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Abstract. The Gibbons conjecture stating the one-dimensional sym-

metry of certain solutions of semilinear elliptic equations has been

proved by several authors. We show how attractivity properties of

minimal propagating terraces of one-dimensional parabolic problems

can be used in a proof of a version of this result and related statements.
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1 Introduction and statement of the results

Consider the elliptic equation

∆v + f(v) = 0, x ∈ RN , (1.1)

where N ≥ 2 and f is a C1 function on R. Writing the spatial variable
as x = (x1, x

′), with x1 ∈ R, we are interested in solutions whose limits as
x1 → ±∞ exist, uniformly in x′, and are equal to distinct zeros of f . Without
loss of generality, using dilation and translation if necessary, we place these
zeros at ±1:

f(±1) = 0. (1.2)

The solutions we consider are assumed to satisfy the following conditions:

(U) |v| ≤ 1 and limx1→±∞ v(x1, x
′) = ∓1 uniformly in x′ ∈ RN−1.

Note that with the change of variable x1 → −x1 one can simultaneously
examine solutions with the uniform limits limx1→±∞ v(x1, x

′) = ±1.
Several authors have proved that under suitable assumptions on f , any

solution of (1.1) satisfying (U) is necessarily a function of x1 only, that is, it
is independent of x′. Proofs of this result, often referred to as the Gibbons
conjecture, can be found in [1, 4, 7, 8, 11, 14] (see also [15] and references
therein for related results on the De Giorgi conjecture, in which f(u) =
u(1−u2) and the solution v is monotone in x1, but the uniformity requirement
in (U) is dropped). In these papers, it is typically assumed that f satisfies
the relations f ′(±1) < 0 or the following weaker conditions:

(M−) f ′ ≤ 0 in [−1,−1 + δ] for some δ > 0.

(M+) f ′ ≤ 0 in [1− δ, 1] for some δ > 0.

We quote here the following result of [4].

Theorem BHM. Assuming that (M−), (M+) hold, if v is a solution of (1.1)
satisfying (U), then v is a function of x1 only. Specifically, v(x1, x

′) = ϕ(x1)
where ϕ is a solution of

ϕ′′ + f(ϕ) = 0 in R (1.3)

ϕ(±∞) = ∓1. (1.4)
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In particular, the existence of a solution v of (1.1) satisfying (U) implies the
existence of a solution ϕ of (1.3), (1.4).

(Actually, in [4], f is assumed to be Lipschitz, rather than C1, and conditions
(M) are phrased as monotonicity properties of f .)

In this paper (assuming f ∈ C1), we give a new proof of this result
and relax its hypotheses a bit. Our proof reveals a connection of the one-
dimensional symmetry property of solutions of (1.1) to propagating terraces,
or, stacked families of traveling waves, of parabolic equations on the real line,
which we think is also interesting.

We assume throughout the paper that the following conditions are satis-
fied:

(N) there is δ0 > 0 such that f ≤ 0 in [−1,−1 + δ0] and f ≥ 0 in [1− δ0, 1].

To formulate our next hypotheses, which are weaker than (M−), (M+),
we need to introduce some notation. Set

F (u) :=

∫ u

−1

f(s) ds (u ∈ [−1, 1]). (1.5)

Hypothesis (N) implies that there is δ ∈ (0, δ0] such that either f ≡ 0 in
[−1,−1 + δ] or

F (u) < 0 (u ∈ (−1,−1 + δ]). (1.6)

We define a function E− on (−1,−1 + δ] by E− ≡ 0 if f ≡ 0 in (−1,−1 + δ],
and by

E−(u) =

∫ −1+δ

u

ds√
−2F (s)

ds (1.7)

if (1.6) holds.
Making δ smaller if necessary, we also have either f ≡ 0 in [1− δ, 1] or

F (u) < F (1) (u ∈ [1− δ, 1)). (1.8)

In the former case, we set E+ ≡ 0 in [1 − δ, 1); in the latter case, we define
E+ on [1− δ, 1) by

E+(u) =

∫ u

1−δ

ds√
2F (1)− 2F (s)

ds. (1.9)
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Finally, we introduce functions g± on [−1, 1] defined by

g−(u) := max
s∈[−1,u]

f ′(s), g+(u) := max
s∈[u,1]

f ′(s). (1.10)

One or both of the following conditions will be assumed in our main
results.

(H−) lim supu→−1(E−(u))2g−(u) < 1
4
,

(H+) lim supu→1(E+(u))2g+(u) < 1
4
.

Notice that conditions (N), (H−), (H+) are trivially satisfied if conditions
(M−), (M+) hold.

Our first result shows in particular the validity of the last statement of
Theorem BHM under weaker conditions on f .

Proposition 1.1. Assuming that f ∈ C1 and conditions (1.2), (N) hold, let
v be a solution of (1.1) satisfying (U). Then, necessarily, F (1) = 0, F ≤ 0 in
[−1, 1], and there are solution ϕ−, ϕ+ of (1.3) such that |ϕ±| < 1, ϕ±x < 0,
and

ϕ−(∞) = −1, ϕ+(−∞) = 1. (1.11)

If one of the conditions (H−), (H+) is satisfied, then also ϕ−(−∞) = 1 (so
ϕ− is a solution of (1.3), (1.4)) and ϕ+(∞) = −1.

