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Abstract. We consider the semilinear parabolic equation

ut = uxx + f(u), x ∈ R, t > 0, (A)

where f is a bistable nonlinearity. It is well-known that for a large

class of initial data, the corresponding solutions converge to traveling

fronts. We give a new proof of this classical result as well as some

generalizations. Our proof uses a geometric method, which makes use

of spatial trajectories {(u(x, t), ux(x, t)) : x ∈ R} of solutions of (A).
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1 Introduction

Consider the Cauchy problem

ut = uxx + f(u), x ∈ R, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ R, (1.2)

where f ∈ C1(R) and u0 ∈ C(R)∩L∞(R). We assume that f is of a bistable
type and u0(x) takes values between the two stable zeros of f and has a
“front-like” shape (see below for precise hypotheses). Classical results then
tell us that, under additional conditions on f and u0, the solution of (1.1),
(1.2) approaches the orbit of a traveling front. The main purpose of this note
is to give a new proof of this result and relax its hypotheses somewhat.

To discuss the large-time behavior of solutions in more specific terms, we
introduce two kinds of limit sets. Assuming that the solution of (1.1), (1.2),
is bounded we set

ω(u) := {ϕ : u(·, tn)→ ϕ for some sequence tn →∞}, (1.3)

Ω(u) := {ϕ : u(·+ xn, tn)→ ϕ for some sequences tn →∞ and xn ∈ R},
(1.4)

where the convergence is in L∞loc(R) (the locally uniform convergence) in
both cases. Since the solution u is determined uniquely by its initial value,
we sometimes use the symbols ω(u0), Ω(u0) for ω(u), Ω(u).

By standard parabolic regularity estimates, the set {u(x+·, t) : t ≥ 1, x ∈
R} is relatively compact in L∞loc(R). This implies that both ω(u) and Ω(u)
are nonempty, compact, and connected in L∞loc(R). Clearly, ω(u0) ⊂ Ω(u0),
but the opposite inclusion is not true in general. Both these limit sets give a
useful information on the solution u: while Ω(u) gives a picture of the global
shape of u(·, t) for large times and is also useful for investigating the behavior
of u(·, t) in moving coordinate frames; ω(u) captures its large-time behavior
in local regions.

To formulate our results, we first make precise our hypotheses. We assume
the following conditions on f :

(Hf) f ∈ C1(R), f(0) = f(1) = 0 and there is α ∈ (0, 1) such that

f < 0 in (0, α); f > 0 in (α, 1). (1.5)
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Since we only investigate solutions satisfying 0 ≤ u ≤ 1, the values of f(s)
for s 6∈ [0, 1] are irrelevant. For convenience, we shall assume that

f > 0 in (−∞, 0); f < 0 in (1,∞); f ′ is bounded. (1.6)

Thus 0, α, 1 are all the equilibria of the ordinary differential equation
(ODE) ξ̇ = f(ξ); 0, 1 are stable, whereas α is unstable, both from above and
below (thus the name “bistable nonlinearity”). Obviously, the specific choice
of the interval [0, 1] does not restrict generality; other bistable nonlinearities
are brought to this form by a suitable scaling and translation. We often
view 0, α, and 1 as constant functions and then they become steady states
of (1.1).

Hypothesis (Hf) implies (see [2, 6, 16], for example) that there is a trav-
eling front of (1.1) joining 0 and 1, that is, a solution U of the form

U(x, t) = φ(x− ĉt), where ĉ ∈ R, φ ∈ C2(R), and φ′ > 0. (1.7)

Moreover, both the increasing “profile” function φ and the “speed” ĉ are
uniquely determined, up to translations of φ, and sign ĉ = − signF (1), where

F (u) =

∫ u

0

f(s) ds. (1.8)

For definiteness we shall assume that

F (1) =

∫ 1

0

f(s) ds ≥ 0. (1.9)

This means that the front “travels to the left” (ĉ < 0) or is a standing wave
(ĉ = 0). Again, assumption (1.9) is at no cost to generality; the other case is
completely analogous (or, one simply interchange the roles of the two stable
equilibria). Note that Ũ(x, t) = U(−x, t) is also a traveling front; it has a
decreasing profile function (namely, φ̃ = φ(−x)) and the opposite speed.

With α as in (Hf), we assume the following conditions on u0:

(Hu) u0 ∈ C(R), 0 ≤ u0 ≤ 1, and

lim sup
x→−∞

u0(x) < α < lim inf
x→∞

u0(x). (1.10)

In this sense, u0 has a “front-like” shape.
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Theorem 1.1. Assume that (Hf), (Hu) hold and F (1) > 0. Let u be the
solution of (1.1), (1.2). Then

Ω(u) = {0, 1} ∪ {φ(· − ξ) : ξ ∈ R}, (1.11)

where φ is as in (1.7).

Below we also give a theorem for F (1) = 0 under an additional assumption
on u0.

Similar results on the approach of solutions to traveling fronts for bistable
nonlinearities can be found in [6, 7], among many other publications. Let us
discuss the relation of Theorem 1.1 to these classical results in more detail.
It is not difficult to show (see Sect. 3) that (1.11) implies the following

Corollary 1.2. Assume that the hypotheses of Theorem 1.1 hold. Then there
is a C1-function γ(t) such that γ′(t)→ 0 as t→∞, and

u(·, t)− φ(· − ĉt− γ(t))→ 0 as t→∞, (1.12)

where the convergence is in L∞(R).

This conclusion was proved in [7] under the extra assumption that u0

is monotone. Note that Corollary 1.2 only says that the translation group
orbit {φ(· − ξ) : ξ ∈ R} of φ attracts the solution; it does not say that the
solution approaches a particular traveling front, or, in other words, that γ(t)
has a limit as t→∞. The latter was proved in [6] under the nondegeneracy
condition

f ′(0) < 0, f ′(1) < 0. (1.13)

In this case, the monotonicity of u0 is not assumed and one even gets the
exponential rate of convergence in (1.12). There are many extensions of
this convergence results, see for example, [2, 3, 9, 11, 12, 13, 14, 16] and
references therein (for more bibliographical notes and a discussion of classical
results for bistable and other types of nonlinearities see [16, Sect. 1.6]).
Usually, the convergence is proved by first showing that the solution gets
close to a particular traveling front at some time (this property follows from
(1.12); in the nondegenerate case (1.13), Fife and McLeod [6] proved it by
way of a Lyapunov functional) and then employing an asymptotic stability
property of the front. Conditions (1.13), or similar nondegeneracy conditions,
are typically needed to establish the linearized stability of the front. The
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convergence with the exponential rate is then obtained from the principle of
linearized stability for parabolic equations [8, 15].

