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Abstract. We consider bounded solutions of the semilinear heat

equation ut = uxx+f(u) on R, where f is of a bistable type. We show

that there always exist bounded solutions whose ω-limit set with re-

spect to the locally uniform convergence contains functions which are

not steady states. For balanced bistable nonlinearities, there are ex-

amples of such solutions with initial values u(x, 0) converging to 0

as |x| → ∞. Our example with an unbalanced bistable nonlinear-

ity shows that bounded solutions whose ω-limit set do not consist of

steady states occur for a robust class of nonlinearities f .
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1 Introduction

Consider the Cauchy problem

ut = uxx + f(u), x ∈ R, t > 0, (1.1)

u(x, 0) = u0(x), x ∈ R, (1.2)

where f ∈ C1(R) and u0 is a bounded continuous function on R.
Problem (1.1), (1.2) has a unique (classical) solution u defined on a time

interval [0, T (u0)). We assume here that T (u0) ∈ (0,∞] is maximal possible.
If u is bounded on R × [0, T (u0)), then necessarily T (u0) = ∞, that is, the
solution is global.

In this paper, we examine the large-time behavior of bounded solutions.
For this purpose we introduce the ω-limit set, ω(u), of a bounded solution u
as follows:

ω(u) := {ϕ : u(·, tn)→ ϕ for some tn →∞}. (1.3)

Here, the convergence is in L∞loc(R) (the locally uniform convergence). Thus
we consider the behavior of u, as t → ∞, on arbitrarily large compact sets.
By standard parabolic regularity estimates, the trajectory {u(·, t) : t ≥ 1} of
any bounded solution u is relatively compact in L∞loc(Ω). Therefore,

ω(u) 6= ∅ and distL∞loc(R)(u(·, t), ω(u))→ 0 as t→∞. (1.4)

It is also well known that the set ω(u) is connected. By compactness, ω(u)
consists of a single element ϕ if and only if u is convergent: u(·, t) → ϕ in
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L∞loc(R). Necessarily, ϕ is an equilibrium, or a steady state, of (1.1) in this
case.

If equation (1.1) is considered on a bounded interval, instead of R, and one
of common boundary conditions, say Dirichlet, Neumann, Robin, or periodic,
is assumed, then each bounded solution is convergent [7, 29, 40]. In contrast,
bounded solutions (1.1) on R are not convergent in general even for the linear
heat equation (that is, equation (1.1) with f ≡ 0). More specifically, if u0
takes values 0 and 1 on suitably spaced long intervals with small transitions
between them, then, as t → ∞, u(·, t) will oscillate between 0 and 1, thus
creating a continuum ω(u) which contains both 0, 1 (see [8]). In the case
of the linear heat equation, it is easy to show that each bounded solution is
quasiconvergent: its ω-limit set consists of steady states. This follows, for
example, from the invariance property of the ω-limit set: ω(u) consists of
entire solutions of (1.1), by which we mean solutions defined for all t ∈ R.
If u is bounded, then the entire solutions in ω(u) are bounded as well and,
by the Liouville theorem for the linear heat equation, all such solutions are
constant.

For the semilinear problem (1.1) with f 6≡ 0, there are several general
results describing the large time behavior of special classes of bounded so-
lutions. For example, convergence to an equilibrium has been proved for
bounded nonnegative solutions whose initial value u0 has compact support
[10, 13, 14, 41] and for the solutions, not necessarily nonnegative, which are
localized in the sense that they decay to zero at x = ±∞ uniformly in t > 0
(see [16]; in this result, it is also assumed that f ′(0) < 0). Recently, a qua-
siconvergence result for positive bounded solutions whose initial values u0
decay to 0 at x = ±∞ has been proved in [30].

With no extra assumptions on u0, assuming just that u is bounded, it has
been proved in [22, 23] that ω(u) necessarily contains an equilibrium. Unlike
in the linear heat equation, this result cannot in general be improved so as
to say that u is quasiconvergent. Indeed, a construction of [12] (see, also [38]
and Proposition 4.1 below) yields an example of a bounded solution of (1.1)
with f(u) = u(1− u2) whose ω-limit set contains the constant equilibria −1
and 1 as well as some nonequilibrium solutions. Similarly to the example
of [8] for the heat equation, the initial value of the solution in [12] oscillates
between the constant equilibria, being identical or close to one of them on
larger and larger intervals.

The example of [12] seems to be the only known example of a bounded
solution which is not quasiconvergent (in L∞loc(R)) for problems of the form

3



(1.1), (1.2). Considering the special form of the nonlinearity f and the initial
datum u0, two natural questions arise. The first one concerns the oscillatory
character of u0. Is it true that the solutions with initial values which do
not exhibit large oscillations, say for initial values u0 which converge to a
zero of f as |x| → ∞, the corresponding solution must be quasiconvergent
if bounded? The answer is “yes” for the linear heat equation (the solution
converges to u0(∞)) and also in the semilinear case if u0(x) ≥ u0(∞) for all
x ∈ R (see [30]). However, in general, the answer is negative as we prove
in Theorem 2.1 below. See also Remark 2.2 where another example of a
non-quasiconvergent solution is mentioned.

The second question concerns the structure of the nonlinearity. In the
example of [12], as well as in our Theorem 2.1, the nonlinearity is of the
balanced bistable type: there are two zeros α < γ of f such that f ′(α) < 0,
f ′(γ) < 0, and the function F (u) =

∫ u
0
f(s) ds satisfies

F (u) < F (α) = F (γ) (u ∈ (α, γ)). (1.5)

This is obviously not a robust condition: it is easily broken by an arbitrarily
small perturbation of f . Thus our next concern is whether bounded solutions
which are not quasiconvergent occur only for a meager class of nonlinearities,
or, in other words, whether the quasiconvergence of all bounded solutions is
a generic property of the nonlinearity f . We answer this question in the
negative as well. More specifically, we prove that there is a function f such
that (1.1) has a bounded solution which is not quasiconvergent, and the same
is true for any small C1 perturbation of f , see Theorem 2.3 and the remarks
following condition (C2) in Section 2.

In this paper, our main goal has been to give examples of bounded solu-
tions which are not quasiconvergent; one with an initial value which has a
finite limit as |x| → ∞ and another one with a robust nonlinearity. We do not
give a detailed description of the ω-limit sets of these and or other bounded
solutions in general. As mentioned above, the ω-limit set always consists of
bounded entire solutions. There is a vast variety of entire solutions, including
spatially periodic heteroclinic orbits between steady states (see [17, 18] and
references therein), traveling waves, and many types of “nonlinear superpo-
sitions” of traveling waves and other entire solutions (see [4, 5, 24, 26, 31, 32]
and references therein). It is not clear which of these entire solutions can
actually occur in the ω-limit set of a bounded solution.

We emphasize that having defined the ω-limit set with respect to the
convergence in L∞loc(R), we examine the behavior of solutions in compact sets
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only. This captures one aspect of the behavior of the solutions. Additional
information can be gathered by considering moving coordinate frames. Sev-
eral classes of solutions have been examined from this point of view. For
example, the classical papers [19, 20] contain fundamental theorems on con-
vergence to a single traveling front. Examples of solutions approaching a
family of traveling waves, while not converging to any single one, can be
found in [25, 27, 37, 39].

Let us add a few remarks on related results for the higher-dimensional
version of (1.1):

ut = ∆u+ f(u), x ∈ RN , t > 0. (1.6)

We define the ω-limit set of a bounded solution u as in (1.3), with conver-
gence in L∞loc(RN). The result of [22, 23] stating that ω(u) always contains an
equilibrium remains valid if N = 2, but it is not known if it is valid for N > 2.
There are also several convergence results concerning positive bounded solu-
tions for nonlinearities satisfying f(0) = 0. Under the additional condition
f ′(0) < 0, the convergence in L∞(RN) for bounded solutions in the energy
space was proved in [3, 9, 15] and for localized solutions in [21]. The conver-
gence in L∞loc(RN) for solutions with compact initial support was established
in [11]. For initial data which do not have compact support, bounded positive
solutions, even the localized ones, can behave in a much more complicated
manner. For N ≥ 11 and f(u) = up with a sufficiently large p, examples of
nonconvergent localized solutions were given in [34, 35]. The ω-limit sets of
these solutions are formed by radially symmetric equilibria and their trans-
lations. In the more recent paper [36], positive, bounded, localized solutions
which are not even quasiconvergent are found for any N ≥ 3 and f(u) = up

with a suitable exponent p. It is not known if such solution exist for some
nonlinearity f if N = 2. They do not exist if N = 1 (see [30]).

