI such that that U(·, 0) = ϕ
(cp. Sect. 5.1). Using (6.34) and Lemma 6.10, we conclude that ϕ ≡ φI(·−θ)
for some θ. This and the translation invariance of Ω(u) give φI ∈ Ω(u).

Lemma 6.12. If ξ ∈ f−1{0} and (ξ, 0) ∈ KΩ(u), then (the constant steady
state) ξ is an element of Ω(u). In particular, by Lemma 6.8(i), R−1

0 {0} ⊂
Ω(u).

Proof. If ξ = 0 or ξ = γ, then ξ ∈ Ω(u) by Corollary 6.2 and there is nothing
to prove. Next we consider the case ξ ∈ (0, γ). From (ξ, 0) ∈ KΩ(u) we infer
that there is ϕ ∈ Ω(u) such that (ϕ(0), ϕ′(0)) = (ξ, 0). We claim that ϕ ≡ ξ,
which gives the desired conclusion ξ ∈ Ω(u). Assume ϕ 6≡ ξ. There are
sequences xn and tn →∞, such that u(·+xn, ·+ tn)→ U in C1

loc(R2), where
U is an entire solution of (5.1) with c = 0 and with U(·, 0) = ϕ. Clearly,
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U − ξ is a nontrivial entire solution of a linear equation (5.3) with a multiple
zero x = 0 at t = 0. By Lemma 5.5, for all sufficiently large n, the function
u(· + xn, sn + tn) − ξ has a multiple zero near x = 0 for some sn ∈ (−1, 1).
Thus u(·, sn+ tn)−ξ has a multiple zero (near −xn) for all large n. However,
Lemma 6.1 and Corollary 5.3 clearly imply that u(·, t) − ξ has only simple
zeros for all large t. This contradiction proves that ξ ∈ Ω(u), as claimed.

We remark that if ξ ∈ R−1
0 {0} is the limit φI(∞) or φI(−∞) of some

φI , I ∈ N , then the conclusion that ξ ∈ Ω(u) also follows from Lemma 6.9
by means of the translation invariance and closedness of Ω(u) in L∞loc(R).
In general, however, this argument does not cover all elements of R−1

0 {0}
(R−1

0 {0} may contain an interval).
Although not needed for our proofs, it may be worthwhile to remark that

at this point it is easy to prove that that τ(R0) = KΩ(u) holds under the
extra assumption that u0 is nonincreasing. Indeed, Lemmas 6.9, 6.12 give
τ(R0) ⊂ KΩ(u). If KΩ(u)\ τ(R0) 6= ∅, then using Lemma 6.9 one shows that
for some large values of t, the function u(·, t) would have to be increasing on
some intervals. This this is impossible if u0 is nonincreasing.

6.5 Ruling out other points from KΩ(u)

Another step toward the proofs of the main results is the following strength-
ening of statements (iii)-(v) of Lemma 6.8.

Lemma 6.13. Assume that the hypotheses of one of the statements (iii)-(v)
of Lemma 6.8 are satisfied and let I = (a, b) be as in that statement. Then

KΩ(u) ∩ S(a,b) = τ(φI). (6.35)

We first prove the following general result, which will be needed at several
places below.

Lemma 6.14. Let J ⊂ (0, γ) be an open interval. Assume that

KΩ(u) ∩ SJ = τ(φ) ∩ SJ , (6.36)

where φ is a solution of (3.1) for some c ∈ R such that φ′ < 0 and J is
included in the range of φ. Then for each θ ∈ J there exist s0 > 0 and a C1

function ζ(t) on (s0,∞) such that(
θ − u(x+ ct+ ζ(t), t)

)
x > 0 (x ∈ R \ {0}), (6.37)
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ζ ′(t)→ 0 as t→∞, and

lim
t→∞

u(·+ ct+ ζ(t), t) = φ(·+ x0) in C1
loc(R), (6.38)

where x0 is the unique point with φ(x0) = θ.

Remark 6.15. Note that this lemma applies in particular if the hypotheses
of one of the statements (iii)-(v) of Lemma 6.8 are satisfied, φ = φI , c = cI ,
and J := (b− ε, b) (in the case of statements (iii)-(iv)) or J := (a, a+ ε) (the
case of statements (v)). This remark will be used in the proof of Lemma
6.13.

Proof of Lemma 6.14. Fix an arbitrary θ ∈ J and take a neighborhood J0

of θ such that J̄0 ⊂ J . Relations (6.36) and φ′ < 0 in particular imply that
if t is sufficiently large, say t > s0, then ux(x, t) < 0 whenever u(x, t) ∈ J0.
This property and Lemma 6.1 imply that, possibly after making s0 larger,
for each t > s0 the equation u(x+ ct, t) = θ has a unique solution, which we
denote by ζ(t). The uniqueness of ζ(t) and Lemma 6.1 clearly imply (6.37).
By the implicit function theorem, ζ is a C1-function.

Further, with x0 defined as in the lemma, one has u(ct + ζ(t), t) = θ =
φ(x0). Now, any sequence tn → ∞ has a subsequence such that u(· + ctn +
ζ(tn), tn) converges in C1

loc(R) to an element ϕ ∈ Ω(u) with ϕ(0) = θ. We
claim that ϕ = φ(·+x0). To prove this, let η = ϕ′(0). We have τ(ϕ) ⊂ KΩ(u),
in particular (θ, η) ∈ KΩ(u). Since θ ∈ J , relation (6.36) implies that for
some neighborhood G of (θ, η) one has

(θ, η) ∈ G ∩ τ(ϕ) ⊂ τ(φ). (6.39)

Take now the entire solution U of (5.1) such that that U(·, 0) = ϕ (cp. Sect.
5.1). Using (6.39) and Lemma 6.10, we conclude that ϕ ≡ φ(·+ y) for some
y, and since ϕ(0) = θ, we have y = x0. This proves the claim. As the claim
is valid with the same limit for any sequence {tn}, we have proved (6.38).

It remains to show that ζ ′(t) → 0 as t → ∞. To simplify the notation,
set ũ(x, t) := u(x+ ct, t). Recall from Section 5.1 that any sequence tn →∞
can be replaced by a subsequence such that ũ(· + ζ(tn), · + tn) converges
in C1

loc(R2) to an entire solution U of equation (5.1). By (6.38), we have
U(·, 0) = φ(· + x0). Since φ is a steady state of (5.1), we have U ≡ φ,
by uniqueness and backward uniqueness for (5.1). Thus, the convergence in
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C1
loc(R2) yields

(ũ(·+ ζ(tn), ·+ tn), ũx(·+ ζ(tn), ·+ tn), ũt(·+ ζ(tn), ·+ tn))

→ (φ(·+ x0), φ′(·+ x0), 0).

Since this is true for any sequence tn →∞, the convergence takes place with
tn replaced by t, with t→∞. In particular, at x = 0 we have(

ũ(ζ(t), t), ũx(ζ(t), t), ũt(ζ(t), t)
)
→ (θ, φx(x0), 0), (6.40)

as t→∞. By the definition of ζ, ũ(ζ(t), t) = θ. Differentiating this relation,
we obtain ũx(ζ(t), t)ζ ′(t) + ut(ζ(t), t) = 0. Since φ′(x0) 6= 0, from (6.40) we
conclude that ζ ′(t)→ 0 as t→∞.

The proof of Lemma 6.14 is now complete.

We will prove the conclusion of Lemma 6.13, assuming that either the
hypotheses of statement (iii) or the hypothesis of statement (v) of Lemma
6.8 are satisfied. Analogous arguments can be used if the hypothesis of
statement (iv) of Lemma 6.8 are satisfied and this part of the proof will be
omitted. We need one more technical result for the proof.