Here, we only treat the more general case with the weaker conclusion,
as in Theorem 1.1, Corollary 1.2, without assuming the nondegeneracy con-
ditions. Our objective is to give a relatively simple geometric proof of the
result. The main technical tools of our method are intersection comparison
(or zero number) arguments and analysis of spatial trajectories of solutions
of (1.1). If u is a solution, then its spatial trajectory at time t is the set
{(u(x, t), ux(x, t)) : x ∈ R} ⊂ R2. Note that if u is a steady state, then
its spatial trajectory is independent of t and it is a trajectory, in the usual
sense, of the first-order system corresponding to the ODE uxx + f(u) = 0.
Likewise, if u is a traveling wave, then its spatial trajectory is independent of
t and it a trajectory of the first order system corresponding to the equation
uxx + cux + f(u) = 0, where c is the speed of the wave. Our proof depends
on a good understanding of how spatial trajectories of the solution of (1.1),
(1.2) can intersect spatial trajectories of steady states and traveling waves.

We remark that spatial trajectories also appear, though not under this
name, in [7]. In that paper, given a solution u with ux > 0, the authors con-
sider a function p(u, t) = ux(ζ(u, t), t), where ζ(·, t) is the inverse function
to u(·, t). They show that p satisfies a degenerate parabolic equation and
prove the attraction to traveling fronts by delicate comparison arguments
for this equation. Observe that for any t, the graph of p(·, t) is the spatial
trajectory τ(u(·, t)) of u. Obviously, for the spatial trajectory to be such a
graph, the monotonicity in x is necessary. In contrast, we work with the
spatial trajectories as curves in R2, thus we do not need the monotonicity
assumption. Also, we do not use any transformed partial differential equa-
tions similar to the equation for p. All the essential information from which
we can rather easily prove Theorem 1.1 is contained in phase diagrams of the
ODEs uxx + cux + f(u) = 0, for various c.

Theorem 1.1 can probably be proved in several different ways. For exam-
ple, in [16] it is suggested that, under the additional assumption that

lim
x→−∞

u0(x) = 0, lim
x→∞

u0(x) = 1, (1.14)

the following approach should work. First one proves that there is a function
ε(t) > 0 such that ε(t) → 0 as t → ∞ and u is increasing in x in the set
{(x, t) : ε(t) < u(x, t) < 1−ε(t)}. Once this is established, one can modify the
arguments in the monotone case, to get the conclusion in this more general
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situation. The method we use in the present paper is more direct and seems
to be simpler than this suggested approach (and (1.14) is not needed).

Our method applies, with minor modifications, to more general situations
where the existence and uniqueness of the traveling front can be established
(see [6]), but for simplicity we just consider (1.5). The method is also useful
in other problems; for example, in [10] we will use similar techniques in
the proof of quasiconvergence of solutions with localized initial data. On
the other hand, the scope of the method seems to be limited to the one-
dimensional spatially homogeneous equations.

In the case F (1) = 0, we prove the same results as in Theorem 1.1 and
Corollary 1.2, but we need a stronger assumption on u0. For example, the
following will do.

(Ha) Either u0 − α has a unique zero, or the limits u0(±∞) exist and one
has

u0(−∞) ≤ u0(x) ≤ u0(∞) (x ∈ R). (1.15)

Note that (1.15) is trivially satisfied if (Hu) and (1.14) hold.

Theorem 1.3. Assume that the hypotheses (Hf), (Hu), (Ha) hold and F (1) =
0 (so also ĉ = 0). Let u be the solution of (1.1), (1.2). Then the conclusions
of Theorem 1.1 and Corollary 1.2 hold.

Note that (1.11) in particular gives ω(u) ⊂ {0, 1}∪{φ(·−ξ) : ξ ∈ R}. One
has {0, 1} ∩ ω(u) 6= ∅ if and only if the function γ in (1.12) is unbounded.
If γ(t) has a finite limit ξ when t → ∞, then ω(u) consists of the single
equilibrium φ(· − ξ) (and one can even take the uniform convergence in the
definition of ω(u)). This is the case if the stable zeros are nondegenerate:
f ′(0), f ′(1) < 0 [6], but without this assumption the situation is not so clear.
As far as we know, examples of solutions satisfying the present hypotheses
for which ω(u) is not a singleton are not available.

The paper is organized as follows. In the next section, we recall several
useful results concerning the zero number, Ω-limit sets, and solutions of the
ODEs uxx + cux + f(u) = 0, c ≤ 0. The proofs of the main results are given
in Section 3.
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2 Preliminaries

2.1 Phase space and traveling fronts

In this section we examine the solutions of the ODE

vxx + cvx + f(v) = 0, x ∈ R. (2.1)

This is the equation satisfied by steady states of (1.1) (if c = 0) and by the
profile functions of traveling fronts. Throughout the section we assume that
the hypotheses (Hf), (1.6), (1.9) are satisfied.

The first-order system associated with (2.1) is

vx = w, wx = −cw − f(v). (2.2)

Its solutions are all global, by the Lipschitz continuity of f (see (1.6)). For
c = 0, we obtain a Hamiltonian system,

vx = w, wx = −f(v), (2.3)

with the Hamiltonian energy

H(v, w) := w2/2 + F (v).

In this case, the trajectories of (2.3) are contained in the level sets of H.
Note in particular that the level sets are symmetric about the v axis. We now
summarize a few basic properties of trajectories of system (2.3) (see Fig.1);
they are all proved easily by an elementary phase plane analysis using the
Hamiltonian and the standing hypotheses (Hf), (1.6), (1.9). System (2.3)
has only four types of bounded orbits: equilibria (stationary solutions)–all
of them on the v axis, nonconstant periodic orbits, homoclinic orbits–which
exist only in the case F (1) > 0, and heteroclinic orbits–only in the case
F (1) = 0. All bounded orbits, other than the equilibria (0, 0) and (1, 0) are
contained in the open strip

S := {(v, w) : 0 < v < 1}.

