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Abstract. We study asymptotic behavior of global positive solutions
of the Cauchy problem for the semilinear parabolic equation ut =
∆u + up in RN , where p > 1 + 2/N , p(N − 2) ≤ N + 2. The initial
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between the behavior of sub-threshold solutions (α < α∗) and the
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1 Introduction

Let u0 ∈ L∞(RN) be nonnegative, p > 1, and u(x, t) = u(x, t;u0) be the
(unique) solution of the Cauchy problem

ut = ∆u+ up, x ∈ RN , t > 0,

u(x, 0) = u0(x), x ∈ RN ,
(1.1)

satisfying u(·, t) ∈ L∞(RN) for t > 0. Let Tmax(u0) ≤ ∞ denote the maximal
existence time of this solution. It is well known (see [20] for example) that
Tmax(u0) <∞ whenever u0 6≡ 0 and p ≤ pF , where pF := 1+2/N is the Fujita
exponent. Since we are interested in global positive solutions, throughout the
paper we will assume p > pF .

Taking u0 = αφ, where φ ∈ L∞(RN) \ {0} is a fixed nonnegative function
and α ∈ R+ is a parameter, we denote the solution of (1.1) by uα(x, t) or
uα(x, t;φ) and set

α∗ = α∗(φ) := sup{α > 0 : Tmax(αφ) = ∞}.

If lim inf |x|→∞ φ(x)|x|2/(p−1) = ∞ then α∗ = 0, hence all solutions uα, α > 0,
blow up in finite time, see [20, Theorem 17.12]. On the other hand, if φ
satisfies the growth assumption

lim sup
|x|→∞

φ(x)|x|2/(p−1) <∞ (1.2)

then α∗ ∈ (0,∞). Indeed, the inequality α∗ > 0 follows from a result of
[11] (see also [20, Theorem 20.6]) stating in particular that if α > 0 is small
enough, then uα(·, t) is global and decays to 0 as t → ∞. To show that
α∗ < ∞ one uses a standard Kaplan-type blow-up estimate [20, Theorem
17.1]. Thus in this case the solution uα∗ lies on the threshold between global
existence and blow-up. We therefore call the solution uα∗ the threshold solu-
tion and the solutions uα, α ∈ (0, α∗), sub-threshold solutions.

It is well known (see [6, 20]) that the threshold solution can blow up in
finite time if p > pS, where

pS :=


N + 2

N − 2
, if N ≥ 3,

∞, if N ∈ {1, 2},
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is the Sobolev exponent. For example, uα∗ blows up is φ 6≡ 0 is a nonnegative,
smooth, radial, and radially nonincreasing function with compact support
(see [13, 14] or [20, Theorem 28.7]). On the other hand, if p ≤ pS, it is
likely that the threshold solutions are global. Several sufficient conditions
guaranteeing the global existence of the threshold solution can be found in
[20] and references therein. In this paper we consider the case where the
threshold solution exists globally (in particular we assume p ≤ pS). Our
main goal is to examine the asymptotic behavior of the threshold and sub-
threshold solutions and reveal the differences in these behaviors.

The difference between the time decay of the threshold and sub-threshold
solutions was observed a long time ago by Kavian [8] and Kawanago [9] in
the subcritical case p < pS provided φ has an exponential decay. Several
other related results can be found in [19, 20] and references therein. In the
recent work [19], the second author of this paper examined the threshold
and sub-threshold solutions assuming φ was a radial function. His results
concerning p ≤ pS are as follows. (Here and in what follows, ‖ · ‖∞ always
denotes the norm in L∞(RN).)

Theorem 1.1. Assume p ∈ (pF , pS] and let φ be continuous and radially
symmetric,

lim
|x|→∞

φ(x)|x|2/(p−1) = 0. (1.3)

(i) Let p < pS. Then uα∗ is global and there exists a positive constant c
such that

c−1 ≤ ‖uα∗(·, t)‖∞t1/(p−1) ≤ c, (t > 1). (1.4)

If 0 < α < α∗ then
lim
t→∞

‖uα(·, t)‖∞t1/(p−1) = 0. (1.5)

(ii) Let p = pS. Then the solution uα∗ is global and

lim sup
t→∞

‖uα∗(·, t)‖∞t1/(p−1) = ∞. (1.6)

If α ∈ (0, α∗) and ‖uα(·, t)‖∞ ≤ Ct−1/(p−1) for all t > 1 then (1.5) is true.

