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School of Mathematics, University of Minnesota

Minneapolis, MN 55455

Dedicated to John Mallet-Paret

on the occasion of his 60th birthday

Abstract
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1 Introduction

Consider the Cauchy problem

ut = uxx + f(u), x ∈ R, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ R, (1.2)

where f ∈ C1(R) and u0 ∈ L∞(R).
Problem (1.1), (1.2) has a unique solution u(·, t, u0) defined on a maximal

time interval (0, T (u0)). By a solution we mean the mild solution, as defined
in [20, 21], for example. The solution is classical in R× (0, T (u0)) and if u0
is uniformly continuous, then also u(·, t, u0)→ u0 in L∞(R), as t→ 0. If u is
bounded on R× [0, T (u0)), then necessarily T (u0) =∞, that is, the solution
is global, and, by standard parabolic regularity estimates, the trajectory
{u(·, t, u0) : t ≥ 1} is relatively compact in L∞loc(R). In this paper we are
concerned with the large-time behavior of bounded solutions in a localized
topology. We thus introduce the ω-limit set of such a bounded solution u,
denoted by ω(u) or by ω(u0) if the initial datum of u is given, as follows:

ω(u) := {ϕ : u(·, tn)→ ϕ for some sequence tn →∞}. (1.3)

Here the convergence is in L∞loc(R) (the locally uniform convergence). Thus
we consider the behavior of u, as t → ∞, on arbitrarily large compact sets.
The set ω(u) is nonempty, compact and connected in L∞loc(R), and it attracts
the solution in the following sense:

distL∞loc(R)(u(·, t), ω(u))→ 0 as t→∞. (1.4)
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Here we view L∞loc(R) as a metrizable locally convex space with the topology
and metric derived in the usual way from the countable system of seminorms

pN := ‖ · ‖L∞(−N,N), N = 1, 2, . . . .

By a theorem of [18] (see also [19]), the ω-limit set of any bounded solution
contains an equilibrium, or a steady state, of (1.1). For more specific initial
data a stronger result is available stating that the ω-limit set consists of a
single equilibrium. For periodic initial data, such a convergence theorem
can be found in [7]. In [9], the convergence of bounded nonnegative solutions
with compact initial support was proved, assuming that f is locally Lipschitz
and f(0) = 0. See also [10] for an improvement and extension of this result;
earlier convergence results under more restrictive conditions can be found in
[12, 14, 15, 27]). Other convergence theorems can be found in [22]. In [22]
it is also proved that all nonnegative bounded solutions with initial data in
C0(R) are quasiconvergent : their ω-limit set consists of equilibria.

Unlike on bounded intervals, the quasiconvergence result for (1.1), (1.2) is
not a consequence of the formal gradient structure of equation (1.1); the usual
energy functional may not even be defined along a general bounded solution.
In fact, it is known that not all bounded solutions are quasiconvergent. This
is illustrated by a construction of [11] (see also [25]) with f(u) = u(1−u2). If
the initial function u0 oscillates between the stable constants −1 and 1, being
identical or close to one of them on larger and larger intervals, then ω(u0)
contains the two constant equilibria as well as some functions which are not
equilibria. (See also [8] where such initial data are considered for the linear
heat equation; the corresponding solutions approach a continuum of constant
equilibria in that case). A similar construction works for any nonlinearity f
which is of the balanced bistable type: there are two zeros α < γ of f such
that f ′(α) < 0, f ′(γ) < 0, and the function F (u) =

∫ u
0
f(s) ds satisfies

F (u) < F (α) = F (γ) (u ∈ (α, γ)). (1.5)

In [25], we provided further examples of bounded solutions which are not
quasiconvergent. We showed in particular that in the balanced bistable case
there are examples of such solutions with initial data in C0(R). Of course,
these initial data have to change sign, otherwise the quasiconvergence theo-
rem of [22] applies.

Another example in [25] deals with unbalanced bistable nonlinearities:
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(BU) For some α < 0 < γ one has f(α) = f(0) = f(γ) = 0, f ′(α) < 0,
f ′(γ) < 0, f < 0 in (α, 0), f > 0 in (0, γ), and

F (γ) > F (α). (1.6)

As above,

F (u) =

∫ u

0

f(s) ds.

Note that, unlike (1.5), condition (1.6) is robust. Consequently, if f satisfies
(BU) and in addition f ′(0) > 0, then any small perturbation f̃ of f in the
class of C1-functions vanishing at 0 also satisfies (BU) with some perturbed
zeros α̃ ≈ α, γ̃ ≈ γ. Thus the example of [25] shows that the existence of
bounded solutions which are not quasiconvergent is not limited to a meager
class of nonlinearities. Of course, here we fix the middle zero at 0 just for
convenience. If we do not fix it, then the perturbation will have a middle
zero at some β ≈ 0 and the construction of [25] still applies.

The solution found in [25] for the unbalanced bistable nonlinearity does
not have limits at x = ±∞; its initial value u0 satisfies

lim sup
x→±∞

u0(x) ≥ 0, lim inf
|x|→±∞

u0(x) = α.

Our main goal in the present paper is to give another example in the un-
balanced case, one with u0 ∈ C0(R). Thus we show that even for a robust
class nonlinearities, the decay of u0 at ±∞ alone is not sufficient for the
quasiconvergence.

To formulate our main theorem, recall that if f satisfies (BU), then the
equation

vxx + f(v) = 0, x ∈ R, (1.7)

has a solution v such that v > α and v − α ∈ C0(R). We refer to any such
solution as a ground state of (1.7). More precisely, it is a ground state at
level α, but we do not consider any other ground states in this paper. The
ground state is unique up to translations [2] and, if its point of maximum is
placed at the origin, it is even in x and decreasing with increasing |x|.

Theorem 1.1. Let f be a C1 function satisfying (BU). Then there exists u0 ∈
C0(R) with α ≤ u0 ≤ γ such that ω(u0) contains the constant equilibrium α,
a ground state of (1.7), and some functions which are not equilibria of (1.1).
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The proof of this theorem is given in Section 4. It uses similar ingredi-
ents as constructions in [25]: intersection comparison properties, continuous
dependence in L∞loc(R) of solutions on their initial data, and a class of so-
lutions with specific large-time behavior. The specific solutions employed
in the present paper are the so-called threshold solutions for a suitable one-
parameter family initial data. The family is chosen such that for small values
of the parameter µ the corresponding solutions converge to the constant α,
whereas for large values of µ they converge to γ. By definition, the thresh-
old solutions are solutions which do not exhibit either of these behaviors.
Threshold solutions for reaction diffusion equations on R have been studied
quite extensively by several authors [5, 12, 13, 14, 15, 9, 23, 27]. In all these
studies the initial data in the considered families have their limits at infinity
equal to a zero of f and are bounded below by these limits. Usually they also
coincide with the limits outside a compact set, or other strong monotonicity
and symmetry conditions are imposed on them. In contrast, our method of
proof of Theorem 1.1 necessitates that we deal with more general families
of initial data: their limit at infinity is not a zero of f and, moreover, they
are not necessarily bounded from below or from above by the limits. This is
the main difference from a construction in [25, Section 6], where results on
threshold solutions from [9] are employed. The new results on threshold so-
lutions are formulated and proved in Section 3 and these are of independent
interest. We remark that threshold solutions were also used in a different
setting, but for a similar purpose, in [26].

In the remainder of the paper we assume (BU) to be satisfied.
We use the following notation. The support of a function g ∈ L∞(R) is

denoted by spt(g) (this is the minimal closed set K such that g = 0, a.e., in
R \K). For two functions g, g̃, the relations g ≤ g̃ and g < g̃ are understood
in the pointwise sense; specifically, the latter means that g(x) < g̃(x) for all
x ∈ R.