This strip is covered by the level sets

Lγ := {(v, w) : H(v, w) = γ}, γ ∈ [F (α),∞).
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For each γ ∈ (F (α),∞), the level set Lγ intersects the vertical line {(α,w) :

w ∈ R}, at exactly two points (α,±
√

2(γ − F (α)); for γ = F (α) there is
just one intersection, the equilibrium (α, 0). For γ > F (1), Lγ consists of two
curves not intersecting the v-axis. The solutions v whose trajectories τ(v)
are given by these curves are strictly monotone with infinite limits at ±∞.
If F (1) > 0 and γ ∈ (0, F (1)), then the part of Lγ intersecting S coincides
with a trajectory of a solution v with limits v(±∞) = −∞. If γ = F (1) > 0,
then Lγ consists of (1, 0) and the trajectories of solutions which converge to
1 as x→∞ or x→ −∞. For γ ∈ (F (α), 0), the set Lγ ∩ S coincides with a
nonstationary periodic orbit (or, closed orbit) of (2.3). For γ = 0, Lγ ∩ S is
a homoclinic orbit to (0, 0) (this is the case if F (1) > 0) or the union of two
heteroclinic connections between the equilibria (0, 0), (1, 0) (if F (1) > 0). If
(v, vx) is a nonstationary periodic solution of (2.3), then v− α has infinitely
many zeros. Of course, all these zeros are simple by the uniqueness for the
Cauchy problem.

α

 
α0 0

11
v v

w w

Figure 1: The phase diagram of system (2.3); the balanced case (F (1) = 0)
is on the left, the unbalanced case (F (1) > 0) on the right

Let us now consider system (2.2) with c < 0. In this case, H is increasing
along the solutions:

dH(v(x), w(x))

dx
= −cw2. (2.4)

In particular, any bounded nonstationary solution of (2.2) with c < 0, is a
heteroclinic solution between two different equilibria. For c = ĉ, and for this
value only, (2.2) has a heteroclinic solution from (0, 0) to (1, 0), given by the
profile function of the traveling front: (v, w) ≡ (φ, φx) [2, 6, 16]. Obviously,
for any solution (v, w) of (2.2), v is increasing (resp. decreasing) when w > 0
(resp. w < 0). One also shows easily that the sets

Q1 := {(v, w) : v ≥ 1, w ≥ 0} \ {(1, 0)},
Q3 := {(v, w) : v ≤ 0, w ≤ 0} \ {(0, 0)}
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are positively invariant in the sense that if a solution satisfies (v(0), w(0)) ∈
Qi, for i = 1 or i = 3, then for all x > 0 one has (v(x), w(x)) ∈ IntQi (the
interior of Qi). Similarly, the sets

Q2 := {(v, w) : v ≤ 0, w ≥ 0} \ {(0, 0)},
Q4 := {(v, w) : v ≥ 1, w ≤ 0} \ {(1, 0)}

are negatively invariant.

 
0 1α v

w

Figure 2: The phase diagram of system (2.2) with c = ĉ < 0; the dashed
curves represent orbits of (2.3).

Let now c = ĉ, so that τ(φ) is a heteroclinic orbit from (0, 0) to (1, 0). It
is well known that, regardless of whether f ′(0), f ′(1) vanish or are negative,
τ(φ) contains all initial data (ξ, η) ∈ S such that the solution ψ of (2.1) with

ψ(0) = ξ, ψx(0) = η (2.5)

satisfies either (ψ(x), ψ′(x)) → (1, 0) as x → ∞, or (ψ(x), ψ′(x)) → (0, 0)
as x → −∞ (see, for example, [2, Sect. 4]). Likewise, there is a solution φ̃,
such that S ∩ τ(φ̃) is precisely the set of initial data (ξ, η) ∈ S such that the
solution ψ of (2.1), (2.5) satisfies (ψ(x), ψ′(x))→ (1, 0) as x→ −∞. If ĉ = 0,
then φ̃ is given simply by φ̃(x) = φ(−x) and τ(φ̃) is a heteroclinic orbit from
(1, 0) to (0, 0). If ĉ < 0, then τ(φ̃) intersects the halfline {(0, w) : w < 0},
hence by the positive invariance of Q3 one has (φ̃(x), φ̃x(x)) ∈ Q3 for all large
enough x (see Fig. 2). Since different trajectories of the autonomous system
(2.2) cannot intersect, using the above properties of φ, φ̃ and the invariance
properties of the sets Q1 − Q4, we obtain the following characterization of
the solutions of (2.1), (2.5) with

(ξ, η) ∈ S \ (τ(φ) ∪ τ(φ̃)). (2.6)
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Lemma 2.1. Let c = ĉ and let ψ be the solution (2.1), (2.5), where (ξ, η)
is as in (2.6). Consider the statements (ai)–(aiii) below. If ĉ = 0, then one
of the statements (ai), (aii) holds; if ĉ < 0, then either ψ ≡ α or one of the
statements (aii), (aiii) holds.

(ai) ψ is a periodic solution with 0 < ψ < 1 (that is, either ψ ≡ α or it is
a nonconstant periodic solution).

(aii) There are numbers x1 < x2 such that

ψ(x) ∈ (0, 1) (x ∈ (x1, x2)),

ψ(x) 6∈ (0, 1) (x ∈ R \ (x1, x2)),

ψ(x1) 6= ψ(x2).

(2.7)

(aiii) (ψ(x), ψ′(x))→ (α, 0) as x→ −∞, and there is x0 ∈ R such that

0 < ψ(x) < 1 (x ∈ (−∞, x0)); ψ(x) < 0 (x ∈ (x0,∞)). (2.8)

Note that in (aii) and (aiii), (ψ, ψ′) is not an equilibrium, hence ψ′(x) 6= 0
whenever ψ(x) = 0 or ψ(x) = 1. This and (2.7) imply that in (aii) we have

ψ(x1), ψ(x2) ∈ {0, 1}; ψ′(x1) 6= 0, ψ′(x2) 6= 0, (2.9)

and in (aiii)
ψ(x0) = 0, ψ′(x0) < 0. (2.10)

Corollary 2.2. Assume that ĉ < 0 and fix (ξ, η) ∈ S \ τ(φ). If c ∈ (ĉ, 0) is
sufficiently close to ĉ and ψ is the solution (2.1), (2.5), then either ψ ≡ α or
one of the statements (aii), (aiii) holds.

Proof. Denote the solution of (2.1), (2.5) by ψc; ψ being the solution for
c = ĉ as in Lemma 2.1. If (ξ, η) = (α, 0), then of course ψc ≡ α.