Remark 1.2. The last two conclusions, ϕ−(−∞) = 1 and ϕ+(∞) = −1,
remain valid if instead of (H−) or (H+) one assumes the generic condition
that 0 is a regular value of the function F


(−1,1)

. Indeed, according to the first

statement, F (1) = F (−1) = 0, F ≤ 0 in [−1, 1]. If 0 is not a critical value of
F


(−1,1)
, then F < 0 in (−1, 1), which is a necessary and sufficient condition

for the existence of a solution ϕ of (1.3), (1.4) (and ϕ± is then necessarily
equal to a shift of ϕ). The generic condition is a global condition on the
function f , whereas the conditions (H−), (H+) only concern the behavior of
f near ±1.

It is well known and easy to prove by elementary phase plane arguments
that the solution ϕ of (1.3), (1.4) is unique up to translations. Of course,
ϕ(x1) can be viewed as a solution of (1.1) independent of x′. The next
theorem gives sufficient conditions for the translations of ϕ to exhaust all
solutions of (1.1) satisfying (U).
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Theorem 1.3. Assume that f ∈ C1, and that (1.2), (N), (H−), and (H+)
hold. Let v be a solution of (1.1) satisfying (U). Then there exists a solution
ϕ of (1.3), (1.4) such that

v(x1, x
′) = ϕ(x1) ((x1, x

′) ∈ RN). (1.12)

As mentioned above, hypothesis (H±) is weaker than the monotonicity
assumption (M±). The nonlinearity in the following example satisfies (N),
(M+), and (H−), but not (M−). Clearly, one can extend this nonlinearity in
such a way that F (1) = F (−1) = 0 and F < 0 in (−1, 1), which means that
(1.1) admits a solution satisfying (U) (namely, a solution of (1.3) (1.4)).

Example 1.4. Given any p > 1, define f(u) for u ≈ 1 by f(u) = 1− u and
for u ≈ −1 by

f(u) = (u+ 1)p(−1 + b cos log(u+ 1)).

Here b is a constant, which we choose such that the following relations hold:

(1 +
1

p2
)−

1
2 < b < 1, (1.13)

b(1 + 1
p2

)
1
2 − 1

1− b
<

(p− 1)2

8p(p+ 1)
(1.14)

(note that (1.14) holds if b is sufficiently close to (1+1/p2)−1/2. Then (H−) is
satisfied, but (M−) is not satisfied. See Section 4 for a justifying computation.

2 Outline of the proofs and the meaning of

conditions (H−), (H+)

Let us outline briefly how we prove the above results. Doing so, we will also
demystify conditions (H−), (H+).

First, we explain how traveling waves of the one-dimensional parabolic
problem

ut = uxx + f(u), x ∈ R, t > 0, (2.1)

are used in the proof of Proposition 1.1. Recall that a traveling wave is a
solution U of (2.1) of the form U(x, t) = φ(x − ct), where c, the speed of
the wave, is a real number, and φ, the profile of the wave, is a C2 function.

5



Clearly, the profile function must satisfy the ordinary differential equation
(ODE)

φxx + cφx + f(φ) = 0. (2.2)

When φ′ 6= 0 everywhere (usually, we assume φ′ < 0), U(x, t) = φ(x −
ct) is also called a traveling front connecting the limits φ(−∞), φ(∞). A
standing front is a traveling front with the zero speed; it is a steady state
of (2.1). Thus the last statement of Proposition 1.1 says that there is a
standing front of (2.1) connecting 1 and −1. Given a nonlinearity f , a priori
the existence of a standing front or, for that matter, any traveling front
connecting 1 and −1, is not guaranteed. What we do know, however, is
that there always exists a stacked family of traveling fronts, or, a minimal
propagating terrace, connecting 1 and −1 (see Section 3 for details). A
key to our proof of Proposition 1.1 is the observation that the existence
of a solution v of (1.1) satisfying (U) implies that the minimal propagating
terrace necessarily consists of standing fronts. The reason for this is, roughly,
as follows. Set

v−(x1) := inf
x′∈RN−1

v(x1, x
′), v+(x1) := sup

x′∈RN−1

v(x1, x
′).

These are, respectively, time-independent supersolution and subsolution of
(2.1). Now take the solutions u− and u+ of (2.1) with the initial data v− and
v+, respectively. As t→∞, each of the solutions u−(·, t), u−(·, t) approaches
in a suitable way the minimal propagating terrace. At the same time, one
has u− ≤ v− ≤ v+ ≤ u+, and this is easily shown to imply that there can be
no traveling front with nonzero speed in the terrace.

From the previous conclusion, we obtain solutions ϕ−, ϕ+ as in Propo-
sition 1.1. If condition (H−) is satisfied, we show by an application of the
sliding method [5] that ϕ−(−∞) < 1 is impossible, hence ϕ−(−∞) = 1.
Likewise, if condition (H+) holds, then it can be shown that ϕ+(∞) = −1.
Thus we obtain the last conclusion of Proposition 1.1.