The symbol B stands for the space all continuous functions on R taking
values in [α, γ]. We equip B with the metric given by the weighted sup-norm

‖v‖w ≡ sup
x∈R

w(x)|v(x)|, (1.8)

where w(x) := 1/(1 + |x|2). The topology on B generated by this metric is
the same as the topology induced from L∞loc(R).
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2 Preliminaries

We start this preliminary section with a brief discussion of the steady states of
(1.1), then we summarize some consequences of the intersection comparison
principle, and recall a useful lemma on the continuity in L∞loc(R) of solutions
with respect to their initial data.

2.1 Steady states

The steady states of (1.1) are solutions of the equation

vxx + f(v) = 0, x ∈ R. (2.1)

The first-order system associated with (2.1),

vx = w, wx = −f(v), (2.2)

is a Hamiltonian system with respect to the energy

H(v, w) := w2/2 + F (v), F (u) =

∫ u

0

f(s) ds.

Thus the trajectories of (2.2) are contained in the level sets of H. Note that
these level sets are symmetric about the v axis. The following results are all
well known and easily proved by phase-plane analysis of system (2.2) (cp.
Figure 1), therefore we include them without proofs.

Lemma 2.1. Assume (BU).

(i) Let v be a solution of (2.1) with α < v(0) < γ. Then exactly one of
the following possibilities occurs:

(a) v ∈ B;

(b) there are constants a < 0 < b such that v(a) = v(b) = α and
α < v < γ on (a, b),

(c) there are values a ∈ [−∞, 0) and b ∈ (0,∞], at least one of them
finite, such that α < v(x) < γ, |v′(x)| > 0 for all x ∈ (a, b), and
either v(a) = α, v(b) = γ with a > −∞, or v(a) = γ, v(b) = α
with b <∞.
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(ii) If v ∈ B is a nonconstant periodic solution, then v has infinitely many
zeros (all of these zeros are simple due the uniqueness for the initial
value problem).

(iii) Let φ be the ground state with φx(0) = 0 and v another solution of
(2.1) with vx(0) = 0. Then v ∈ B if and only if α ≤ v(0) ≤ φ(0)
or v(0) = γ. If α < v(0) < φ(0), then v is a nonconstant periodic
solution. If φ(0) < v(0) < γ, then v is even, and for some a > 0 one
has v(±a) = α and vx < 0 in (0, a].

 γα β

Figure 1: Trajectories of system (2.2)

2.2 Zero number

If v = u − ũ or v = ux, where u, ũ are global solutions of (1.1), then v is a
solution of a linear equation

vt = vxx + c(x, t)v, x ∈ R, t > 0, (2.3)

with a suitable coefficient c. Specifically,

c(x, t) =

∫ 1

0

f ′(ũ(x, t) + s(ũ(x, t)− u(x, t))) ds

if v = u − ũ, and c(x, t) = f ′(u(x, t)) if v = ux. For an interval I = (a, b),
with −∞ ≤ a < b ≤ ∞, we define zI(v(·, t)) as the number of zeros, possibly
infinite, of the function x → v(x, t) in I. If I = R, we usually omit the
subscript I:

z(v(·, t)) := zR(v(·, t)).

The following intersection-comparison principle holds (see [1, 6]).
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Lemma 2.2. Let v ∈ C(R × [0,∞)) be a nontrivial solution of (2.3) and
I = (a, b), where −∞ ≤ a < b ≤ ∞. Assume that for some interval [τ, T ) ⊂
[0,∞) the following conditions are satisfied:

(c1) if b <∞, then v(b, t) 6= 0 for all t ∈ [τ, T ),

(c2) if a > −∞, then v(a, t) 6= 0 for all t ∈ [τ, T ).

Then the following statements hold true:

(i) For each t ∈ (τ, T ), all zeros of v(·, t) are isolated. In particular, if
a > −∞ and b <∞, then zI(v(·, t)) <∞ for all t ∈ (τ, T ).

(ii) t 7→ zI(v(·, t)) is a monotone nonincreasing function on [τ, T ) with
values in N ∪ {0} ∪ {∞}.

(iii) If for some t0 ∈ (τ, T ), the function v(·, t0) has a multiple zero in I and
zI(v(·, t0)) <∞, then for any t1, t2 ∈ [τ, T ) with t1 < t0 < t2 one has

zI(v(·, t1)) > zI(v(·, t0)) ≥ zI(v(·, t2)). (2.4)

If (2.4) holds, we say that zI(v(·, t)) drops in the interval (t1, t2). If this
holds for all t1, t2 with t1 < t0 < t2, we also say that zI(v(·, t)) drops at t0.

Corollary 2.3. Under the assumption of Lemma 2.2, the following state-
ments hold.

(i) If ξ ∈ (a, b), then the functions v(ξ, ·) vx(ξ, ·) cannot both vanish iden-
tically on any open subinterval of (τ, T ).

(ii) If zI(v(·, τ)) <∞, then zI(v(·, t)) can drop at most finitely many times
in (τ, T ) hence it is constant on an interval [τ0, T ). If zI(v(·, t)) is
constant on a compact interval [τ1, τ2] ⊂ (τ, T ), then v(·, t) has only
simple zeros in I for each t ∈ (τ1, τ2].

Proof. We start with the second statement. Clearly, the monotonicity of
t→ zI(v(·, t)) implies that zI(v(·, t)) can drop at most finitely many times in
(τ, T ) if it is finite, hence it has to stay constant in [τ0, T ) for some τ0 < T .
The second conclusion in statement (ii) follows directly from Lemma 2.2(iii).

Now, to prove the statement (i), assume that for some interval (τ1, τ2) ⊂
(τ, T ) one has

v(ξ, ·) ≡ vx(ξ, ·) ≡ 0 on (τ1, τ2). (2.5)
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Using the fact that the zeros of v(·, t) are isolated (Lemma 2.2(i)) and the
continuity of v, we find points ã < b̃ in (a, b) and times t̃1 < t̃2 in (t1, t2)
such that v(ã, t) 6= 0 6= v(b̃, t) for each t ∈ (t̃1, t̃2). Then, by Lemma 2.2,
z(ã,b̃)(v(·, t)) <∞ for each t ∈ (t̃1, t̃2), and relations (2.5) give a contradiction
to statement (ii) just proved above.

2.3 Continuity with respect to initial data

At several places we use the continuous dependence of the solutions of (1.1)
on their initial data. A standard result is the following one.

Lemma 2.4. Given constants T > τ > 0, p ∈ [1,∞], there is a constant
L(τ, T, p) such that if u0, ũ0 ∈ L∞(R), α ≤ u0, ũ0 ≤ γ, then for each t ∈ [τ, T ]
one has

‖u(·, t, u0)− u(·, t, ũ0)‖L∞(R), ‖ux(·, t, u0)− ux(·, t, ũ0)‖L∞(R)

≤ L(τ, T, p)‖u0 − ũ0‖Lp(R).

The estimate for v := u(·, t, u0)−u(·, t, ũ0) is a standard Lp−L∞ estimate
for the linear equation satisfied by v (see (2.3) and note that the coefficient c
is bounded independently of u0, ũ0 since the solutions stay between α and γ).
The estimate for the derivatives then follows, enlarging L(τ, T, p) if necessary,
from parabolic regularity estimates.

The following lemma gives a continuity result with respect to the norm
defined in (1.8).

Lemma 2.5. Given any finite T > 0 there is a constant L(T ) such that for
any u0, ũ0 ∈ B, one has

‖u(·, t)− ũ(·, t)‖w ≤ L(T )‖u(·, 0)− ũ(·, 0)‖w (t ∈ [0, T ]).

This continuity result is proved easily by considering the linear parabolic
equation satisfied by v(x, t) := w(x)(u(x, t)− ũ(x, t)), see [15, Lemma 6.2].