Assume that (ξ, η) 6= (α, 0). For now assume also that (ξ, η) is as in (2.6),
so that (aii) or (aiii) hold for c = ĉ. We claim that these are robust properties,
so, due to the continuous dependence of the solution ψc on c, they remain
valid–possibly with slightly perturbed x1, x2, or x0–if ψ is replaced with ψc

and c > ĉ, c ≈ ĉ. This is obviously the case with (aii) because of (2.9) and
the invariance properties of the sets Q1 −Q4. If (aiii) holds for c = ĉ, there
is x3 < x0 such that (ψ(x3), ψx(x3)) is contained inside a periodic orbit of
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the Hamiltonian system (2.3). The same is then true if ψ is replaced with
ψc and c ≈ ĉ. Then (ψc(x), ψx(x)) is “trapped” inside this periodic orbit, by
the monotonicity of H, and (ψc(x), ψcx(x)) has to converge to the equilibrium
(α, 0) as x→ −∞. The rest of the properties in (aiii) are clearly robust, due
to (2.10) and the positive invariance of Q3.

It remains to consider the case (ξ, η) ∈ τ(φ̃). Shifting φ̃, we may assume
that (ξ, η) = (φ̃(0), φ̃x(0)), so that

(φ̃(0), φ̃x(0)) = (ψc(0), ψcx(0)). (2.11)

It is clear that if c ≈ ĉ, then, going forward (that is, increasing x), the
trajectory of (ψc, ψcx) leaves S and then stays in Q3, just as the trajectory
of (φ̃, φ̃x) does. Going backward, one can use comparison of solutions of
(2.2) with different values of c (as carried out in [2, Sect. 4], for example), to
conclude from (2.11) that if c ∈ (ĉ, 0) then the trajectory of (ψc, ψcx) leaves
S through the halfline {(1, w) : w < 0}. Then it stays in Q4 by the negative
invariance. Hence (aii) holds with ψ replaced by ψc if c ∈ (ĉ, 0) and c ≈ ĉ.

The following lemma will be used in a comparison argument below.

Lemma 2.3. If ĉ < 0, then there exists numbers cn ∈ (ĉ, 0), n = 1, 2, . . . ,
and functions ψn ∈ C(R), n = 1, 2, . . . , such that for each n, ψn is a solution
of (2.1) with c = cn, ψn < 1, lim sup|x|→∞ ψn(x) < 0, and, as n → ∞, one
has cn → ĉ and maxx∈R ψn → 1.

Proof. Take any (ξ, η) ∈ τ(φ) with ξ > α and let ψc be the solution of
(2.1) with ψc(0) = ξ, ψcx(0) = η (at this point, c ∈ (ĉ, 0) is arbitrary). A
comparison of solutions of (2.2) with different values of c [2, Sect. 4] shows
that there are x1 < 0 < x2 (depending on c) such that

ψc(x1) = 0, ψcx(x1) > 0, ψc(x2) ∈ (α, 1), ψcx(x2) = 0. (2.12)

By the negative invariance of Q2, (ψc(x), ψcx(x)) ∈ Q2 for x < x1. Now, if c
is close to ĉ, then, by the continuity with respect to initial data, x2 is large
and ψc(x2) is close to 1. Using this and the structure of the level set of H for
F (1) = −ĉ > 0 (cf. Fig. 1), one shows easily that for x > x2, (ψc(x), ψcx(x))
stays in the lower half plane and eventually enters the positively invariant
quadrant Q3. Then ψc(x2) ≈ 1 is the maximum of ψc, hence ψc < 1. Taking
a sequence {cn} in (ĉ, 0) with cn → ĉ and setting ψn := ψcn , we obtain
sequences with the stated properties.
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2.2 Properties of Ω(u)

In this section we consider bounded solutions of the problem

ut = uxx + cux + f(u), x ∈ R, t > 0, (2.13)

u(x, 0) = u0(x), x ∈ R, (2.14)

where f ∈ C1(R), u0 ∈ C(R) ∩ L∞(R), and c ∈ R (other assumptions are
not needed in this section). We define the Ω-limit set of a bounded solution
u as in (1.4). We shall denote this set by Ω(u) or Ω(u0), but it is useful to
clarify the following. If u is a bounded solution of (1.1), then the function
ũ(x, t) := u(x+ct, t) is a bounded solution of (2.13). Obviously, Ω(u) = Ω(ũ)
and ũ(·, 0) ≡ u(·, 0). In other words, if u0 is given, then Ω(u0) is independent
of the choice of c in the problem (2.13), (2.14).

Assume that the solution u of (2.13), (2.14) is bounded. Then, the
usual parabolic regularity estimates imply that the derivatives ut, ux, uxx are
bounded on R × [1,∞) and they are globally α-Hölder on this set for each
α ∈ (0, 1). The following results are standard consequences of this regularity
property: Ω(u0) is a nonempty, compact, connected subset of L∞loc(R). More-
over, in (1.4) one can take the convergence in C1

loc(R), and Ω(u0) is compact
and connected in that space as well. The latter implies that the set

{(ϕ(x), ϕx(x)) : ϕ ∈ Ω(u0), x ∈ R}

is compact and connected in R2.
We now recall the invariance property of Ω(u0). Let ϕ ∈ Ω(u), so that

u(xn + ·, tn)→ ϕ for some sequence {(xn, tn)} with tn →∞. Then, passing
to a subsequence if necessary, one can show that the sequence u(xn+ ·, tn+ ·)
converges in C1

loc(R2) to a function U which is an entire solution of (2.13)
(that is, a solution of (2.13) on R2). Obviously, U(·, 0) = ϕ.

Finally, we note that Ω(u0) is also translation-invariant: with each ϕ ∈
Ω(u0), Ω(u0) contains the whole translation group orbit of ϕ, {ϕ(·+ ξ) : ξ ∈
R}. This follows directly from the definition of Ω(u0).

2.3 Zero number

Here we consider solutions of the linear equation

vt = vxx + cvx + a(x, t)v, x ∈ R, t ∈ (s, T ), (2.15)
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where −∞ < s < T ≤ ∞, a is a bounded continuous function on R× [s, T ),
and c is a constant. In the next section we use the following fact, often
without notice. If u, ũ are bounded solutions of the nonlinear equation
(2.13), then their difference v = u− ũ satisfies a linear equation (2.15).

We denote by z(v(·, t)) the number, possibly infinite, of the zero points
x ∈ R of the function x→ v(x, t).

The following intersection-comparison principle holds (see [1, 4]).

Lemma 2.4. Let v ∈ C(R× [s, T )) be a nontrivial solution of (2.15) (2.15)
on R× (s, T ). Then the following statements hold true:

(i) For each t ∈ (s, T ), all zeros of v(·, t) are isolated.