If (H−) and (H+) are both satisfied, then it can also be proved that if ϕ
is a suitable shift of ϕ−, then there is ξ ∈ R such that

ϕ(x1 + ξ) ≤ v(x1, x
′) ≤ ϕ(x1) ((x1, x

′) ∈ RN). (2.3)

Hence, v is sandwiched between two shifts of ϕ. Let us now explain how
this is used in our proof of Theorem 1.3. The proof uses another sliding
technique, which we borrow from [4]. It consists in comparing v with its
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shifts: one starts with a suitable shift which is above v, and slides it in the
direction of the x1-axis as long as this relation is preserved. This method
is powered by a version of the maximum principle for unbounded domains.
Specifically, the difference w of any two shifts of v satisfies a linear equation
of the form

∆w + a(x)w = 0, x ∈ RN , (2.4)

where a(x) = f ′(ζ(x)) and ζ is between the two shifts. In the sliding method,
one needs to apply the maximum principle to equation (2.4) considered in
the halfspaces {(x1, x

′) : x1 > ρ}, {(x1, x
′) : x1 < −ρ} with a sufficiently

large ρ > 0. As is well known, the maximum principle does apply if a(x) ≤ 0
for |x1| ≥ ρ and this is true, thanks to condition (U), for all sufficiently large
ρ if the hypotheses (M−), (M+) are assumed [4]. Now, as is also well known,
for the maximum principle to apply the condition a ≤ 0 can be replaced by a
suitable decay condition on a; a transformation of (2.4) then has a negative
zero order coefficient (see Section 3 for details).

Relations (2.3) and hypotheses (H−), (H+), provide such a bound on the
coefficient a(x) for large |x1|, as we now show. The existence of a solution
ϕ of (1.3), (1.4) implies that F (1) = F (−1) = 0 and F < 0 in (−1, 1).
This follows from the fact that the function (ϕ′)2/2 + F (ϕ) is identical to 0,
as one shows easily by computing the derivative and using (1.3), (1.4). In
particular, (1.6) and (1.8) hold and the functions E− and E+ are defined by
the integrals (1.7), (1.9). Now, since ϕ′ < 0 and (ϕ′)2/2+F (ϕ) ≡ 0, for some
η ∈ R the function ϕ is the solution of

θ̇ = −
√
−2F (θ), θ(η) = −1 + δ. (2.5)

Integrating this ODE, we find

E−(ϕ(x1)) =

∫ −1+δ

ϕ(x1)

du√
−2F (u)

= x1 − η. (2.6)

Taking u = ϕ(x1) in (H−) and substituting (2.6), we obtain

lim sup
x1→∞

x2
1g
−(ϕ(x1)) = lim sup

x1→∞
(x1 − η)2g−(ϕ(x1)) <

1

4
. (2.7)

By analogous arguments, choosing ϑ so that ϕ(ϑ) = 1 − δ, we obtain from
(H+) that

lim sup
x1→−∞

x2
1g

+(ϕ(x1)) <
1

4
. (2.8)
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Recalling the meaning of g± (see (1.10)), these relations indeed yield an upper
estimate on the potential a(x) in (2.4). The constant 1/4 in these estimates
is a sharp constant for the validity of the maximum principle.

The proof sketched above works under more general assumptions on v.
It is sufficient to assume that, in place of (U), the following conditions are
satisfied:

lim inf
x1→−∞, x′∈RN−1

v(x1, x
′) ∈ D1 lim sup

x1→∞, x′∈RN−1

v(x1, x
′) ∈ D−1. (2.9)

Here D±1 is the domain of attraction of the equilibrium ±1 for the equation
θ̇ = f(θ) in [−1, 1] (it may coincide with {±1} if ±1 is not asymptotically
stable). However, it is not difficult to show directly by considering locally
uniform limits of functions v(x1 +x1,k, x

′) with x1,k → ±∞, that any solution
v satisfying (2.9) along with |v| ≤ 1 must actually satisfy (U).

We also remark that our proofs apply, with minor modifications, when v,
rather than being a solution of (1.1), is a solution of the parabolic equation
vt = ∆v+f(v) defined for all t ∈ R (that is, v = v(x, t) is an entire solution).
Condition (U) is modified accordingly so that it also includes the uniformity
with respect to t ∈ R. Under the hypotheses of Theorem 1.3, for example,
one can then show that v is independent of x′ and t (see [3] for related
results).

3 Proofs of the main results

Throughout this section we assume that f is a C1 function satisfying (1.2) and
(N). We give the proofs of Proposition 1.1 and Theorem 1.3 in Subsections
3.3, 3.4. This is preceded by preliminary sections on propagating terraces
and a comparison principle.

