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Abstract

We consider linear nonautonomous second order parabolic equa-
tions on bounded domains subject to Dirichlet boundary condition.
Under mild regularity assumptions on the coefficients and the domain,
we establish the existence of a principal Floquet bundle exponentially
separated from a complementary invariant bundle. Our main theorem
extends in a natural way standard results on principal eigenvalues and
eigenfunctions of elliptic and time-periodic parabolic equations. Sim-
ilar theorems were earlier available only for smooth domains and co-
efficients. As a corollary of our main result, we obtain the uniqueness
of positive entire solutions of the equations in question.

Keywords: Nonautonomous parabolic equations, principal Floquet bun-
dle, exponential separation, positive entire solutions.

1 Introduction

Consider the problem

ut +A(t)u = 0 in Ω× J,

u = 0 on ∂Ω× J,
(1.1)
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where Ω ⊂ RN is a bounded Lipschitz domain, J is an open interval in R,
and A(t) is a time-dependent elliptic operator of the form

A(t)u = −∂i(aij(x, t)∂ju+ ai(x, t)u) + bi(x, t)∂iu+ c0(x, t)u (1.2)

with real valued coefficients aij, ai, bi, c0 ∈ L∞(Ω × R), i, j = 1, . . . , N (we
use the summation convention and the notation ∂i = ∂/∂xi).

Without assuming any special dependence (like periodicity or almost pe-
riodicity) of the coefficients on t, we examine solutions of problem (1.1) that
exhibit properties analogous to standard features of principal eigenfunctions
of time-independent or time-periodic parabolic problems. To state our re-
sults, we fix a basic notation and formulate our standing hypotheses on the
operator A and its coefficients.

We shall always assume that A is uniformly strongly elliptic, that is, there
exists α0 > 0 such that

aij(x, t)ξiξj ≥ α0|ξ|2 ((x, t) ∈ Ω̄× R, ξ ∈ RN). (1.3)

Fix a constant d0 > 0 and let B be a subset of L∞(Ω × R) with the
following properties

B1) ‖f‖L∞(Ω×R) ≤ d0 for all f ∈ B.

B2) B is invariant under time-translations: if f ∈ B then the function τsf
defined by

τsf(x, t) = f(x, t+ s) ((x, t) ∈ Ω× R)

belongs to B for each s ∈ R.

B3) B is sequentially compact with respect to convergence almost every-
where: any sequence in B has a subsequence that converges almost
everywhere on Ω× R to a function in B.

As an example of B one can take the set of all continuous functions f sat-
isfying B1 which have the modulus of continuity bounded above by a fixed
function ω0 with ω0(h) → 0 as h → 0+. See the end of the introduction
for an example of a larger class B, including discontinuous functions, and a
discussion of the hypotheses.

We shall assume that A has all its coefficients in B:

aij, ai, bi, c0 ∈ B (i, j = 1, . . . , N). (1.4)
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We equip B with the weak∗ topology of L∞(Ω × R). By B1, B is a
compact metrizable space; it is not difficult to verify that B1, B3 imply that
the convergence in B is equivalent to the convergence almost everywhere.

Further, with α0 > 0 fixed, let Bα0 be the set of all matrix functions
(aij)

N
i,j=1 ∈ (B)N

2
satisfying (1.3) We equip Bα0 with the induced topology

from the product space BN2
(Bα0 is compact in this topology).

We now introduce the adjoint problem to (1.1)

−vt +A∗(t)v = 0 in Ω× J,

v = 0 on ∂Ω× J,
(1.5)

where A∗ is defined by

A∗(t)v = −∂j(aij(x, t)∂iv + bj(x, t)v) + aj(x, t)∂jv + c0(x, t)v. (1.6)

By a solution of (1.1) or (1.5) we always mean a weak solution (see Section
2 for a precise definition); by an entire solution we mean a solution defined
for each t ∈ R.

Let X = L2(Ω) with the standard norm. Our main result reads as follows.

Theorem 1.1. Let (aij)
N
i,j=1 ∈ Bα0, ai, bi, c0 ∈ B, i = 1, . . . , N . Then there

exist positive entire solutions ϕA, ψA of (1.1), (1.5), respectively, with the
following properties.

(i) For each t ∈ R, the functions ϕA(·, t) ∈ X, ψA(·, t) ∈ X depend
continuously (in the L2(Ω) norm) on the coefficients (aij)

N
i,j=1 ∈ Bα0,

ai, bi, c0 ∈ B, i = 1, . . . , N .

(ii) Set

X1
A(t) := span{ϕA(·, t)},

X2
A(t) := {v ∈ X :

∫
Ω

ψA(x, t)v(x) dx = 0} (t ∈ R).

These spaces are invariant under (1.1) in the following sense: if i ∈
{1, 2}, u0 ∈ X i

A(s), then u(·, t; s, u0) ∈ X i
A(t) (t ≥ s), where u(·, t; s, u0)

denotes the solution of (1.1) with the initial condition u(·, s) = u0.
Moreover, X1

A(t), X2
A(t) are complementary subspaces of X:

X = X1
A(t)⊕X2

A(t) (t ∈ R). (1.7)
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(iii) There are constants C, γ > 0 such that for any (aij)
N
i,j=1 ∈ Bα0, ai, bi, c0 ∈

B, i = 1, . . . , N , t > s, and any u0 ∈ X2
A(s) one has

||u(·, t; s, u0)||L2(Ω)

||ϕA(·, t)||L2(Ω)

≤ Ce−γ(t−s)
||u0||L2(Ω)

||ϕA(·, s)||L2(Ω)

. (1.8)

We refer to the collection of the one-dimensional spaces X1
A(t), t ∈ R, as

the principal Floquet bundle of (1.1) and to property (iii) as an exponential
separation.

To draw a connection of the above results to principal eigenvalues, assume
for a while that the coefficients of A(t) are independent of t: A(t) = A.
Consider the eigenvalue problem

Aφ = λφ, on Ω,

φ = 0, on ∂Ω.
(1.9)

It is well known (see [2, 3] for example) that there is a unique eigenvalue λ1

(the principal eigenvalue) with a positive eigenfunction (the principal eigen-
function); it is real, algebraically simple and smaller than the real part of any
other eigenvalue. Also λ1 is the principal eigenvalue of the adjoint problem

A∗φ∗ = λφ∗, on Ω,

φ∗ = 0, on ∂Ω.
(1.10)

Denoting by φ1 and φ∗1 the principal eigenfunctions of (1.9), (1.10), it is easy
to verify that

ϕA(x, t) = φ1(x)e
−λ1t, ψA(x, t) = φ∗1(x)e

λ1t

are positive entire solutions of (1.1) and (1.5), respectively, that have all
the properties stated in Theorem 1.1. Note that the exponential separation
property (iii) follows from the fact that λ1 is smaller than the real part of
any other eigenvalue.

Similarly, if the coefficients of A(t) are periodic in t with a common period
τ , then the period (Poincaré) map of (1.1) has a unique Floquet multiplier
with a positive eigenfunction. The multiplier is real, simple and greater than
the modulus of any other multiplier, and it is also a Floquet multiplier of
the adjoint problem (1.5) with a positive eigenfunction (see [7]). Denote
the positive eigenfunctions of the period maps of (1.1), (1.5) by φ1 and φ∗1,
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respectively, and take them as initial conditions for (1.1), (1.5) at t = 0.
The resulting solutions are positive entire solutions u = ϕA, v = ψA with
properties as in Theorem 1.1.

If the coefficients of A and the boundary of Ω are sufficiently regular, the
above properties of elliptic and time-periodic equations can be derived from
the Krein-Rutman theorem on positive operators (see [14, 9], for example).
Without the periodicity assumption there is no such easy derivation of The-
orem 1.1, even in the smooth case (that is, when the coefficients and ∂Ω are
smooth). An abstract exponential separation theorem, dealing with positive
vector bundle maps was proved in [29] (a finite-dimensional predecessor of
this result can be found in [30]). This abstract result in particular implies
Theorem 1.1 in the smooth case (see [20, 31]). For a class of second order
parabolic operators the smooth case was also treated in [18], and more re-
cently, with a different method, in [27]. The regularity assumptions in these
papers are essential for the techniques used there. These techniques generally
do not apply under the present assumptions, as we explain below.