(ii) t 7→ z(v(·, t)) is a monotone nonincreasing function on [s, T ) with val-
ues in N ∪ {0} ∪ {∞}.

(iii) If for some t0 ∈ (s, T ), the function v(·, t0) has a multiple zero and
z(v(·, t0)) <∞, then for any t1, t2 ∈ (s, T ) with t1 < t0 < t2 one has

z(v(·, t1)) > z(v(·, t2)). (2.16)

If (2.16) holds, we say that z(v(·, t)) drops in the interval (t1, t2).

Remark 2.5. It is clear that if z(v(·, s0)) < ∞ for some s0 ∈ (s, T ), then
z(v(·, t)) can drop at most finitely many times in (s0, T ) and if it is constant
on (s0, T ), then v(·, t) has only simple zeros for each t ∈ (s0, T ).

Corollary 2.6. Assume that v is a solution of (2.15) such that for some
s0 ∈ (s, T ) one has

lim inf
|x|→∞

|v(x, s0)| > 0. (2.17)

Then there is t0 > 0 such that for t ≥ t0 the function v(·, t) has only finitely
many zeros and all of them are simple.

Proof. Since the zeros of v(·, s0) are isolated, (2.17) implies that there is only
a finite number of them. The conclusion now follows directly from Lemma
2.4 and Remark 2.5.

The next lemma shows that the property for a solution to have multiple
zeros is robust.

13



Lemma 2.7. Assume that v is a nontrivial solution of (2.15) such that
for some s0 ∈ (s, T ) the function v(·, s0) has a multiple zero at some x0:
v(x0, s0) = vx(x0, s0) = 0. Assume further that for some δ, ε > 0, vn is a
sequence in C1([x0− δ, x0 + δ]× [s0− ε, s0 + ε]) which converges in this space
to the function v. Then for all sufficiently large n the function vn(·, t) has a
multiple zero in (x0 − δ, x0 + δ) for some t ∈ (s0 − ε, s0 + ε).

This can be proved using a version of Lemma 2.4 on a small interval
around x0 and the implicit function theorem, see [5, Lemma 2.6] for details.
Note that the vn are not required to be solutions of any equation.

3 Proofs of Theorems 1.1, 1.3, and Corollary

1.2

Throughout this section we assume hypotheses (Hf), (Hu), (1.6), and (1.9)
to be satisfied, and let u be the solution of (1.1), (1.2). Recall that ĉ ≤ 0 is
the speed of the traveling front and φ is its profile function. Here, we choose
the specific translation of the profile function such that φ(0) = α.

If ψ is a nonconstant periodic steady state of (1.1), we denote by Int(τ(ψ))
the interior of τ(ψ) (viewing τ(ψ) as a Jordan curve).

We start with the following estimates.

Lemma 3.1. One has

lim
t→∞

(lim inf
x→∞

u(x, t)) = 1, lim
t→∞

(lim sup
x→∞

|ux(x, t)|) = 0. (3.1)

lim
t→∞

(lim sup
x→−∞

u(x, t)) = 0, lim
t→∞

(lim sup
x→−∞

|ux(x, t)|) = 0, (3.2)

Moreover, if ĉ < 0 and c ∈ (ĉ, 0] then for any x0 ∈ R one has

inf
x≥x0

u(x+ ct, t)→ 1 as t→∞. (3.3)

Proof. We prove (3.1) and omit the proof of (3.2), which is completely anal-
ogous. It is sufficient to prove the first relation in (3.1), the second one
then follows by standard parabolic regularity estimates for the function 1−u
(which solves a linear equation (2.15)). We can always replace u0 by a non-
decreasing function ũ0, which still satisfies the assumptions of Theorem 1.1
and is such that ũ0 ≤ u0. By the comparison principle, if we prove the first
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relation in (3.1) for ũ0, then it also holds for the original function u0. We
thus proceed assuming that u0 itself is nondecreasing. Then u(x, t) is non-
decreasing in x for each t ≥ 0. Therefore the limit ρ(t) := limy→∞ u(y, t)
exists for each t ≥ 0. The function ρ is continuous on [0,∞) and it solves
the ODE ρ̇ = f(ρ) on (0,∞) (see, for example, [16, Theorem 5.5.2]). Since
ρ(0) ∈ (α, 1] by assumption, we have ρ(t) → 1, as t → ∞. This completes
the proof of (3.1).

We now prove (3.3). Again, without loss of generality, we may assume
that u0 is nondecreasing. Let cn and ψn be as in Lemma 2.3. Given any
ε > 0, we can choose n such that cn ∈ (ĉ, c) and maxψn ∈ (1− ε, 1). Shifting
ψn, we may assume that ψn(0) = maxψn. By (3.1) and Lemma 2.3, we can
further choose positive constants t0 and y0 such that

u(x+ cnt0, t0) > ψn(x− y0) (x ∈ R).

Since the functions u(x + cnt, t) and ψn(x − y0) satisfy the same equation,
equation (2.13) with c = cn, the comparison principle gives

u(x+ cnt, t) > ψn(x− y0) (x ∈ R, t ≥ t0).

Using the monotonicity of u(·, t), we in particular obtain

u(x+ ct, t) ≥ u(y0 + cnt) > ψn(0) > 1− ε (x ≥ y0 + (cn − c)t, t ≥ t0).

Since cn < c and ε can be taken arbitrarily small, it is clear that (3.3) holds
for any x0.

Relations (3.1), (3.2), and the definition of Ω(u) immediately give the
following.

Corollary 3.2. The constant steady states 0 and 1 are elements of Ω(u).

The next lemma comprises the crux of the proof of Theorem 1.1.

Lemma 3.3. Let c ∈ [ĉ, 0] and let ψ be a solution of (2.1). Assume that
either one of the statements (ai), (aii) in Lemma 2.1 holds, or ĉ < c < 0 and
statement (aiii) holds. Then there is T such that

τ(u(·, t)) ∩ τ(ψ) = ∅ (t ≥ T ). (3.4)
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Proof. The proof is by contradiction. We assume that

τ(u(·, tn)) ∩ τ(ψ) 6= ∅ for some sequence tn →∞. (3.5)

First we show that this leads to a contradiction if (ai) holds. If ψ ≡ α,
then τ(ψ) = (α, 0) and (3.5) means that u(·, tn) − α has a multiple zero
for n = 1, 2, . . . . We know that this is not possible due to Corollary 2.6 and
Lemma 3.1. Thus, we can proceed assuming that ψ is a nonconstant periodic
solution (and c = 0). Let ρ > 0 be the minimal period of ψ. According to
(3.5), for each n there is yn ∈ [0, ρ) such that the function u(·, tn)−ψ(·− yn)
has a multiple zero, say zn. Consequently, x = 0 is a multiple zero of the
function u(· + zn, tn) − ψ(· + zn − yn). Write zn = knρ + ζn, where kn ∈ Z
and ζn ∈ [0, ρ). We may assume, passing to a subsequence if necessary, that
ζn → ζ0 ∈ [0, ρ] and yn → y0 ∈ [0, ρ], hence

ψ(·+ zn − yn) = ψ(·+ ζn − yn)→ ψ(·+ ζ0 − y0) in C1
b (R).