Lemma 6.16. Assume that the hypotheses of statement (iii) or statement
(v) of Lemma 6.8 are satisfied and let I = (a, b) be as in that statement.
Then for any a1 ∈ (a, b), there exist c > 0, c 6= cI , and a solution ψ of (3.1)
such that

ψ < b, lim sup
x→−∞

ψ(x) < 0, ψ(0) > a1, inf
x>0

ψ(x) < a1, (6.41)

and for some t0 > 0 and y0 ∈ R one of the following statements (d1), (d2)
is valid:

(d1) c < cI and z(u(·+ ct0, t0)− ψ(· − y)) = 1 (y ≥ y0).

(d2) c > cI , ψ(∞) = 0, and z(u(·+ ct0, t0)− ψ(· − y)) = 1 (y ≤ −y0).

(More specifically, (d1) holds if the hypotheses of Lemma 6.8(iii) are satisfied
and either (d1) or (d2) holds if the hypotheses of Lemma 6.8(iv) are satisfied.)
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Proof. Assume first that the hypotheses of statement (iii) of Lemma 6.8 are
satisfied. As in Remark 3.30(i), we find c ∈ (0, cI) and a solution ψ of (3.1)
satisfying (A3p) with I0 = I, and such that

ψ(0) ≈ b, ψ(x) ≈ a for some x > 0,

with any desired proximities. In particular, we may choose ψ such that
ψ(0) > a1, infx>0 ψ(x) < a1. By (A3p) (see also (6.3)), the first two relations
in (6.41) are satisfied as well. Finally, property (A3p) and Lemma 6.1 imply
(as already shown in the proof of Lemma 6.5), that (d1) holds for some t0,
y0.

Next assume that the hypotheses of statement (v) of Lemma 6.8 are
satisfied. As in Remark 3.30(ii), we find a solution ψ of (3.1) for some
c 6= cI , such that ψ(0) > a1 and (A3p0) holds with I0 = I (in particular
c > 0). By (A3p0) (and (6.3)), all relations in (6.41) are satisfied and,
moreover, ψ(∞) = 0. As shown in the proof of Lemma 6.6, see (6.22), there
are t0, y0 such that

z(ũ(·, t0)− ψ(· − y)) = 1 (|y| ≥ y0).

Thus one of the statements (d1), (d2) holds (depending on whether c < cI
or c > cI).

Proof of Lemma 6.13. Assume that either the hypotheses of statement (iii)
or the hypotheses of statement (v) of Lemma 6.8 are satisfied (the proof for
the case of statement (iv) is omitted). Let I = (a, b) and ε > 0 be as in the
corresponding statement of Lemma 6.8.

The proof is by contradiction. Assume that (6.35) is not true: there
are ξ ∈ (a, b) and η ∈ R such that (ξ, η) ∈ KΩ(u) \ τ(φI). Then there are
sequences tn →∞ and zn such that

(u(zn, tn), ux(zn, tn))→ (ξ, η). (6.42)

In view of the statements (iii), (v) of Lemma 6.8, we necessarily have ξ ∈
(a, b − ε]. As noted in Remark 6.15, Lemma 6.14 applies if we take J =
(b − ε, b), φ = φI , c = cI , and θ ∈ (b − ε, b). Fix any such θ and let
s0 and ζ(t) be as in the conclusion of Lemma 6.14. Also let x0 be the
unique value such that φI(x0) = θ. From the convergence properties (6.38),
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(6.42), it follows that, given any k > 0, for all sufficiently large n one has
(u(zn, tn), ux(zn, tn)) ≈ (ξ, η) and(

u(x+ cItn + ζ(tn), tn), ux(x+ cItn + ζ(tn), tn)
)
≈ (φI(x+ x0), φ′I(x+ x0))

(x ∈ [−k, k]). (6.43)

Since (ξ, η) 6∈ τ(φI) (and ξ ∈ (a, b)), (ξ, η) has a positive distance from
τ(φI). Therefore, (6.43) together with the relations (6.37) (with c = cI) and
θ > b − ε ≥ ξ imply that for all large n we have zn > cItn + ζ(tn) + k; that
is, as x increases, (u(x+ cItn + ζ(tn), tn), ux(x+ cItn + ζ(tn), tn)) stays close
to the trajectory τ(φI) for x ∈ [−k, k] before it gets close to (ξ, η) at x = zn.
Setting a1 := (a+ ξ)/2, we claim that for all sufficiently large n there are xn,
x̄n, such that the following relations are valid (cp. Figure 12):

cItn + ζ(tn) < xn < x̄n < zn (6.44)

and
u(xn, tn) = u(x̄n, tn) = a1,

u(x, tn) < a1 (x ∈ (xn, x̄n)).
(6.45)

Indeed, for xn we take the minimal zero of u(·, tn) − a1 (for large n); it is
found near the point z0 +cItn+ζ(tn), where z0 is defined by φI(z0 +x0) = a1.
Note that z0 > 0 because a1 < ξ < θ = φI(x0) and φI is decreasing. Also,
by (6.43), ux(xn, tn) < 0 for large n. For x̄n > xn we then take the next zero
of u(·, tn) − a1 in [xn,∞), which exists since u(x, tn) is close to ξ > a1 for
x ≈ zn. This choice of xn, x̄n yields the following additional properties:

the sequence {xn − cItn − ζ(tn)} is bounded, (6.46)

x̄n − xn →∞ (6.47)

(the latter follows from (6.43)).
We next employ a solution ψ as in Lemma 6.16. Let ũ(x, t) := u(x+ct, t),

so ũ satisfies equation (5.1) of which ψ is a steady state and, consequently,
for any y, the map t 7→ z(ũ(·, t)−ψ(·−y)) is nonincreasing (see Section 5.2).
Lemma 6.16 yields t0 > 0 and y0 ∈ R such that one of the statements (d1),
(d2) holds.

Assume first that (d1) holds. Then, by the nonincrease of the zero num-
ber,

z(ũ(·, t)− ψ(· − y)) ≤ 1 (t ≥ t0, y ≥ y0). (6.48)
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Figure 12: The supposed structure of the graph of u(·, tn).

x0

γ

a

xn

b

a1

xn

ψ( - y)

Figure 13: Intersections of ũ(·, tn) and ψ(· − y)

Obviously, there is y1 > 0 such that ψ(y1) = a1 and ψ > a1 on [0, y1).
We choose a large enough n so that tn > t0 and

y := x̄n − ctn − y1 > y0. (6.49)
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Such a choice is possible since

x̄n − ctn − y1 > (cI − c)tn + ζ(tn)− y1

(see (6.44)), cI > c (see (d1), tn → ∞, and ζ(t)/t → 0 as t → ∞ (cp.
Lemma 6.14). Thus, z(ũ(·, tn) − ψ(· − y)) ≤ 1. On the other hand, at
x = y1 + y = x̄n − ctn, we find

ũ(y1 + y, tn) = u(x̄n, tn) = a1 = ψ(y1). (6.50)

Hence, ũ(·, tn)−ψ(·−y) has a zero at y1+y. Moreover, by the last relation
in (6.45) and the fact that ψ > a1 on [0, y1), we have ũ(x, tn)−ψ(x−y) < 0 for
x < y1+y sufficiently close to y1+y (cp. Figure 13). Finally, using (6.41) and
the fact that ũ(x, tn) > 0 for x ≈ −∞, we obtain that ũ(x, tn)− ψ(x− y) >
0 for all sufficiently large negative x. Therefore, there is another zero of
ũ(·, tn) − ψ(· − y) in (−∞, y1 + y), and we have a contradiction to (6.48).
This contradiction completes the proof if (d1) holds.

x0

γ

xn

b

a1
xn

ψ( - yn)

Figure 14: Intersections of ũ(·, tn) and ψ(· − yn) in the case that (d2) holds,
a = 0, and the hypotheses of Lemma 6.8(iv) are satisfied.