3.1 The approach to the minimal propagating terrace
for one-dimensional parabolic equations

Here, we recall the definition and an attractivity property of the minimal
propagating terrace of the equation

ut = uxx + f(u), x ∈ R, t > 0. (3.1)

(Note that x is a one-dimensional variable in this subsection).
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We first recall the notion of a minimal system of waves, as given in [18].
If φ is a solution of (2.2), we denote by τ(φ) its planar trajectory:

τ(φ) = {(φ(x), φx(x) : x ∈ R}. (3.2)

Definition 3.1. A system of waves (or, more precisely, [−1, 1]-system of
waves) is a continuous function R on [−1, 1] with the following properties:

(i) R(−1) = R(1) = 0, R(u) ≤ 0 (u ∈ [−1, 1]);

(ii) If I = (a, b) ⊂ [−1, 1] is a nodal interval of R, that is, a connected
component of the set R−1(−∞, 0), then there is c ∈ R and a decreasing
solution φ of (2.2) such that φ(−∞) = b, φ(∞) = a, and

{(u,R(u)) : u ∈ (a, b)} = τ(φ). (3.3)

Thus the graph of R between its successive zeros coincides with the tra-
jectory of the profile function of a traveling front.

Definition 3.2. A system of waves R0 is said to be minimal if for an arbi-
trary system of waves R one has

R0(u) ≤ R(u) (u ∈ [−1, 1]).

By definition, the minimal system of waves is unique. As shown in [18,
Theorem 1.3.2], for any f satisfying (1.2), a minimal system of waves exists
and the following relation holds:

R−1
0 (0) ⊂ f−1(0). (3.4)

Many other properties of the minimal system of waves can be found in [18]
and [12].

We denote by N the (countable) set of all nodal intervals of R0. This
set is nonempty, unless R0 ≡ 0, hence, unless f ≡ 0 on [−1, 1]. Since R0 is
single valued, for each I ∈ N the speed c = cI and the solution φ = φI in
Definition 3.1(ii) are determined uniquely if we postulate

φ(0) =
a+ b

2
. (3.5)

This way we obtain the families of speeds and profile functions corresponding
to R0:

{cI : I ∈ N}, {φI : I ∈ N}. (3.6)
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The set N can in general be infinite and the set {cI : I ∈ N} may include
positive, negative, as well as zero values. The following result, which is a
part of [12, Proposition 3.10(ii)], concerns the intervals I ∈ N with cI = 0.

Lemma 3.3. If I = (a, b) ∈ N and cI = 0, then a and b are global maximiz-
ers of the function F in [−1, 1].

Consider now the family of traveling fronts UI(x, t) = φI(x− cIt), I ∈ N .
As in [6, 12], we refer to this family as the [−1, 1]-minimal propagating terrace
or simply the minimal propagating terrace. We now state a theorem on the
global attractivity property of the minimal propagating terrace with respect
to a class of solutions of (3.1). Namely, we consider solutions of the Cauchy
problem

u(x, 0) = u0(x), x ∈ R, (3.7)

where u0 is a continuous function satisfying

|u0| ≤ 1, lim
x→±∞

u0(x) = ∓1. (3.8)

The following statement is a part of [12, Theorem 2.9] (for earlier related
results see [6, 9, 10, 13, 18]). We note that functions satisfying (3.8) form a
special class of admissible initial data for statements (i)-(ii) of [12, Theorem
2.9] and that the following stability condition, which is an assumption of [12,
Theorem 2.9], is satisfied due to hypothesis (N):

(S) For the ODE η̇ = f(η), the equilibrium −1 is stable from above (not
necessarily asymptotically) and the equilibrium 1 is stable from below.

Theorem 3.4. Assume that u0 ∈ C(R) satisfies (3.8) and let u be the solu-
tion of (3.1), (3.7). Then for each I = (a, b) ∈ N there is a C1 function ζI
defined on some interval (sI ,∞) such that the following statements are valid:

(a) limt→∞ ζ
′
I(t) = 0 (I ∈ N );

(b)
(
(a+ b)/2− u(x+ cIt+ ζ(t), t)

)
x > 0 (x ∈ R \ {0}, t > sI);

(c) limt→∞ u(·+ cIt+ ζI(t), t)− φI = 0, locally uniformly on R;

(d) if I1, I2 ∈ N , I1 < I2, and cI1 = cI2, then ζI1(t)−ζI2(t)→∞ as t→∞.
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We remark, although we will not need this below, that if the set R−1
0 {0}

is finite, say

R−1
0 {0} = {a1, . . . , ak+1}, with 0 = a1 < a2 < · · · < ak+1 = γ,

then the attractivity property of the minimal propagating terrace can be
made more precise as follows. One has N = {I1, . . . , Ik} with Ij = (aj, aj+1),
j = 1, . . . , k, and, as t→∞,

u(x, t)−
( ∑
j=1,...,k

φIj(x− cIj t− ζIj(t))−
∑

1≤j≤k−1

aj+1

)
→ 0 (x ∈ R),

uniformly on R.

3.2 A comparison principle

At several places below we use the following comparison principle for half-
spaces (g± are as in (1.10)).

Lemma 3.5. Let v, ṽ be solutions of (1.1) with ranges in [−1, 1] and ϑ ∈ R.

(i) Assume that

ṽ(ϑ, x′) ≤ v(ϑ, x′) (x′ ∈ RN−1), (3.9)

g−(ṽ(x1, x
′)) ≤ 1

4(x1 − ϑ+ 1)2
(x1 ≥ ϑ, x′ ∈ RN−1). (3.10)

Then ṽ ≤ v in [ϑ,∞)× RN−1.