We may also assume that u(·+zn, tn)→ ϕ for some ϕ ∈ Ω(u), and u(·+zn, ·+
tn)→ U in C1

loc(R2), where U is an entire solution of (1.1) with U(·, 0) = ϕ
(see Sect. 2.2). Clearly, the function U(·, 0)−ψ(·+ζ0−y0) = ϕ−ψ(·+ζ0−y0)
has a multiple zero at x = 0 and u(· + zn, · + tn) − ψ(· + zn − y0) → U −
ψ(· − ζ0− y0) in C1

loc(R2). Now, V := U −ψ(· − ζ0− y0) is an entire solution
of a linear equation (2.15) (with c = 0) and we verify in a moment that
V (·, 0) = ϕ−ψ(· − ζ0− y0) 6≡ 0. Therefore, Lemma 2.7 implies that for each
sufficiently large n, the function u(·+zn, s+tn)−ψ(·+zn−y0) has a multiple
zero (near x = 0) for some small s. However, by Corollary 2.6 and Lemma
3.1, u(·, t)− ψ(· − y0) has only simple zeros for all sufficiently large t. Since
tn + s→∞, we have a desired contradiction.

To verify that ϕ−ψ(· − ζ0− y0) 6≡ 0, we note that for t > 0, the function
u(·, t) − α has a finite number of zeros and this number is independent of
t if t is large enough (see Corollary (2.6)). On the other hand, as ψ(· −
ζ0 − y0) − α has infinitely many simple zeros (see Sect. 2.1), the relations
ψ(· − ζ0 − y0) ≡ ϕ = limu(·, tn) would give a contradictory conclusion that
lim z(u(·, tn) − α) → ∞. This shows that ψ(· − ζ0 − y0) ≡ ϕ cannot hold.
The proof under condition (ai) is now complete.

Now assume that (aii) holds. Let ũ(x, t) = u(x + ct, t), so that ũ and ψ
satisfy the same equation (2.13). Obviously, τ(ũ(·, t)) = τ(u(·, t)) for any t,
thus (3.5) means that there is yn ∈ R such that

ũ(·, tn)− ψ(· − yn) has a multiple zero zn. (3.6)
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In particular, ψ(zn − yn) = ũ(zn, tn) ∈ (0, 1), which implies that zn − yn ∈
(x1, x2) (cp. (aii)). We distinguish the following two possibilities regarding
the sequence {yn}:

(a) {yn} is bounded (b) {yn} is not bounded.

If (a) holds, then {zn} is bounded as well. We now use similar arguments
as above for (ai). Passing to subsequences we may assume that for some
y0, z0 ∈ R and ϕ ∈ Ω(u), one has yn → y0, zn → z0, ũ(·, tn)→ ϕ in C1

loc(R).
Also, we may assume that ũ(·, ·+ tn)→ Ũ in C1

loc(R2), where Ũ is an entire
solution of (2.13) with Ũ(·, 0) = ϕ (see Sect. 2.2). Clearly, z0 is a multiple
zero of Ũ(·, 0)−ψ(·−y0) and one has ũ(·, ·+tn)−ψ(·+y0)→ U−ψ(·−y0). The
function V := Ũ−ψ(·−ζ0−y0) is a entire solution of a linear equation (2.15)
and V 6≡ 0 by (aii) and the fact that 0 ≤ Ũ ≤ 1. Lemma 2.7 implies that for
each sufficiently large n, the function ũ(·, s + tn) − ψ(· + y0) has a multiple
zero for some s ≈ 0. However, by Corollary (2.6) and (aii), ũ(·, t)−ψ(·+ y0)
has only simple zeros for all sufficiently large t, and we have a contradiction.

Next we consider the possibility (b). For definiteness we assume that,
after passing to a subsequence, one has yn → −∞; the case yn → ∞ can
be treated in an analogous way. By (2.7), (2.9), there is ε > 0 such that
|ψ′(x)| > ε, whenever x ∈ [x1, x2] and ψ(x) < ε. By Lemma 3.1, there are
positive constants r and t0 such that u(x, t0) + |ux(x, t0)| < ε if x < r. For ũ
this means that ũ(x, t0) + |ũx(x, t0)| < ε if x < r̃ := r − ct0. Consequently,
if n is so large that x2 + yn < r̃, then ũ(·, t0) − ψ(· − yn) has a unique zero
in the interval [x1 + yn, x2 + yn]. Of course, by (2.7), ũ(·, t0)− ψ(· − yn) has
no zero outside this interval, hence z(ũ(·, t0) − ψ(· − yn)) = 1. Clearly, by
(2.7), z(ũ(·, t) − ψ(· − yn)) ≥ 1 for all t, hence the equality must hold here
by the monotonicity of the zero number (see Lemma 2.4). The unique zero
of ũ(·, t) − ψ(· − yn) has to be simple for all t > t0 (see Remark 2.5). This
holds for all sufficiently large n, in particular, we can choose n so that also
tn > t0. We thus have a contradiction to (3.6).

Finally, we assume that ĉ < c < 0 and (aiii) holds. As above, (3.6)
holds with ũ(x, t) := u(x + ct, t). The possibilities that {yn} is bounded, or
{yn} has a subsequence converging to −∞, can be treated similarly as in the
case (aii); the only possibility that requires a different consideration is that
yn (replaced by a subsequence) converges to ∞. Assuming that yn → ∞,
choose ε > 0 such that 1− ε > ψ everywhere. By (3.3), there is t0 such that

ũ(x, t) > 1− ε (x ≥ 0, t ≥ t0).
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This implies that if n is large enough, then all zeros of ũ(·, tn) − ψ(· − yn)
are located in (−∞, 0]; in particular, zn ≤ 0, where zn is the multiple zero in
(3.6). Hence, by (aiii) and the assumption that yn →∞,

(ũ(zn, tn), ũx(zn, tn)) = (ψ(zn − yn), ψx(zn − yn))→ (α, 0). (3.7)

We now take a periodic steady state ψ̃ of (1.1) such that 0 < ψ̃ < 1 and
(α, 0) ∈ Int(τ(ψ̃)) (see Sect. 2.1 and cp. Fig. 1). Then (3.7) implies that for
large n the spatial trajectory τ(ũ(·, tn)) = τ(u(·, tn)) has to intersect τ(ψ̃) (it
cannot be contained entirely in Int(τ(ψ̃)) because of Lemma 3.1). Thus we
have a contradiction to the result proved above in the case (ai).