The principal Floquet bundle with the exponential separation property
has been used, as a key ingredient, in several results on nonlinear parabolic
equations (see [28, 15, 19, 31]); applications in linear equations can be found
in [28, 20, 21, 22, 23, 31, 16]. Let us also mention that in one space dimen-
sion one can establish Floquet bundles corresponding to any nodal number,
not just to the nodal number zero (the principal Floquet bundle) as in the
multidimensional case (see [4, 5, 32]). These results and corresponding ex-
ponential separation theorems extend the Sturm-Liouville theory of second
order ordinary differential equations in a similar way Theorem 1.1 extends
Krein-Rutman type results for elliptic and parabolic equations.

Let us explicitly mention one application in linear equations. As was
shown in [20, 21], the exponential separation property implies the unique-
ness (up to scalar multiples) of positive entire solutions of (1.1) (see also [26]
for earlier uniqueness results obtained by different methods). It was later
pointed out in [27] that the uniqueness follows from a simpler exponential
growth estimate of expressions involving solutions of (1.1) and (1.5). Both
the new exponential estimate and its corollary on the uniqueness are interest-
ing at their own rate (we formulate them in Theorem 1.2 and Proposition 1.3
below), but, as shown in [27], one can also use them as basic ingredients of
an alternative proof of the exponential separation theorem. We prove these
results in our more general setting and employ them in the proof of Theo-
rem 1.1 in a similar way as in [27].
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Denote by 〈·, ·〉 the standard inner product in L2(Ω). From now on, we
always assume that the coefficients of A in the equation (1.1) satisfy the
assumptions as stated in Theorem 1.1.

Theorem 1.2. Let v0 ∈ L2(Ω) be nonnegative and nontrivial. If u(·, t) is a
nontrivial solution of (1.1) on (−∞, t0], v(·, t) is the solution of (1.5) with
v(·, t0) = v0, and

〈u(·, t0), v0〉 = 0,

then the function
ξ(t) := 〈|u(·, t)|, v(·, t)〉

is decreasing and grows exponentially as t → −∞: there are positive con-
stants C and γ such that

ξ(t) ≤ Ce−γ(t−s)ξ(s) (t0 > t > s). (1.11)

Let us show, following [27], how this theorem implies the uniqueness of
positive entire solutions:

Proposition 1.3. If u1 and u2 are positive entire solutions of (1.1), then
there is a constant q such that u1 ≡ qu2.

Proof. Choose a nontrivial continuous function v0 ≥ 0 and let v be the
solution of (1.5) with v(·, t0) = v0. There is a constant q such that

〈u1(·, t0)− qu2(·, t0), v0〉 = 0. (1.12)

Set u = u1 − qu2. By positivity of u1, u2, v,

〈|u(·, t)|, v(·, t)〉 ≤ 〈u1(·, t), v(·, t)〉+ |q|〈u2(·, t), v(·, t)〉. (1.13)

It is not difficult to verify (cf. (3.1) below) that if u(t) and v(t) are any
solutions of (1.1) and (1.5) on the same interval, then 〈u(·, t), v(·, t)〉 is con-
stant on that interval. Thus (1.13) implies 〈|u(·, t)|, v(·, t)〉 is bounded. By
Theorem 1.2 this is possible only if u ≡ 0.

As mentioned above all previous results on the principal Floquet bundle
and exponential separation were proved under stronger regularity assump-
tions. A key point is that if ∂Ω and the coefficients of A are sufficiently
regular then the Hopf boundary lemma implies a strong positivity property
of the evolution operator of (1.1). Namely, the evolution operator takes any
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0 6≡ u0 ∈ L2(Ω), u0 ≥ 0, into the interior of the positive cone in a functional
space Y , for example,

Y := {v ∈ C1(Ω̄) : v(x) = 0 on ∂Ω}

with the standard C1 topology. In our present setting, the Hopf boundary
Lemma no longer applies (see the discussion following [13, Lemma 3.4]) thus
the strong positivity property is not available. To circumvent this difficulty,
we will appeal to more basic properties of solutions (in particular positive
ones) of linear parabolic equations. For this purpose we will use several
forms of Harnack type estimates proved by Fabes and Safonov [12]. We have
collected them in Appendix B, where we also derive several consequences
useful for our arguments. In fact, that appendix constitutes a substantial part
of our proof. Our paper closely follows the approach used in [27] and many
results are stated in an almost identical form. However, as our assumptions
are far less restrictive, many proofs are completely different.

The paper is organized as follows. In Section 2 we give a precise definition
of (entire) solutions of (1.1) and (1.5). We also list several properties of the
evolution operator associated with equation (1.1). Sections 3, 4 contain, re-
spectively, the proofs of the exponential growth estimate of Theorem 1.2 and
the existence of positive entire solutions of (1.1) and (1.5). The proof of The-
orem 1.1 is completed in Section 5. In addition to Appendix B on Harnack
type results, we have included Appendix A, where we give a perturbation
result from [6].

We finish the introduction with a few comments on our assumptions B1-
B3. As already mentioned, an example of B is the set of all functions f
satisfying B1 which have the modulus of continuity bounded above by a
fixed function ω0. More generally, fix any positive and increasing function ω0

with ω0(h) → 0 as h→ 0+. Let B be the set of all functions f satisfying B1
and the following condition

sup
|y|+|s|≤h
y∈RN , s∈R

∫
Ω×(T−1,T )

|f(x+ y, t+ s)− f(x, t)| dxdt ≤ ω0(h) (h > 0, T ∈ R)

(it is understood here that f(x+ y, t+ s) = 0 if x+ y 6∈ Ω). It is clear that
B satisfies B2. By a well-known compactness criterion and a diagonalization
procedure, any sequence in B has a subsequence convergent in L1

loc(Ω × R)
and hence also a subsequence convergent almost everywhere. This shows
that B3 is satisfied.
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Observe that B2 and B3 in particular imply that for f ∈ B and for any se-
quence sn ∈ R the sequence of time translations τsnf has a subsequence that
converges almost everywhere to a function f̃ ∈ B. It is the nature of some of
our proofs that requires this compactness condition, since they depend on a
limiting contradiction argument. For it to work, we need the coefficients of a
sequence of operators (1.2) to have at least pointwise limits. The reason is a
perturbation argument, formulated in Appendix A, which uses the pointwise
convergence. This result can be improved slightly by allowing the limits of
the lowest order coefficients to be merely weak∗ limits (thus no extra condi-
tion, other than boundedness, on c0 is actually necessary), but it is not clear
whether weak∗ limits are sufficient for the higher order coefficients.

After this paper was completed, we have learned from Mikhail Safonov
about new elliptic-type Harnack inequalities for quotients of positive solu-
tions of (1.1). Based on these estimates, a different approach to the problem
considered here is possible. It does not rely on limiting arguments and thus
does not need any compactness assumption like B3. Note that we do not need
B3 to establish the existence of the entire solutions ϕA, ψA either. With the
new approach one can thus improve the theorems presented here. The results
will be presented elsewhere.

2 Preliminaries

Consider the following initial value problem

ut +A(t)u = 0 in Ω× (s, T ),

u = 0 on ∂Ω× (s, T ), (2.1)

u = u0 in Ω× {s},

where s, T ∈ R, s < T , A is defined in (1.2) with coefficients satisfying (1.3)
and (1.4). The quadratic form corresponding to (2.1) is defined in a usual
way

a(t;u, v) :=

∫
Ω

[(aij∂ju+ aiu)∂iv + (bi∂iu+ c0u)v] dx

for all u, v ∈ W 1,2
0 (Ω) (we have omitted the arguments of u, v, aij etc.). Set

V := W 1,2
0 (Ω). Below D([s, T )) stands for the space of smooth functions

with compact support in [s, T ) and 〈·, ·〉 denotes the standard inner product
in L2(Ω). Also, if there is no danger of confusion, we will often suppress the
spatial argument and write u(t) for a solution of (1.1).
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Definition 2.1. Assume u0 ∈ L2(Ω). A function u is called a weak solution
of problem (2.1) on Ω× [s, T ], if u ∈ L2((s, T );V ) and

−
∫ T

s

〈u(t), v〉ϕ′(t) dt+

∫ T

s

a(t;u(t), v)ϕ(t) dt− 〈u0, v〉ϕ(s) = 0

for all v ∈ V and ϕ ∈ D([s, T )). A function u is called a weak solution of
(1.1) on an open time interval J ⊆ R if it is a weak solution of (2.1) with
u0 = u(s) on Ω × [s, T ] for all s, T ∈ R such that [s, T ] ⊆ J . In particular,
u is called an entire solution if it is a weak solution of (1.1) on J = R.