Lemma 2.5 and standard parabolic estimates give the following result.

Corollary 2.6. Given any u0 ∈ B, T > t0 > 0, R > 0, and ε > 0, there
exist ρ ≥ R and δ > 0 with the following property. If ũ0 ∈ B satisfies

sup
x∈[−ρ,ρ]

|u0(x)− ũ0(x)| < δ,
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then

sup
x∈[−R,R], t∈[0,T ]

|u(x, t, u0)− u(x, t, ũ0)| < ε,

sup
x∈[−R,R], t∈[t0,T ]

|ux(x, t, u0)− ux(x, t, ũ0)| < ε.

3 Threshold solutions

In this section we examine threshold solutions of (1.1) for families of initial
data which are identical to a constant outside a compact interval (the con-
stant is not necessarily a zero of f). The main result is Proposition 3.2 below.
In its formulation, the following is used.

Lemma 3.1. For each θ ∈ (0, γ], there exists ` = `(θ) such that if u0 ∈
L∞(R), α ≤ u0 ≤ γ, and u0 ≥ θ on an interval of length `, then u(·, t, u0)→
γ, as t→∞, in L∞loc(R).

This result is proved in [16] (proofs and extensions can also be found in
[9, 10, 15, 24]).

Proposition 3.2. Let θ ∈ (0, γ) and η ∈ (α, 0) be arbitrary, and let ` = `(θ)
be as in Lemma 3.1. Assume that ψµ, µ ∈ [0, 1], is a family of even functions
in B with the following properties:

(a1) For each µ ∈ [0, 1], ψµ − η has compact support, ψ1 ≥ θ on an interval
of length `, and there is s0 ≥ 0 such that

u(·, s0, ψ0) < 0. (3.1)

(a2) The function µ → ψµ : [0, 1] → L1(R) is continuous and monotone
increasing in the sense that if µ < ν, then ψµ ≤ ψν with the strict
inequality on a nonempty (open) set.

Then there is µ∗ ∈ (0, 1) with the following two properties:

(t1) If u0 = ψµ with µ ∈ (0, µ∗), then limt→∞ u(·, t, u0) = α in L∞(R).

(t2) If u0 = ψµ∗, then limt→∞ u(·, t, u0) → φ0 in L∞loc(R), where φ0 is the
(unique) even ground state of (1.7).
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We assume that the functions ψµ are even for the sake of convenience
and because it is sufficient for the proof of Theorem 1.1. The result appears
to be valid, without the evenness of the limit ground state, if the evenness
assumption on the ψµ is dropped, but would require extra technical work to
prove the convergence for µ = µ∗. At the end of this section (see Remark
3.7), we shall discuss another issue commonly considered in connection with
threshold solutions, the sharpness of the threshold value.

In the introduction we already mentioned several earlier papers concern-
ing threshold solutions of (1.1). In particular, the case η = α is covered in
greater generality in [9].

We prepare the proof of Proposition 3.2 by several lemmas. In the whole
section, y(t, η) denotes the solution of

ẏ = f(y), y(0) = η.

Lemma 3.3. Given any η ∈ [α, γ], h ∈ R, assume that u0 ∈ L∞(R), α ≤
u0 ≤ γ, and u0 ≡ η on (h,∞). Then for any positive constants δ < T one
has

lim
x→∞

u(x, t) = y(t, η) uniformly for t ∈ [0, T ], (3.2)

lim
x→∞

ux(x, t) = 0 uniformly for t ∈ [δ, T ]. (3.3)

An analogous conclusion holds, with the limits at −∞ in place of the limits
at ∞, if u0 ≡ η on (−∞, h).

Proof. We prove the first statement, the second statement then follows by
reflection in x. If is sufficient to prove (3.2); relation (3.3) follows from (3.2)
and standard parabolic estimates. Without loss of generality, we may also
assume that u0 satisfies one of the relations u0 ≥ η or u0 ≤ η. Indeed, if
(3.2) is proved for such initial data, then one obtains the general result from
the comparison principle. We only treat the case u0 ≥ η, the other case is
completely analogous.

Consider the function v(x, t) := u(x, t)−y(t, η). It is a solution of a linear
equation (2.3) and v(·, 0) = u0 − η ≥ 0. Hence, v is nonnegative. Since both
u and y(·, η) are bounded, we have |f(u(x, t)) − f(y(t, η))| ≤ Mv(x, t) for
some constant M ≥ 0. Therefore, by comparison,

v(x, t) ≤ eMtv̄(x, t) (3.4)
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where v̄ is the solution of v̄t = v̄xx with v̄(·, 0) = v(·, 0) = u0 − η. Since
v̄(·, 0) ≡ 0 on (h,∞), for each x ∈ R and t > 0 one has

0 ≤ v̄(x, t) =
1√
4πt

∫ h

−∞
e−
|x−s|2

4t (u0(s)− η) ds.

The substitution r = (s− x)/
√

4t then yields

0 ≤ v̄(x, t) ≤
‖u0 − η‖L∞(R)√

π

∫ h−x√
4t

−∞
e−r

2

dr.

The last integral converges to zero, as x→∞, uniformly for t ∈ (0, T ], which
gives (3.2).

Lemma 3.4. Assume that u0 ∈ L∞(R), α ≤ u0 ≤ γ, and for some constants
ρ > 0 and η1, η2 ∈ [α, 0) one has

u0 ≡ η1 on (−∞,−ρ) and u0 ≡ η2 on (ρ,∞). (3.5)

Then either
lim
t→∞

u(·, t, u0) = γ in L∞loc(R), (3.6)

or the following conclusion holds. Any sequence {(xn, tn)} in R× (0,∞) with
tn →∞ can be replaced by a subsequence such that u(·+xn, ·+tn)→ ϕ, where
ϕ ≡ α or ϕ is a ground state of (1.1), and the convergence is in L∞loc(R2).

Saying that the u(· + xn, · + tn) converges in L∞loc(R2) is a slight abuse
of language, for the functions are not defined on R2. However, for each
compact set K ⊂ R2, omitting a finite number of terms we obtain a sequence
of functions defined on K and we require it to converge uniformly on K.
Similarly we understand the convergence in the spaces C1

loc(R2), C2,1
loc (R2).

Proof of Lemma 3.4. Assume that (3.6) does not hold. Also we assume that
u0, as an element of L∞(R), is not identical to α, otherwise the statement is
trivial. Thus, by comparison principle, α < u(·, t) < γ for all t > 0.

Let {(xn, tn)} be any sequence in R × (0,∞) with tn → ∞. Using
parabolic estimates and a standard diagonalization procedure (as for ω-
limit sets) one shows that if {(xn, tn)} is replaced by a subsequence, then
u(· + xn, · + tn, u0) → U , where U(x, t) is an entire solution of (1.1) and
the convergence is in L∞loc(R2) as well as in C2,1

loc (R2). (Recall that an entire
solution refers to a solution defined for all t ∈ R).
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Our goal is to prove that U(x, 0) is a steady state; ultimately, we want to
show that it is either identical to a ground state or the constant α. To a large
extent, we do this by adapting some arguments from [9] (extra difficulties
come from the space translations). A prerequisite for these arguments is the
following claim.

Claim. Let ψ be a solution of (2.1), different from any ground state, such
that α < ψ(x0) < γ for some x0. Let J be the connected component of the
set {x : α < ψ(x) < γ} containing the point x0. Then for all sufficiently
large t, the function u(·, t, u0)) − ψ has only finitely many zeros in J , all of
them simple.