Corollary 3.4. Let c and ψ be as in Lemma 3.3. Then for any ϕ ∈ Ω(u)
one has τ(ϕ) ∩ τ(ψ) = ∅.

Proof. Assume this is not true. Then for some y0 the function ϕ−ψ(·−y0) has
a multiple zero. There is an entire solution U of (2.13) (with the same c as in
the statement of the lemma) such that U(·, 0) = ϕ and u(·+xn+ctn, ·+tn)→
U in C1

loc(R2) for some sequences xn ∈ R, tn → ∞ (see Sect. 2.2). Then
V := U − ψ(· − y0) is a solution of a linear equation (2.15) and V 6≡ 0, as
noted in the proof of Lemma 3.3 (see case (ai) in the proof; if (aii) or (aiii)
holds, then V 6≡ 0 is trivial). Thus, using Lemma 2.7 as in the previous proof,
we find a sequences t̃n ≈ tn, x̃n ∈ R, n = 1, 2, . . . , such that t̃n → ∞ and
u(·+ x̃n, t̃n)−ψ(·+ y0) has a multiple zero for n = 1, 2, . . . . This contradicts
(3.4).

We next consider the set

KΩ := ∪ϕ∈Ω(u)τ(ϕ) = {(ϕ(x), ϕx(x)) : ϕ ∈ Ω(u), x ∈ R}. (3.8)

This is a compact, connected subset of R2 (cp. Sect. 2.2).

Lemma 3.5. One has KΩ ⊂ Σ, where

Σ :=

{
{(0, 0), (1, 0)} ∪ τ(φ) if ĉ < 0,

{(0, 0), (1, 0)} ∪ τ(φ) ∪ τ(φ̃) if ĉ = 0,
(3.9)

and φ̃ is defined by φ̃(x) = φ(−x) (as in Sect. 2.1).
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Proof. Assume that KΩ 6⊂ Σ. Then there are (ξ, η) ∈ R2 \ Σ and ϕ ∈ Ω(u)
such that (ϕ(x0), ϕx(x0)) = (ξ, η) for some x0. Obviously, 0 ≤ ϕ ≤ 1 and the
existence of an entire solution through ϕ (see Sect. 2.2) and the comparison
principle show that either ϕ ≡ 0, or ϕ ≡ 1, or else 0 < ϕ < 1. Since
(ξ, η) 6∈ {(0, 0), (1, 0)}, the relations 0 < ϕ < 1 must hold and, in particular,
0 < ξ < 1. By Lemma 2.1 and Corollary 2.2, there are c ∈ [ĉ, 0] and a
solution ψ, such that (ψ(0), ψ′(0)) = (ξ, η) and the assumptions of Lemma
3.3 are satisfied. For this ψ, we have τ(ϕ) ∩ τ(ψ) 6= ∅, in contradiction to
Corollary 3.4.

Completion of the proof of Theorem 1.1. Let ĉ < 0. Corollary 3.2 implies
that KΩ contains the points (0, 0), (0, 1). Therefore, Lemma 3.5 and the
connectedness of KΩ imply that

KΩ = {(0, 0), (1, 0)} ∪ τ(φ). (3.10)

Take now any ϕ ∈ Ω(u). As noted in the proof of Lemma 3.5, if ϕ is not
one of the constant steady states 0, 1, then 0 < ϕ < 1. In this case, (3.10)
implies that τ(ϕ) ⊂ τ(φ). Since φ′ > 0, this means that for each x ∈ R there
is a unique ζ(x), such that

ϕ(x) = φ(ζ(x)), ϕ′(x) = φ′(ζ(x)). (3.11)

Moreover, ζ ∈ C1 by the implicit function theorem. Differentiating the first
identity and comparing to the second one, we obtain that ζ ′ ≡ 1. Thus there
is ξ ∈ R such that ϕ ≡ ψ(· − ξ). This proves (1.11).

Proof of Theorem 1.3, Part 1. Assume that ĉ = F (1) = 0. Also assume the
additional hypothesis on u0, (Ha), to be satisfied. In this part of the proof
we show that (1.11) holds.

The arguments from the previous proof apply here, the only difference is
that the specific statement of Lemma 3.5 for ĉ = 0 has to be used. Thus, in
place of (3.10), we can only say that one of the following possibilities occurs:

(oi) Ω(u) = {0, 1} ∪ {φ(· − ξ) : ξ ∈ R} (as stated in Theorem 1.3),

(oii) φ̃ ∈ Ω(u).

We just need to rule out (oii); (1.11) then follows from (oi), as in the proof of
Theorem 1.1. Assume that φ̃ ∈ Ω(u): there are xn ∈ R, tn > 0, n = 1, 2, . . .
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such that tn → ∞ and u(· + xn, tn) → φ̃. From this and Lemma 3.1 it
follows that for all large enough n, the function u(·, tn)−α has at least three
zeros whose mutual distances go to infinity as n → ∞. To contradict this
conclusion, we employ hypothesis (Ha).

First we note that the monotonicity of the zero number (see Lemma 2.4)
implies that z(u(·, t)−α) ≥ 3. Thus, if z(u0−α) = 1, we have a contradiction
already and we are done. We proceed assuming that the other condition of
(Ha) holds. We claim that this condition is preserved at positive times: For
each t > 0 the limits u(±∞, t) exist and one has

u(−∞, t) < u(x, t) < u(∞, t) (x ∈ R, t > 0). (3.12)

Indeed, the existence of the limits u0(±) implies that the limits ρ±(t) :=
u(±∞, t) exist for all t ≥ 0 and they satisfy the ODE ρ̇ = f(ρ) with the
initial conditions ρ±(0) := u0(±∞) (see [16, Theorem 5.5.2]). Relations
(1.15) give ρ−(0) ≤ u0 ≤ ρ−(0). Of course, none of these inequalities is an
identity by (Ha). Relations (3.12) now follow from the strong comparison
principle.