We will use the terms weak solution and solution interchangeably through-
out this paper. Under our assumptions on the coefficients and the domain,
a weak solution of the initial boundary value problem (2.1) from Definition
2.1 is also a weak solution of the equation ut+A(t)u = 0 in Ω× (s, T ) in the
usual sense (see [17, Chapter III]). Moreover, for any u0 ∈ L2(Ω), and s < T ,
the weak solution of (2.1) always exists, it is unique and can be (uniquely)
extended to a solution on (s,∞). Denote the solution by U(t, s)u0, t ≥ s. Let
‖ · ‖p,q stand for the operator norm of the space L(Lp(Ω), Lq(Ω)) of bounded
linear operators from Lp(Ω) to Lq(Ω). It is well known that the evolution
operator U(t, s), t ≥ s, satisfies the following Lp − Lq estimates (see [8], for
example).

Proposition 2.2. For all 1 ≤ p ≤ q ≤ ∞, t, s ∈ R, t > s, one has
U(t, s) ∈ L(Lp(Ω), Lq(Ω)) and

‖U(t, s)‖p,q ≤M(t− s)−
N
2

( 1
p
− 1

q
)eβ(t−s),

where M ≥ 1 and β ∈ R are constants depending only on the L∞(Ω × R)
bound of the coefficients of A and the constant α0 in (1.3). Moreover, for
any u0 ∈ L2(Ω) and T ≥ s one has U(·, s)u0 ∈ C([s, T ];L2(Ω)).

Another property of the evolution operator U(t, s) we will use is positivity.
For any p ∈ (1,∞) and u0 ∈ Lp(Ω), u0 ≥ 0, we have U(t, s)u0 ≥ 0 for all
t ≥ s (see [8], for example). This can be improved on: nonnegative nontrivial
solutions are strictly positive. Since we use this fact frequently, we formulate
it in the following lemma. It is a direct consequence of the Harnack inequality
[25, 1, 12].

Lemma 2.3. If u is a nonnegative and nontrivial solution of (1.1) on Ω ×
(s,∞) then it is strictly positive in Ω× (s,∞).
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Besides positivity, the evolution operator has the smoothing property. In
this regard, we mention the following standard regularity result [17, Chapter
III, Theorem 10.1]. We use the usual notation for the parabolic Hölder spaces
Cα,α

2 (Ω× (s, T )).

Theorem 2.4. Let u be a (weak) solution of (2.1) with u0 ∈ L2(Ω). Suppose
that the coefficients aij, ai, bi, c0 (i, j = 1, . . . , N) have the L∞(Ω × R)-norm

bounded above by a constant d. Then for any T > s we have u ∈ C
α,α

2
loc (Ω̄ ×

(s, T ]), and for any δ > 0 (δ < T−s) the norm ‖u‖
Cα, α

2 (Ω̄×[s+δ,T ])
is estimated

from above by a constant K depending only on N , d, ess sup |u|
Ω×(s,T )

, α0 in (1.3),

|T − s|, δ, and Ω. The exponent α > 0 is determined only by N, d, α0, and
Ω.

Remark 2.5. Below it will be useful to have noted that in the above theorem,
the exponent α and the constantK depend on Ω only via its diameter and the
regularity of its boundary. In particular, α and K can be chosen uniformly
for a class of domains Ω contained in a fixed ball and such that we can
choose fixed numbers r0 and m characterizing their Lipschitz properties (see
Section B.1).

Let us now turn our attention to (1.5). As before, define the corresponding
bilinear form associated with (1.5) by

a∗(t;u, v) :=

∫
Ω

[(aij∂iu+ bju)∂jv + (aj∂ju+ c0u)v] dx

for all u, v ∈ W 1,2
0 (Ω) (omitting the arguments). A weak solution of (1.5)

with v(·, t0) = v0 ∈ L2(Ω) can now be defined using a∗(·, ·, ·) analogously as
in Definition 2.1. One can prove (see [8]) that there is a well defined evolution
operator, henceforth denoted by U∗(t, s), t ≤ s, for the adjoint problem (1.5).
Reversing time, we obtain

U∗(t, s) = Ũ(−t,−s) (t ≤ s),

where Ũ(t, s), t ≥ s, is the (“forward”) evolution operator for the problem

wt +A∗(−t)w = 0 x ∈ Ω,

w = 0 x ∈ ∂Ω.
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This problem is of the same form as (2.1) and thus U∗(t, s) has the same
smoothing and positivity properties as U(t, s). We will use this fact fre-
quently without notice. In particular, in Appendix B, when proving several
general properties of positive solutions of (2.1) and (1.5), we will restrict
ourselves to just (2.1). Finally, let us note that

〈U(t, s)u, v〉 = 〈u, U∗(s, t)v〉 (u, v ∈ L2(Ω), t ≥ s), (2.2)

a fact that can be proved in a standard way by applying the Fubini theorem
to the integral representations of the solutions U(t, s)u, U∗(s, t)v using the
weak Green’s functions (see [1, Theorem 9 (i), (vi)]).

3 Proof of Theorem 1.2

Let u be a solution of (1.1) on (−∞, t0) and let v be the solution of (1.5)
with v(·, t0) = v0 ∈ L2(Ω). One can easily verify that then

〈u(·, t), v(·, t)〉 :=

∫
Ω

u(x, t)v(x, t) dx ≡ const. (3.1)

is a constant function of t. Indeed, the fact that the time derivative of this
expression equals zero follows from the definition of A, A∗ and integration
by parts in case the coefficients are smooth. Using this and a standard
approximation procedure (see [6]), one proves (3.1) in the general case.

Let us now prove an analogue of [27, Lemma 3.1].

Lemma 3.1. Assume that u is a nontrivial solution of (1.1) on J and v is
a positive solution of (1.5) on the same interval J such that 〈u(t), v(t)〉 = 0
for some (hence every) t ∈ J . Then ξ(t) := 〈|u(t)|, v(t)〉 is a nonincreasing
function on J . More precisely, ξ(t) is nonincreasing on J and it is (strictly)
decreasing at all times t ∈ J for which u(t) 6≡ 0.

Remark 3.2. Under our assumptions on the regularity of the coefficients
the unique continuation property of linear parabolic equations does not hold
in general. This means that if u is a nontrivial solution of (1.1) on an
open interval J , it may happen that it becomes identically zero at some
t ∈ J (and then continues as a zero solution). This is the reason for the
seemingly awkward formulation of the above lemma (cp. [27, Lemma 3.1]).
We refer the reader to [24] for an example of non-unique continuation in
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the case of Neumann boundary conditions and to [10] for what seems to be
a sharp condition on smoothness of coefficients under which one still has
unique continuation.

Proof of Lemma 3.1. Let s, t ∈ J , t > s. Using the positivity of the evolution
operator U(t, s) associated with (1.1), one easily gets (see [27] for details)

|u(t)| ≤ U(t, s)|u(s)|. (3.2)

If, moreover, u(t) changes sign in Ω then the inequality is strict on a subdo-
main Ω̃:

|u(x, t)| < (U(t, s)|u(s)|)(x) (x ∈ Ω̃).

Since v(·, t) > 0 in Ω for t ∈ J and since 〈u(t), v(t)〉 = 0, we must have
that either u(·, t) changes sign or is identically zero. Suppose that the former
happens, that is, u(·, t) changes sign. Then (3.2) holds on Ω and is strict on
a nonempty subdomain. Therefore

ξ(t) < 〈U(t, s)|u(s)|, v(t)〉. (3.3)

Applying (3.1) to the solution ū(t) = U(t, s)|u(s)|, we see that the right hand
side of (3.3) is independent of t. Taking t = s, we obtain

ξ(t) < 〈|u(s)|, v(s)〉 = ξ(s).

Thus ξ(t) decreases strictly up to the time when u becomes identically zero
(if at all).

Assume now that the hypotheses of Theorem 1.2 are satisfied and that
u(t) 6≡ 0 for t ∈ (−∞, t0] (this causes no loss of generality). Lemma 3.1
implies that there is a constant ρ ≤ 1 such that

ξ(t+ 2)

ξ(t)
≤ ρ (t ≤ t0 − 2). (3.4)

If ρ < 1 in this inequality, then this fact and the monotonicity of ξ imply

ξ(t) ≤ Ce−γ(t−s)ξ(s) (s < t < t0)

for γ = − log ρ
2

and C = ρ−1. Thus Theorem 1.2 follows from the next
assertion.
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Lemma 3.3. Under the assumptions of Theorem 1.2, inequality (3.4) holds
for some ρ < 1.