To prove the claim, it is sufficient to show that for some t > 0 one has

|u(·, t, u0))− ψ| > 0 outside a compact subinterval of J . (3.7)

The conclusion then follows from Lemma 2.2 and Corollary 2.3(ii).
Shifting both ψ and u in x, we assume without loss of generality that x0 =

0. Thus one of the statements (a)–(c) in Lemma 2.1 applies. If either (b) or
(c) holds, or if ψ is a constant solution, then the relations α < u(·, t) < γ and
Lemma 3.3 imply that (3.7) holds for each t > 0. If ψ ∈ B is a nonconstant
periodic solution, then ψ > α + ε for some ε > 0. Then Lemma 3.3 and
the assumption that η1, η2 ∈ [α, 0) imply that for all large enough t one has
u(±∞, t, u0) < α + ε, which gives (3.7).

Having proved the claim, we return to the entire solution U . We have
α ≤ U ≤ γ, since α ≤ u(·, ·, u0) ≤ γ. Remember that we want to prove that
U0 := U(·, 0) is identical to a ground state or the constant α.

First of all we show that U0 cannot be identical to any other steady state.
Indeed, assume that U0 ≡ ϕ, where ϕ is a steady state different from α and
any ground state. Then ϕ ∈ B, hence either ϕ ≡ γ, or ϕ ≡ 0, or ϕ is
a nonconstant periodic solution. The possibility ϕ ≡ γ is easily excluded:
it would imply that u(·, tn, u0) is close to γ on arbitrarily large intervals
as n → ∞. But then, by Lemma 3.1, (3.6) would hold contrary to our
assumption. Thus either ϕ ≡ 0 or ϕ is a nonconstant periodic solution of
(2.1). Set ϕ̃ ≡ 0 if ϕ 6≡ 0. If ϕ ≡ 0, pick a nonconstant periodic solution
ϕ̃ of (2.1) with α < ϕ̃ < γ. Then ϕ̃ − ϕ has infinitely many simple zeros
(see Lemma 2.1(ii)). Consequently, since u(·+xn, tn, u0)→ U0 ≡ ϕ, we have
z(u(·, tn, u0)− ϕ̃)→∞ as n→∞. On the other hand, as seen in the proof
of the Claim, Lemmas 3.3 and 2.2 imply that z(u(·, t, u0) − ϕ̃) is finite and
independent of t for large t, a contradiction.
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If U ≡ α, there is nothing else to be proved. Assume U 6≡ α. Since we
have just shown that U 6≡ γ, the comparison principle yields α < U < γ.

The rest of the proof is by contradiction. Assume that U0 is not identical
to any ground state. For a fixed x0 ∈ R, to be chosen below, we let ϕ be
the solution of (2.1) with ϕ(x0) = U0(x0) ∈ (α, γ) and ϕ′(x0) = U ′0(x0). We
want to apply the Claim to ϕ. For that we need make a choice of x0 so that
ϕ is not a ground state. To see that this is possible, recall that all ground
states (at level α) are shifts of one fixed ground state φ. Therefore, if no
x0 with the given property existed, the following statement would hold: For
each x ∈ R there is ξ such that

U0(x) = φ(x+ ξ), U ′0(x) = φ′(x+ ξ). (3.8)

Clearly, ξ = ξ(x) is uniquely determined (y → (φ(y), φ′(y)) is one-to-one)
and is of class C1 by the implicit function theorem (φ and φ′ cannot simul-
taneously vanish). Elementary considerations using the identities (3.8) now
show that ξ ≡ ξ0 for some constant ξ0, hence U0 ≡ φ(·+ ξ0) in contradiction
to our assumption on U0.

Thus we have verified that with a suitable choice of x0 the solution ϕ is
not a ground state. We can also assume that ϕ 6≡ 0 (otherwise, we make a
different choice of x0, which is possible due to U0 6≡ 0). Obviously, ϕ 6≡ α,
ϕ 6≡ γ, as α < U < β. Thus ϕ is a nonconstant solution. As, we proved
above, U0 − ϕ 6≡ 0.

Hence, U − ϕ is a nontrivial entire solution of a linear equation 2.3 and
U(·, 0) − ϕ has a multiple zero at x = x0. We derive a contradiction from
this conclusion.

First we consider the case when ϕ ∈ B, which means, by the above
choices, that ϕ is a nonconstant periodic solution. Let ρ > 0 be the minimal
period of ϕ. For each n, write xn in the form xn = knρ + ζn, where kn ∈ Z
and ζn ∈ [0, ρ). We may assume, passing to a subsequence if necessary, that
ζn → ζ0 ∈ [0, ρ]. Then u(·+ knρ+ ζ0, ·+ tn, u0)− u(·+ xn, ·+ tn, u0)→ 0 in
C1
loc(R2) and, consequently,

u(·+ knρ+ ζ0, ·+ tn, u0)− ϕ→ U − ϕ in C1
loc(R2). (3.9)

Using this and the fact that U(·, 0) − ϕ has a multiple zero at x = x0, it is
not difficult to prove (see [9, Lemma 2.6]) that for all large enough n, the
function u(·+ knρ+ ζ0, s+ tn, u0)−ϕ has a multiple zero (near x0) for some
s ∈ (−1, 1). Therefore, the function

u(·, s+ tn, u0)− ϕ(· − knρ− ζ0) = u(·, s+ tn, u0)− ϕ(· − ζ0)
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has a multiple zero for all large n. Since s + tn → ∞, this contradicts the
Claim with ψ = ϕ(· − ζ0).

Next we consider the case when ϕ 6∈ B, hence one of the statement (b),
(c) in Lemma 2.1(i) applies. Let I be the connected component of the set
{x : α < ϕ(x) < β} containing x0.

We distinguish two cases:

(i) xn can be replaced by a subsequence such that xn → y0 ∈ R,

(ii) |xn| → ∞.

In the case (i), we use a similar argument as for the periodic ϕ. We have

u(·, ·+ tn, u0) = u(· − xn + xn, ·+ tn, u0)→ U(· − y0, t)

in C1
loc(R2). Therefore, similarly as above, [9, Lemma 2.6] implies that if n

is large enough, then u(·, s+ tn, u0)− ϕ(· − y0) has a multiple zero in I + y0
for some s ∈ (−1, 1). This contradicts the Claim with ψ = ϕ(· − y0).

Finally, we derive a contradiction in the case (ii). Passing to a subse-
quence, we may assume that xn → ∞ or xn → −∞. We just consider the
former, the latter can be treated in the same way. Once again, we use the
property that for all large n

u(·+ xn, s+ tn, u0)− ϕ has a multiple zero in I for some s ∈ (−1, 1).
(3.10)

Remember that one of the statements (b), (c) of Lemma 2.1(i) applies to
the solution ϕ. Fixing any t0 > 0, we have

u(x, t0, u0)− y(t0, η2), ux(x, t0, u0)→ 0 as x→∞

(see (3.5) and Lemma 3.3). Therefore, it is easy to show that if n is sufficiently
large, then one of the following statements holds:

(zb) u(·, t0, u0) − ϕ(· − xn) has exactly two zeros in I + xn, both of them
simple (this holds if (b) applies to ϕ).

(zc) u(·, t0, u0)−ϕ(·−xn) has a unique zero in I+xn and the zero is simple
(this holds if (c) applies to ϕ).

15



Choose any n so large that one of these statements applies and such that,
in addition, tn − 1 > t0 and (3.10) holds. By the monotonicity of the zero
number, we have zI+xn(u(·, t, u0)− ϕ(· − xn)) ≤ 1 or zI+xn(u(·, t, u0)− ϕ(· −
xn)) ≤ 2, for all t > t0, according to whether (zb) or (zc) holds.

By Lemma 2.2 and (3.10), zI+xn(u(·, t, u0)−ϕ(·−xn)) drops at t = s+tn >
t0. This is clearly impossible if (zc) holds (in this case, the zero number is
at least 1 at all times since α < u(·, t0, u0) < γ). Thus (zb) holds and in this
case we necessarily have u(·, s+ tn, u0) ≥ ϕ(· − xn). Then, by comparison,

u(·, t, u0) > u(·, t− (s+ tn), ψ∗) (t > s+ tn), (3.11)

where ψ∗ is defined by

ψ∗(x) =

{
ϕ(x− xn), if x ∈ I + xn,

α, if x ∈ R \ (I + xn).