If (d2) holds (and the statement (v) of Lemma 6.8 are satisfied), similar
arguments apply, but there are some differences. We give full details. By
(d2), we have z(ũ(·, t)−ψ(· − y)) ≤ 1 for all t ≥ t0 and y ≤ −y0. Obviously,
there is y1 < 0 such that ψ(y1) = a1 and ψ > a1 on (y1, 0]. Observe that if
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n0 is large enough, then for all n ≥ n0 one has tn > t0 and

yn := xn − ctn − y1 < −y0. (6.51)

Indeed, this follows from (6.46) and the facts that cI < c (see (d2)), tn →∞,
and ζ(t)/t → 0 as t → ∞ (Lemma 6.14). Thus, for any n ≥ n0 we have
z(ũ(·, tn)−ψ(· − yn)) ≤ 1. On the other hand, at x = y1 + yn = xn− ctn, we
have

ũ(y1 + yn, tn) = u(xn, tn) = a1 = ψ(y1). (6.52)

Moreover, for x > y1 + yn sufficiently close to y1 + yn, we have ũ(x, tn) −
ψ(x−yn) < 0 by the last relation in (6.45) and the fact that ψ > a1 on [y1, 0)
(cp. Figure 14).

Finally, at x = y1 + yn + x̄n − xn = x̄n − ctn, we have

ũ(y1 + yn + x̄n − xn, tn) = u(x̄n, tn) = a1,

whereas, due to (6.47) and ψ(∞) = 0 (see (d2)),

ψ(x− yn) = ψ(y1 + x̄n − xn) < a1

if n ≥ n0 is taken sufficiently large. For such n, the function ũ(·, tn)−ψ(·−yn)
has a second zero in (y1 + yn,∞) and we have a contradiction in this case as
well.

6.6 Completion of the proofs of Theorems 2.5, 2.13,
and 2.15

Recall that γ0 ≥ 0, γ1 ≤ γ, and Ñ were introduced in Section 2.3 and γ∗, γ
∗

in Section 3.2. Relation γ0 > 0 means that is unstable from above for the
equation θ̇ = f(θ) and γ < γ1 means that γ is unstable from below for this
ODE.

Proof of Theorems 2.5 and 2.13. For the proof of Theorem 2.13, we need to
show that

R−1
0 {0} ∪ {φI(· − ξ) : I ∈ Ñ , ξ ∈ R} ⊂ Ω(u) (6.53)

and

Ω(u) ⊂ R−1
0 {0} ∪ {φI(· − ξ) : I ∈ Ñ , ξ ∈ R}

∪ {φ̂I(· − ξ) : I ∈ N 0, ξ ∈ R} ∪ Ω0 ∪ Ω1, (6.54)
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where φ̂I(x) := φI(−x), Ω0 is a set of functions with range in (0, γ0), and Ω1

is a set of functions with range in (γ1, γ).
If γ0 = 0 and γ1 = γ (that is, the stability assumption (S) of Theorem

2.5 is satisfied), then Ω0 = ∅ = Ω1, N = Ñ , and (6.53), (6.54) give the
conclusion of Theorem 2.5. Thus by proving (6.53), (6.54), we will have
proved both theorems.

Inclusion (6.53) is a consequence of Lemmas 6.12, 6.9, and the translation
invariance of Ω(u).

In the proof of (6.54), we use the following inclusion obtained directly
from Lemmas 6.8(ii): and 6.13

KΩ(u) ∩ S[γ0,γ1] ⊂ τ(R0) ∪ (τ(−R0) ∩ S[γ∗,γ∗]). (6.55)

Take any ϕ ∈ Ω(u), we show that it belongs to the right-hand side of (6.54).
We have τ(ϕ) ⊂ KΩ(u), by the definition ofKΩ(u). If ϕ ≡ ξ for a constant

ξ, then τ(ϕ) = {(ξ, 0)}. By (6.55), this is possible only if ξ ∈ R−1
0 {0}.

In the rest of the proof we assume that ϕ is nonconstant. Let U be the
entire solution of (5.1) with U(·, 0) = ϕ.

If the range of ϕ contains a point ϕ(x0) in (γ0, γ1), then (6.55), implies
that there exist I ∈ Ñ and a neighborhood G of the point (ϕ(x0), ϕ′(x0))
such that

G ∩ τ(ϕ) ⊂ τ(ψ),

where ψ = φI , or cI = 0 and ψ = φ̂I . Applying Lemma 6.10 (see also Remark
6.11), we obtain that ϕ ≡ ψ(· − ξ) for some ξ ∈ R, showing that ϕ belongs
to the right-hand side of (6.54) and also that γ0 < ϕ < γ1.

Consider now the function ϕ̃ := U(·,−1). Note that that ϕ̃ ∈ Ω(u)
by the invariance of Ω(u), and ϕ̃ is not identical to a constant (otherwise
ϕ would be). If the range of ϕ̃ contains a point in (γ0, γ1), then by the
previous conclusion γ0 < ϕ̃ < γ1. But then, by the comparison principle
γ0 < ϕ = U(·, 0) < γ1, and the previous conclusion applies to ϕ itself. Thus,
ϕ belongs to the right-hand side of (6.54).

If, on the other hand, the range of ϕ̃ contains no points in (γ0, γ1), then
either 0 ≤ ϕ̃ ≤ γ0 or γ ≥ ϕ̃ ≥ γ1. In this case, by the strong comparison
principle (and the fact that ϕ̃ is not identical to any constant), we have
0 < ϕ < γ0 or γ > ϕ > γ1. This completes the proof of inclusion (6.54).

Proof of Theorem 2.15. Under the hypotheses of Theorem 2.15, the interval
I := I∗ = (0, γ0) satisfies the hypotheses of statement (v) of Lemma 6.8.
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Therefore, by Lemma 6.9 we have φI∗ ∈ Ω(u), and by Lemma 6.13

KΩ(u) ∩ S(0,γ0) = τ(φI∗). (6.56)

Using (6.56) and Lemma 6.10, similarly as in the previous proof, one shows
easily that each function ϕ ∈ Ω(u) with range in I∗ coincides with a shift of
φI∗ . Since we already know that φI∗ ∈ Ω(u), using the translation invariance
of Ω(u) we conclude that the set Ω0 in (6.54) is given by

Ω0 = {φI∗(· − ξ) : ξ ∈ R}.

The theorem is proved.

The following corollary will be used below to justify applications of Lemma
6.14.

Corollary 6.17. Let I = (a, b) = N . One has

KΩ(u) ∩ SI = τ(φI) (6.57)

in any of the following cases (ci)–(civ):

(ci) I ∈ Ñ \ N 0;

(cii) γ0 > 0, I = (0, γ0), and u0 satisfies (besides the standing assumptions
(2.2), (2.3)) the following relations: u0 ≥ 0 and u0 ≡ 0 on an interval
[m,∞);

(ciii) γ1 < γ, I = (γ1, γ), and u0 satisfies the following relations: u0 ≤ γ and
u0 ≡ γ on an interval (−∞, n];

(civ) I ∈ N 0 and φ̂I 6∈ Ω(u).

Proof. If (ci) or (civ) holds, (6.57) follows directly from Theorem 2.13. If
(cii) holds, (6.57) was verified in the proof of Theorem 2.15 (see (6.56)), and
(ciii) is analogous to (cii).
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6.7 Completion of the proofs of Theorems 2.7, 2.9, and
2.17

To prove the theorems, we just need to rule out the functions φ̂I , I ∈ N 0,
from Ω(u):

Lemma 6.18. Assume that the hypotheses of any one of Theorems 2.7, 2.9,
2.17 are satisfied. If N 0 6= ∅, then one has

φ̂I 6∈ Ω(u) (I ∈ N 0). (6.58)

Once this lemma is proved, Theorems 2.7, 2.9 follow from Theorem 2.5,
and Theorem 2.17 follows from Theorem 2.13.