Proof. We first derive a useful estimate for the quotient ξ(t+ 1)/ξ(t). It
will later help us prove that certain limiting solution which we obtain by a
contradiction argument is nontrivial.

Fix t ≤ t0−2. By Lemma B.8 applied to the solution ū(τ) = U(τ, t)|u(t)|
we have

U(t+ 1, t)|u(t)|(x) ≥ Cd(x)θ‖U(t+ 1, t)|u(t)|‖L2(Ω).

This inequality and (3.2) (replace there t by t + 1 and s by t, respectively)
imply

U(t+ 1, t)|u(t)|(x) ≥ Cd(x)θ‖u(t+ 1)‖L2(Ω). (3.5)

For r > 0 set
Ωr := {x ∈ Ω; dist(x, ∂Ω) > r}

and fix r = r0/2, where r0 is as in the definition of a Lipschitz domain at the
beginning of Section B.1. Then an application of Corollary B.7 to v gives

ξ(t+ 1)

‖u(t+ 1)‖L2(Ω)‖v(t+ 1)‖L2(Ω)

=∫
Ω\Ωr

|u(t+ 1)|
‖u(t+ 1)‖L2(Ω)

v(t+ 1)

‖v(t+ 1)‖L2(Ω)

dx+

∫
Ωr

|u(t+ 1)|
‖u(t+ 1)‖L2(Ω)

v(t+ 1)

‖v(t+ 1)‖L2(Ω)

dx

≤ a(t+ 1) +

∫
Ωr

|u(t+ 1)|
‖u(t+ 1)‖L2(Ω)

dx, (3.6)

where

a(t) :=

∫
Ω\Ωr

|u(t)|
‖u(t)‖L2(Ω)

v(t)

‖v(t)‖L2(Ω)

dx

and C is a positive constant (independent of v). We know that (cf. (3.1))

ξ(t) =

∫
Ω

|u(t)|v(t) dx =

∫
Ω

(U(t+ 1, t)|u(t)|)v(t+ 1) dx.

Splitting this integral into a sum of two integrals over Ω \Ωr and Ωr, respec-
tively, and applying inequality (3.2) (with “t = t + 1” and “s = t”) to the
first one, we obtain

ξ(t)

‖u(t+ 1)‖L2(Ω)‖v(t+ 1)‖L2(Ω)

≥ a(t+ 1) + C̃. (3.7)
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By (3.5) and Lemma B.8 (applied to v), C̃ is bounded below by a positive
constant independent of u and v. Combining (3.6) and (3.7) implies

ξ(t+ 1)

ξ(t)
≤
a(t+ 1) + C

∫
Ωr

|u(t+1)|
‖u(t+1)‖L2(Ω)

dx

a(t+ 1) + C̃
(t ≤ t0 − 2). (3.8)

Notice that by the Hölder inequality and positivity of v, we have 0 ≤ a(t) ≤ 1
(t ≤ t0 − 1).

We now proceed by contradiction. Suppose the statement of Lemma 3.3
is false. Then there is a sequence tn → −∞ such that

1 ≥ ξ(tn + s)

ξ(tn)
≥ ξ(tn + 2)

ξ(tn)
→ 1 (s ∈ [0, 2]) (3.9)

as n→∞. Set

un(τ) : =
u(tn + 1 + τ)

‖u(tn + 1)‖L2(Ω)

, An(τ) := A(tn + 1 + τ) ,

vn(τ) : =
v(tn + 1 + τ)

‖v(tn + 1)‖L2(Ω)

, A∗
n(τ) := A∗(tn + 1 + τ) (τ < t0 − tn − 1),

where A, A∗ are as in (1.2), (1.6), respectively. Clearly, un is a solution of

uτ +An(τ)u = 0 in Ω× (−∞, t0 − tn − 1),

u = 0 on ∂Ω× (−∞, t0 − tn − 1).

Similarly, vn is a positive solution of

−vτ +A∗
n(τ)v = 0 in Ω× (−∞, t0 − tn − 1),

v = 0 on ∂Ω× (−∞, t0 − tn − 1).

In addition, we have vn(τ) ≥ 0 and

‖un(0)‖L2(Ω) = ‖vn(0)‖L2(Ω) = 1, 〈un(τ), vn(τ)〉 = 0 (τ < t0 − tn − 1).
(3.10)

Using our assumptions on the coefficients of A, we obtain, passing to subse-
quences if necessary, that the coefficients of An converge almost everywhere
(in Ω×R) to the coefficients of some uniformly elliptic operator Ã. By (3.10),
the sequence un(0) contains a subsequence, still denoted by un(0), converging
to some ũ0 ∈ L2(Ω) weakly in L2(Ω). Thus all assumptions of Lemma A.1

14



are satisfied and we can conclude that (a subsequence of) un converges to ũ
in C([δ, T ];L2(Ω)) for all T, δ > 0, δ < T , where ũ is the solution of

uτ + Ã(τ)u = 0 in Ω× (0,∞),

u = 0 on ∂Ω× (0,∞), (3.11)

u = ũ0 in Ω× {0}.

Next, it can be shown (see (B.2.8) and the argument preceding it) that
there exists C > 1 such that

1

C
≤ ‖vn‖Cα, α

2 (Ω̄×[−1,1])
≤ C,

where α is as in Theorem 2.4. Hence there is a subsequence of vn, still denoted
by vn, converging uniformly on Ω̄×[−1, 1] to some ṽ ∈ C(Ω̄×[−1, 1]). Passing
to another subsequence, we can assume that the coefficients of A∗

n converge
almost everywhere (in Ω × R) to the coefficients of the operator Ã∗ adjoint
to Ã. From Lemma A.1 we deduce that ṽ is a solution of

−vτ + Ã∗(τ)v = 0 in Ω× (−1, 1),

v = 0 on ∂Ω× (−1, 1).

Now, since vn ≥ 0 and ‖vn(0)‖L2(Ω) = 1, we must have ṽ ≥ 0 and ‖ṽ(0)‖L2(Ω) =
1. This shows that ṽ is nontrivial and nonnegative, hence by the Harnack
inequality it is positive on Ω× (−1, 1).

By (3.10), we have

〈ũ(τ), ṽ(τ)〉 = 0 (τ ∈ (0, 1)).

We claim that ũ is a nontrivial solution of (3.11) such that ũ(t) 6≡ 0 for
t ∈ [0, δ0], where δ0 is some positive number to be determined later (cf.
Remark 3.2). Indeed, taking t = tn in inequality (3.8), noting that we
assume (3.9), and sending n to infinity, one immediately obtains∫

Ωr

|ũ(0)| dx > 0,

which implies that ‖ũ(0)‖L2(Ω) > 0. This and the continuity of t → ũ(t) ∈
L2(Ω) (cf. Proposition 2.2) imply that, for some positive δ0 (δ0 < 1), we have
ũ(t) 6≡ 0 whenever t ∈ [0, δ0], as claimed.
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An application of Lemma 3.1 to the solutions ũ(τ), ṽ(τ) gives that τ 7→
〈|ũ(τ)|, ṽ(τ)〉 is a strictly decreasing function on (0, δ0). On the other hand,
by (3.9), we have for a, b ∈ (0, δ0)

〈|ũ(a)|, ṽ(a)〉
〈|ũ(b)|, ṽ(b)〉

= lim
n→∞

〈 |u(tn+1+a)|
‖u(tn+1)‖L2(Ω)

, v(tn+1+a)
‖v(tn+1)‖L2(Ω)

〉

〈 |u(tn+1+b)|
‖u(tn+1)‖L2(Ω)

, v(tn+1+b)
‖v(tn+1)‖L2(Ω)

〉
= lim

n→∞

ξ(tn + 1 + a)

ξ(tn + 1 + b)
= 1,

in contradiction to the decreasing property of 〈|ũ(τ)|, ṽ(τ)〉. The proof of
Lemma 3.3 is complete.

4 Existence of positive entire solutions

In this section we prove the existence and continuity properties of positive
entire solutions of (1.1), (1.5). In a continuity statement below, we consider

sequences (a
(n)
ij )Ni,j=1 ∈ Bα0 , a

(n)
i , b

(n)
i , c

(n)
0 ∈ B, i = 1, . . . , N , of coefficients

and denote by An the operator defined as in (1.2) with natural replacements
of the coefficients.