It is a well-known fact that, since α and ψ are both solutions of (2.1), the
function ψ∗ is a strict generalized subsolution of (1.1). This is to say that
u(·, t, ψ∗) > ψ∗ for all t > 0 and u(·, t, ψ∗) is increasing in t. Thus, as t→∞,
u(t, ·, ψ∗) converges to a steady state, say ϕ∗. This steady state is in B and
above ψ∗, thus the only possibility is ϕ∗ ≡ γ (see Lemma 2.1(iii)). Thus
(3.11) implies that (3.6) holds, contrary to our starting assumption. Thus
we have derived a contradiction in this last case as well. This concludes the
proof Lemma 3.4.

In the next lemma, we consider a 3-step function g defined by

g(x) =


β (x ∈ (−∞,−q),
ϑ (x ∈ [−q, 0]),

α (x ∈ (0,∞]),

(3.12)

with suitable constants β ∈ (α, 0), q > 0, and ϑ ∈ (0, γ) (see Figure 2).

Lemma 3.5. Let q := `(γ/2) (the constant ` in Lemma 3.1 corresponding
to θ = γ/2). Given arbitrary β ∈ (α, 0), there exists ϑ ∈ (0, γ) with the
following property. If g is as in (3.12), then limt→∞ u(·, t, g) = φ, where φ is
a ground state of (1.1) and the convergence is in L∞(R).

Remark 3.6. We will use the solution u(·, t, g) in intersection comparison
arguments below. For that purpose it will be useful to have noticed that
u(·, t, g) has the following features (regardless of the specific value of ϑ ∈
(0, γ)).
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Figure 2: The graph of the function g

(i) For all sufficiently small t > 0, the function u(·, t, g) has a unique
critical point, which is its global maximizer.

(ii) If u0 ∈ B, u0 ≡ η̃ ∈ (α, β) near ±∞, and g̃ := g(· + x0) with a
sufficiently large x0, then

z(u(·, t0, g̃)− u(·, t0, u0)) = 1 (3.13)

for all sufficiently small t0 > 0.

These properties are verified easily by considering smooth approximations of
the function g. To prove (i), take smooth functions gn with a unique critical
point such that gn − g → 0 in L1(R). Each function ux(·, t, gn) has a unique
zero by Lemma 2.2. Approximating ux(·, t, g) by ux(·, t, gn) (see Lemma 2.4)
and applying Lemma 2.2 to ux(·, t, g), we see that ux(·, t, g) has at most one
zero for any t > 0 and that zero, when it exists, must be simple. Statement
(ii) is proved by a similar approximation argument, using gn with a sharp
transition from positive values to values less than η̃.

Proof of Lemma 3.5. We find ϑ ∈ (0, γ) as a threshold value. To simplify the
notation, let uϑ = u(·, ·, g), where g is as in (3.12). Consider the following
two statements regarding the solution uϑ:

(L0) There is T ≥ 0 such that uϑ(x, T ) < 0 (x ∈ R).

(G0) There is T ≥ 0 such that uϑ(·, T ) > γ/2 on a closed interval of length
q.
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Set

K0 := {ϑ ∈ [0, γ] : (L0) holds},
K1 := {ϑ ∈ [0, γ] : (G0) holds}.

Lemma 3.3, and the continuous dependence of solutions on their initial data
(see Lemma 2.4) imply that the sets K0 and K1 are both open in [0, γ]. By
the definition of g, we have 0 ∈ K0 and (γ/2, γ] ⊂ K1. By Lemma 3.1,
K0∩K1 = ∅. Thus there is ϑ ∈ (0, γ), for which neither (L0) nor (G0) holds.
Fix any such ϑ. We show that it has the property stated in Lemma 3.5.

First we note that, since (L0) does not hold, for each t > 0 the function
uϑ(·, t) assumes positive values. At the same time, it is negative near ±∞, by
Lemma 3.3. Hence uϑ(·, t) has a global maximizer ξ(t). Actually, ξ(t) is the
unique critical point of uϑ(·, t). This is obvious for small t (cp. Remark 3.6)
and for any t it follows from the nonincrease of the zero number z(uϑx(·, t)).
Thus for each t > 0

uϑx(·, t) > 0 (x < ξ(t)), uϑx(·, t) < 0 (x > ξ(t)). (3.14)

The next information on uϑ(·, t) is obtained from Lemma 3.4:

lim
t→∞

uϑ(·+ ξ(t), t) = φ0 in L∞loc(R), (3.15)

where φ0 is the even ground state. Indeed, since (G0) does not hold, Lemma
3.4 guarantees that any sequence tn →∞ has a subsequence such that uϑ(·+
ξ(tn), tn) converges in L∞loc(R) to a steady state ϕ, either a ground state or
the constant α. Since uϑ(·+ ξ(t), t) assumes a positive value at x = 0, which
is its global maximizer, necessarily ϕ = φ0. And since this is true for any
sequence tn →∞, (3.15) holds.

The convergence in (3.15) is in fact uniform, that is, L∞loc(R) can be re-
placed by L∞(R):

lim
t→∞

uϑ(·+ ξ(t), t) = φ0 in L∞(R). (3.16)

This follows easily from the monotonicity of uϑ(· + ξ(t), t) and φ0 in the
intervals (−∞, 0), (0,∞) and the relations

uϑ(·, t) ≥ α = φ0(±∞) (t ≥ 0).

18



Our final step is to prove that uϑ(·, t) converges to a ground state, a shift of
φ0, in L∞(R). In particular, this will prove that uϑ(·, t) cannot drift to infinity
along the manifold {φ0(·+ζ) : ζ ∈ R}. (It is worthwhile to mention that such
drifts do occur for equations on a half-line with Dirichlet or Robin boundary
conditions, see [5, 13]). Our proof uses the normal hyperbolicity of this
manifold of steady states in a similar way as in some proofs of convergence
of localized solutions [4, 15, 17]. A minor additional difficulty is that here
the solution is not a priori known to converge to a fixed steady state along a
sequence of times. This is dealt with by space-shifting the solution suitably.

We introduce the time-one map for equation (1.1). Take X := L∞(R)
and for u0 ∈ X set Π(u0) := u(·, 1, u0). Without loss of generality, modifying
the nonlinearity f outside the interval [α, γ] if necessary, we may assume that
all solutions are global, hence Π is well defined on X. Also, it is a C1 map
on X (see [21]). Obviously, Πn(u0) = u(·, n, u0), n = 0, 1, . . . .

To prove the desired convergence result, it is sufficient to show that the
sequence

Πn(g) = uϑ(·, n), n = 0, 1, . . . ,

converges to a ground state φ; since φ is a steady state, the continuity with
respect to initial data then implies that uϑ(·, t) also converges to φ. In fact,
it is sufficient to prove that {Πn(g)} is convergent in L∞(R). By (3.15), its
limit is then necessarily a shift of φ0 (and ξ(t) is also convergent).

We prove the convergence by contradiction. Assume that the sequence
{Πn(g)} in not Cauchy in X: there are nk, mk, k = 1, 2, . . . , such that

lim inf ‖Πnk(g)− Πnk+mk(g)‖X > 0, nk →∞. (3.17)

Denote
xk := ξ(nk), uk := uϑ(·+ xk, nk).

By (3.16), uk → φ0 in X. Also, by (3.17) and the translation invariance of
(1.1),

lim inf ‖uk − Πmk(uk)‖X > 0.