The remainder of the paper is organized as follows. We formulate our
main theorems in the next section. Section 3, contains basic ingredients
of our proofs: intersection comparison properties, continuous dependence in
L∞loc(R) of solutions on their initial data, and some special solutions. The
proofs of our main theorems are given is Sections 5 and 6. They both follow
a similar scheme. The initial value for a solution is constructed recursively
on an increasing sequence of intervals covering the whole of R. The definition
of u0 on any of these intervals, say I, guarantees a certain behavior of the
solution on a large time interval, regardless of the values of u0 outside I.
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This is where the continuous dependence on initial data in L∞loc(R) plays a
crucial role. In Section 4, we revisit the example of [12]. As an illustration
of our method in a simpler setting, we prove the existence of a bounded
non-quasiconvergent solution similar to the one in [12].

2 Main results

In our first theorem, we consider a balanced bistable nonlinearity f . More
specifically, f is assumed to satisfy the following conditions.

(C1) For some α < 0 < γ one has f(α) = f(0) = f(γ) = 0, f ′(α) < 0,
f ′(γ) < 0, f < 0 in (α, 0), f > 0 in (0, γ), and

F (α) = F (γ). (2.1)

Here and below,

F (u) =

∫ u

0

f(s) ds.

Note that (2.1), in conjunction with the other conditions in (C1), implies
(1.5).

Recall that C0(R) stands for the space of continuous functions on R con-
verging to 0 at x = ±∞.

Theorem 2.1. Let f be a C1 function satisfying (C1). Then there exists a
function u0 ∈ C0(R) with α ≤ u0 ≤ γ such that the ω-limit set of the solution
of (1.1), (1.2) contains the equilibria α, γ, as well as some functions which
are not equilibria of (1.1).

Note that, by the comparison principle, the relations α ≤ u0 ≤ γ imply
that the solution u satisfies α ≤ u(·, t) ≤ γ for all t. In particular, the
solution is bounded.

Remark 2.2. One can also find initial data u0 ∈ C0(R) such that ω(u) con-
tains an equilibrium which is increasing in x, another one which is decreasing
in x, as well as some functions which are not equilibria of (1.1). We elaborate
on this at the end of Section 5.

In our second theorem, the following conditions are assumed.
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(C2) For some α < β < γ one has f(α) = f(β) = f(γ) = 0, f ′(α) < 0,
f ′(γ) < 0, f < 0 in (α, β), f > 0 in (β, γ), and

F (γ) > F (α). (2.2)

Here, too, f is of the bistable type. However, unlike (2.1), condition (2.2) is
robust. Consequently, if f satisfies (C2) and in addition f ′(β) > 0, then any
any small C1 perturbation f̃ of f satisfies (C2) with some perturbed zeros
α̃ ≈ α, β̃ ≈ β, γ̃ ≈ γ.

It is well known (and easily proved by an elementary phase plane analysis,
cp. Section 3) that if f satisfies (C2), then the equation

vxx + f(v) = 0, x ∈ R, (2.3)

has a solution v such that v > α and v − α ∈ C0(R). We refer to any
such solution as a ground state of (2.3) at level α. In one space dimension
considered here, the ground state is unique up to translations [2]. Moreover,
if its point of maximum is placed at the origin, then it is even in x and
decreasing with increasing |x|.

Theorem 2.3. Let f be a C1 function satisfying (C2). Then there exists
u0 ∈ C(R) with α ≤ u0 ≤ γ such that the ω-limit set of the solution of (1.1),
(1.2) contains the equilibrium α, a ground state of (2.3) at level α, and some
functions which are not equilibria of (1.1).

The proofs of the theorems will be given below after some preparations.
We shall frequently use the following notation. By u(x, t, u0) we denote

the (maximally defined) classical solution of (1.1), (1.2). We use the following
abbreviated notation

ω(u0) := ω(u(·, ·, u0))
for its ω-limit set (if the solution is bounded). As a rule, we take the ω-
limit set with respect to the topology of L∞loc(R). However, if the trajectory
{u(·, , u0) : t ≥ 1} happens to be relatively compact in L∞(R), then ω(u0)
is also the ω-limit set with respect to the topology of L∞(R), that is, the
uniform convergence on R can be assumed in (1.3).

If α < γ are two zeros of f , we denote by Bα,γ the space all continuous
functions on R taking values in [α, γ]. We equip Bα,γ with the metric given
by the weighted sup norm

‖v‖w ≡ sup
x∈R

w(x)|v(x)|, (2.4)
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where w(x) := 1/(1 + |x|2). The topology on Bα,γ generated by this metric
is the same as the topology induced from L∞loc(R).

3 Preliminaries

We start this section with a brief discussion of equilibria of (1.1). Then we
exhibit some special time-dependent solutions which are used in our construc-
tions. Other technical tools recalled in the section include the continuity in
L∞loc of solutions with respect to their initial data and the zero number func-
tional.

Throughout the section, we assume that f ∈ C1(R).

3.1 Equilibria

The equilibria of (1.1) are solutions of the equation

vxx + f(v) = 0, x ∈ R. (3.1)

The first-order system associated with (3.1),

vx = w, wx = −f(v), (3.2)

is a Hamiltonian system with respect to the energy

H(v, w) := w2/2 + F (v).

Thus the trajectories of (3.2) are contained in the level sets of H. Note that
these level sets are symmetric about the v axis. The following results are all
well known and easily proved by phase plane analysis of system (3.2).

System (3.2) has only four types of orbits: equilibria (stationary solu-
tions), all of them on the v axis, nonconstant periodic orbits, homoclinic
orbits, and heteroclinic orbits. If v is a periodic nonconstant solution of
(3.1), then it is even about each of its critical points. If v is a solution of
(3.1) corresponding to a heteroclinic orbit of (3.2), then |vx| > 0 on R. If v
is a solution of (3.2) corresponding to a homoclinic orbit of (3.2), then v has
a unique critical point a and is symmetric about a.

For bistable nonlinearities, the following lemmas describe the equilibria
of (1.1) in Bα,γ (see Figure 1).
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α
 

 γ  γα β0

Figure 1: The phase diagrams of system (3.2) in the bistable case; balanced
on the left, unbalanced on the right

Lemma 3.1. Assume (C1). If v ∈ Bα,γ is a solution of (3.1), then it is a
periodic solution or a monotone solution corresponding to a heteroclinic orbit
of (3.2) between the equilibria (α, 0) and (γ, 0). For each ξ ∈ (α, 0) ∪ (0, γ),
the solution v of (3.1) with v(0) = ξ, v′(0) = 0 is a nonconstant periodic,
even function with infinitely many zeros, and v, v′ → 0 in L∞(R), as ξ → 0.

Of course, since f(0) = 0, the zeros of nonconstant periodic solutions
must all be simple by uniqueness for the initial value problem. The same
applies to the zeros of the function v − β in the next lemma.

Lemma 3.2. Assume (C2). If v ∈ Bα,γ is a solution of (3.1), then it is a
periodic solution or a solution corresponding to a homoclinic orbit of (3.2)
to the equilibrium (α, 0). For each ξ ∈ (α, β) ∪ (β, γ) sufficiently close to β,
the solution v of (3.1) with v(0) = ξ, v′(0) = 0 is a nonconstant periodic,
even function, v − β has infinitely many zeros, and v, v′ → β in L∞(R), as
ξ → β.