(ii) Assume that

ṽ(−ϑ, x′) ≤ v(−ϑ, x′) (x′ ∈ RN−1),

g+(v(x1, x
′)) ≤ 1

4(x1 + ϑ− 1)2
(x1 ≤ −ϑ, x′ ∈ RN−1).

Then ṽ ≤ v in (−∞,−ϑ]× RN−1.

This is very similar to comparison principles found in [2, 4], although those
results do not apply here directly because we do not assume monotonicity of
f near ±1 (see also [16, 17] for related maximum principles for unbounded
domains).
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Proof of Lemma 3.5. As these are analogous statements, we only prove state-
ment (i). We start by observing that the function w := v − ṽ solves a linear
equation (2.4) with

a(x) =

∫ 1

0

f ′(ṽ(x) + s(v(x)− ṽ(x))) ds. (3.11)

Suppose, for a contradiction, that w < 0 somewhere in (ϑ,∞)×RN−1. Con-
sider the function w̃(x1, x

′) := w(x1, x
′)(x1 − ϑ + 1)−1/2. It satisfies the

following equation in (ϑ,∞)× RN−1

∆w̃ +
w̃x1

x1 − ϑ+ 1
+ (a(x)− 1

4(x1 − ϑ+ 1)2
)w̃ = 0. (3.12)

Recalling the meaning of g− (see (1.10)), we see that a(x) ≤ g−(ṽ(x)) for any
point x with v(x) ≤ ṽ(x). Condition (3.10) implies that the coefficient of w̃
in (3.12) is nonpositive at such points. Therefore, by the strong maximum
principle, the function w̃ does not assume its infimum over the set (ϑ,∞)×
RN−1; this infimum—m, say—is negative by what we are assuming about w.
Hence, there is an unbounded sequence {(x1,k, x

′
k)} in (ϑ,∞) × RN−1 such

that w̃(x1,k, x
′
k)→ m. By the definition of w̃, the sequence {x1,k} is bounded;

hence, passing to a subsequence, we may assume that x1,k → x1,0 ∈ [ϑ,∞).
Using standard regularity estimates and passing to another subsequence if
necessary, we obtain that v(x1, x

′+x′k)→ v̄(x1, x
′), ṽ(x1, x

′+x′k)→ v(x1, x
′),

locally uniformly on RN , where v̄, v are solutions of (1.1). Moreover, for the
function

ŵ(x1, x
′) = (v̄(x1, x

′)− v(x1, x
′))(x1 − ϑ+ 1)−1/2

one has
ŵ(x1,0, 0) = m = inf

(x1,x′)∈(ϑ,∞)×RN−1
ŵ(x1, x

′). (3.13)

One verifies easily that the assumptions of Lemma 3.5 remain valid if v is
replaced by v̄ and ṽ by v. Repeating what we said above, the function ŵ
cannot achieve its infimum m < 0 in (ϑ,∞)×RN−1 (and on {ϑ}×RN−1 one
has ŵ ≥ 0). This is contradicted by (3.13). This contradiction proves that
ṽ ≤ v in (ϑ,∞)× RN−1, as desired.

Remark 3.6. In statement (i) of Lemma 3.5, once we know that ṽ ≤ v, the
following conclusion can be added. Either

inf
(x1,x′)∈[ϑ+ 1

`
,ϑ+`]×RN−1

(v(x1, x
′)− ṽ(x1, x

′)) > 0 (` = 1, 2, . . . )
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or there is a sequence {x′k} in RN−1 such that

v(x1, x
′
k + x′)− ṽ(x1, x

′
k + x′)→ 0 (x1 ≥ ϑ, x′ ∈ RN−1).

This can be proved by limiting arguments as in the proof of the next lemma.
An analogous remark applies to statement (ii).

Lemma 3.7. Assume that v, ṽ are solutions of (1.1) with ranges in [−1, 1]
such that ṽ ≤ v. Then either

inf
(x1,x′)∈[−`,`]×RN−1

(v(x1, x
′)− ṽ(x1, x

′)) > 0 (` = 1, 2, . . . ) (3.14)

or there is a sequence {x′k} in RN−1 such that

v(x1, x
′
k + x′)− ṽ(x1, x

′
k + x′)→ 0 ((x1, x

′) ∈ RN−1). (3.15)

Proof. We use the fact that w := v − ṽ is a solution of the linear equation
(2.4). Since w ≥ 0, we will not need any sign condition on the coefficient
a(x).

Suppose that for some ` relation (3.14) is not valid. Then there is a
sequence {(x1,k, x

′
k)} in [−`, `]×RN−1 such that v(x1,k, x

′
k)− ṽ(x1,k, x

′
k)→ 0

and, for some x1,0 ∈ [−`, `], x1,k → x̄1,0. As in the proof of Lemma 3.5,
passing to a subsequence we obtain v(x1, x

′+x′k)→ v̄(x1, x
′), ṽ(x1, x

′+x′k)→
v(x1, x

′), locally uniformly on RN , where v̄, v are solutions of (1.1) such that

v̄ − v ≥ 0 on RN and v̄(x̄1,0, 0)− v(x1,0, 0) = 0. (3.16)

Applying the strong maximum principle (or Harnack inequality) to w̃ = v̄−v,
a nonnegative solution of a linear equation, we obtain v̄ ≡ v. In particular,
we have found a sequence such that (3.15) holds.