It remains to prove Lemma 6.18. Under the hypotheses of Theorem 2.7,
this can been done using reflection arguments, which are simpler than the
arguments given below. However, the arguments we use take care of all three
theorems.

First, we derive a common consequence of the hypotheses of the theorems.

Lemma 6.19. Assume that the hypotheses of any one of Theorems 2.7,
2.9, 2.17 are satisfied. If I = (a, b) ∈ N 0, then there exist t0 ≥ 0 and
α0 ∈ f−1{0} ∩ (a, b) such that for each t ≥ t0 one has

lim sup
x→∞

u(x, t) < min
y1(t)≤x≤y0(t)

u(x, t) ≤ max
y1(t)≤x≤y0(t)

u(x, t) < lim inf
x→−∞

u(x, t),

(6.59)
where

y0(t) := max{x ∈ R : u(x, t) = α0}, y1(t) := min{x ∈ R : u(x, t) = α0}.
(6.60)

Remark 6.20. (i) Recall that neither of the possibilities γ0 > 0 (meaning
that 0 is unstable from above for the equation θ̇ = f(θ)), γ1 < γ
(meaning that γ is unstable from below) is allowed in Theorems 2.7,
2.9. Hence if any of them occurs, then according to the assumption of
Lemma 6.19 the hypotheses of Theorem 2.17 are in effect.

(ii) Also recall that if γ0 > 0, then J = (0, γ0) ∈ N and cJ > 0 (see the
remarks preceding Theorem 2.4). Hence J ∈ N+. Likewise, if γ0 < γ,
then then J = (γ1, γ) ∈ N−.
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(iii) If N 0 6= ∅, then the hypotheses of any one of Theorems 2.7, 2.9, 2.17
imply that one of the following combinations of assumptions holds:

(e1) N+ 6= ∅ (which includes the case γ0 > 0) and N− 6= ∅ (which
includes the case γ1 < γ);

(e2) N+ 6= ∅ and (Z1) holds for each I ∈ N 0.

(e3) N− 6= ∅ and (Z0) holds for each I ∈ N 0.

(e4) N+ = N− = ∅ and for each I = (a, b) ∈ N conditions (2.21),
(2.22) hold for some α = β ∈ (a, b) ∩ f−1{0}.

Indeed, the hypotheses of Theorem 2.7 (and N 0 6= ∅) yield (e1); any
of the assumptions (a1), (a2), (a3) of Theorem 2.9 gives (e2), (e3), or
(e4), respectively; and the hypotheses of Theorem 2.17 imply that one
of the conditions (e1), (e2), (e3) holds.

If I ∈ N 0 and α, β ∈ I ∩ f−1{0}, consider the following relations:

lim sup
x→∞

u(x, t) ≤ min
x<y0(t)

u(x, t), where y0(t) = max{x ∈ R : u(x, t) = α},

(6.61)

lim inf
x→−∞

u(x, t) ≥ max
x>y1(t)

u(x, t) where y1(t) = min{x ∈ R : u(x, t) = β}.

(6.62)

Notice that for t = 0, these are the same relations as (2.21), (2.22). We will
establish the following “invariance properties:”

Lemma 6.21. Suppose that I ∈ N 0 and α, β ∈ I ∩ f−1{0}. Let t0 ∈ [0,∞).
If (6.61) holds for t = t0, then it holds with the strict inequality for each
t > t0. If (6.62) holds for t = t0, then it holds with the strict inequality for
each t > t0.

Before proving this statement, we show how it implies Lemma 6.19.

Proof of Lemma 6.19. If N 0 = ∅, there is nothing to prove. We proceed
assuming that N 0 6= ∅ and fix an arbitrary I = (a, b) ∈ N 0.

Lemma 6.21 in particular implies that if the relation (2.21) in (Z0) holds,
then (6.61) holds (with the same α) for all t ≥ 0; and if the relation (2.22)
in (Z1) holds, then (6.61) holds for all t ≥ 0.
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Next we show that (6.61) holds for each α ∈ f−1{0} ∩ (a, b) and t > 0
sufficiently large if N+ 6= ∅. (This applies in particular if γ0 > 0, see Remark
6.20(ii).) By Proposition 3.11(iii),(iv), the set N+ 6= ∅ contains an interval
J := (0, b0) for some b0 > 0. Of course, if γ0 > 0, then J := (0, γ0). Since
I = (a, b) ∈ N 0, relations (2.13), (2.12) give b0 ≤ a. We now apply Lemma
6.14 to the interval J , which is justified by Corollary 6.17(ci),(cii) ((ci) applies
if γ0 = 0, for in this case J ∈ Ñ ∩ N+; and (cii) applies if γ0 > 0 due to the
hypotheses of Theorem 2.17, cp. Remark 6.20(i)). Fixing any θ ∈ (0, b0),
Lemma 6.14 implies (see (6.37)) that there is s0 ≥ 0 such that for all t > s0

the function u(·, t) − θ has exactly one zero. Making s0 larger, if necessary,
for all t > s0 we also have θ > lim supx→∞ u(x, t) (cp. Lemma 6.1). It is then
clear that for all t > s0 and α ≥ θ the relation (6.61) is satisfied. This in
particular applies to any α ∈ (a, b) ∩ f−1{0}, since θ < b0 ≤ a, and we have
the desired conclusion.

Similarly one shows that if γ1 = γ and N− 6= ∅, or γ1 < γ, then (6.62)
holds for each β ∈ f−1{0} ∩ (a, b) if t is sufficiently large.

Using the above conclusions in conjunction with Lemma 6.21 (and re-
membering that (a, b) ∩ f−1{0} 6= ∅ because φI is a standing wave with
range (a, b)), one shows easily that any of the conditions (e1)–(e4) stated in
Remark 6.20(iii) implies that both relations (6.61), (6.62) hold with some
α, β ∈ I ∩ f−1{0} with α ≤ β, if t is large enough. As already noted in Sec-
tion 2.2, condition (6.61) remains valid if α is replaced by any larger element
of I∩f−1{0}. Thus, we can take α = β := α0 and then, the strict inequalities
in (6.61), (6.62), as provided by Lemma 6.21, yield (6.59), (6.60).

Proof of Lemma 6.21. We only prove the invariance property for (6.62); the
proof for (6.61) is analogous. To start with, we recall that for all t ≥ 0 one
has

lim inf
x→−∞

u(x, t) ∈ Dγ. (6.63)

This follows from the standing hypothesis (2.2) (see the proof of Lemma 6.1).
In particular, since f(β) = 0 (β is as in (6.62)),

lim inf
x→−∞

u(x, t) > β (t ≥ 0). (6.64)

Assuming that (6.62) holds for t = t0, set

η0 := lim inf
x→−∞

u(x, t0). (6.65)

98



By (6.62) and (6.64),

η0 ≥ max
x≥y1(t0)

u(x, t0), η0 > β. (6.66)

Let η(t) be the solution of η̇ = f(η) with η(t0) = η0. Then, obviously,
η(t) > β for all t ≥ t0. Moreover,

η(t) ≤ lim inf
x→−∞

u(x, t) (t ≥ t0). (6.67)

To show this, take a continuous nonincreasing bounded function ū0 such that
ū0 ≤ u0 and ū0(−∞) = η0. Let ū be the solution of (1.1) with the initial
condition ū(·, t0) = ū0. As in the proof of Lemma 6.1, one has ū(−∞, t) =
η(t) and ū(·, t) ≤ u(·, t) for all t > t0. This implies (6.67).