3.2 Some time-dependent solutions

In this subsection, we deal with solutions whose initial values are identical
to a constant outside a compact interval.

Lemma 3.3. Let (C1) or (C2) hold. Assume that u0 ∈ Bα,γ and spt(u0− η)
is compact for some η ∈ [α, β) ∪ (β, γ], where β = 0 in the case of (C1). Let
u := u(·, ·, u0). Then for each finite T > 0 one has

lim sup
|x|→∞, t∈[0,T ]

u(x, t) ≤ η (if η ∈ [α, β)), (3.3a)

lim inf
|x|→∞, t∈[0,T ]

u(x, t) ≥ η (if η ∈ (β, γ]). (3.3b)
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Note that since α ≤ u(x, t) ≤ γ for all t ≥ 0, in case η ∈ {α, γ} relations
(3.3) mean that

u(x, t)→ η, as |x| → ∞, uniformly in t ∈ [0, T ]. (3.4)

Proof of Lemma 3.3. For η = α a proof of (3.4) can be found in [10, Lemma
2.2]. We treat the case η ∈ [α, β) by similar arguments. To derive an
upper estimate on u, we may assume that u0 ≥ η (otherwise, we replace
u0(x) with max{u0(x), η} and use the comparison principle). Let y(t) be
the solution of ẏ = f(y) with y(0) = η. By the comparison principle, the
function v(x, t) := u(x, t) − y(t) is nonnegative. Since u is bounded, we
have f(u(x, t)) − f(y(t)) ≤ Mv(x, t) for some constant M ≥ 0. Hence, by
comparison,

v(x, t) ≤ eMtv̄(x, t) (3.5)

where v̄ is the solution of v̄t = v̄xx with v̄(·, 0) = v(·, 0) = u0 − η. Since
v̄(·, 0) has compact support, we have v̄(x, t) → 0, as |x| → ∞, uniformly in
t ∈ [0, T ]. This and (3.5) give

lim sup
|x|→∞, t∈[0,T ]

(u(x, t)− y(t)) ≤ 0. (3.6)

Since y(t) ≤ y(0) = η (as f ≤ 0 in [α, β)), (3.3b) follows from (3.6). The
case η ∈ (β, γ] is analogous.

Lemma 3.4. Assume (C1). If u0 ∈ Bα,γ, η ∈ [α, 0) ∪ (0, γ], and spt(u0 − η)
is compact, then

lim
t→∞
‖u(·, ·, u0)− ξ‖L∞(R) = 0, (3.7)

where ξ = α if η ∈ [α, 0) and ξ = γ if η ∈ (0, γ].

Proof. We only treat the case η ∈ [α, 0), the case η ∈ (0, γ] is analogous. We
derive the result from [19].

Take continuous functions u+0 , u
−
0 ∈ Bα,γ such that u±0 ≥ u0, and

u+0 (−∞) = η < γ = u+0 (∞),

u−0 (−∞) = γ > η = u+0 (∞).

Set u± := u(·, ·, u±0 ). By comparison, u± ≥ u(·, ·, u0). Theorem 3.1 of [19]
shows that, as t → ∞, u±(·, t) → φ± in L∞(R), where φ+ is an increasing
solution (a standing wave) of (2.3) with φ+(−∞) = α, φ+(∞) = γ; and
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φ−(x) = φ+(x0 − x) for some x0. (To get the convergence result for u−,
one applies Theorem 3.1 of [19] to the solution u−(−x, t).) From this, we
obtain two conclusions. First, by the previous comparison and convergence
properties, the following holds.

Given ε > 0, there are τ > 0 and R > 0 such that

0 ≤ u(x, t, u0)− α ≤ ε (|x| > R, t > τ). (3.8)

Second, for each w ∈ ω(u0) one has

w(x) ≤ ψ(x) := min{φ+(x), φ−(x)}. (3.9)

Now, ψ is a time-independent supersolution of (1.1), and, as t→∞, the
solution u(·, t, ψ) converges monotonically to α (the only equilibrium between
α and ψ). We now use the well-known invariance property of ω(u0): for any
t > 0 and w ∈ ω(u0), one has w = u(·, t, w̃) for some w̃ ∈ ω(u0). Since
w̃ ≤ ψ, the comparison principle gives w ≤ u(·, t, ψ). Since t > 0 is arbitrary,
we have w = α, proving that ω(u0) = {α}. Thus u(·, t, u0) → α, as t → ∞,
in L∞loc(R). Using this in conjunction with (3.8), we see that the convergence
also takes place in L∞(R), which proves (3.7) with ξ = α.

3.3 Continuity with respect to initial data

Fix two zeros α < γ of f and set B := Bα,γ. In the following lemma, we
employ the norm defined in (2.4).

Lemma 3.5. Given any T > 0 and any two solutions u, ũ of (1.1) with
u(·, 0), ũ(·, 0) ∈ B, one has

‖u(·, t)− ũ(·, t)‖w ≤ L(T )‖u(·, 0)− ũ(·, 0)‖w (t ∈ [0, T ]), (3.10)

where L(T ) is a constant depending on T (and on α, β, f), but not on the
solutions.

This continuity result is proved easily by considering the linear parabolic
equation satisfied by v(x, t) := w(x)(u(x, t)− ũ(x, t)), where w is as in (2.4).
As one verifies by a simple computation, the linear equation has bounded
coefficients, hence (3.10) follows by standard parabolic estimates (see [16,
Lemma 6.2] for details).
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Corollary 3.6. Given any u0 ∈ B, T > t0 > 0, R > 0, and ε > 0, there
exist ρ ≥ R and δ > 0 with the following property. If ũ0 ∈ B satisfies

sup
x∈[−ρ,ρ]

|u0(x)− ũ0(x)| < δ, (3.11)

then

sup
x∈[−R,R], t∈[0,T ]

|u(x, t, u0)− u(x, t, ũ0)| < ε, (3.12)

sup
x∈[−R,R], t∈[t0,T ]

|ux(x, t, u0)− ux(x, t, ũ0)| < ε, (3.13)

sup
x∈[−R,R], t∈[t0,T ]

|ut(x, t, u0)− ut(x, t, ũ0)| < ε. (3.14)

Proof. Let us ignore (3.13), (3.14) for a while. The statement then follows
directly from Lemma 3.5 and the fact that by choosing ρ sufficiently large and
δ > 0 sufficiently small, one can make ‖u0− ũ0‖w arbitrarily small (regardless
of the values of ũ0(x) for |x| > ρ, as long as ũ0 ∈ B).

To prove that (3.13), (3.14) hold as well, possibly with smaller δ > 0 and
larger ρ, one uses the statement just proved with R replaced by R + 1 and
then applies standard parabolic regularity estimates [28].

3.4 Zero number

If v = u − ũ or v = ut, where u, ũ are global solutions of (1.1), then v is a
solution of a linear equation

vt = vxx + c(x, t)v, x ∈ R, t > 0, (3.15)

where c is a continuous function on R× [0,∞). Specifically,

c(x, t) =

∫ 1

0

f ′(ũ(x, t) + s(ũ(x, t)− u(x, t))) ds

if v = u− ũ, and c(x, t) = f ′(u(x, t)) if v = ut. We will use properties of the
zero-number functional for solutions of such linear equations.

For an interval I = (a, b), with −∞ ≤ a < b ≤ ∞, we define zI(v(·, t))
as the number of zeros, possibly infinite, of the function x→ v(x, t) in I. If
I = R, we usually omit the subscript I:

z(v(·, t)) := zR(v(·, t)).

The following intersection-comparison principle holds (see [1, 6]).
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Lemma 3.7. Let v be a solution of (3.15). Assume that for some interval
[τ, T ) ⊂ [0,∞) the following conditions are satisfied:

(c1) if b <∞, then v(b, t) 6= 0 for all t ∈ [τ, T ),

(c2) if a > −∞, then v(a, t) 6= 0 for all t ∈ [τ, T ).

Then the following statements hold true:

(i) If a > −∞ and b <∞, then zI(v(·, t)) <∞ for all t ∈ (τ, T ).