Lemma 4.1. Let (aij)
N
i,j=1 ∈ Bα0, ai, bi, c0 ∈ B, i = 1, . . . , N be as in Theo-

rem 1.1. Then there exist unique positive entire solutions ϕA, ψA of (1.1),
(1.5), respectively such that ‖ϕA(0)‖L2(Ω) = ‖ψA(0)‖L2(Ω) = 1. Moreover,

if (a
(n)
ij )Ni,j=1 ∈ Bα0 converges to (aij)

N
i,j=1 ∈ Bα0 and a

(n)
i , b

(n)
i , c

(n)
0 ∈ B,

i = 1, . . . , N converge to ai, bi, c0 ∈ B, in Bα0 and B, respectively, then
one has for each t ∈ R

ϕAn(t) → ϕA(t), ψAn(t) → ψA(t),

with convergence in Cδ(Ω̄) for any 0 < δ < α, where α is as in Theorem 2.4.

Proof. We will first prove the existence using results on principal eigenval-
ues for a periodic-parabolic problem [7]. Let aij, ai, bi, c0 be as above.
For each k ∈ N let Ãk be the operator of the form (1.2) with coefficients

ã
(k)
ij , ã

(k)
i , b̃

(k)
i , c̃

(k)
0 identical to the coefficients aij, ai, bi, c0, respectively on

Ω̄ × [−k, k] and periodically extended (with period 2k) to Ω̄ × R. Using
the same approximation procedure as in [7], we get sequences of smooth

coefficients ã
(k)n

ij , ã
(k)n

i , b̃
(k)n

i , c̃
(k)n

0 , corresponding operators Ãn
k , and smooth

domains Ωn ⊂ Ω, n ∈ N such that the assumptions of Lemma A.1 are sat-
isfied. Moreover, the approximating domains Ωn can be chosen in such a
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way that the constants r0 and m in the definition of a Lipschitz domain (see
(B.1.1)) are independent of n ∈ N.

Now, for each n and k, we find a positive entire solution unk of (1.1), with
A, Ω replaced by Ãn

k , Ωn, respectively, satisfying ‖unk(0)‖L2(Ωn) = 1. For this
part, since the coefficients are smooth, we may assume the symmetry of the
principal part of Ãn

k and also that ã
(k)n

i = 0, i = 1, . . . , N ; indeed, this is

achieved by redefining the coefficients as follows: a
(k)n

ij := (ã
(k)n

ij + ã
(k)n

ji )/2,

a
(k)n

i = 0, b
(k)n

i = b̃
(k)n

i − ã
(k)n

i , i, j = 1, . . . , N , and c
(k)n

0 = c̃
(k)n

0 − ∂iã
(k)n

i .

For a while assume that, in addition, c̃
(k)n

0 ≥ 0. Then we can use Theorem
2.2 from [7] for equation (1.1) with A replaced by Ãn

k (set m ≡ 1 in that
theorem). It implies that there are ϕnk , λ

n
k such that ϕnk is a positive solution

of

ut + Ãn
k(t)u = λnk u in Ωn × R,

u = 0 on ∂Ωn × R,
u(·, ·) = u(·, ·+ 2k) in Ωn × R.

Set
unk(t) := e−λ

n
k tϕnk(t)/‖ϕnk(0)‖L2(Ωn).

Now, removing the above restriction and taking a general c̃
(k)n

0 , we find

ξ = ξ(n, k) > 0 such that cξ = c̃
(k)n

0 + ξ ≥ 0 and then apply the above
arguments to Aξ = Ãn

k + ξI. This yields a positive 2k-periodic eigenfunction
ϕξ corresponding to an eigenvalue λξ. We then set

unk(t) := e−(λξ−ξ)tϕξ(t)/‖ϕξ(0)‖L2(Ωn).

In either case, we obtain a positive entire solution unk as desired.
Fix now k0 ∈ N. By a repeated use of Corollary B.7 and Lemma B.5

(estimate (B.2.2)), we get that unk0 are bounded in L∞(Ωn × (−T, T )) uni-
formly with respect to n ∈ N for each T > 0. Theorem 2.4 and Remark
2.5 imply that we also have a uniform bound in Cα,α

2 (Ω̄n × [−T, T ]). The
bound remains valid if the functions unk0 are extended by zero outside Ωn.
This and Lemma A.1 imply that for a suitable subsequence, again denoted
by unk0 , we have unk0 → uk0 uniformly on Ω̄ × [−T, T ] for each T > 0, where

uk0 is a positive entire solution of (1.1), with A replaced by Ãk0 , satisfying
‖uk0(0)‖L2(Ω) = 1. Now, just as we did above, applying Lemma A.1 to oper-

ators Ãk with coefficients ã
(k)
ij , ã

(k)
i , b̃

(k)
i , c̃

(k)
0 , and the solutions uk, we find a

positive entire solution of (1.1) as the limit of (a subsequence of) uk.
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One can proceed similarly to prove the existence of a positive entire solu-
tion of the adjoint equation (1.5) (see our discussion preceding (2.2)). This
concludes the proof of existence part of Lemma 4.1.

The uniqueness statements follow from Proposition 1.3 because we have
already proved Theorem 1.2, which is the only ingredient used in the proof
of Proposition 1.3.

Let now ϕAn , ψAn be as in the statement of lemma. By standard argu-
ments similar to those given above one concludes that these sequences are
bounded in Cα,α

2 (Ω̄ × [−T, T ]) uniformly with respect to n ∈ N for each
T > 0. Using the compact imbedding Cα(Ω̄) ↪→↪→ Cδ(Ω̄) for any δ > 0,
δ < α, and passing to subsequences (using a diagonalization procedure), we
see that for any t ∈ R we have

ϕAn(t) → ϕ(t), ψAn(t) → ψ(t) in Cδ(Ω̄)

for each δ < α, where ϕ, ψ are entire solutions of (1.1), (1.5). They are nec-
essarily nonnegative and nontrivial since ‖ϕAn(0)‖L2(Ω) = ‖ψAn(0)‖L2(Ω) = 1.
By the Harnack inequality, they are positive in Ω for all t ∈ R. By uniqueness,
the limiting functions are always the same for every subsequence, namely,
they must be equal to ϕA(t) and ψA(t), respectively. Thus any subsequence
of ϕAn(t) (ψAn(t)) must converge to ϕA(t) (ψA(t)). This concludes the
proof.

5 Proof of Theorem 1.1

The proof of Theorem 1.1 will depend on the following two lemmas. The
first one is analogous to Theorem 1.2.

Lemma 5.1. There exist positive constants C, γ such that for all (aij)
N
i,j=1 ∈

Bα0, ai, bi, c0 ∈ B, i = 1, . . . , N , as in Theorem 1.1 the following statement
holds. If ψ is a positive entire solution of (1.5) and u is a solution of (1.1)
on [s0,∞) such that 〈u(s0), ψ(s0)〉 = 0 (so that 〈u(s), ψ(s)〉 = 0 for s ≥ s0)
then

〈|u(t)|, ψ(t)〉 ≤ Ce−γ(t−s)〈|u(s)|, ψ(s)〉 (t ≥ s ≥ s0). (5.1)

Proof. The argument is similar to the proof of Lemma 3.3. We will show
how it can be modified to apply to the present case.
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By Lemma 3.1, the left hand side of (5.1) is a decreasing function of t.
It is therefore sufficient to show that for any (aij)

N
i,j=1 ∈ Bα0 , ai, bi, c0 ∈ B,

i = 1, . . . , N , and any solutions u and ψ as in Lemma 5.1, we have

〈|u(t+ 2)|, ψ(t+ 2)〉
〈|u(t)|, ψ(t)〉

≤ ρ (t ≥ s0)

for some constant ρ < 1 independent of u, ψ, and (aij)
N
i,j=1 ∈ Bα0 , ai, bi, c0 ∈

B, i = 1, . . . , N . Suppose this is not true, that is, there are sequences
(anij)

N
i,j=1 ∈ Bα0 , a

(n)
i , b

(n)
i , c

(n)
0 ∈ B, i = 1, . . . , N , tn ∈ R, un, ψn such that,

after the usual replacements of the coefficients, un is a solution of (1.1) on
[tn,∞), ψn is a positive entire solution of (1.5), 〈un(tn), ψn(tn)〉 = 0 and

〈|un(tn + 2)|, ψn(tn + 2)〉
〈|un(tn)|, ψn(tn)〉

→ 1.