The first part of this theorem clearly indicates the difference between the
decay of the threshold and sub-threshold solutions in the subcritical case
provided the initial data are radially symmetric. On the other hand, the
second part of the theorem is not satisfactory because, first, it is not clear

3



whether in (1.6) the superior limit is actually the limit or not and, second,
an extra boundedness assumption on the sub-threshold solutions is needed to
guarantee (1.5). The main purpose of this paper is to extend Theorem 1.1(i)
to non-radial solutions and, to some extent, remove the drawbacks of Theo-
rem 1.1(ii).

In order to formulate our main results, we need additional notation and
hypotheses. Set

E := {w ∈ Lp+1(RN) : ∇w ∈ L2(RN)}.

If φ is radially symmetric: φ(x) = Φ(|x|) for some Φ : R+ → R+, we say
that φ has only finitely many local minima if the function Φ has only finitely
many local minima. The next theorem is an analogue to Theorem 1.1(i) in
the critical case.

Theorem 1.2. Let p = pS. Assume that φ ∈ E is nonnegative, nontrivial,
continuous, radially symmetric, has only finitely many local minima, and
satisfies (1.3). Then the threshold solution uα∗(·, t) is global and

lim
t→∞

‖uα∗(·, t)‖∞t1/(p−1) = ∞. (1.7)

If α ∈ (0, α∗), then
lim
t→∞

‖uα(·, t)‖∞t1/(p−1) = 0. (1.8)

We remark that the requirement φ ∈ E is met if, for example, φ ∈ C1,
lim|x|→∞ φ(x)|x|2γ = 0, and lim|x|→∞ |∇φ|(x)|x|2γ+1 = 0 for some γ > 1/(p−
1).

If the hypotheses of Theorem 1.2 are satisfied and (1.3) is strengthened
to lim|x|→∞ φ(x)|x|2γ = 0 for some γ > 1/(p− 1), then (1.8) can be comple-
mented with the following information. For any α ∈ (0, α∗), uα behaves like
the solution of the linear heat equation: there exists C > 0 such that

et∆(αφ) ≤ uα(·, t) ≤ Cet∆(αφ) (t > 1),

where et∆(αφ) denotes the solution of the linear heat equation with initial
data αφ (see [4, 19] or [20, Remark 28.11(ii)]).

For the general class of initial data considered here, it is probably not
possible to give a more accurate statement than (1.7) on the asymptotic
behavior of the threshold solution. Indeed, if N = 3 and φ(x) behaves like
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|x|−γ for |x| large, γ > 1/(p−1), then formal matched asymptotics expansions
[10] suggest that for t large, ‖uα∗(·, t)‖∞ behaves like t(γ−1)/2 or t1/2 provided
γ ∈ (1/2, 2) or γ > 2, respectively. (Notice that 1/(p − 1) = 1/4 in this
case and that there exist stationary threshold solutions with spatial decay
like |x|−1.)

In order to formulate a generalization of Theorem 1.1(i) to the non-radial
case, we will need the following assumption.

(LT) There are no bounded positive entire solutions of

ut = ∆u+ up, x ∈ RN , t ∈ R.

While (LT) is likely to be true in the whole subcritical range 1 < p < pS,
so far the proof is only available for p < pBV with

pBV = pBV (N) :=


N(N + 2)

(N − 1)2
, if N ≥ 2,

∞, if N = 1,

see [1, 20]. It is also known that (LT) is true if the class of solutions considered
is restricted to the radial ones (and 1 < p < pS), see [17]. The following
universal a priori bound was derived from (LT) in [18] (see also [20]). If u is
a global positive solution of

ut = ∆u+ up, x ∈ RN , t > 0, (1.9)

then, assuming either that u is radial (and 1 < p < pS) or that (LT) holds,
we have |u(x, t)| ≤ Ct−1/(p−1) for all x ∈ RN and t > 0, where C > 0 is a
constant depending only on N and p.