(ii) t 7→ zI(v(·, t)) is a monotone nonincreasing function on [τ, T ) with
values in N ∪ {0} ∪ {∞}.

(iii) If for some t0 ∈ (τ, T ), the function v(·, t0) has a multiple zero in I and
zI(v(·, t0)) <∞, then for any t1, t2 ∈ [τ, T ) with t1 < t0 < t2 one has

zI(v(·, t1)) > zI(v(·, t0)) ≥ zI(v(·, t2)). (3.16)

If (3.16) holds, we say that zI(v(·, t)) drops in the interval (t1, t2) or that
v(·, t) drops a zero in the time interval (t1, t2). If this holds for all t1, t2 with
t1 < t0 < t2, we also say that zI(v(·, t)) drops at t0.

Remark 3.8. It is clear that if the assumptions of Lemma 3.7 are satisfied
and zI(v(·, τ)) <∞, then zI(v(·, t)) can drop at most finitely many times in
(τ, T ), and if it is constant on an interval [τ1, τ2] ⊂ (τ, T ), then v(·, t) has
only simple zeros in I for each t ∈ (τ1, τ2].

4 Initial data with large oscillations in the

balanced bistable case

In this section, we assume that f satisfies (C1) (see Section 2) and let B :=
Bα,γ.

As already noted above, if u0 ∈ B, then the corresponding solution satis-
fies u(·, t, u0) ∈ B for all t ≥ 0. In particular, the solution is bounded.

The next proposition yields a solution oscillating between the constant
equilibria α and γ, as t → ∞. The existence of such a solution is known
by [12], we prove it as an illustration of our techniques in a simple setting
and provide additional information on the solution (see Proposition 4.1 and
Remark 4.3 below).
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Proposition 4.1. There exists u0 ∈ B such that ω(u0) contains the constant
equilibria α, γ and no other equilibria.

In the following lemma, which details our recursive construction, we set

d := min{|α|, γ}

and let ψ 6≡ 0 be a periodic solution of (2.3) with

|ψ|, |ψ′| < d/2 (4.1)

(cp. Lemma 3.1).

Lemma 4.2. There exist t0 ∈ (0, 1) and a sequence (uk, Rk, ρk, tk, δk), k =
1, 2, . . . , in B × (0,∞)4 such that the statements (i)-(iv) below are valid for
all k = 1, 2, . . . , and statements (v), (vi) are valid for all k = 2, 3 . . . .

(i) tk > 1, ρk > Rk > 2,

(ii) uk is piecewise linear, even, and spt(uk − ηk) ⊂ (−Rk, Rk), where

ηk :=

{
α, if k is odd,

γ, if k is even.

(iii) The solution u(·, ·, uk) satisfies the following relations for both ϕ ≡ 0
and ϕ ≡ ψ:

|u(x, t, uk)− ϕ(x)| > 0 (x ∈ R \ (−Rk, Rk), t ∈ [0, tk]), (4.2)

‖u(·, tk, uk)− ηk‖L∞(R) <
1

k
, (4.3)

u(·, tk−1, uk)− ϕ has exactly two zeros, both simple, (4.4)

(−1)k(u(x, tk, uk)− ϕ(x)) > 0 (x ∈ R). (4.5)

(iv) For each u0 ∈ B with ‖uk − u0‖L∞(−ρk,ρk) < δk, the following relations
hold for both ϕ ≡ 0 and ϕ ≡ ψ:

|u(x, t, u0)− ϕ(x)| > 0 (x = ±Rk, t ∈ [0, tk]), (4.6)

‖u(·, tk, u0)− ηk‖L∞(−Rk,Rk) <
2

k
, (4.7)

u(·, tk−1, u0)− ϕ has exactly two zeros in (−Rk, Rk), both simple,
(4.8)

z(−Rk,Rk)(u(·, t, u0)− ϕ) ≤ 2 (t ∈ [tk−1, tk]), (4.9)

(−1)k(u(x, tk, u0)− ϕ(x)) > 0 (x ∈ [−Rk, Rk]). (4.10)
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(v) tk > tk−1 + 1, Rk > ρk−1 + 1.

(vi) uk ≡ uk−1 on [−ρk−1, ρk−1].

0

γ

α

0

γ

α

x

x

 ψ
u1

u2

Figure 2: The graphs of u1, ψ (top figure), and u2 (bottom figure)

Proof. STEP 1. Set k = 1 and define an even piecewise linear function u1 as
follows (see Figure 2):

u1(x) =


γ (x ∈ [0, 1]),

(γ − α)(1− x) + γ (x ∈ [1, 2]),

α (x ≥ 2),

u1(−x) (x < 0).

Obviously, u1 ∈ B and statement (ii) holds, provided R1 > 2. (A specific
choice of R1 > 2 will be made below.) By Lemma 3.4,

lim
t→∞
‖u(·, ·, u1)− α‖L∞(R) = 0. (4.11)

In the following, ϕ ≡ 0 or ϕ ≡ ψ. In either case,

|ϕ|, |ϕ′| < d/2 <
1

2
min{|α|, γ}. (4.12)
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Therefore, (4.11) implies that for each sufficiently large t1 > 1 relations (4.3)
and (4.5) hold. We fix such t1, and then use Lemma 3.3 to pick R1 > 2 so
large that (4.2) holds. Using the definition of u1 and (4.12), and comparing
the slopes of u1 and ϕ, we see that z(u(·, t, u1)− ϕ) ≥ 2 = z(u(·, 0, u1)− ϕ)
for all small t ≥ 0. Hence, z(u(·, t, uk) − ϕ) = 2 for all small t ≥ 0, by the
monotonicity of the zero number (see Lemma 3.7). Therefore, by Remark
3.8, there is t0 ∈ (0, 1) such that (4.4) holds.

In view of (4.2)-(4.5), Corollary 3.6 clearly implies the existence of con-
stants ρ1 > R1 and δ1 > 0 such that statement (iv) holds, possibly with
the exception of (4.9). Relation (4.9) follows from (4.8) by an application of
Lemma 3.7(ii), which is legitimate by (4.6).

STEP 2 (the induction argument). Suppose that for some n ≥ 1,

(uk, Rk, ρk, tk, δk) ∈ B × (0,∞)4, k = 1, . . . , n,

have been defined such that statements (i)-(iv) hold for all k = 1, . . . , n, and,
in case n ≥ 2, statement (v), (vi) hold for all k = 2, . . . , n. We need to define
(un+1, Rn+1, ρn+1, tn+1, δn+1) in such a way that statements (i)-(vi) are valid
for k = n + 1. We give the definition assuming n is odd; the case of n even
is analogous.

Set k = n+ 1 and define an even piecewise linear function un+1 as follows
(see Figure 2):

un+1(x) =


un(x) (x ∈ [0, ρn]),

(γ − α)(x− ρn) + α (x ∈ [ρn, ρn + 1]),

γ (x ≥ ρn + 1),

un+1(−x) (x < 0).

As spt(un − α) ⊂ (−ρn, ρn), one has un ∈ B and spt(un+1 − γ) ⊂ (−ρn −
1, ρn + 1). Thus a choice of Rn+1 > ρn + 1, to be made specific below, will
guarantee that (ii) holds. As in STEP 1, Lemma 3.4 implies that for each
sufficiently large tn+1 > tn relations (4.3), (4.5) hold. Fix such tn+1.

Since un+1 ≡ un on [−ρn, ρn], statement (iv) with k = n applies to
u0 = un+1. Thus, (4.10), (4.6) give

u(x, tn, un+1)− ϕ(x) < 0 (x ∈ [−Rn, Rn]), (4.13)

u(±Rn, t, un+1)− ϕ(±Rn) < 0 (t ∈ [0, tn]). (4.14)
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We also know, by Lemma 3.3, that u(∞, t, un+1) = γ > ϕ, so u(·, t, un+1)−ϕ
has at least one zero in (Rn,∞) for all t ∈ [0, tn]. By the definition of un+1

and (4.12), the zero is unique at t = 0, hence it is unique and simple for all
t ∈ [0, tn], by virtue of Lemma 3.7 (the application of Lemma 3.7 on (Rn,∞)
is justified by (4.14)). This, combined with (4.13) and the evenness in x,
implies that (4.4) holds. Using Lemma 3.3, we find Rn+1 > ρn + 1 such that
(4.2) holds.