By Corollary 2.6, we can choose t0 > 0 such that for t ≥ t0, the zeros of
u(·, t)− α are all simple, and their number, say k, is finite and independent
of t. Let ζ1(t) < · · · < ζk(t) denote the zeros of u(·, t) − α for t ≥ t0. Since
they are simple, the functions ζ1, . . . ζk are C1 on [t0,∞).

Using (3.12), one shows easily that there is a smooth increasing function
ũ0 such that

u(−∞, t0) < ũ0(−∞) < min
ζ1(t0)≤x≤ζk(t0)

u(x, t0),

u(∞, t0) > ũ0(∞) > max
ζ1(t0)≤x≤ζk(t0)

u(x, t0).
(3.13)

Clearly, for such ũ0, if η is large enough, then

u(x, t0) < ũ0(x+ η) (x ≤ ζk(t0)), (3.14)

u(x, t0) > ũ0(x− η) (x ≥ ζ1(t0)). (3.15)

Let ũ be the solution of (1.1) on (t0,∞) with the initial condition ũ(·, t0) = ũ0.
Then ũ(x, t) is continuous on R× [t0,∞) and increasing in x. By (3.13), the
relations ũ(−∞, t) < α < ũ(−∞, t) hold for t = t0, hence they continue to
hold for all for all t ≥ t0 (see Lemma 3.1). Therefore, for each t ≥ t0 the
function ũ(x, t) − α has a unique zero ξ(t) and t 7→ ξ(t) is continuous on
[t0,∞).
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Consider now the relations

ξ(t)− η < ζ1(t), ζk(t) < ξ(t) + η. (3.16)

They are both satisfied for t = t0 (use the monotonicity of u(·, t) and the
relations (3.14), (3.15), with x = ζ1(t0), x = ζk(t0), respectively). By con-
tinuity, they are also satisfied it t > t0 is sufficiently close to t0. On the
other hand, (3.16) cannot be satisfied for all t > t0 by the properties of the
sequence {tn} stated above: ζk(tn)− ζ1(tn)→∞. Thus there is t1 > t0 such
that relations (3.16) hold for all t ∈ [t0, t1) and either ξ(t1) − η = ζ1(t1) or
ζk(t1) = ξ(t1) + η. Assume that the former holds (the latter can be dealt
with in an analogous way). Then

ũ(ζ1(t1) + η, t1) = ũ(ξ(t1), t1) = α = u(ζ1(t1), t1). (3.17)

Since ξ(t)−η is the unique zero of the function ũ(·+η, t)−α and ζk(t) > ζ1(t),
the first relation in (3.16) yields

ũ(ζk(t) + η, t) > α = u(ζk(t), t) (t0 ≤ t ≤ t1). (3.18)

Using this, (3.14), and the strong comparison principle, we obtain

ũ(x+ η, t) > u(x, t) (x < ζk(t), t0 ≤ t ≤ t1), (3.19)

contradicting (3.17).
With this contradiction, the proof of (1.11) is complete.

Proof of Corollary 1.2 and Proof of Theorem 1.3, Part 2. We ssume that
sign ĉ = − signF (1) < 0 or that ĉ = F (1) = 0 and the additional assumption
(Ha) is satisfied. Under these assumptions, we have already proved that
(1.11) holds. Since φ′ > 0, this implies in particular that if t is large enough,
then ux(x, t) > 0 whenever u(x, t) = α. Consequently, for large t there is a
unique γ(t) such that u(γ(t) + ĉt, t) = α. Moreover, γ ∈ C1, by the implicit
function theorem. Denote ũ(x, t) := u(x + ĉt, x), so ũ and φ solve the same
equation (2.13), with c = ĉ. Any sequence tn → ∞ can be replaced by a
subsequence such that ũ(· + γ(tn), tn) → ϕ in L∞loc(R) for some ϕ ∈ Ω(u).
Necessarily, ϕ(0) = α. Therefore, by (1.11) and our choice φ(0) = α, we have
ϕ = φ. Since this limit is always the same, we have

ũ(·+ γ(t), t)→ φ as t→∞, (3.20)
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with the convergence in L∞loc(R).
To complete the proof, we need to prove that the convergence takes place

in L∞(R) and γ′(t) → 0 as t → ∞. We start with the latter. Recall,
that any sequence tn → ∞ can be replaced by a subsequence such that
ũ(· + γ(tn), · + tn) converges in C1

loc(R2) to an entire solution U of equation
(2.13) with U(·, 0) = φ. Since φ is a steady state of (2.13), we have U ≡ φ,
by uniqueness and backward uniqueness for (2.13). Thus the convergence in
C1
loc(R2) yields

(ũ(·+ γ(tn), ·+ tn), ũx(·+ γ(tn), ·+ tn), ũt(·+ γ(tn), ·+ tn)→ (φ, φx, 0).

Since this is true for any sequence tn →∞, we have, in particular,

(ũ(γ(t), t), ũx(γ(t), t), ũt(γ(t), t)→ (α, φx(0), 0), (3.21)

as t → ∞. Now, differentiating the relation ũ(γ(t), t) = α, we obtain
ũx(γ(t), t)γ′(t) + ut(γ(t), t) = 0. Since φx(0) 6= 0, from (3.21) we conclude
that γ′(t)→ 0 as t→∞.

It remains to prove that the convergence in (3.20) is uniform on R. As-
sume it is not. Then there exist δ > 0 and sequences {xn}, {tn} such that
|xn| → ∞, tn →∞, and

|ũ(xn + γ(tn), tn)− φ(xn)| > 2δ. (3.22)

Assume for definiteness that {xn} can be replaced by a subsequence so that
xn → −∞ (the case when xn →∞ can be treated similarly). Since φ(−∞) =
0, (3.22) in particular implies that for all large enough n one has ũ(xn +
γ(tn), tn) > δ. On the other hand, using φ(−∞) = 0 and (3.20), we find x0

such that ũ(x0 + γ(t), t) < δ for all sufficiently large t. These relations imply
that if n is sufficiently large, then there is yn between xn and x0, such that

ũ(yn + γ(tn), tn) = δ, ũx(yn + γ(tn), tn) ≤ 0. (3.23)

Take now a subsequence of ũ(· + yn + γ(tn), tn), which converges in C1
loc(R)

to some ϕ ∈ Ω(u). By (3.23), ϕ(0) = δ, ϕ′(0) ≤ 0. However, by (1.11),
ϕ = φ(· − ξ) for some ξ, hence ϕ′ > 0. This contradiction completes the
proof.
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