To complete the proof of Lemma 6.21, it is now sufficient to prove that
for any t̄ > t0 one has

η(t̄) > max
x≥y1(t̄)

u(x, t̄). (6.68)

We distinguish two cases: t0 > 0 and t0 = 0. Assume first that t0 > 0.
Applying Lemma 5.4 to v := u− β, we find a continuous function σ on [t0, t̄]
such that σ(t̄) = y1(t̄) and u(σ(t), t) = β for all t ∈ [t0, t̄]. In particular,
σ(t0) ≥ y1(t0) and therefore, by (6.66),

η(t0) = η0 ≥ u(x, t0) (x ≥ σ(t0)). (6.69)

Further, for all t ∈ [t0, t̄] we have η(t) > β = u(σ(t), t). This, (6.69), and
the comparison principle imply that η(t) > u(x, t) for all (x, t) in the set
{(x, t) : x ≥ σ(t), t ∈ [t0, t̄]}. In particular, from σ(t̄) = y1(t̄) we obtain that
(6.68) holds.

Now we treat the case t0 = 0. It is sufficient to prove that (6.68) holds
for all sufficiently small t̄ > 0 (and then use the previous conclusion for a
small positive t0). Since η(0) = η0 > β = u(y1(0), 0) and u is continuous on
compact subsets of R× [0,∞), there exist ε > 0, z1 < y1(0), and t1 > 0 such
that u(x, t) < η0 − ε for all (x, t) ∈ [z1, y1(0)]× [0, t1]. Making t1 > 0 smaller
if necessary, we also have η(t) > η0 − ε for t ∈ [0, t1]. Using these relations
and (6.62) with t = 0, we obtain, via the comparison principle, that

η(t) > u(x, t) ((x, t) ∈ [z1,∞]× (0, t1]). (6.70)

Now, for all sufficiently small t ≥ 0 one has y1(t) ≥ z1. Indeed, if not,
then there is a sequence tn ↘ 0 such that y1(tn) ≤ z1. Since u(y1(t), t) = β
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for all t, it is not difficult to show that the sequence {y1(tn)} is bounded (for
example, this can be shown using (6.64) and a comparison with a spatially
decreasing solution ū as above). Thus, passing to a subsequence we may
assume that y1(tn) → z0 for some z0 ≤ z1 < y1(0). The continuity of u on
compact subsets of R × [0,∞) then implies that u0(z0) = β, contradicting
the minimality of y1(0) (see (6.62)). Thus, indeed, we have y1(t) ≥ z1 for
all t ∈ [0, t1], possibly after making t1 smaller. This and (6.70) imply that
(6.68) holds for all sufficiently small t̄ > 0. This completes the proof.

Proof of Lemma 6.18. If N 0 = ∅, there is nothing to be proved, thus we
assume N 0 6= ∅. Fix any I ∈ N 0 and let t0 and α0 be as in Lemma 6.19.

We prove Lemma 6.18 by contradiction. Suppose that φ̂I ∈ Ω(u). This
means that there are are xn ∈ R, tn > 0, n = 1, 2, . . . such that tn →∞ and
u(· + xn, tn) → φ̂I in C1

loc(R). Remember that φ̂′I > 0 and the range of φ̂I
is the interval I containing α0. Therefore, denoting by z the unique zero of
φ̂I −α0, for all sufficiently large n there is an interval Jn := [zn−dn, zn +dn],
with zn ≈ z and dn → ∞, such that u(· + xn, tn) − α0 is increasing on Jn
and vanishes at zn. Using this and Lemma 6.1, we infer that for all large
enough n, the function u(·, tn) − α0 has at least three zeros whose mutual
distances go to infinity as n→∞. The monotonicity of the zero number (see
Lemma 5.1) implies that z(u(·, t)−α0) ≥ 3 for all t > 0. By Lemma 6.1 and
Corollary 5.3, we can make t0 > 0 larger so that for each t ≥ t0, the zeros of
u(·, t)−α0 are all simple, and their number, say k, is finite and independent
of t. We denote by ϑ1(t) < · · · < ϑk(t) the zeros of u(·, t) − α0 for t ≥ t0.
Since they are simple, the functions ϑ1, . . . ϑk are C1 on [t0,∞). Moreover,
as noted above, k ≥ 3 and

ϑk(tn)− ϑ1(tn)→∞. (6.71)

Obviously, ϑ1(t) = y1(t), ϑk(t) = y0(t), where y1(t), y0(t) are as in (6.60).
Taking t0 as in Lemma 6.19 and using relations (6.59), one easily con-

structs a smooth decreasing function ū0 such that

lim inf
x→−∞

u(x, t0) > lim
x→−∞

ū0(x) > max
ϑ1(t0)≤x≤ϑk(t0)

u(x, t0),

lim sup
x→∞

u(x, t0) < lim
x→∞

ū0(x) < min
ϑ1(t0)≤x≤ϑk(t0)

u(x, t0).
(6.72)

Clearly, if η is large enough, then

u(x, t0) > ū0(x+ η) (x ≤ ϑk(t0)), (6.73)

u(x, t0) < ū0(x− η) (x ≥ ϑ1(t0)). (6.74)
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Let ū be the solution of (1.1) on (t0,∞) with the initial condition ū(·, t0) = ū0.
Then ū(x, t) is continuous on R× [t0,∞) and decreasing in x. By (6.72), the
relations ū(∞, t) < α0 < ū(−∞, t) hold for t = t0, hence they continue
to hold for all for all t ≥ t0 (see the proof of Lemma 6.1). Therefore, for
each t ≥ t0 the function ū(x, t) − α0 has a unique zero ξ(t) and t 7→ ξ(t) is
continuous on [t0,∞).

Consider now the relations

ξ(t)− η < ϑ1(t), ϑk(t) < ξ(t) + η. (6.75)

They are both satisfied for t = t0 (use the monotonicity of u(·, t) and the
relations (6.73), (6.74), with x = ϑ1(t0), x = ϑk(t0), respectively). By conti-
nuity, they are also satisfied it t > t0 is sufficiently close to t0. On the other
hand, by (6.71), the relations (6.75) cannot be satisfied for all t > t0. Thus,
there is t1 > t0 such that relations (6.75) hold for all t ∈ [t0, t1) and either
ξ(t1) − η = ϑ1(t1) or ϑk(t1) = ξ(t1) + η. Assume that the former holds (the
latter can be dealt with in an analogous way). Then

ū(ϑ1(t1) + η, t1) = ū(ξ(t1), t1) = α0 = u(ϑ1(t1), t1). (6.76)

Since ξ(t) − η is the unique zero of the decreasing function ū(· + η, t) − α0

and ϑk(t) > ϑ1(t), the first relation in (6.75) yields

ū(ϑk(t) + η, t) < α0 = u(ϑk(t), t) (t0 ≤ t ≤ t1). (6.77)

Using this, (6.73), and the strong comparison principle, we obtain

ū(x+ η, t) < u(x, t) (x < ϑk(t), t0 ≤ t ≤ t1), (6.78)

contradicting (6.76). This contradiction shows that φ̂I ∈ Ω(u) is impossible.

6.8 Completion of the proofs of Theorems 2.11 and
2.19

Recall that for each I ∈ N , φI was chosen so that φI(0) = (a+ b)/2.
The essential part of the proofs of Theorems 2.11, 2.19, the existence

of functions ζI , is provided by Lemma 6.14. More precisely, we have the
following result, which follows directly from Lemma 6.14 and Corollary 6.17.
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Corollary 6.22. Let I = (a, b) ∈ N . Assume that one of the conditions
(ci)–(civ) stated in Corollary 6.17 holds. Then there is a C1 function ζI
defined on some interval (sI ,∞) such that the following statements hold:

(j) limt→∞ ζ
′
I(t) = 0 (I ∈ N );

(jj)
(
(a+ b)/2− u(x+ ct+ ζ(t), t)

)
x > 0 (x ∈ R \ {0}, t > sI);

(jjj) limt→∞ u(·+ cIt+ ζI(t), t)− φI = 0, locally uniformly on R.