3.3 Proof of Proposition 1.1

Assume that v is a solution of (1.1) satisfying hypothesis (U). By the strong
comparison principle, |v| < 1.

We show first of all that f 6≡ 0 on any interval of the form [−1,−1 + δ]
or [1 − δ, 1] with δ > 0. Indeed, suppose that, say, f ≡ 0 on [−1,−1 + δ].
Let D be a connected component of the set {x ∈ RN : v(x) < −1 + δ}. Then
the function w := −1 + δ − v is bounded and harmonic in D, and w = 0
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on ∂D. Moreover, by (U), the complement RN \ D contains a half plane,
which is known to be sufficient for the maximum principle to apply to ±w
(see [2, 16, 17], for example). This gives w ≡ 0 in D, which is a contradiction
to (U).

It follows from the property just established that the set N of the nodal
intervals of the function R0 is nonempty (cp. (3.4)) and the function F
satisfies conditions (1.6), (1.8) for some δ > 0.

As indicated in Section 2, for the proof of Proposition 1.1 we take the
functions

v−(x1) := inf
x′∈RN−1

v(x1, x
′), v+(x1) := sup

x′∈RN−1

v(x1, x
′)

as initial data for (3.1). We denote by u± the solution of (3.1), (3.7) with
u0 = ±v±. Note that the solutions have the following properties:

u−(x1, t) ≤ v−(x1) (x1 ∈ R, t > 0), (3.17)

u+(x1, t) ≥ v+(x1) (x1 ∈ R, t > 0). (3.18)

Indeed, we can view u− as a solution of the multidimensional equation

ut = ∆u+ f(u), x ∈ RN , t > 0, (3.19)

independent of x′. By the comparison principle, u−(x1, t) ≤ v(x1, x
′). Taking

the infimum over x′ ∈ RN−1, we obtain (3.17). Relation (3.18) is proved
similarly.

Next, observe that hypothesis (U) implies that (3.8) is satisfied if u0 = v±.
Thus Theorem 3.4 applies to the solutions u±. We use this to prove that all
traveling fronts in the minimal propagating terrace are standing waves, that
is,

cI = 0 (I ∈ N ). (3.20)

Indeed, suppose that cI > 0 for some interval I = (a, b) ∈ N (the case cI <
can be ruled out in an analogous way). From Theorem 3.4(b) and (3.17) we
obtain

v−(cIt+ ζI(t)) ≥ u−(cIt+ ζI(t), t) = (a+ b)/2 ∈ (−1, 1) (t > sI).

By Theorem 3.4(a), cIt+ ζI(t)→∞ as t→∞, and we have a contradiction
to v−(∞) = 0. Relations (3.20) are proved.
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Remembering that f does not vanish identically on any interval [−1,−1+
δ], δ > 0, we obtain from (3.4) that one of the following two possibilities
occurs. Either I0 := (−1, b) ∈ N for some b > 0, or there is a sequence
of intervals Ik = (ak, bk) ∈ N , k = 1, 2, . . . such that bk → −1. However,
(3.20) and Lemma 3.3 imply that if the latter occurs, then the points bk,
k = 1, 2, . . . are global maximizers of F in [−1, 1], thus F (bk) ≥ F (−1) =
0, in contradiction to (1.6). Therefore, the former possibility must occur.
Similarly one shows, using (1.8), that N contains an interval I1 := (a, 1),
with a < 1. Clearly, the standing waves ϕ− := φI0 and ϕ+ := φI1 satisfy all
the relations in the first statement of Proposition 1.1. Moreover, according
Lemma 3.3, the points −1, 1 are global maximizers of F in [−1, 1], hence
F ≤ F (1) = F (−1) = 0. The first statement of Proposition 1.1 is proved.

The second statement of Proposition 1.1 is a part of the following lemma.
Recall that we are assuming that v is a solution of (1.1) satisfying (U).

Lemma 3.8. Let ϕ be a solution of (1.3) such that |ϕ| < 1 and ϕ′ < 0.
If ϕ(∞) = −1 and (H−) holds, then ϕ(−∞) = 1 and there is ξ ∈ R such

that
ϕ(x1 + ξ) ≤ v(x1, x

′) ((x1, x
′) ∈ RN). (3.21)

If ϕ(−∞) = 1 and (H+) holds, then ϕ(∞) = −1 and there is θ ∈ R such
that

ϕ(x1 + θ) ≥ v(x1, x
′) ((x1, x

′) ∈ RN). (3.22)

Proof. We only prove the first statement, the proof of the second statement
being analogous.