Repeatedly passing to suitable subsequences similarly as we did in the proof
of Lemma 3.3, we find nontrivial limit solutions u, ψ that violate the decreas-
ing property of 〈|u(t)|, ψ(t)〉. This contradiction concludes the proof.

Lemma 5.2. Let u be a solution of (1.1) defined on [s0,∞) and let ϕ, ψ be
positive entire solutions of (1.1) and (1.5), respectively. Then there exists a
constant C̃ > 0 such that

C̃‖ϕ(t)‖L2(Ω) ≤ 〈ϕ(t),
ψ(t)

‖ψ(t)‖L2(Ω)

〉 (t ∈ R), (5.2)

and for any δ > 0 there is a constant C(δ) > 0 such that

〈|u(t)|, ψ(t)

‖ψ(t)‖L2(Ω)

〉 ≥ C(δ)‖u(t+ δ)‖L2(Ω) (t ≥ s0). (5.3)

Moreover, the constants C̃, C(δ) are independent of u, ϕ, ψ, s0.

Remark 5.3. Using the Hölder inequality in (5.2), we obtain that the ex-

pression 〈ϕ(t), ψ(t)
‖ψ(t)‖L2(Ω)

〉 is comparable to ‖ϕ(t)‖L2(Ω) for each t ∈ R. We

will use this observation below.

Proof of Lemma 5.2. Applying estimate (B.2.4) from Lemma B.8 to ϕ and
ψ, we get (5.2) immediately. To prove (5.3), fix δ > 0 and t ≥ s0 and let
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δ0 = 2δ. Now using successively Lemma B.10, equality (2.2), inequality (3.2)
(with t+ δ0, t playing the role of t, s, respectively), and Proposition 2.2, we
derive

〈|u(t)|, ψ(t)

‖ψ(t)‖L2(Ω)

〉 = 〈|u(t)|,
ψ(t)

‖ψ(t)‖L2(Ω)

U∗(t, t+ δ0)1
U∗(t, t+ δ0)1〉

≥ C(δ0)〈|u(t)|, U∗(t, t+ δ0)1〉 = C(δ0)〈U(t+ δ0, t)|u(t)|, 1〉
≥ C(δ0)〈|u(t+ δ0)|, 1〉 = C(δ0)‖u(t+ δ0)‖L1(Ω)

≥ C(δ0)M
−1δ−

N
4 e−βδ‖u(t+ δ)‖L2(Ω).

Here M , β, and C(δ0) are the constants as in Proposition 2.2, and Lemma
B.10, respectively; they are independent of u, ϕ, ψ, s0.

We are in a position to give

Proof of Theorem 1.1. Statement (i) follows directly from Lemma 4.1.
We prove (ii). The invariance of X2

A(t), t ∈ R, as stated in (ii), follows
from (3.1). The invariance of X1

A(t), t ∈ R, is obvious. Since ψA(t) > 0, the
space X2

A(t) contains no (nontrivial) nonnegative function. On the other,
X1
A(t) is spanned by a positive function, hence X1

A(t)∩X2
A(t) = {0} (t ∈ R).

This and a dimension-codimension count yield (1.7).
It remains to prove (iii). For brevity, set ϕ = ϕA, ψ = ψA and u(t) =

u(·, t; s, u0), with u0 as in (iii). We first apply Lemma 5.1 to these solutions,
which yields (5.1). Since 〈ϕ(t), ψ(t)〉 is a constant function of t ∈ R, (5.1)
can be equivalently rewritten as

〈|u(t)|, ψ(t)/‖ψ(t)‖L2(Ω)〉
〈ϕ(t), ψ(t)/‖ψ(t)‖L2(Ω)〉

≤ Ce−γ(t−s)
〈|u(s)|, ψ(s)/‖ψ(s)‖L2(Ω)〉
〈ϕ(s), ψ(s)/‖ψ(s)‖L2(Ω)〉

. (5.4)

By Remark 5.3, we can replace the denominators in (5.4) by ‖ϕ(t)‖L2(Ω)

and ‖ϕ(s)‖L2(Ω), respectively, enlarging the constant C if necessary. The
numerator on the right hand side of (5.4) is bounded above by ‖u(s)‖L2(Ω)

by the Hölder inequality. Applying (5.3) (for some fixed δ > 0, δ small) to
the numerator on the left hand side of the above inequality, we obtain

‖u(t+ δ)‖L2(Ω)

‖ϕ(t)‖L2(Ω)

≤ C(δ)e−γ(t−s)
‖u(s)‖L2(Ω)

‖ϕ(s)‖L2(Ω)

(t ≥ s). (5.5)
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Using now the backward-in-time estimate (B.2.2) from Lemma B.5, we see
that for all r ∈ [0, r0

2
] (where r0 is as in (B.1.1))

‖ϕ(t+ 2r2)‖L∞(Ω)

‖ϕ(t)‖L∞(Ω)

≥ C > 0. (5.6)

By Corollary B.7, we can replace the norms in (5.6) by L2(Ω) norms, making

the constant C smaller if necessary. Taking r =
√

δ
2

(we may assume δ ≤ r20
2
)

and applying this modified estimate to (5.5), we obtain

‖u(t+ δ)‖L2(Ω)

‖ϕ(t+ δ)‖L2(Ω)

≤ C(δ)e−γ(t−s)
‖u(s)‖L2(Ω)

‖ϕ(s)‖L2(Ω)

.

Thus, we have established (1.8) in (iii) of Theorem 1.1 for t ≥ s+ δ.

Finally, using again (5.6) for all r ∈ [0,
√

δ
2
] and Proposition 2.2 (with

p = q = 2), we see that estimate (1.8) in (iii) is readily verified for t ≥ s
such that t − s ≤ δ, with a constant C enjoying the same properties as in
the statement of Theorem 1.1. This completes the proof.

A Appendix: Perturbation of the initial value

problem

Throughout the paper we use a perturbation result from [6]. We state it in
a simplified form suitable for our purposes.

Lemma A.1. Suppose that Ωn ⊂ Ω is a sequence of domains with ∪
n∈N

Ωn =

Ω. Further suppose that An is of the form (1.2) with coefficients a
(n)
ij , a

(n)
i ,

b
(n)
i , c

(n)
0 bounded in L∞(Ω × R) uniformly with respect to n ∈ N, and con-

verging pointwise almost everywhere to the corresponding coefficients of A.
Assume that the uniform ellipticity condition (1.3) is satisfied with aij re-

placed by a
(n)
ij , etc. (and with α0 independent of n ∈ N). Finally, fix s ∈ R

and suppose that un is the solution of

ut +An(t)u = 0 in Ωn × (s,∞),

u = 0 on ∂Ωn × (s,∞),

u = u0n in Ωn × {s},
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with u0n converging to u0 weakly in L2(Ω) (when extended to zero outside
Ωn). Then, for all T > s and δ ∈ (0, T − s], the function un converges to
the solution u of (2.1) in C([s + δ, T ];L2(Ω)) as n tends to infinity. More-
over, if u0n converges strongly in L2(Ω) to u0, then un converges to u in
C([s, T ];L2(Ω)) for all T > s.

Remark A.2. Much more general perturbation results can be found in [6].

B Appendix: Positive solutions of linear

parabolic equations

In this section we derive several important properties of positive solutions of
linear (nonautonomous) second order parabolic equations subject to Dirichlet
boundary condition. As we have already mentioned in the introduction this
will be achieved by using some of the results from [12] on the boundary
behavior of such solutions. For the sake of completeness we include them in
Subsection B.1.

B.1 Harnack inequalities and boundedness of quotients

Recall that our assumption is that Ω is a bounded Lipschitz domain in RN .
This means there are positive constants r0 and m such that for each y ∈ ∂Ω,
there is an orthonormal coordinate system centered at y in which

Ω ∩Br0(y) = {x = (x′, xN) : x′ ∈ RN−1, xN > φ(x′), |x| < r0} (B.1.1)

and ‖∇φ‖L∞ ≤ m. Here and below Br(x) denotes the ball in RN of radius
r > 0 and center x. For X = (x, t) ∈ RN+1, we define a “standard” parabolic
cylinder to be

Cr(X) = Cr(x, t) ≡ Br(x)× (t− r2, t+ r2).

Further, let us denote

Q = Ω× (0,∞), S = ∂Ω× (0,∞), Qr(X) = Q ∩ Cr(X).