Recalling also that N = Ñ under hypothesis (S) assumed in Theorem
2.11, Corollary 6.22 proves the validity of statements (i) and (ii) of Theorem
2.11, except for assertions (d) and (e); as well as the validity of statements
(iii), (iv), and (v) of Theorem 2.19, except for assertions (d) and (e).

Assertion (d) concerns elements I1, I2 ∈ N , with I1 < I2, cI1 = cI2 ,
and with additional restrictions, as imposed in the above statements: cI2 6=
0 in Theorem 2.11(i) and Theorem 2.19(iii), and I1, I2 ∈ Ñ in Theorem
2.19(iii),(iv) (no restrictions in Theorem 2.11(ii) and Theorem 2.19(v)). Note
that under these restrictions or the additional assumptions made in the above
statements ((2.16) in Theorem 2.11(ii) and Theorem 2.19(iii),(iv); (U) in
Theorem 2.19(v)), one of the conditions (ci)–(civ) of Corollary 6.17 is satisfied
when we take I = I1 or I = I2. Hence, Corollary 6.22 applies to I = I1 and
I = I2. We use this to prove that ζI1(t)− ζI2(t)→∞ as t→∞, as stated in
assertions (d) of Theorems 2.11, 2.19.

First we note that for any sequence tn → ∞, the sequence {ζI1(tn) −
ζI2(tn)} cannot be bounded. Indeed, by Corollary 6.22, the boundedness and
the relation cI1 = cI2 would give

u(cI1tn + ζI1(tn), tn)− φI2(ζI1(tn)− ζI2(tn))

= u(ζI1(tn)− ζI2(tn) + cI2tn + ζI2(tn), tn)− φI2(ζI1(tn)− ζI2(tn))→ 0.

At the same time,
u(cI1tn + ζI1(tn), tn)→ φI1(0),

which is absurd, as the ranges I1, I2 of φI1 , φI1 are open and do not overlap.
The relations I1 < I2 and cI1 = cI2 further imply that ζI1(t) − ζI2(t)

cannot be negative for any sufficiently large t. Indeed, that would imply
that u(·, t) has to increase from the value θ1 := u(cI1t + ζI1(t), t) at the
center of I1 to the greater value u(cI2t + ζI2(t), t) at the center of I2 . If
that occurred for a sequence of times t = tn → ∞, we would obtain an
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element of (θ2, η) ∈ KΩ(u) ∩ SI2 with η ≥ 0. However, we already know, by
Corollary 6.22, that there is no such element. Thus, we have proved that
ζI1(t)− ζI2(t)→∞, as desired.

We proceed by noting that statements (i) and (ii) of Theorem 2.19 follow
directly from Lemma 6.3 (and the relations cI∗ > 0, cI∗ < 0 mentioned at
the beginning of Section 2.3).

To complete the proofs of statement (ii) of Theorem 2.11 and statement
(v) of Theorem 2.19, we need to prove assertion (e). Note that, under the
assumptions of these statements, Corollary 6.22 now applies to all I ∈ N .
Let {(xn, tn)} be any sequence in R2 such that tn →∞ and for each I ∈ N
one has

lim
n→∞

|cItn + ζI(tn)− xn| =∞. (6.79)

Then, passing to a subsequence, we may assume that u(· + xn, tn) → ϕ in
L∞loc(R), for some ϕ ∈ Ω(u). By Theorems 2.7, 2.9, 2.15, either ϕ ≡ ξ for
some ξ ∈ R−1

0 {0}, or ϕ = φI(· + η) for some I ∈ N and η ∈ R. The former
is the desired conclusion; we need to rule out the latter. Assume that it
holds with I = (a, b) ∈ N . Since we also have u(· + ctn + ζI(tn), tn) → φI
in L∞loc(R) (see Corollary 6.22(jjj)), assumption (6.79) clearly implies that
the function u(·, tn) − (a + b)/2 has at least two zeros, in contradiction to
Corollary 6.22(jj).

It remains to prove statement (iii) of Theorem 2.11 and statement (vi)
of Theorem 2.19. These proofs are nearly identical, so for definiteness we
just give the proof for statement (iii) of Theorem 2.11. Thus, we assume
that (2.16) holds and the set R−1

0 {0} is finite: R−1
0 {0} = {a1, . . . , ak+1}, with

0 = a1 < a2 < · · · < ak+1 = γ. Then, N = {I1, . . . , Ik} with Ij = (aj, aj+1),
j = 1, . . . , k, and all the functions ζj(t) := ζIj(t), j = 1, . . . , k, are defined for
sufficiently large t. Moreover, the relations cIj ≥ cIj+1

(cp. (2.12)) and the
properties of the functions ζj proved above imply that, as t→∞, one has

cIj t+ ζj(t)− (cIj+1
t+ ζj+1(t))→∞ (j = 1, . . . , k). (6.80)

To prove that (2.33) holds we go by contradiction. Assume it does not,
that is, there exist sequences xn ∈ R and tn →∞ such that∣∣u(xn, tn)−

( ∑
j=1,...,k

φIj(xn − cIj tn − ζIj(tn))−
∑

1≤j≤k−1

aj+1

)∣∣ ≥ ε, (6.81)

for some ε > 0. Passing to a subsequence of {(xn, tn)}, we may assume that
there is i such that for each n the point xn is contained in the i-th interval
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in the following sequence of intervals

(−∞, cIktn + ζk(tn)],

[cIj+1
tn + ζj+1(tn), cIj tn + ζj(tn)], j = 1, . . . , k − 1,

[cI1tn + ζ1(tn), ∞).

(6.82)

Passing to a further subsequence, we obtain that either there is exactly one
j such cIj tn + ζj(tn) − xn converges to a finite value, or for all j one has
|cIj tn + ζj(tn)− xn| → ∞. Finally, passing to a yet further subsequence, we
may assume that u(·+ xn, tn)→ ϕ for some ϕ ∈ Ω(u).

Consider the case when for each n the point xn belongs to the first of the
intervals (6.82), and let

ρ := lim
n→∞

(
xn − (cIktn + ζk(tn))

)
∈ [−∞, 0].

Then for j < k one has

φIj(xn − cIj tn − ζj(tn))→ φIj(−∞) = aj+1. (6.83)

If now ρ > −∞, then, by Corollary 6.22(jjj), u(xn, tn) − φIk(xn − cIktn −
ζk(tn))→ 0. Thus, the limit of the left-hand side of (6.81) is 0, and we have
a contradiction. If ρ = −∞, then (6.83) also holds for j = k (and ak+1 = γ).
Also, by statement (e) already proved above, for the limit function ϕ we
have ϕ ≡ ξ ∈ R−1

0 {0}. If ξ = γ, then, again, the limit of the left-hand side
of (6.81) is 0, and we have a contradiction. We show that the case ξ < γ
leads to a contradiction as well. Suppose it holds. Then for large n one
has u(xn, tn) ≈ ξ, whereas for large negative x one has u(x, tn) ≈ γ (see
Lemma 6.1). Thus, for each large enough n, there is x̃n < xn such that
u(x̃n, tn) = γ−δ where δ > 0 is chosen so small that γ−δ > aj, j = 1, . . . , k.
In particular, γ − δ 6∈ R−1

0 {0}. However, statement (e) of Theorems 2.11,
2.19, applies to x̃n as well and we get, possibly after passing to another
subsequence, that u(x+ x̃n, tn)→ ξ̃ ∈ R−1

0 {0} for each x ∈ R. Taking x = 0,
we obtain γ − δ = ξ ∈ R−1

0 {0} and we have a contraction.
The proof in the case when for each n the point xn belongs to the i-the

interval in (6.82), for i = 2, . . . , k + 1, is similar and we omit its details.