As noted in Section 2, for suitable η the function ϕ coincides on [η,∞)
with the solution of (2.5) and this yields estimate (2.7). Using this and
hypothesis (U), we find constants ϑ ∈ R and ξ < ϑ− 1 such that

ϕ(ϑ− ξ) ≤ v(ϑ, x′) (x′ ∈ RN−1), (3.23)

g−(ϕ(x1 − ξ)) <
1

4(x1 − ξ)2
<

1

4(x1 − ϑ+ 1)2
(x1 > ϑ). (3.24)

Applying Lemma 3.5 with ṽ = ϕ(· − ξ), we obtain

ϕ(x1 − ξ) ≤ v(x1, x
′) (x1 ≥ ϑ, x′ ∈ RN−1). (3.25)

We next show that b := ϕ(−∞) must be equal to 1. Assume not: b < 1.
Then, in view of the monotonicity of ϕ and hypothesis (U), making ξ smaller

15



if necessary, we achieve that ϕ(· − ξ) ≤ v everywhere in RN . Set

ς := sup{ξ ∈ R : ϕ(· − ξ) ≤ v}.

Obviously, ς ∈ R and ϕ(· − ς) ≤ v. In view of the assumption b < 1
and hypothesis (U), Lemma 3.7 implies that relation (3.14) must hold with
ṽ = ϕ(· − ς) for all ` = 1, 2, . . . . Using this (and assumptions b < 1 and (U)
again), we obtain that for each ϑ̄ one has

inf
(x1,x′)∈(−∞,ϑ̄]×RN−1

(v(x1, x
′)− ϕ(· − ς)) > 0. (3.26)

Using hypothesis (H−), we find ϑ̄ such that

g−(ϕ(x1 − ξ)) <
1

4(x1 − ϑ̄+ 1)2
(x1 > ϑ̄) (3.27)

for all ξ ∈ [ς, ς + 1]. From (3.26) we infer that if ξ > ς is sufficiently close
to ς, then ϕ(· − ξ) < v in {(x1, x

′) : x1 ≤ ϑ̄}. Applying Lemma 3.5 with
ṽ = ϕ(· − ξ), we obtain that ϕ(· − ξ) < v holds in {(x1, x

′) : x1 > ϑ̄} as well.
This is a contradiction to the definition of ς.

This contradiction shows that b < 1 is impossible, hence b = ϕ(−∞) = 1.
It remains to prove (3.21). We already know—see (3.25)—that this rela-

tion holds for all x1 ≥ ϑ if ξ, ϑ ∈ R are chosen suitably. Clearly, in view of
the monotonicity of ϕ and hypothesis (U), we can make ξ smaller so as to
achieve that

ϕ(x1 − ξ) ≤ v(x1, x
′) (x1 ≥ ξ, x′ ∈ RN−1). (3.28)

Consider now the solution of the Cauchy problem

zyy + f(z) = 0, y ∈ R, (3.29)

z(ξ) = ϕ(0), z′(ξ) = ν, (3.30)

where ν ∈ (ϕ′(0), 0). We have supy∈R z(y) < 1. To show this, first note that
the phase-plane trajectory of (z, zy) is trapped inside the homoclinic loop
consisting of the equilibria (−1, 0), (1, 0), and the trajectories of (ϕ,±ϕy).
This gives |z| < 1. Now z2

y/2 + F (z) ≡ c, where the constant c satisfies
c < 0 = ϕ2

y/2 + F (ϕ), due to the choice of initial conditions. Thus (z, zy)
stays at a positive distance from the equilibrium (1, 0), which gives the desired
relation.

16



Let zν stand for the solution of (3.29), (3.30). Fixing some ν0 ∈ (ϕ′(0), 0),
the relation supy∈R z

ν0(y) < 1 just established and hypothesis (U) imply
that—possibly upon making ξ smaller, which has no effect on (3.28)—the
following holds for ν = ν0:

zν(x1) ≤ v(x1, x
′) (x1 ≤ ξ, x′ ∈ RN−1). (3.31)

Let
ν1 := inf{ν ∈ (ϕ′(0), ν0] : (3.31) holds}.

We claim that ν1 = ϕ′(0). Indeed, if not then (3.31) holds with ν = ν1

and supy∈R z
ν1(y) < 1. Since v satisfies (U), the strict inequality holds in

(3.31) and, moreover, limiting arguments as in the proof of Lemma 3.5 (cp.
Lemma 3.7) show that ν = ν1 can be properly decreased while preserving
relation (3.31). This contradiction to the definition of ν1 proves our claim.
Due to the continuity of solutions with respect to the initial conditions, we
have zν → ϕ(·−ξ) uniformly on compact subintervals of (−∞, ξ]. Therefore,
(3.31) yields

ϕ(x1 − ξ) ≤ v(x1, x
′) (x1 ≤ ξ, x′ ∈ RN−1). (3.32)

This and (3.28) give (3.21).