Having verified (4.2)-(4.5), we use Corollary 3.6 to find ρn+1 > Rn+1 and
δn+1 > 0 such that statement (iv) holds (to verify (4.9) one uses 3.7(ii) as in
STEP 1).

Relations (v) and (vi) hold by construction.
This completes STEP 2, and thereby the construction of the sequence

(uk, Rk, ρk, tk, δk), k = 1, 2, . . . , with the given properties.

Proof of Proposition 4.1. Let (uk, Rk, ρk, tk, δk), k = 1, 2, . . . , be as in Lemma
4.2. Take any function u0 ∈ B with

‖uk − u0‖L∞(−ρk,ρk) < δk (k = 1, 2, . . . ). (4.15)

For example, we can define u0 by

u0(x) ≡ uk(x) (|x| ≤ ρk, k = 1, 2, . . . ),

which is legitimate by (vi). The function thus defined is in B, as uk ∈ B and
Rk →∞ (see (i) and (v)).

By (4.15), statement (iv) applies to u0 for each k. Since tk, Rk → ∞ by
(i), (v), from (4.7) we obtain that the constant equilibria α, γ are contained
in ω(u0).

We now show that no other equilibrium is contained in ω(u0). For that
we use the following direct consequence of relations (4.9), (i), and (v): for
each b ∈ (0,∞) there is τb > 0 such that

z(−b,b)(u(·, t, u0)− ϕ) ≤ 2 (t ≥ τb, ϕ ∈ {ψ, 0}). (4.16)

We now go by contradiction. Assume φ ∈ ω(u0) \ {α, γ} and φ is an
equilibrium of (1.1). Obviously, φ ∈ B and there is a sequence sk →∞ such
that u(·, sk) → φ in L∞loc(R). Take ϕ ≡ 0 if φ 6≡ 0 and ϕ ≡ ψ if φ ≡ 0.
In either case, by Lemma 3.1, ϕ − φ has infinitely many zeros, all of them
simple. Consequently, if b > 0 is sufficiently large, then there is k0 such that

z(−b,b)(u(·, sk, u0)− ϕ) ≥ 3 (k = k0, k0 + 1, . . . ).

17



This clearly contradicts (4.16).
The proof is now complete.

Remark 4.3. (i) There is some flexibility in choosing u0, see (4.15). In
particular, u0 can be chosen smooth.

(ii) Relations (4.8)-(4.10) show that in each time interval (tk−1, tk) the so-
lution u(·, t, u0) has initially two zeros in (−Rk, Rk) (and a “hump”
between them) and it looses both of them as t increases to tk. This cor-
responds to the annihilation of kinks studied in more detail in [12, 38].

(iii) With a more careful construction, choosing the slopes of the noncon-
stant parts of the uk sufficiently steep and controlling better how close
u(·, ·, u0) is to ηk on (−Rk, Rk)×{tk} and {±Rk}×[0, tk] one can achieve
that the above statement concerning (4.16) is valid for each equilibrium
ϕ ∈ B \ {α, γ}. Using this and the properties of the zero number, one
shows easily that for each such equilibrium ϕ and any entire solution
q(·, t) in ω(u0) one has

z(q(·, t)− ϕ) ≤ 2 (t ∈ R). (4.17)

This in turn implies that q is either one of the equilibria α, γ or a
heteroclinic connection between these two equilibria (we sketch the
argument for this below). Most likely, these heteroclinic solutions are
the two-front entire solutions studied in detail in [5].

Let us indicate how it follows from (4.17) that q is a heteroclinic solution,
if it is not an equilibrium. Determined readers will have no difficulty to fill
in the details.

Assume that u0 is as in the above construction and that (4.17) holds for
each entire solution q(·, t) in ω(u0). First note that u0 being even, all elements
of ω(u0) are even. Also, by the strong comparison principle, α < q < β. We
next prove that t 7→ q(0, t) is a strictly monotone function on R. If not, then
q(0, ·) has a local maximum or local maximum at some t0. Set β = q(0, t0)
and let ϕ be the equilibrium of (1.1) with ϕ(0) = β, ϕ′(0) = 0 (ϕ is an even
periodic function, see Lemma 3.1). Then v := q − ϕ is a solution of a linear
equation, which is even in x and has a multiple zero at x = 0 for t = t0. By
Lemma 3.7, v drops a zero at t = t0. By (4.17) and the evenness of v, we
have

z(q(·, t1)− ϕ) = 2, z(q(·, t2)− ϕ) = 0,
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for any t1 < t0 < t2. It is then easy to verify that q(0, t1)−β and q(0, t2)−β
must have opposite signs, if t1, t2 are close to t0, contradicting the fact that
β is an extremal value of q(0, ·).

Thus, the strict monotonicity of t 7→ q(0, t) has been established. In
particular, the limits ξ± := q(0,±∞) ∈ [α, γ] exist. Obviously then, any
function in ω(q) takes the value ξ+ at x = 0, so for every entire solution q̃
in ω(q), one has q̃(0, t) = ξ+ for all t. Since ω(q) ⊂ ω(u0), q̃ must be an
equilibrium, by the strict monotonicity result just proved. Hence, we have
showed that ω(q) ⊂ {α, γ}, for these are the only equilibria in ω(u0). The
connectedness of ω(q) gives ω(q) = {β+}, where β+ ∈ {α, γ}. In other words
q(·, t) → β+ in L∞loc(R), as t → ∞. In a similar way, considering the α-limit
set in place of the ω-limit set, one shows that q(·, t)→ β− ∈ {α, γ} in L∞loc(R),
as t → −∞. In view of the strict monotonicity of q(0, t), one has β− 6= β+.
So q is a heteroclinic solution between the equilibria α and γ.

5 Proof of Theorem 2.1

As in the previous section, we assume that f satisfies (C1) and take B := Bα,γ.
Our goal here is to find u0 ∈ B∩C0(R) such that ω(u0) contains the constant
equilibria α, γ, but it does not contain any nonzero equilibrium of (1.1).
Since ω(u0) is connected, the conclusion of Theorem 2.1 is then valid: ω(u0)
contains some functions which are not equilibria of (1.1).

Basic solutions for the construction here are solutions with initial data
identical to a constant ε ∈ (α, 0) ∪ (0, γ) outside large intervals. By Lemma
3.4, each such solution converges to one of the stable constant steady states
α, γ.

Lemma 5.1. Let εk, k = 1, 2, . . . be a sequence in (α, 0) ∪ (0, γ) such that
|εk| ↘ 0 and (−1)kεk > 0 (k = 1, 2, . . . ). There exist t0 ∈ (0, 1) and a
sequence (uk, Rk, ρk, tk, δk), k = 1, 2, . . . , in B × (0,∞)4 such that the state-
ments (i)-(iv) below are valid for all k = 1, 2, . . . , and statements (v), (vi)
are valid for all k = 2, 3 . . . .