Therefore, given any small ε > 0, for all sufficiently large k there is pk with
the following property:

‖φ0 − Πj(uk)‖X < ε (j = 0, 1, . . . , pk); ‖φ0 − Πpk+1(uk)‖X ≥ ε. (3.18)

This is the setup of Lemma 1 of [3], which we intend to apply. We recall here
a special case of that lemma using the present notation:
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Lemma BP. Let Π be a C1 map on a Banach space X and φ0 a fixed point
of Π. Assume that the following hypotheses are satisfied with a sufficiently
small ε > 0:

(a) σ(Π′(φ0)) = σs ∪ σc ∪ σu, where σs, σc and σu are closed subsets of
{λ : |λ| < 1}, {λ : |λ| = 1} and {λ : |λ| > 1}, respectively. Moreover,
the range of the spectral projection of Π′(φ0) associated with the spectral
set σu ∪ σc is finite-dimensional.

(b) φ0 is stable for the restriction Π|W c
loc

, where W c
loc is a local center mani-

fold of φ0.

(c) There are sequences uk and pk such that uk → φ0 and (3.18) holds.

Then there is a subsequence of {Πpk+1(uk)} which converges to an element
of W u \ {φ} where W u is the (strong) unstable manifold of φ0 relative to the
map Π.

Hypotheses (a), (b) are verified in the present situation in a standard way
using spectral properties of Schrödinger operators and the spectral mapping
theorem (see for example [4, 15, 17]). For the one-dimensional problem con-
sidered here, the local center manifold W c

loc is one-dimensional and consists
of shifts of φ0 (so the stability requirement holds trivially). It is not neces-
sary to recall the precise meaning of the unstable manifold W u here; the only
property we will use is that W u \ {φ} does not contain any fixed point of Π.

Thus, Lemma BP implies that passing to a subsequence one has

Πpk+1(uk)} → w in X, (3.19)

where w is not a a steady state of (1.1). Recalling that uk = uϑ(· + xk, nk)
and using the translation invariance of equation (1.1), we obtain

Πpk+1(uk) = uϑ(·+ xk, nk + pk + 1).

Since the convergence in X is the uniform convergence on R, (3.19) implies

uϑ(·+ ξ(nk + pk + 1), nk + pk + 1)− w(· − xk + ξ(nk + pk + 1))→ 0.

Using this and (3.16), we obtain

φ0 − w(· − xk + ξ(nk + pk + 1))→ 0
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in X, which is clearly impossible as w is not a fixed point of Π (in particular,
it is not a shift of φ0).

This contradiction shows that the sequence {Πn(g)} in Cauchy in X,
completing the proof of Lemma 3.5.

Proof of Proposition 3.2. To simplify the notation, we set uµ = u(·, ·, ψµ).
Similarly as in the proof of Lemma 3.5, we consider the following two state-
ments:

(L0) There is T ≥ 0 such that uµ(x, T ) < 0 (x ∈ R).

(G0) There is T such that uµ(·, T ) > θ on a closed interval of length `.

If µ ∈ [0, 1] is such that (L0) holds, then, by Lemma 3.3 one has ζ :=
supx∈R u

µ(x, τ) < 0. Therefore, by comparison with the ODE solution y(t, ζ),
we obtain limt→∞ u

µ(·, t) = α in L∞(R). If, on the other hand, (G0) holds,
then limt→∞ u

µ(·, t) = γ in L∞loc(R) by Lemma 3.1.
Set

M0 := {µ ∈ [0, 1] : (L0) holds},
M1 := {µ ∈ [0, 1] : (G0) holds}.

Assumption (a2), Lemma 3.3, and the continuous dependence (in L∞(R))
of solutions on their initial data imply that the sets M0 and M1 are both
open in [0, 1]. Also, by (a2) and the comparison principle, these sets are
intervals. Now, assumption (a1) implies that 0 ∈M0 and 1 ∈M1. Obviously,
M0∩M1 = ∅. Thus the set of µ ∈ [0, 1] for which none of (L0), (G0) holds is
a nonempty closed set J in (0, 1) containing in particular µ∗ := supM0. To
complete the proof of Proposition 3.2, we prove that for each µ ∈ J one has

lim
t→∞

uµ(·, t) = φ0 in L∞(R). (3.20)

First we show that (3.20) holds with L∞(R) replaced by L∞loc(R):

lim
t→∞

uµ(·, t) = φ0 in L∞loc(R). (3.21)

We start by showing that uµ(·, t) has a limit in L∞loc(R) or, in other words,
that ω(uµ) consists of a single function. Clearly, ω(uµ) consists of even func-
tions. Therefore, by a straightforward application of Lemma 3.4 one shows
that ω(uµ) can only contain the constant steady state α or the ground state
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φ0 (note that (3.6) is excluded, as (G0) does not hold). The connectedness
of ω(uµ) implies that either ω(uµ) = {α} or ω(uµ) = {φ0}.

Thus, to prove (3.21), we just need to rule out the possibility ω(uµ) =
{α}. Assume it holds. Then, since (L0) does not hold (remember that
µ ∈ J) and uµ(·, t) is even, for each t > 0 there is ζ(t) > 0 such that
uµ(±ζ(t), t) > 0. From the assumed convergence uµ(·, t) → α in L∞loc(R) it
follows that ζ(t)→∞ as t→∞. We now employ the solution u(·, t, g) from
Lemma 3.5, where we choose β ∈ (η, 0). Take a shift g̃ = g(· + x0) so that
u(·, t0, g̃) − u(·, t0, u0) has a unique zero for some t0 > 0 (cp. Remark 3.6).
Then, by the monotonicity of the zero number, z(u(·, t, g̃)− uµ(·, t)) ≤ 1 for
all t > t0. By the translation invariance of (1.1), we have u(·, t, g̃) = u(· +
x0, t, g), hence u(·, t, g̃) converges in L∞(R) to the ground state φ̃ = φ(·+x0),
φ being the limit ground state of u(·, t, g) (cp. Lemma 3.5). Let x1 be the
maximizer of φ̃. Since ζ(t) → ∞ and uµ(x1, t) → α, for large enough t one
has −ζ(t) < x1 < ζ(t) and

uµ(±ζ(t), t) > 0 > φ̃(±ζ(t)), φ̃(x1) > 0 > uµ(x1, t). (3.22)

These relations and the fact that u(·, t, g̃)→ φ̃ in L∞(R) imply that u(·, t, g̃)−
uµ(·, t) has at least 2 zeros for large t, which is a contradiction.

Thus we have proved that ω(uµ) = {φ0}, that is, (3.21) holds.
The last step is to prove that the limit is in fact uniform on R: (3.20)

holds. Assume it is not. In view of (3.21) and the relations uµ ≥ α =
φ0(±∞), there must then exist a constant ε0 > 0 and sequences tn → ∞,
λn →∞ such that

uµ(±λn, tn) > φ(±λn) + ε0 > α + ε0 (n = 1, 2, . . . )). (3.23)

We employ the solution u(·, t, g) from Lemma 3.5 one more time. Fix β ∈
(η, 0) and let g be as in Lemma 3.5. Let φ be the limit ground state of the
solution u(·, t, g). Next take a shift g̃ = g(· + x0) with a large x0 such that,
first,

z(u(·, t, g̃)− uµ(·, t)) ≤ 1 (3.24)

for all small t (cp. Remark 3.6) and, second, the maximizer x1 of the ground
state φ̃ = φ(·+ x0)) is negative. The latter implies that

φ0 < φ̃ on (−∞, x1],
φ0 > φ̃ on [0,∞).

(3.25)

22



Now, relations (3.23) and the fact that φ̃ ≈ α near −∞ imply that for large
n one has

uµ(−λn, tn) > α + ε0 > φ̃(−λn).

