Discrete, strongly monotone dynamical systems of class $C^{1,\alpha}$,
with  $\alpha>0$,  are  considered.   Asymptotic behavior  of  typical
trajectories, that  is, trajectories emanating  from a residual  set of
initial conditions  is investigated. The  main theorem asserts  that a
typical trajectory converges  to a periodic orbit.  It  is known that,
in  general, this result  cannot be  further improved  so as  to state
typical  convergence  to  fixed  points  (unlike  for  continuous-time
systems,  where typical  convergence to  equilibria has  been proved).
Applications  of  the   abstract  result  to  time-periodic  parabolic
equations  are  given.

As one of the hypotheses, existence of a continuous separation  for
linearization  along compact trajectories is assumed. This hypothesis
has been later proved to be satisfied in general, see the paper

P. Polacik and I. Terescak,
Exponential separation and invariant bundles for maps in ordered
Banach spaces  with applications  to parabolic equations,
J. Dynam. Differential Equations. 5 (1993), 279-303