6.9 Proof of Theorem 2.22

Throughout this subsection, we assume that the hypotheses of the theorem
are satisfied and I := (a, b) is as in the hypotheses.

104



Similarly as in [31], we shall use properties of solutions of an asymptoti-
cally autonomous equation

vt = vxx + cIvx + f(v) + h(x, t), x ∈ R, t > 0. (6.84)

Here h is a uniformly continuous function on R× [0,∞) such that for some
positive constants κ and σ one has

‖h(·, t)‖L∞(R) ≤ κe−σt (t ≥ 0). (6.85)

Since f ′(a) < 0, f ′(b) < 0, classical results (see [11, 33]) show that the family
φI(x − cIt − η), η ∈ R, of fronts of the bistable nonlinearity of f


[a,b]

is

asymptotically stable with asymptotic phase. As observed in [31], a form of
this conclusion remains valid when an exponentially decaying inhomogeneity
is added in the equation. Namely, we have the following lemma.

Lemma 6.23. Under the above assumptions on h, assume that v is a solution
of (6.84) such that

inf
η∈R
‖v(·, t)− φI(· − η)‖L∞(R) → 0, as t→∞. (6.86)

Then there are η ∈ R and ϑ > 0 such that

lim
t→∞

eϑt‖v(·, t)− φI(· − η)‖L∞(R) = 0. (6.87)

This lemma can be proved, for example, by estimates very similar to those
given in Exercise 6 in [18, Section 5.1]. Also, the lemma is a consequence of
[31, Theorem 3.1]. Although, we do not assume here that a ≤ v ≤ b, which is
an assumption in [31, Theorem 3.1], one can use the assumptions f ′(a) < 0,
f ′(b) < 0 and a simple modification of v to reduce the proof of Lemma 6.23
to the case a ≤ v ≤ b. We omit the details.

We shall also use the following lemma.

Lemma 6.24. Let u be a solution of (1.1), (1.2), where u0 ∈ C(R) satisfies
(2.2), (2.3). There is a C1 function ζI defined on some interval on (sI ,∞)
such that the following statements hold:

(a) limt→∞ ζ
′
I(t) = 0;

(b)
(
(a+ b)/2− u(x+ cIt+ ζI(t), t)

)
x > 0 (x ∈ R \ {0}, t > sI);
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(c) limt→∞ u(·+ cIt+ ζI(t), t)− φI = 0, locally uniformly on R;

Moreover, for each θ ∈ (a, b) there is sθ such that

(d) z(u(·, t)− θ) = 1 (t > sθ).

If cI 6= 0, statements (a)-(c) are obtained from Theorem 2.19(iii), and
statement (d) from Lemma 6.14. We will just need to prove that under the
present assumptions the statements hold if cI = 0. We will do it at the end
of this subsection. First we prove that if the conclusion of the lemma holds
for a solution u, then the conclusion of Theorem 2.22 holds for this solution.

Completion of the proof of Theorem 2.22. Let u be as in Lemma 6.24. Set

ũ(x, t) = u(x+ cIt, t),

so that ũ is a solution of

ũt = ũxx + cI ũx + f(ũ), x ∈ R, t > 0. (6.88)

In order to prove Theorem 2.22, we find a function v satisfying the hypotheses
of Lemma 6.23 and such that for some t0 > 0 one has

v(x, t) = ũ(x, t) ((c−I − cI)t < x < (c+
I − cI)t, t ≥ t0), (6.89)

where c−I < cI < c+
I are as in (2.41). This and Lemma 6.23 clearly yield

conclusion (2.43) of Theorem 2.22. The remaining conclusions, (2.42), (2.44)
will be verified in the process of establishing (6.89).

First, we show that there are positive constants s, ε, k, and ς such that

u(x, t) ≤ b+ ke−ςt (x > (c−I − ε)t, t ≥ s), (6.90)

u(x, t) ≥ b− ke−ςt (x < (c−I + ε)t, t ≥ s), (6.91)

and

u(x, t) ≥ a− ke−ςt (x < (c+
I + ε)t, t ≥ s), (6.92)

u(x, t) ≤ a+ ke−ςt (x > (c+
I − ε)t, t ≥ s). (6.93)

We prove estimates (6.90), (6.91) by comparison arguments. Analogous
arguments show that (6.92), (6.93) hold and this part will be omitted. Of
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course, making adjustment to the constants, if necessary, we may take the
same ς, ε, k, s in all four estimates.

Assume first that b = γ. Then, the assumptions (2.2) and f ′(b) < 0,
imply, via comparison with a solution of the equation θ̇ = f(θ), that for
some constants k, ς > 0 one has ũ(x, t) ≤ b+ ke−ςt for all x ∈ R and t > 0.
Thus (6.90) holds with arbitrary s > 0 and ε > 0 and there is nothing to be
proved in (6.91) (recall that c−I = −∞ if b = γ).

Assume that b < γ, so that Ī is defined (cp. (2.40)) and the quantities
cĪ < cI and c−I = (cĪ + cI)/2 are finite. We have Ī = (ā, b̄) with ā = b
and some b̄ ∈ (b, γ]. Take any c ∈ (cĪ , c

−
I ). We apply Lemma 3.32(i) to the

interval Ī = (ā, b̄). This yields a solution ψ̄c of (3.1) such that

ψ̄cx(x) < 0 (x ∈ R), ψ̄c(x) > γ (x < x0), lim
x→∞

ψ̄c(x) = ā = b (6.94)

(see (3.89) and (6.5)). Since f ′(b) < 0, the convergence in (6.94) is exponen-
tial.

Using (6.94) and Lemma 6.1, one shows easily that if s is sufficiently
large, then there is y > 0 such that the following estimate holds for t = s:

u(x, t) < ψc(x− ct− y) (x ∈ R).

By the comparison principle, this estimate continues to hold for all t ≥ s. In
particular, since ψc is decreasing, if 0 < ε < c−I − c, we have

u(x, t) < ψc((c−I − ε)t− ct− y) (x ≥ (c−I − ε)t).

The exponential convergence in (6.94) and the fact that c−I − ε− c > 0 imply
that (6.90) holds if s, k are sufficiently large and ς > 0, ε are sufficiently
small.

We now prove the lower estimate (6.91). Fix c ∈ (c−I , cI). We use the fact
that for suitable positive constants δ and β, the function φI(x− ct)− δe−βt
is a subsolution of equation (1.1) (see Lemma 6.25 below). Of course, the
space and time translations of this function are subsolutions as well.

By Lemma 6.1, if t0 is large enough, then

lim inf
x→−∞

u(x, t0) > γ − δ ≥ b− δ.

We fix such t0 satisfying also t0 > sI , with sI as in Lemma 6.24. Since φI < b,
for all sufficiently large ξ > 0, we have

u(x, t0) > φI(y)− δ (x ≤ −ξ, y ∈ R). (6.95)
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We choose ξ so large that (6.95) holds and in addition

−ξ + c(t− t0) < cIt+ ζI(t) (t ≥ t0). (6.96)

Such a choice is possible as c < cI and ζI(t)/t → 0 as t → ∞ (see Lemma
6.24(a)). By Lemma 6.24(b) and the normalization φI(0) = (a + b)/2 (cp.
(2.10)),

u(x, t) >
(a+ b)

2
= φI(0) (x < cIt+ ζI(t), t ≥ t0). (6.97)

By (6.96), this holds in particular, if x = −ξ+ c(t− t0) and t ≥ t0. Thus the
subsolution

U(x, t) := φI(x− c(t− t0) + ξ)− δe−β(t−t0)

satisfies u(x, t) > U(x, t) if t ≥ t0 and x = −ξ + c(t − t0), or if t = t0 and
x ≤ −ξ (cp. (6.95)). Therefore, by the comparison principle,

u(x, t) ≥ U(x, t) (x ≤ −ξ + c(t− t0), t ≥ t0). (6.98)

If now ε > 0 is sufficiently small (so that c−I +ε < c), then for all large enough
t we have (c−I + ε)t < −ξ + c(t− t0). Therefore, (6.98) and the fact that φI
is decreasing yield the following relation

u(x, t) ≥ φI((c
−
I + ε)t− c(t− t0) + ξ)− δe−β(t−t0) (x < (c−I + ε)t). (6.99)

Since φI(x) → b as x → −∞ with an exponential rate (as f ′(b) < 0) and
c−I + ε− c < 0, we obtain from (6.99) that (6.91) holds for suitable constants.