Using this, (3.25), and the facts that u(·, t, g̃) → φ̃ in L∞(R), uµ(·, t) → φ0

in L∞loc(R), we obtain the following relations for all sufficiently large n:

uµ(−λn, tn) > u(−λn, tn, g̃), uµ(x1, tn) < u(x1, tn, g̃), uµ(0, tn) > u(0, tn, g̃).

Consequently, for all large enough n the function u(·, tn, g̃) − uµ(·, tn) has
at least two zeros, one in (−∞, x1) and another one in (x1, 0). This is in
contradiction with (3.24) and the monotonicity of the zero number.

This contradiction proves (3.20) and completes the proof.

We refer to µ∗ as the threshold value (relative to the family ψµ, µ ∈ [0, 1]),
to the solution in (t2) as the threshold solution, and to the solutions in (t1)
as subthreshold solutions.

Remark 3.7. Although this is not needed below, we mention that the
threshold value µ∗ in Proposition 3.2 is sharp: for all µ ∈ (µ∗, 1] one has
limt→∞ u

µ(·, t) = γ in L∞loc(R). Indeed, we have proved in the proof of Propo-
sition 3.2 that (3.20) is the only alternative to (L0) and (G0). Now one can
prove in a number of ways that (3.20) cannot hold for µ > µ∗. One possibility
is to use an argument based on the zero number as in [9, 27] (the case η = α
is covered by [9] and the case η ∈ (α, 0) is even simpler to handle by similar
arguments). Alternatively, one could use the linear instability of φ0 and in-
variant manifold techniques, or arguments based on exponential separation
similarly as in [24].

4 Proof of Theorem 1.1

The proof of Theorem 1.1 is based on a recursive construction. The idea is,
similarly as in [26], to define u0 ∈ B successively on a sequence of larger and
larger intervals. The definition on each of the intervals guarantees a certain
subthreshold behavior of the solution u(·, t, u0), regardless of the values of u0
outside that interval. This allows us to prescribe the behavior of the solution
along two sequences of times approaching infinity. This way we show that
the constant steady state α as well as a ground state are contained in ω(u0).
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Zero number arguments are then used to prove that ω(u0) does not contain
any other nonconstant steady state.

Our recursive construction is detailed in the following lemma.

Lemma 4.1. Let {ηk}k, {θk}k be monotone sequences in (α, 0), (0, γ), respec-
tively, such that ηk ↗ 0 and θk ↘ 0. Let φ0 be the ground state of (1.7) with
maximum at x = 0. There exist t0 ∈ (0, 1) and a sequence (uk, Rk, ρk, tk, δk),
k = 1, 2, . . . , in B × (0,∞)4 such that the statements (i)-(iv) below are valid
for all k = 1, 2, . . . , and statements (v), (vi) are valid for all k = 2, 3 . . . .

(i) t2k > t2k−1 > 1, ρk > Rk > 2,

(ii) uk is piecewise linear and even, and spt(uk − ηk) ⊂ (−Rk, Rk).

(iii) The solution u(·, ·, uk) has the following properties:

lim
t→∞
‖u(·, t, uk)− α‖L∞(R) = 0, (4.1)

u(x, t, uk) < 0 (x ∈ R \ (−Rk, Rk), t ∈ [0, t2k]), (4.2)

‖u(·, t2k−1, uk)− φ0‖L∞(R), ‖u(·, t2k, uk)− α‖L∞(R) <
1

k
, (4.3)

u(·, t2k−2, uk) has exactly four zeros, all of them simple, (4.4)

u(x, t2k, uk) < 0 (x ∈ R). (4.5)

(iv) For each u0 ∈ B with ‖uk − u0‖L∞(−ρk,ρk) < δk, the following relations
hold:

u(x, t, u0) < 0 (x = ±Rk, t ∈ [0, t2k]), (4.6)

‖u(·, t2k−1, u0)− φ0‖L∞(−Rk,Rk), ‖u(·, t2k, u0)− α‖L∞(−Rk,Rk) <
2

k
,

(4.7)

u(·, t2k−2, u0) has exactly four zeros in (−Rk, Rk), all of them simple,
(4.8)

z(−Rk,Rk)(u(·, t, u0)) ≤ 4 (t ∈ [t2k−2, t2k]), (4.9)

u(x, t2k, u0) < 0 (x ∈ [−Rk, Rk]). (4.10)

(v) t2k−1 > t2k−2 + 1, Rk > Rk−1 + 1, δk+1 < δk/2.

(vi) uk ≡ uk−1 on [−ρk−1, ρk−1] and ηk−1 ≤ uk ≤ θk on R \ [−ρk−1, ρk−1].
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Figure 3: The graphs of ψ1, ψµ∗ , and u1. One has u1 = ψµ, for some µ < µ∗,
µ ≈ µ∗.

Proof. We shall repeatedly use Lemma 3.1 and Proposition 3.2 with θ = θk,
η = ηk. The symbol `(θ) has the same meaning as in Lemma 3.1.

STEP 1. Let k = 1. Set `1 := `(θ1). For each µ ∈ [0, 1] define an even
piecewise linear function ψµ as follows (see Figure 3):

ψµ(x) =



α + (µθ1 − α)x (x ∈ [0, 1]),

µθ1 (x ∈ [1, `1 + 1]),

(µθ1 − η1)(`1 + 2− x) + η1 (x ∈ [`1 + 1, `1 + 2]),

η1 (x ≥ `1 + 2),

ψµ(−x) (x < 0).

It is straightforward to verify that the family ψµ, µ ∈ [0, 1], satisfies the
assumptions of Proposition 3.2 with θ = θ1, η = η1; we just remark that
condition (3.1) is satisfied due to the comparison principle, as ψ0 ≤ 0 and
ψ0 ≡ η1 < 0 near ±∞. Let µ∗ ∈ (0, 1) be the threshold value, as in Proposi-
tion 3.2. Since the ψµ are all even in x, the limit ground state of the threshold
solution u(·, ·, ψµ∗) is φ0:

lim
t→∞

u(·, t, ψµ∗) = φ0 in L∞(R).

Now, by the continuity of solutions with respect to initial data (in L∞(R)),
if µ < µ∗ is close to µ∗, then the subthreshold solution u(·, ·, ψµ) gets close to
φ0 at a large time t1, and then approaches α in L∞(R), as t→∞. Thus we
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can choose µ ∈ (0, µ∗) and times t2 > t1 > 1 such that for u1 := ψµ relations
(4.1), (4.3), and (4.5) are valid. Next, Lemma 3.3 and the assumption η1 < 0
imply that relation (4.2) holds for each sufficiently large R1. We pick such R1

satisfying also R1 > `1+2 so that spt(u1−η1) ⊂ (−R1, R1) and statement (ii)
holds. Finally, since µθ1 > 0, the definition of u1 implies that z(u(·, t, u1)) ≥
4 = z(u(·, 0, u1)) for all small t ≥ 0. By the monotonicity of the zero number,
the equality must hold there. Using Corollary 2.3, we pick t0 ∈ (0, 1) such
that (4.4) holds.

Relations (4.2)-(4.5) and Corollary 2.6 clearly imply the existence of con-
stants ρ1 > R1 and δ1 > 0 such that statement (iv) holds with (4.9) excluded.
Relation (4.9) follows by an application of Lemma 2.2(ii) with I = (−R1, R1),
which is legitimate by (4.6).

STEP 2 (the induction argument). Suppose that for some n ≥ 1,

(uk, Rk, ρk, tk, δk) ∈ B × (0,∞)4, k = 1, . . . , n,

have been defined such that statements (i)-(iv) hold for all k = 1, . . . , n, and,
in case n ≥ 2, statements (v), (vi) hold for all k = 2, . . . , n. We need to
define (un+1, Rn+1, ρn+1, tn+1, δn+1) in such a way that statements (i)-(vi) are
valid for k = n+ 1.