(i) tk > 1, ρk > Rk > 2,

(ii) uk is piecewise linear, even, and spt(uk − εk) ⊂ (−Rk, Rk).
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(iii) Setting

ηk :=

{
α, if k is odd,

γ, if k is even.

the solution u(·, ·, uk) satisfies the following relations:

|u(x, t, uk)| > 0 (x ∈ R \ (−Rk, Rk), t ∈ [0, tk]), (5.1)

‖u(·, tk, uk)− ηk‖L∞(R) <
1

k
, (5.2)

u(·, tk−1, uk) has exactly two zeros, both simple, (5.3)

(−1)ku(x, tk, uk) > 0 (x ∈ R). (5.4)

(iv) For each u0 ∈ B with ‖uk − u0‖L∞(−ρk,ρk) < δk, the following relations
hold:

|u(x, t, u0)| > 0 (x = ±Rk, t ∈ [0, tk]), (5.5)

‖u(·, tk, u0)− ηk‖L∞(−Rk,Rk) <
2

k
, (5.6)

u(·, tk−1, u0) has exactly two zeros in (−Rk, Rk), both simple, (5.7)

z(−Rk,Rk)(u(·, t, u0)) ≤ 2 (t ∈ [tk−1, tk]), (5.8)

(−1)ku(x, tk, u0) > 0 (x ∈ [−Rk, Rk]). (5.9)

(v) tk > tk−1 + 1, Rk > ρk−1 + 1, δk+1 < δk/2.

(vi) uk ≡ uk−1 on [−ρk−1, ρk−1] and |uk| ≤ |εk−1| on R \ [−ρk−1, ρk−1].

The proof of this lemma follows a similar scheme as the proof of Lemma
4.2, with some modifications. Note that this time the constant “tails” of
the functions uk have to converge to zero because the resulting initial value
u0 (see (5.12) below) is to be in C0(R). This means that if ϕ ∈ B is a
fixed nonconstant equilibrium, then z(ϕ − uk) = ∞ for all sufficiently large
k. For this reason and unlike Lemma 4.2, Lemma 5.1 does not provide
any information on the zero number of u(·, ·, uk) − ϕ. Consequently, this
construction does not rule out the possibility that 0 ∈ ω(u0).

20



0

γ

α

0

γ

α

x

x

ε1

ε1

ε2

Figure 3: The graphs of u1 (top figure) and u2 (bottom figure)

Proof of Lemma 5.1. STEP 1. Set k = 1 and define a piecewise linear func-
tion u1 as follows (see Figure 3):

u1(x) =


γ (x ∈ [0, 1]),

(γ − ε1)(1− x) + γ (x ∈ [1, 2]),

ε1 (x ≥ 2),

u1(−x) (x < 0),

Obviously, u1 ∈ B and any choice of R1 > 2 will guarantee that statement
(ii) holds. By Lemma 3.4,

lim
t→∞
‖u(·, t, u1)− α‖L∞(R) = 0,

hence there is t1 > 1 such that relations (5.2), (5.4) hold. We fix such t1, and
then use Lemma 3.3 to pick R1 > 2 so large that (5.1) holds. By the definition
of u1 and monotonicity of the zero number, z(u(·, t, u1)) = 2 = z(u(·, 0, u1))
for all small t ≥ 0. Therefore, by Remark 3.8, there is t0 ∈ (0, 1) such that
(5.3) holds.

In view of (5.1)-(5.4), Corollary 3.6 clearly implies the existence of con-
stants ρ1 > R1 and δ1 > 0 such that statement (iv) holds with (5.8) excluded.
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Relation (5.8) follows from (5.7) by an application of Lemma 3.7(ii), which
is legitimate by (5.5).

STEP 2 (the induction argument). Suppose that for some n ≥ 1,

(uk, Rk, ρk, tk, δk) ∈ B × (0,∞)4, k = 1, . . . , n,

have been defined such that statements (i)-(iv) hold for all k = 1, . . . , n, and,
in case n ≥ 2, statements (v), (vi) hold for all k = 2, . . . , n. Assuming n
is odd, we define (un+1, Rn+1, ρn+1, tn+1, δn+1) in such a way that statements
(i)-(vi) are valid for k = n+ 1 (the case of n even is analogous).

Set k = n+ 1 and define an even piecewise linear function un+1 as follows
(see Figure 3):

un+1(x) =


un(x) (x ∈ [0, ρn]),

(εn+1 − εn)(x− ρn) + εn (x ∈ [ρn, ρn + 1]),

εn+1 (x ≥ ρn + 1),

un+1(−x) (x < 0).

Since spt(un − εn) ⊂ (−Rn, Rn) ⊂ (−ρn, ρn), we have un+1 ∈ B. Below, we
choose Rn+1 > ρn + 1, which makes (ii) valid. As in STEP 1, Lemma 3.4
implies that for each sufficiently large tn+1 > tn+1 relations (5.2), (5.4) hold.
Fix such tn+1.

Since un+1 ≡ un on [−ρn, ρn], statement (iv) with k = n applies to
u0 = un+1. Thus, (5.9), (5.5) give

u(x, tn, un+1) < 0 (x ∈ [−Rn, Rn]), (5.10)

u(±Rn, t, un+1) < 0 (t ∈ [0, tn]). (5.11)

This and Lemma 3.3 imply that u(·, t, un+1) has at least one zero in (Rn,∞)
for all t ∈ [0, tn]. By the definition of un+1, the zero is unique at t = 0,
hence it is unique and simple for all t ∈ [0, tn], by virtue of Lemma 3.7 (the
application of Lemma 3.7 on (Rn,∞) is justified by (5.11)). This, combined
with (5.10) and the evenness in x, implies that (5.3) holds (with k = n+ 1).
Using Lemma 3.3, we find Rn+1 > ρn + 1 such that (5.1) holds.

Having verified (5.1)-(5.4), we use Corollary 3.6 to find ρn+1 > Rn+1 and
δn+1 > 0 such that statement (iv) holds (to verify (5.8) one uses Lemma
3.7(ii) as in STEP 1). Of course, making δn+1 > 0 smaller has no effect on
this conclusion, thus we take δn+1 < δn/2.
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Relations (v) and (vi) hold by construction (and the fact that the sequence
|εk| is decreasing).

This completes STEP 2, and thereby the construction of the sequence
(uk, Rk, ρk, tk, δk), k = 1, 2, . . . , with the given properties.

Completion of the proof of Theorem 2.1. With εk and (uk, Rk, ρk, tk, δk) as in
Lemma 5.1, take any u0 ∈ B with

‖uk − u0‖L∞(−ρk,ρk) < δk (k = 1, 2, . . . ). (5.12)

An example is

u0(x) ≡ uk(x) (|x| ≤ ρk, k = 1, 2, . . . ),

which is a correctly defined function, in view of (vi), and it is in B, as uk ∈ B.
Clearly, since εn, δn → 0 and ρn →∞ (see statements (i) and (v)), relations
(5.12) and (vi) imply that u0 ∈ C0(R).

By (5.12), statement (iv) applies to u0 for each k. Since Rk, tk → ∞
by (i) and (v), from (5.6) we obtain that the constant equilibria α, γ are
contained in ω(u0).

We claim that if φ ∈ B \{α, γ, 0} is an equilibrium of (1.1), then it is not
contained in ω(u0). To prove this, one first uses relations (5.7), (i), and (v)
to show that for each b there is τb > 0 such that

z(−b,b)(u(·, t, u0)) ≤ 2 (t ≥ τb). (5.13)

Now one merely repeats the arguments given in the proof of Proposition 4.1
with ϕ ≡ 0. Thus, our claim is proved, and the connectedness of ω(u0) implies
that it contains functions which are not equilibria of (1.1). The theorem is
proved.

The ideas of the above constructions in the balanced bistable case can
also be used with different classes of basic solutions. We indicate how one
can find initial data u0 ∈ C0(R)∩B such that ω(u0) contains standing waves
(strictly monotone equilibria of (1.1)), as well as some functions which are
not equilibria of (1.1) (cp. Remark 2.2).