For any constant δ > 0, we set

Ωδ = {x ∈ Ω : dist(x, ∂Ω) > δ}.
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According to the above Lipschitz criteria, for y ∈ ∂Ω there is an orthonor-
mal system with y as the origin (0, 0) and (0, r) ∈ Ω for all r ∈ (0, r0]. The
new coordinates for Y = (y, s) ∈ RN+1 are (0, 0, s). In this coordinate system
write

Y r = (0, r, s+ 2r2), Y r = (0, r, s− 2r2).

Let us temporarily assume that the operator A in (1.2) contains only the
coefficients of the highest order, that is, assume for now that ai = bi = c0 = 0
for i = 1, . . . , N . As always, we still assume that the coefficients of A satisfy
(1.3) and (1.4) although for the results in this subsection it is sufficient to
require that they be bounded, measurable and that they satisfy (1.3). The
next result is often referred to as a boundary Harnack inequality.

Theorem B.1. ([12, Theorem 2]) Let Y = (y, s) ∈ S and 0 < r ≤ 1
2
min(r0,

√
s).

Then for any nonnegative solution of ut+A(t)u = 0 in Q which continuously
vanishes on S ∩ C2r(Y ), we have

supu
Qr(Y )

≤ Cu(Y r).

The constant C depends only on N , m, α0 (α0 is as in (1.3)), and the L∞(Q)
bound on the coefficients of A.

We will also need the following lemma which is used in the proof of the
backward Harnack inequality near the boundary.

Theorem B.2. ([12, Lemma 1]) Let u be a nonnegative solution of ut +
A(t)u = 0 in Q. Take Y = (y, s) ∈ S and 0 < r ≤ 1

2
min(r0,

√
s). Then

u(Y r) ≤ Crθ inf
Qr(Y )

d−θu,

where d = d(x) ≡ dist(x, ∂Ω), and C, θ are positive constants depending only
on N , m, α0, and the L∞(Q) bound on the coefficients of A.

The next theorem states, roughly speaking, that the quotient of two pos-
itive solutions of a parabolic equation is bounded near the portion of the
lateral boundary where each solution vanishes.

Theorem B.3. ([12, Theorem 5]) Let X0 = (x0, t0) ∈ S. Assume that u and
v are two positive solutions of ut+A(t)u = 0 in Q which continuously vanish
on S ∩ C2r(X0) with 0 < r ≤ 1

2
min(r0,

√
t0). Then

sup
u

v
Qr(X0)

≤ C
u(X0r)

v(X0r
)
.
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The constant C depends only on N , m, α0, and the L∞(Q) bound on the
coefficients of A.

Remark B.4. Of course, the statements hold in exactly the same way if
we consider nonnegative solutions on time intervals of the form (s,∞) for
arbitrary s ∈ R.

So far we have assumed that the first- and zero-order coefficients of A are
identically zero. Eventually we would like to apply the above theorems to
positive solutions of (1.1) without this restriction. Let us indicate how this
can be achieved using the method of “additional variable” (cf. [11]). Let

Lu = ∂i(aij(x, t)∂ju+ ai(x, t)u)− bi(x, t)∂iu− c0(x, t)u,

and assume ut = Lu in Ω × (0, T ) ⊂ RN+1. Defining Ω0 = (−1, 1) × Ω and
setting

a0
ij(x0, x, t) = aij(x, t), a

0
0i = bi, a

0
i0 = ai, a

0
00(x0, x, t) = κ− c0(x, t)

for all i, j = 1, . . . , N , one can see that the (N+1)× (N+1) matrix (a0
ij)

N
i,j=0

satisfies the ellipticity condition (1.3) with some constant ν0 ∈ (0, 1], provided
the constant κ is sufficiently large. The function

U(x0, x, t) = ex0+κtu(x, t)

satisfies on Ω0 × (0, T ) the following parabolic equation:

L0U =
N∑

i,j=0

∂i(a
0
ij(x0, x, t)∂jU) = ex0+κt(Lu+ c0(x, t)u+ (κ− c0(x, t))u)

= ex0+κt(ut + κu) = Ut.

We see that this equation no longer contains lower order terms. Therefore we
can apply the above theorems to U provided the corresponding hypotheses
are satisfied on the extended domain Ω0 × (0,∞). This allows us to carry
over all results to the case of general second order operators of the form (1.2).
The only difference is that the constant C in Theorem B.1, Theorem B.2,
and Theorem B.3 now depends also on the L∞(Q) bound of the lower order
coefficients ai, bi, c0.
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B.2 Uniform estimates at the boundary

Let us now use the results we have collected in the previous subsection to
prove several properties of positive solutions of (1.1). These are used in the
proof of Theorem 1.1. Assumptions here are the same as in the introduction
and we use the notation as in the previous subsection. Let y = (0, 0) ∈ ∂Ω be
as in that subsection. An easy geometric argument shows that for r ∈ (0, r0)
we have

dist((0, r), ∂Ω) ∈ [c1r, r], (B.2.1)

where 0 < c1 < 1 is a constant independent of y ∈ ∂Ω and r ∈ (0, r0). Let
now u be a nonnegative solution of (1.1) on Ω× (0,∞) and fix a positive δ0.
It is easy to see that Theorem B.1 and (B.2.1) together imply the following
estimate

sup
0≤dist(x,∂Ω)≤r
t−r2≤τ≤t

u(x, τ) ≤ C sup
c1r≤dist(x,∂Ω)≤r

u(x, t+ 2r2)

for any t ≥ δ0 and 0 < r ≤ 1
2
min(r0,

√
δ0), with a constant C enjoying the

same properties as the constant in Theorem B.1. Combining this estimate
with the usual Harnack inequality inside Ω× (0,∞) (see [25, 1, 12]), we get
for any t ≥ δ0 and r ∈ (0, 1

2
min(r0,

√
δ0)]

sup
x∈Ω

u(x, t) ≤ C(r) sup
x∈Ωc1r

u(x, t+ 2r2),

where moreover C(r) ≤ C as r → 0+. Using now the L∞ − L∞ estimates
from Proposition 2.2, we obtain (for t ≥ δ0 and r ∈ (0, 1

2
min(r0,

√
δ0)])

‖u(t+ 2r2)‖L∞(Ω) ≤ C1‖u(t)‖L∞(Ω)

≤ C2 sup
x∈Ωc1r

u(x, t+ 2r2) = C2‖u(t+ 2r2)‖L∞(Ωc1r)

≤ C2‖u(t+ 2r2)‖L∞(Ω),

with constants C1, C2 uniformly bounded for r → 0+. This means that the
supremum of any nonnegative solution at a given time is controlled by the
supremum on a subdomain. We have thus proved

Lemma B.5. Let δ0 > 0 and 0 < r ≤ 1
2
min(r0,

√
δ0). Then there exists

a constant C = C(δ0) such that if u is a nonnegative solution of (1.1) on
Ω× (0,∞), then the following estimates hold for t ≥ δ0

‖u(t)‖L∞(Ω) ≤ C(δ0)‖u(t+ 2r2)‖L∞(Ω), (B.2.2)

‖u(t+ 2r2)‖L∞(Ω) ≤ C(δ0)‖u(t+ 2r2)‖L∞(Ωc1r), (B.2.3)
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where Ωc1r = {x ∈ Ω; dist(x, ∂Ω) > c1r}, with c1 > 0 depending only on ∂Ω
(cf. (B.2.1)).

Remark B.6. By a time translation, it is obvious that the above lemma
(and the results below) apply to positive solutions defined on Ω× (s,∞) for
some s ∈ R.

Corollary B.7. Let 0 < δ0 ≤ r2
0. Then there exists C = C(δ0) > 0 such that

for any nonnegative nontrivial solution u of (1.1) on Ω× (0,∞) we have

‖u(t)‖L2(Ω)

‖u(t)‖L∞(Ω)

≥ C(δ0) (t ≥ δ0).

Proof. For 0 < r ≤ 1
2

√
δ0 and t ≥ δ0 write

‖u(t)‖L2(Ω)

‖u(t)‖L∞(Ω)

=

(
‖u(t)‖L2(Ω)

‖u(t+ 2r2)‖L∞(Ω)

) (
‖u(t+ 2r2)‖L∞(Ω)

‖u(t)‖L∞(Ω)

)
.

The first fraction on the right is estimated below by M−1(2r2)
N
4 e−β2r2 , where

M and β are as in Proposition 2.2. The second fraction is bounded from
below by 1/C(δ0) by Lemma B.5. Hence for any r ∈ (0, 1

2

√
δ0]

‖u(t)‖L2(Ω)

‖u(t)‖L∞(Ω)

≥ 1

MC(δ0)
(2r2)

N
4 e−β2r2 .