0 u2

ψ1

ρ1

γ
θ1

l1+2  ρ1+l2+2

θ2

η1

η2

α

Figure 4: The graphs of ψ1 and u2, with the graph of ψµ∗ in between. They
all coincide with the graph of u1 on [0, ρ1].

Set `n+1 = `(θn+1). For each µ ∈ [0, 1] define an even piecewise linear
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function ψµ as follows (see Figure 4):

ψµ(x) =



un(x) (x ∈ [0, ρn]),

(µθn+1 − ηn)(x− ρn) + ηn (x ∈ [ρn, ρn + 1]),

µθn+1 (x ∈ [ρn + 1, ρn + `n+1 + 1]),

(µθn+1 − ηn+1)(ρn + `n+1 + 2− x) + ηn+1

(x ∈ [ρn + `n+1 + 1, ρn + `n+1 + 2]),

ηn+1 (x ≥ ρn + `n+1 + 2),

ψµ(−x) (x < 0).

Since spt(un − ηn) ⊂ (−Rn, Rn) ⊂ (−ρn, ρn), this definition implies that
ψµ ∈ B.

Since ψµ ≡ un on [−ρn, ρn], statement (iv) with k = n applies to u0 = ψµ
for each µ ∈ [0, 1]. In particular, (4.6) and (4.10) give

u(Rn, t, ψµ) < 0 (t ∈ [0, t2n], µ ∈ [0, 1]), (4.11)

u(x, t2n, ψµ) < 0 (x ∈ [−Rn, Rn], µ ∈ [0, 1]). (4.12)

We first use these relations to verify that the family ψµ, µ ∈ [0, 1], satisfies
the hypotheses of Proposition 3.2 with θ = θn+1, η = ηn+1. We just need
to prove that condition (3.1) holds, all the other hypotheses are obviously
satisfied. Since spt(un − ηn) ⊂ (−Rn, Rn), the definition of ψ0 gives ψ0 ≤ 0
in (Rn,∞). Combining this with (4.11) and using the comparison principle,
we obtain

u(x, t2n, ψ0) < 0 (x ≥ Rn).

This, (4.12), and the evenness of u(·, t, ψ0) show that (3.1) holds with s0 =
t2n.

Thus Proposition 3.2 applies. Let µ∗ ∈ (0, 1) be the threshold value as in
that proposition. Again, by the evenness of ψµ, the limit ground state of the
threshold solution u(·, ·, ψµ∗) must be φ0.

We claim that for each µ < µ∗ sufficiently close to µ∗,

u(·, t2n, ψµ) has exactly four zeros, all of them simple. (4.13)

To prove this claim, we first show that for each t ∈ [0, t2n]

u(·, t, ψµ∗) > 0 somewhere in (Rn,∞). (4.14)
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We proceed by contradiction. Assume that, to the contrary,

u(·, τ, ψµ∗) ≤ 0 on (Rn,∞) at some τ ∈ [0, t2n]. (4.15)

Then (4.11) and the comparison principle give u(x, t, ψµ∗) ≤ 0 for all (x, t) ∈
(Rn,∞)×[τ, t2n]. Combining this with (4.12) and the evenness in x, we obtain
u(·, t2n, ψµ∗) ≤ 0. But then the comparison principle shows that u(·, ·, ψµ∗)
cannot converge to φ0, a contradiction.

Hence we have proved that (4.14) holds for each t ∈ [0, t2n]. In view of
(4.11) and Lemma 3.3 (which we use to show that u < 0 near x = ∞),
relation (4.14) means that

z(Rn,∞)(u(·, t, ψµ∗)) ≥ 2 (t ∈ [0, t2n]). (4.16)

Now, by (4.11) and Lemma 2.2,

z(Rn,∞)(u(·, t, ψµ)) ≤ z(Rn,∞)(ψµ) ≤ 2 (t ∈ [0, t2n], µ ∈ [0, 1]), (4.17)

where the last inequality is by the definition of ψµ. In particular, the equality
holds in (4.16). Therefore, by Corollary 2.3, u(·, t2n, ψµ∗) has exactly two
zeros in (Rn,∞) both of them simple. The same is then true for all µ ≈ µ∗,
by (4.17) and the continuity with respect to the initial data. This, the
evenness in x, and (4.12) imply (4.13).

As in STEP 1, we use the continuity with respect to initial data in L∞(R),
to find µ ∈ (0, µ∗) so close to µ∗ that (4.13) holds and that the subthreshold
solution u(·, ·, ψµ) is close to φ0 at a large time t2n+1 > t2n + 1 and close to α
at a later time t2n+2. Relations (4.3), (4.5) are then valid with un+1 := ψµ and
k = n+ 1. Of course, (4.1) is valid for the subthreshold solution u(·, ·, ψµ).

Having defined un+1 and t2n+2 > t2n+1, we use Lemma 3.3 to pick Rn+1 so
large that (4.2) holds with k = n+1 and, in addition, Rn+1 > ρn+`n+1+2 (the
latter gives sptun+1 ⊂ (−Rn+1, Rn+1)). Hence statements (i)-(iii) hold with
k = n+1. We next use Corollary 2.6 to find ρn+1 > Rn+1 and δn+1 ∈ (0, δn/2)
such that statement (iv) holds (to verify (4.9) one uses Lemma 2.2 and (4.6)).

Relations (v) and (vi) hold by construction and the monotonicity of the
sequences {ηn}, {θn}.

This completes the induction argument and thereby the proof of Lemma
4.1.

Completion of the proof of Theorem 1.1. With φ0, ηk, θk, and (uk, Rk, ρk, tk, δk)
as in Lemma 4.1, take any u0 ∈ B with

‖uk − u0‖L∞(−ρk,ρk) < δk (k = 1, 2, . . . ). (4.18)
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For example, set

u0(x) ≡ uk(x) (|x| ≤ ρk, k = 1, 2, . . . ), (4.19)

which is a correctly defined function, in view of (vi), and it is in B, as uk ∈ B.
Since ηk, θk, δk → 0, and ρk → ∞ (see statements (i) and (v)), relations

(4.18) and (vi) imply that u0 ∈ C0(R).
By (4.18), statement (iv) applies to u0 for each k. Since Rk, tk → ∞,

from (4.7) we obtain that the equilibria α and φ0 are contained in ω(u0). We
next show that if ϕ is a nonconstant equilibrium of (1.1), then ϕ 6∈ ω(u0).

First of all, no ground state other than φ0 can be contained in ω(u0) by
the evenness of u0. If ϕ ∈ B is a nonconstant equilibrium of (1.1) which
is not a ground state, then it is periodic and ϕ has infinitely many zeros,
all of them simple (cp. Lemma 2.1). Assume ϕ ∈ ω(u). Then there is a
sequence sk → ∞ such that u(·, sk) → ϕ in L∞loc(R). Consequently, if b > 0
is sufficiently large, then there is k0 such that

z(−b,b)(u(·, sk, u0)) ≥ 5 (k = k0, k0 + 1, . . . ).

On the other hand, relations (4.9), (i), and (v) imply that for each b > 0
there is τb > 0 such

z(−b,b)(u(·, t, u0)) ≤ 4 (t ≥ τb).

This contradiction shows that no nonconstant periodic equilibrium can be
contained in ω(u0). Thus, since α, φ0 ∈ ω(u0), the connectedness of ω(u0)
implies that it contains some functions which are not equilibria of (1.1). The
proof is now complete.
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[24] P. Poláčik, Threshold solutions and sharp transitions for nonautonomous
parabolic equations on RN , Arch. Rational Mech. Anal. 199 (2011), 69–
97, Addendum: www.math.umn.edu/∼polacik/Publications.

[25] , Examples of bounded solutions with nonstationary limit profiles
for semilinear heat equations on R, J. Evol. Equ., to appear.

31
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