Assume for simplicity that f is odd, so that solutions with odd initial
values are odd in x for each t. In particular, if u−0 , u

+
0 ∈ B are odd and

u±0 (∓∞) < 0 < u±0 (±∞), then [19, Theorem 3.1] implies that u(·, t, u±0 )
approaches the unique standing wave φ± ∈ B with±(φ±)′ > 0 and φ±(0) = 0.
Let us now consider a sequence of odd, piecewise linear functions uk ∈ B such
that u1 ≡ 0 and for k = 2, 3, . . . one has
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(a) uk+1 ≡ uk on [−ρk, ρk],

(b) uk+1 ≡ (−1)kεk+1 on [ρk + 1,∞),

(c) |uk+1| ≤ εk on [ρk, ρk + 1],

where ρk ↗ ∞ and εk ↘ 0 are suitable sequences of positive numbers. By
the above remarks, u(·, t, uk) converges to φ+ if k is odd and to φ− if k is even.
Similarly as in the constructions in Section 4 and in the proof of Theorem
2.1, the continuity with respect to initial data implies that if ρk+1 are chosen
suitably, then for the function defined by

u0(x) ≡ uk(x) (|x| ≤ ρk, k = 1, 2, . . . )

one has φ± ∈ ω(u0). Using a more precise construction, similar to the one
in the proof of Lemma 5.1, one can also control the zero number of the
solutions u(·, t, uk) and consequently the zero number of the solution u(·, t, u0)
in large bounded intervals. In analogy to (5.13), one then shows that for each
b ∈ (0,∞) there is τb > 0 such that

z(−b,b)(u(·, t, u0)) ≤ 3 (t ≥ τb).

(Note that in this case the pertinent zero numbers are always odd and x = 0
is always a zero of the solutions at hand.) As in the proof of Theorem 2.1, this
implies that ω(u0) contains no nonconstant equilibria. We omit the details
of this construction.

Since ω(u0) is connected and consists of odd functions, with φ+ and φ−

it necessarily contains some nonequilibrium solutions.

6 Proof of Theorem 2.3

In this section, we assume that f satisfies (C2). Without affecting quasicon-
vergence properties of the solutions, we replace f by a translation so that
α = 0. Thus, condition (C2) reads

(C2) For some γ > β > 0 one has f(0) = f(β) = f(γ) = 0, f ′(0) < 0,
f ′(γ) < 0, f < 0 in (0, β), f > 0 in (β, γ), and

F (γ) > 0. (6.1)
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A ground state of (2.3) now refers to a positive solution of (2.3) contained
in C0(R) (and the corresponding solution of (3.2) is a homoclinic solution to
(0, 0)). We set B = B0,γ.

The basic building blocks of our construction in this section are threshold
solutions, as considered in the following lemma. (In different setting, but for
a similar purpose, threshold solutions were used in [36].)

Lemma 6.1. For each θ ∈ (β, γ) the following statements are valid.

(i) There exists ` = `(θ) such that if u0 ∈ B and u0 ≥ θ on an interval of
length `, then u(·, t, u0)→ γ in L∞loc(R).

(ii) Let ` be as in (i) and let ψµ, µ ∈ [0, 1], be a family of functions in B
with the following properties

(a1) For each µ ∈ [0, 1], ψµ has compact support, ψ1 ≥ θ on an interval
of length `, and

lim
t→∞

u(·, t, ψ0) = 0 in L∞(R). (6.2)

(a2) The function µ→ ψµ : [0, 1]→ L1(R) is continuous and monotone
increasing in the sense that if µ < ν, then ψλ ≤ ψν everywhere,
with the strict inequality on a nonempty (open) set.

Then there exists a unique µ∗ ∈ (0, 1) with the following properties:

(t1) If u0 = ψµ with µ ∈ (0, µ∗), then limt→∞ u(·, t, u0) = 0 in L∞(R).

(t2) If u0 = ψµ with µ ∈ (µ∗, 1], then limt→∞ u(·, t, u0) = γ in L∞loc(R).

(t3) If u0 = ψµ∗, then limt→∞ u(·, t, u0)→ v in L∞(R) for some ground
state v of (2.3).

We refer to µ∗ as the threshold value (relative to the family ψµ, µ ∈ [0, 1]),
to the solution in (t3) as the threshold solution, and to the solutions in (t1)
as subthreshold solutions.

Statement (i) of Lemma 6.1 is due to [19] (see also [10, Lemma 4.2], [11,
Lemma 2.4], [16, Lemma 6.3], or [33, Lemma 3.5]). Statement (ii) is proved
in [10] (an earlier result for specific families was proved in [41]). Strictly
speaking, the relevant result, Theorem 1.3 of [10], does not apply in our
situation directly, as it has the assumption that ψ0 = 0 a.e. instead of (6.2).
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However, if this is not satisfied, then one can extend the family ψµ, µ ∈ [0, 1]
by defining ψµ := (1 + µ)ψ0 for µ ∈ [−1, 0). To this extended family [10,
Theorem 1.3] does apply and (6.2) implies that the unique threshold value
for the extended family is positive, thus it is a threshold value for the original
family.

Lemma 6.2. Let φ ∈ B be the (unique) ground state of (2.3) with maximum
at x = 0. There exist t0 ∈ (0, 1) and a sequence (uk, Rk, ρk, tk, δk), k =
1, 2, . . . , in B × (0,∞)4 such that the statements (i)-(iv) below are valid for
all k = 1, 2, . . . , and statements (v), (vi) are valid for all k = 2, 3 . . . .

(i) t2k > t2k−1 > 1, ρk > Rk > 2,

(ii) uk is piecewise linear, even, and spt(uk) ⊂ (−Rk, Rk).

(iii) The solution u(·, ·, uk) has the following properties:

lim
t→∞
‖u(·, t, uk)‖L∞(R) = 0, (6.3)

u(x, t, uk) < β (x ∈ R \ (−Rk, Rk), t ∈ [0, t2k]), (6.4)

‖u(·, t2k−1, uk)− φ‖L∞(R), ‖u(·, t2k, uk)‖L∞(R) <
1

k
, (6.5)

u(·, t2k−2, uk)− β exactly four zeros, all of them simple, (6.6)

u(x, t2k, uk) < β (x ∈ R). (6.7)

(iv) For each u0 ∈ B with ‖uk − u0‖L∞(−ρk,ρk) < δk, the following relations
hold:

u(x, t, u0) < β (x = ±Rk, t ∈ [0, t2k]), (6.8)

‖u(·, t2k−1, u0)− φ‖L∞(−Rk,Rk), ‖u(·, t2k, u0)‖L∞(−Rk,Rk) <
2

k
, (6.9)

u(·, t2k−2, u0)− β has exactly four zeros

in (−Rk, Rk), all of them simple, (6.10)

z(−Rk,Rk)(u(·, t, u0)− β) ≤ 4 (t ∈ [t2k−2, t2k]), (6.11)

u(x, t2k, u0) < β (x ∈ [−Rk, Rk]). (6.12)

(v) t2k−1 > t2k−2 + 1, Rk > Rk−1 + 1.

(vi) uk ≡ uk−1 on [−ρk−1, ρk−1].
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Figure 4: The graphs of ψ1, ψµ∗ , and u1. One has u1 = ψµ, for some µ < µ∗,
µ ≈ µ∗.

Proof. For the whole proof, θ is a fixed number in (β, γ) and ` = `(θ) is as
in Lemma 6.1.

STEP 1. Set k = 1 and for each µ ∈ [0, 1] define an even piecewise linear
function ψµ as follows (see Figure 4):

ψµ(x) =



µθx (x ∈ [0, 1]),

µθ (x ∈ [1, `+ 1]),

µθ(`+ 2− x) (x ∈ [`+ 1, `+ 2]),

0 (x ≥ `+ 2),

ψµ(−x) (x < 0).

Obviously, the family ψµ, µ ∈ [0, 1], satisfies the assumptions of Lemma
6.1(ii). Let µ∗ ∈ (0, 1) be as in that lemma. Since the ψµ are all even
in x, the limit ground state of the threshold solution u(·, ·, ψµ∗) is φ. Also
µ∗θ > β, for otherwise ψµ∗ ≤ β and then, by the comparison principle,
u(·, ·, ψµ∗) ≤ β, hence it cannot converge to φ. Now, by the continuity of the
solutions with respect to initial data (in L∞(R)), if µ < µ∗ is close to µ∗, then
the subthreshold solution u(·, ·, ψµ) gets close to φ at a large time t1 and then
approaches zero in L∞(R), as t→∞. Thus we can choose µ ∈ (β/θ, µ∗) and
times t2 > t1 > 1 such that for u1 := ψµ relations (6.5), (6.7) are valid. Next,
using Lemma 3.3, we pick R1 > `+2 so that (6.4) holds. Then also spt(u1) ⊂
(−`− 2, ` + 2) ⊂ (−R1, R1) and statement (ii) holds. Finally, since µθ > β,
the definition of u1 implies that z(u(·, t, u1)− β) ≥ 4 = z(u(·, 0, u1)− β) for
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all small t ≥ 0. By the monotonicity of the zero number, the equality must
hold there. Using Remark 3.8, we pick t0 ∈ (0, 1) such that (6.6) holds.