Setting r = 1
2

√
δ0, we get the desired inequality (redefining C(δ0)).

We will use Lemma B.5 and Corollary B.7 in the proof of the following
important pointwise estimate, which is also of independent interest.

Lemma B.8. For each δ0 > 0 there is a constant C(δ0) with the following
properties. For any (aij)

N
i,j=1 ∈ Bα0, ai, bi, c0 ∈ B, i = 1, . . . , N and s ∈ R

and any positive solution u of (1.1) on Ω× (s,∞) one has

u(x, t)

‖u(t)‖L2(Ω)

≥ C(δ0)d(x)
θ ((x, t) ∈ Ω× [s+ δ0,∞)), (B.2.4)

where d(x) = dist(x, ∂Ω) and θ is as in Theorem B.2.
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Proof. Let δ0 > 0 and let u be a positive solution of (1.1) on Ω× (s,∞). Fix
t ≥ s+ δ0, r ∈ (0, 1

2
min(r0,

√
δ0)] and x ∈ Ω such that d(x) = dist(x, ∂Ω) ≤

c1r, with c1 as in (B.2.1). Then there exists Y = (y, t) ∈ ∂Ω× {t} such that
(x, t) ∈ Qr(Y ). Moreover, we can find x̃ ∈ Ω such that Y r = (x̃, t − 2r2).
Using Theorem B.2, we see that

u(x, t) ≥ Cr−θd(x)θu(x̃, t− 2r2).

Notice that by (B.2.1) we have d(x̃) ∈ [c1r, r]. Taking infimum on the right
hand side of this inequality over points x̃ verifying d(x̃) ∈ [c1r, r], we obtain
that for any t ≥ s+ δ0 and r ∈ (0, 1

2
min(r0,

√
δ0)] the inequality

u(x, t) ≥ Cr−θd(x)θ inf
c1r≤d(x̃)≤r

u(x̃, t− 2r2) (B.2.5)

holds whenever x ∈ Ω is such that d(x) ≤ c1r. The constant C is independent
of u and s.

Suppose now that the conclusion of Lemma B.8 does not hold. Then
there exist sequences of functions un, (a

(n)
ij )Ni,j=1 ∈ Bα0 , a

(n)
i , b

(n)
i , c

(n)
0 ∈ B,

i = 1, . . . , N , real numbers sn, tn ≥ sn + δ0, and points xn ∈ Ω such that un
is a positive solution of (1.1) on Ω × (sn,∞), with A replaced by An, and
the following inequality holds

un(xn, tn)

‖un(tn)‖L2(Ω)

≤ 1

n
d(xn)

θ (B.2.6)

for all n ∈ N. For τ > −δ0 set

ũn(τ) := un(tn + τ)/‖un(tn)‖L2(Ω),

Ãn(τ) := An(tn + τ).

Note that ũn is a positive solution of

uτ + Ãn(τ)u = 0 in Ω× (−δ0,∞),

u = 0 on ∂Ω× (−δ0,∞),

with ‖ũn(0)‖L2(Ω) = 1 and

ũn(xn, 0) ≤ 1

n
d(xn)

θ for n ∈ N. (B.2.7)
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Repeatedly using Corollary B.7, estimate (B.2.2) and Theorem 2.4, we find
a constant C > 1 such that

1

C
≤ ‖ũn‖Cα, α

2 (Ω̄×[− δ0
2
,
δ0
2

])
≤ C (B.2.8)

for all n ∈ N. Due to our assumptions on the coefficients of Ãn and by the
compact imbedding Cα,α

2 (Ω̄× [− δ0
2
, δ0

2
]) ↪→↪→ C(Ω̄× [− δ0

2
, δ0

2
]), we see that,

after passing to subsequences, xn → x0 ∈ Ω̄, ũn → ũ in C(Ω̄ × [− δ0
2
, δ0

2
])

as n → ∞, and the coefficients of Ãn converge almost everywhere in Ω ×
(− δ0

2
, δ0

2
) to the coefficients of some uniformly elliptic operator Ã. By Lemma

A.1, ũ is a solution of

uτ + Ã(τ)u = 0 in Ω× (−δ0
2
,
δ0
2

),

u = 0 on ∂Ω× (−δ0
2
,
δ0
2

).

Moreover, it is obvious that ‖ũ(0)‖L2(Ω) = 1 and ũ ≥ 0 on Ω × (− δ0
2
, δ0

2
).

From the usual Harnack inequality it follows that ũ > 0 in Ω × (− δ0
2
, δ0

2
).

Now, since ũ(·, 0) is positive in Ω and ũn → ũ as n → ∞, (B.2.7) forces
x0 = limn→∞ xn ∈ ∂Ω. Apply now inequality (B.2.5) to u = ũn, x = xn,
t = 0, r = 1

2
min(r0,

1
2

√
δ0) =: r̃, use (B.2.7) and send n to infinity to conclude

inf
c1r̃≤d(x̃)≤r̃

ũ(x̃,−2r̃2) = 0.

From our choice of r̃ and from continuity of ũ it follows that there is a point
(x̃, t̃) ∈ Ω× (− δ0

2
, δ0

2
) such that ũ(x̃, t̃) = 0. This, however, is a contradiction

to ũ being positive in Ω×(− δ0
2
, δ0

2
). This finishes the proof of Lemma B.8.

Remark B.9. So far we have discussed properties of positive solutions of
(1.1). In view of our discussion in Section 2, analogous properties can be
proved for the adjoint problem (1.5). In particular, statements of Theorem
B.1, Theorem B.2, and Theorem B.3 remain valid when applied to nonneg-
ative solutions of (1.5).

Finally, let us prove an estimate that is used in the proof of (5.3). We
will use U∗(·, ·) to denote the evolution operator defined in Section 2.
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Lemma B.10. Let δ0 > 0. Then there is a constant C = C(δ0) ∈ (0, 1) such
that if (aij)

N
i,j=1 ∈ Bα0, ai, bi, c0 ∈ B, i = 1, . . . , N and ψ is a positive entire

solution of (1.5) then

C(δ0) ≤
ψ(x,t)

‖ψ(t)‖L2(Ω)

(U∗(t, t+ δ0)1)(x)
≤ 1

C(δ0)
((x, t) ∈ Ω× R).

Proof. Consider the solution ṽ of (1.5) with v(·, t + δ0) ≡ 1, that is, for any
τ ≤ t + δ0 we have ṽ(x, τ) = (U∗(τ, t + δ0)1)(x). Using the same limiting
arguments as in the proof of Lemma B.8, one proves that for each δ0 > 0
and r > 0, r sufficiently small, there exists a constant C = C(r, δ0) > 0 such
that

inf
x∈Ωc1r

t−δ0≤τ≤t+ δ0
2

ṽ(x, τ) ≥ C(r, δ0). (B.2.9)

Again, C is independent of t ∈ R. Moreover, by (B.2.2), Proposition 2.2
(with p = q = ∞) and Corollary B.7, the fraction ‖ψ(t)‖L2(Ω)/‖ψ(s)‖L2(Ω) is
bounded below and above by positive constants independent of t, s ∈ R, and
ψ, whenever |t − s| ≤ r0

2
and ψ is a positive entire solution of (1.5). This

and an application of estimate (B.2.4) from Lemma B.8 shows that (B.2.9)
holds with ṽ replaced by the function ψ̃(τ) := ψ(τ)/‖ψ(t+ δ0)‖L2(Ω) (C(r, δ0)
may have to be made smaller). Using these facts, L2 − L∞ estimates from
Proposition 2.2 and Theorem B.3, first with u = ψ̃ and v = ṽ then with
u = ṽ and v = ψ̃, we obtain that, for each x in a fixed neighborhood of the
boundary ∂Ω, the quotient

ψ(x,t)
‖ψ(t)‖L2(Ω)

ṽ(x, t)
(B.2.10)

is uniformly bounded below and above by positive constants, which are in-
dependent of ψ, t. Finally, applying estimate (B.2.4) to ψ and the L∞−L∞

estimate from Proposition 2.2 to ṽ, we find a positive lower bound for the
quotient (B.2.10) depending only on r and δ0, whenever d(x, ∂Ω) ≥ r (0 <
r ≤ r0

2
). An analogous upper bound is proved by applying Corollary B.7 to

ψ and employing inequality (B.2.9). This completes the proof.
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