Thus relations (6.90)-(6.93) are valid.
Obviously, making s larger if necessary, we have, for all t > s,

(c−I t− 1, c−I t] ⊂ ((c−I − ε)t, (c
−
I + ε)t),

[c+
I t, c

+
I t+ 1) ⊂ ((c+

I − ε)t, (c
+
I + ε)t

(if c−I = −∞, we define (c−I t − 1, c−I t] = ∅, similarly for c+
I = ∞). Now, the

function u − b solves a linear parabolic equation. Therefore, using (6.90)-
(6.93), and parabolic estimates one obtains, possibly after making adjust-
ments to the constants k, ς, and s, that

|ux(x, t)| ≤ ke−ςt (x ∈ (c−I t− 1, c−I t] ∪ [c+
I t, c

+
I t+ 1), t ≥ s). (6.100)
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Take now a smooth function ρ on R such that 0 ≤ ρ ≤ 1, ρ ≡ 0 on
(−∞, 0), and ρ ≡ 1 on (1,∞). Define a function w on R× (s,∞) by

w(x, t) =

{(
1− ρ(x− (c−I t− 1))

)
b+ ρ(x− (c−I t− 1))u(x, t) (x ≤ cIt),(

1− ρ(x− c+
I t)
)
u(x, t) + ρ(x− c+

I t)a (x ≥ cIt).

It is understood here that ρ(−∞) = 0 so that in the case c−I = −∞ we
have w(x, t) = u(x, t) on (−∞, cIt). An analogous remark applies to the case
c+
I =∞. Notice that

v(x, t) := w(x+ cIt, t) =


b (x < (c−I − cI)t− 1),

ũ(x, t) ((c−I − cI)t < x < (c+
I − cI)t),

a (x > (c+
I − cI)t+ 1).

(6.101)

Clearly, v satisfies equation (6.84) with

h(x, t) = vt(x, t)− vxx(x, t)− cIvx(x, t)− f(vt(x, t)).

Since ũ is a bounded solution of (6.88), parabolic estimates imply that h is
uniformly continuous. Clearly, h vanishes in the regions indicated in (6.101).
In the remaining part of R× (s,∞), straightforward estimates using (6.90)-
(6.93) and (6.100) (and the fact that ũ is a solution of (6.88)) show that h
satisfies (6.85) for some constants κ and σ.

Finally, using Lemma 6.24(c),(d), estimates (6.90)-(6.93), and the rela-
tions φI(−∞) = b, φI(∞) = a, one shows easily that

lim
t→∞
‖v(·, t)− φI(· − ζI(t))‖L∞(R) = 0. (6.102)

Thus v satisfies all hypotheses of Lemma 6.23 and (6.89) holds by (6.101).
As noted at the beginning of the proof, this implies conclusion (2.43) of
Theorem 2.22. Conclusions (2.42), (2.44) follow from (6.91), (6.93). The
proof of Theorem 2.22 is now complete.

Proof of Lemma 6.24. As noted above, if cI 6= 0 the conclusions follow from
Theorem 2.19(iii) and Lemma 6.14. If cI = 0, the statements also follow
from Lemma 6.14, provided we can show that KΩ(u) ∩ S(a.b) = τ(φI). This
is satisfied, by Corollary 6.17 if

φ̂I 6∈ Ω(u). (6.103)
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This obviously holds if u0 is monotone nonincreasing, for then all elements
of Ω(u) are such. Thus, Lemma 6.24 and Theorem 2.22 are proved under the
extra condition that u0 is monotone.

We now remove the monotonicity restriction on u0. Given u0, we choose
two monotone initial data ū0, u0 ∈ C(R) satisfying conditions (2.2), (2.3),
and such that u0 ≤ u0 ≤ ū0. Then, by the comparison principle, for the
corresponding solutions of (1.1) we have u ≤ u ≤ ū. As proved above,
Theorem 2.22 applies to the functions u, ū. Thus each of them satisfies
relations (2.42)-(2.44). This and the relations u ≤ u ≤ ū imply that if t is
sufficiently large, then there is no room for u(·, t) to be close to the decreasing
function φ̂I on a large spatial interval. Hence, (6.103) holds. This completes
the proof in the nonmonotone case.

The following result was used in the proof of Theorem 2.22.

Lemma 6.25. Let I = (a, b) ∈ N , f ′(a) < 0, f ′(b) < 0, and 0 < β <
min{−f ′(a), −f ′(b)}. If c < cI , then there is δ0 > 0 such that for each
δ ∈ (0, δ0) the function

U(x, t) = φI(x− ct)− δe−βt, (x, t) ∈ R× [0,∞),

is a subsolution of (1.1). Similarly, if c > cI , then there is δ0 > 0 such that
for each δ ∈ (0, δ0) the function

U(x, t) = φI(x− ct) + δe−βt, (x, t) ∈ R× [0,∞),

is a supersolution of (1.1).

Proof. We prove the result for c < cI , the proof for c > cI is analogous. We
essentially repeat an argument from [11], which was used there to show that
for suitable positive constants β, δ, and σ, the function φI(x−cIt−σδe−βt)−
δe−βt is a subsolution.

To simplify the notation, set φ := φI . Remember that φ′ < 0 and φ′′ +
cIφ
′ + f(φ) ≡ 0. We have (omitting the argument x− ct of φ)

Ut − Uxx − f(U) = (cI − c)φ′ + δβe−βt + f(φ)− f(φ− δe−βt)
= (cI − c)φ′ + δe−βt(f ′(q(x, t)) + β),

(6.104)

where φ(x− ct)− δe−βt ≤ q(x, t) ≤ φ(x− ct).
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Since β < min{−f ′(a), −f ′(b)}, there is δ1 such that f ′(v) + β < 0 if
|v − a| < δ1 or |v − b| < δ1. If 0 < δ < δ1/2, and x, t are such that
|φ(x − ct) − a| < δ1/2 or |φ(x − ct) − b| < δ1/2, then the expression on
the last line of (6.104) is negative. For the remaining values of x and t, the
function (cI−c)φ′(x−ct) is bounded above by a negative constant. Therefore
if δ > 0 is sufficiently small, Ut − Uxx − f(U) ≤ 0 on R × [0,∞), that is, U
is a subsolution.
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[24] P. Poláčik, Examples of bounded solutions with nonstationary limit pro-
files for semilinear heat equations on R, J. Evol. Equ. 15 (2015), 281–
307.

[25] , Spatial trajectories and convergence to traveling fronts for
bistable reaction-diffusion equations, Contributions to nonlinear differ-
ential equations and systems, A tribute to Djairo Guedes de Figueiredo
on the occasion of his 80th Birthday (A.N. Carvalho, B. Ruf, E.M. Mor-
eira dos Santos, S.H. Soares, and T. Cazenave, eds.), Progress in Non-
linear Differential Equations and Their Applications, Springer, 2015,
pp. 404–423.

[26] , Threshold behavior and non-quasiconvergent solutions with lo-
calized initial data for bistable reaction-diffusion equations, J. Dynamics
Differential Equations 28 (2016), 605–625.
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