Relations (6.4)-(6.7) and Corollary 3.6 imply the existence of constants
ρ1 > R1 and δ1 > 0 such that statement (iv) holds with (6.11) excluded. Re-
lation (6.11) follows by an application of Lemma 3.7(ii) with I = (−R1, R1),
which is legitimate by (6.8).

STEP 2 (the induction argument). Suppose that for some n ≥ 1,

(uk, Rk, ρk, tk, δk) ∈ B × (0,∞)4, k = 1, . . . , n,

have been defined such that statements (i)-(iv) hold for all k = 1, . . . , n, and,
in case n ≥ 2, statements (v), (vi) hold for all k = 2, . . . , n. We need to
define (un+1, Rn+1, ρn+1, tn+1, δn+1) in such a way that statements (i)-(vi) are
valid for k = n+ 1.

0

u2

ψ1

ρ1

γ
θ

β

l+2  ρ1+l+2

Figure 5: The graphs of ψ1 and u2, with the graph of ψµ∗ in between. They
all coincide with the graph of u1 on [0, ρ1].

For each µ ∈ [0, 1] define an even piecewise linear function ψµ as follows
(see Figure 5):

ψµ(x) =



un(x) (x ∈ [0, ρn]),

µθ(x− ρn) (x ∈ [ρn, ρn + 1]),

µθ (x ∈ [ρn + 1, ρn + `+ 1]),

µθ(ρn + `+ 2− x) (x ∈ [ρn + `+ 1, ρn + `+ 2]),

0 (x ≥ ρn + `+ 2),

ψµ(−x) (x < 0).

Since spt(un) ⊂ (−Rn, Rn) ⊂ (−ρn, ρn), this definition implies that ψµ ∈ B.
Also, ψ0 ≡ un. The latter and (6.3) (with k = n) imply that condition
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(6.2) of Lemma 6.1(ii) holds. It is obvious that the family ψµ, µ ∈ [0, 1] also
satisfies all the other assumptions of Lemma 6.1(ii). Let µ∗ ∈ (0, 1) be as in
the conclusion of that lemma. Again, by the evenness of ψµ, the limit ground
state of the threshold solution u(·, ·, ψµ∗) must be φ.

Since ψµ ≡ un on [−ρn, ρn], statement (iv) with k = n applies to u0 = ψµ
for each µ ∈ [0, 1]. We first intend to use this property to show that

µ∗θ > β (6.13)

and that for each µ < µ∗ sufficiently close to µ∗

u(·, t2n, ψµ)− β has exactly four zeros, all of them simple. (6.14)

We start by using (6.8) (with k = n) to obtain

u(Rn, t, ψµ) < β (t ∈ [0, t2n], µ ∈ [0, 1]). (6.15)

Next, we show that for each t ∈ [0, t2n]

u(·, t, ψµ∗) > β somewhere in (Rn,∞). (6.16)

Thus we have to rule out the following possibility

u(·, τ, ψµ∗) ≤ β on (Rn,∞) at some τ ∈ [0, t2n]. (6.17)

Assume (6.17) is true. Then, using (6.15) and the comparison principle, we
obtain u(x, t, ψµ∗) ≤ β for all (x, t) ∈ (R0,∞)× [τ, t2n]. Combining this with
(6.12) (with k = n) and the evenness in x, we obtain u(·, t2n, ψµ∗) ≤ β. But
then the comparison principle shows that u(·, ·, ψµ∗) cannot converge to φ,
in contradiction to the fact that it is a threshold solution.

Hence, we have proved that (6.16) holds for each t ∈ [0, t2n]. This in
particular implies that (6.13) holds (otherwise (6.17) would hold with τ = 0,
due to spt(un) ⊂ (−Rn, Rn)). Also, in view of (6.15) and Lemma 3.3, relation
(6.16) means that

z(Rn,∞)(u(·, t, ψµ∗)− β) ≥ 2 (t ∈ [0, t2n]). (6.18)

Now, by (6.15) and Lemma 3.7,

z(Rn,∞)(u(·, t, ψµ)−β) ≤ z(Rn,∞)(ψµ−β) ≤ 2 (t ∈ [0, t2n], µ ∈ [0, 1]), (6.19)
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where the last inequality is by the definition of ψµ. Hence, the equality holds
in (6.18). Therefore, by Remark 3.8, u(·, t2n, ψµ∗)− β has exactly two zeros
in (Rn,∞) both of them simple. The same is then true for all µ ≈ µ∗, by
(6.19) and the continuity with respect to the initial data. This, the evenness
in x, and (6.12) (with k = n) imply (6.14). Thus, (6.13)-(6.14) are proved.

As in STEP 1, we use the continuity with respect to initial data in L∞(R),
to find µ ∈ (β/θ, µ∗) so close to µ∗ that (6.14) holds and that the subthreshold
solution u(·, ·, ψµ) is close to φ at a large time t2n+1 > t2n + 1 and close to
0 at a later time t2n+2: relations (6.5), (6.7) are valid with un+1 := ψµ and
k = n+ 1. Of course, (6.3) is valid for the subthreshold solution.

Having defined un+1 and t2n+2 > t2n+1, we use Lemma 3.3 and pick
Rn+1 > ρn + ` + 2 large enough so that (6.4) holds with k = n + 1. Note
that Rn+1 > ρn + ` + 2 guarantees that sptun+1 ⊂ (−Rn+1, Rn+1)). Hence,
statements (i)-(iii) hold with k = n+ 1.

We next use Corollary 3.6 to find ρn+1 > Rn+1 and δn+1 > 0 such that
statement (iv) holds (to verify (6.11) one uses Lemma 3.7 and (6.8)).

Relations (v) and (vi) hold by construction.
This completes the induction argument and thereby the proof of Lemma

6.2.

Completion of the proof of Theorem 2.3. With φ and (uk, Rk, ρk, tk, δk) as in
Lemma 6.2, take any u0 ∈ B with

‖uk − u0‖L∞(−ρk,ρk) < δk (k = 1, 2, . . . ), (6.20)

for example
u0(x) ≡ uk(x) (|x| ≤ ρk, k = 1, 2, . . . ), (6.21)

(cp. statements (i),(v), (vi)).
By (6.20), statement (iv) applies to u0 for each k. Since Rk, tk →∞, from

(6.9) we obtain that the equilibria 0 and φ are contained in ω(u0). We next
show that if ϕ 6≡ φ is a nonconstant equilibrium of (1.1), then ϕ 6∈ ω(u0).
By the connectedness of ω(u0), this will complete the proof of Theorem 2.3.

First of all, no ground state other than φ can be contained in ω(u0), by
the evenness of u0. If ϕ ∈ B is a nonconstant equilibrium of (1.1) which is
not a ground state, then it is periodic and ϕ − β has infinitely many zeros,
all of them simple (cp. Lemma 3.2). On the other hand, relations (6.11), (i),
and (v) imply that for each b > 0 there is τb > 0 such

z(−b,b)(u(·, t, u0)− β) ≤ 4 (t ≥ τb). (6.22)
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Thus arguments similar to those given in the proof of Proposition 4.1 show
that ϕ 6∈ ω(u0).
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[15] E. Feireisl and H. Petzeltová, Convergence to a ground state as a thresh-
old phenomenon in nonlinear parabolic equations, Differential Integral
Equations 10 (1997), 181–196.
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