Theorem 1.3. Let pF < p < pS. Assume that φ ∈ C(RN) is nonnegative,
φ 6≡ 0, and (1.3) holds. Assume also that (LT) holds or that φ is a radial
function. Then the following statements hold true:

(i) uα∗ is global and there is a positive constant c such that

c−1 ≤ ‖uα∗(·, t)‖∞t1/(p−1) ≤ c (t > 0). (1.10)

(ii) If α ∈ (0, α∗), then limt→∞ ‖uα(·, t)‖∞t1/(p−1) = 0.
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Observe that φ ∈ E is not assumed in this theorem. Statement (i) can be
made more precise using similarity variables. If u = u(x, t) is a solution of
(1.1) and

v(y, s) := eβsu(es/2y, es − 1), y ∈ RN , s ≥ 0, (1.11)

then v solves the equation

vs = ∆v +
y

2
· ∇v + βv + vp, (1.12)

where

β :=
1

p− 1
.

Denote by vα the solution of (1.12) corresponding to uα. In Lemma 4.4 we
will show that, as s → ∞, vα∗(·, s) converges in L∞(RN) to a (bounded)
positive steady state of (1.12).

Similarly as in the case of Theorem 1.2, statement (ii) of Theorem 1.3
guarantees the linear behavior of sub-threshold solutions provided

lim
|x|→∞

φ(x)|x|2γ = 0 for some γ > 1/(p− 1).

The remainder of the paper is organized as follows. The proofs of our
main theorems, Theorems 1.2 and 1.3, are given in Sections 3 and 4, respec-
tively. At several places in the paper, when dealing with radial solutions,
we use properties of the zero number functional, or intersection comparison
arguments. We recall these properties in Section 2. Also we collect in that
section basic properties of radial stationary solutions of (1.12). In the ap-
pendix we prove a symmetry theorem on positive ancient solutions of (1.12)
which extends a theorem of [15] concerning steady states. This extension is
crucial for the proof of Theorem 1.3.

Let us close this introductory part by making a few notational conven-
tions. Sometimes, when there is no danger of confusion, we suppress the
spatial argument and write u(t) for u(·, t). We denote by ‖ · ‖q the norm in
Lq(RN) and by Bρ the open ball in RN of radius ρ centered at the origin.

2 Preliminaries: Radial solutions and zero

number

Radially symmetric solutions of (1.12) have been well understood, thanks to
contribution of several people. In the following proposition due to [7, 23, 22,
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3] we summarize the basic results in the subcritical and critical cases.

Proposition 2.1. Let p > 1, λ ≥ 0 and let wλ = wλ(ρ) be the solution of
the problem

w′′+
N − 1

ρ
w′+

ρ

2
w′+βw+|w|p−1w = 0 for ρ > 0, w(0) = λ, w′(0) = 0.

Then wλ is defined for all ρ > 0 and there exists finite limρ→∞wλ(ρ)ρ
2/(p−1) =:

A(λ). Given λ > 0, set ρλ := sup{ρ > 0 : wλ > 0 on [0, ρ)}. Then the fol-
lowing is true:

(i) If pF < p < pS then there exists λ0 ∈ (0,∞) with the following property:
ρλ < ∞ if and only if λ > λ0. In addition, A(λ) > 0 for λ ∈ (0, λ0)
and A(λ0) = 0.

(ii) If p = pS then ρλ = ∞ and A(λ) > 0 for all λ > 0.

Let us now consider the solution uα(x, t) = u(x, t;αφ) assuming that φ
is radially symmetric. By the uniqueness for the Cauchy problem (1.1), uα

is also radially symmetric in x and the corresponding solution vα of (1.12)
is radially symmetric in y. In this case, when no confusion is likely, we
often view φ and uα(·, t) as functions of r = |x| ∈ [0,∞). Similarly, the
radial functions vα(·, s) and wλ will be considered as functions of y ∈ RN or
ρ = |y| ∈ [0,∞), depending on the context.