3.4 Proof of Theorem 1.3

Assume that the hypotheses of Theorem 1.3 are satisfied. Using Proposition
1.1, we find a solution ϕ of (1.3), (1.4) and a positive number ξ such that
ϕ′ < 0 and

ϕ(x1 + ξ) ≤ v(x1, x
′) ≤ ϕ(x1) ((x1, x

′) ∈ RN). (3.33)

With an arbitrary σ ∈ RN−1 fixed, consider the family of functions
vη(x1, x

′) := v(x1 + η, x′ + σ), η ∈ R (the idea to use this family in a sliding
argument comes from [4]). Taking η ∈ [0, ξ], we have, by (3.33) and the
monotonicity of ϕ,

ϕ(x1 + 2ξ) ≤ ϕ(x1 + ξ + η) ≤ vη(x1, x
′) ≤ ϕ(x1 + η) ≤ ϕ(x1). (3.34)

As shown in Section 2, hypotheses (H−), (H+) give estimates (2.7), (2.8).
Since the function g− is increasing and the function g+ is decreasing (cp.
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(1.10)), estimates (2.7), (2.8) in conjunction with (3.34), (3.33) imply that if
ϑ > 0 is sufficiently large, then

g−(vη(x1, x
′)) <

1

4(x1 − ϑ+ 1)2
(x1 ≥ ϑ, x′ ∈ RN−1; η ∈ [0, ξ]),

g+(v(x1, x
′)) <

1

4(x1 + ϑ− 1)2
(x1 ≤ −ϑ, x′ ∈ RN−1).

(3.35)

Notice that for η = ξ we have, by (3.33),

vξ(x1, x
′) ≤ ϕ(x1 + ξ) ≤ v(x1, x

′). (3.36)

Let now
η0 := inf{η ∈ (0, ξ] : vη ≤ v}. (3.37)

We want to prove that η0 = 0. Suppose for a contradiction that η0 > 0.
Then vη0 ≤ v and, by Lemma 3.7, either

inf
(x1,x′)∈[−ϑ,ϑ]×RN−1

(v(x1, x
′)− vη0(x1, x

′)) > 0 (3.38)

or there is a sequence {x′k} in RN−1 such that

v(x1, x
′
k + x′)− vη0(x1, x

′
k + x′)→ 0 (x1 ∈ R, x′ ∈ RN−1). (3.39)

If the latter holds, we follow an argument of [4]. By standard regularity
estimates, passing to a subsequence, we may assume that v(x1, x

′ + x′k) →
v̄(x1, x

′), locally uniformly on RN , where v̄ is a solution of (1.1). From (3.39)
we obtain that v̄(x1 + η0, x

′ + σ) = v̄(x1, x
′) for all (x1, x

′) ∈ RN . It follows
that the function v̄ is periodic with period (η0, σ) ∈ RN . However, it is clear
that v̄ satisfies hypothesis (U) and, since η0 > 0, this is not consistent with
the periodicity.

Having ruled out (3.39), relation (3.38) implies that for η < η0 sufficiently
close to η0 we have v > vη in [−ϑ, ϑ] × RN−1. Applying Lemma 3.5 with
ṽ = vη–which is legitimate by (3.35)–we obtain v > vη on RN , contradicting
the definition of η0.

Thus, indeed, η0 = 0, which gives

v(x1, x
′) ≥ v(x1, x

′ + σ) ((x1, x
′) ∈ RN).

Since σ ∈ RN−1 is arbitrary, this clearly implies that v(x1, x
′) is independent

of x′. The proof of the theorem is complete.
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4 Details for Example 1.4

Consider the nonlinearity f defined for u ≈ −1 as in Example 1.4:

f(u) = (u+ 1)p(−1 + b cos log(u+ 1)),

where p > 1,

(1 +
1

p2
)−

1
2 < b < 1, (4.1)

and
b(1 + 1

p2
)
1
2 − 1

1− b
<

(p− 1)2

8p(p+ 1)
. (4.2)

We have

f ′(u) = p(u+ 1)p−1
(
− 1 + b cos log(u+ 1)− b

p
sin log(u+ 1)

)
= p(u+ 1)p−1

(
− 1 + b(1 +

1

p2
)
1
2 cos(α + log(u+ 1))

)
for some constant α = α(p). Since b(1 + 1/p2)1/2 > 1 (cp. (4.1)), f ′ changes
sign in any interval (−1,−1 + ε), ε > 0. Hence, (M−) is not satisfied.

We next show that (H−) is satisfied. We have

g−(u) = max
s∈[−1,u]

f ′(s) ≤ p(u+ 1)p−1(b(1 + 1/p2)1/2 − 1).

Further, the obvious relation f(u) ≤ (b− 1)(u+ 1)p gives F (u) ≤ (b− 1)(u+
1)p+1/(p+ 1) and

(−2F (u))−
1
2 ≤

( p+ 1

2(1− b)

) 1
2
(u+ 1)−

p+1
2 .

Hence, for u ∈ (−1,−1 + δ),

E−(u) =

∫ −1+δ

u

ds√
−2F (s)

ds ≤ c+
( p+ 1

2(1− b)

) 1
2 2

p− 1
(u+ 1)

1−p
2 ,

where c is a constant. Combining the above estimates, we obtain

lim sup
u→−1

(E−(u))2g−(u) ≤ b(1 + 1/p2)1/2 − 1

1− b
2p(p+ 1)

(p− 1)2
<

1

4

(we have used (4.2) for the last inequality). Thus, (H−) is satisfied.
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