The following intersection comparison principle is used at several places
below. Assume v is a (classical) radially symmetric solution of (1.12) on
some time interval (0, S), 0 < S ≤ ∞, and let w = wλ for some λ > 0. Given
0 < ρ0 ≤ ∞, we define the zero number z[0,ρ0)(v(·, s) − w) of v(·, s) − w to
be the number of zeros of the function vα(·, s)− wλ in [0, ρ0). The following
proposition follows from [2] and the fact that the difference v(·, s) − w is
a radial solution of a linear parabolic equation on RN × (0, S). The term
y · ∇v, not included in [2], is harmless for the application of [2], as shown in
[20, Remark 52.29(i)].

Proposition 2.2. Under the above assumptions and notation, assume also
that either ρ0 <∞ and v(ρ0, s)−w(ρ0) 6= 0 for all s ∈ (0, S) or ρ0 = ∞ and
there is s0 ∈ (0, S) such that z[0,ρ0)(v(·, s)−w) <∞ for all s ∈ (0, s0). Then
the following statements hold true:

(i) z[0,ρ0)(v(·, s)− w) <∞ (s ∈ (0, S));
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(ii) s 7→ z[0,ρ0)(v(·, s)− w) is a monotone nonincreasing function;

(iii) if for some s1 ∈ (0, S) the function v(·, s1) − w has a multiple zero in
[0, ρ0), then s 7→ z[0,ρ0)(v(·, s) − w) is discontinuous at s = s1 (hence,
by (ii), it drops at s = s1).

Note that, by (i) and (ii), given any s̃ ∈ (0, S) the dropping as in (iii)
can occur for only finitely many values of s1 ∈ [s̃, S). It does occur whenever
v(0, s1)−w(0) = 0 because the relation vρ(0, s1)−wρ(0) = 0 is automatically
satisfied by the radially symmetry.

3 Radial solutions in the critical case

Set

E(w) :=
1

2

∫
RN

|∇w(x)|2 dx− 1

p+ 1

∫
RN

|w(x)|p+1 dx, w ∈ E . (3.1)

Recall from [20, Example 51.28] (see the case λ = 0 considered there) that
(1.1) is well posed in E if p ≤ pS and, given u0 ∈ E , the energy function
Eu0(t) := E(u(·, t)) satisfies Eu0 ∈ C1((0, Tmax(u0))) ∩ C([0, Tmax(u0))). In
addition, the regularity properties of u proved in [20, Example 51.28] guar-
antee that the following energy identity is true for 0 ≤ t1 < t2 < Tmax(u0):

Eu0(t2)− Eu0(t1) =

∫ t2

t1

∫
RN

u2
t (x, t) dx dt. (3.2)

Throughout this section we assume that p = pS and φ ∈ L∞(RN) \ {0} is
a fixed radial nonnegative function (which we mostly view as a function of
r = |x| in this section). It is well known that the threshold solution uα∗ exists
globally in this case. In fact, assume to the contrary that Tmax(α

∗φ) < ∞.
Then [6, Theorem 5.1] guarantees that uα∗ blows up completely at Tmax(α

∗φ).
This means in particular that choosing t1 > Tmax(α

∗φ) and a sequence αk ↗
α∗ we obtain uαk

(x, t1) ↗∞ as k →∞ for all x ∈ RN . Consequently,∫
RN

uαk
(x, t1)e

−|x|2 dx > (2N)1/(p−1)πN/2

for k large enough so that Tmax(αkφ) < ∞ by [20, Theorem 17.1(ii)], which
yields a contradiction.

We start with the following lemma (which is true for any p ≤ pS).
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Lemma 3.1. Let φ ∈ E and 0 < α ≤ α∗. Then E(uα(·, t)) ≥ 0 for all t ≥ 0.
Consequently, ∫ ∞

0

∫
RN

(∂tuα(x, t))2 dx dt <∞.

Proof. Assume to the contrary that E(uα(·, t0)) < 0 for some t0 ≥ 0. Let
ϕ : R → [0, 1] be a smooth function satisfying ϕ(r) = 1 for r ≤ 1 and
ϕ(r) = 0 for r ≥ 2, and let ϕk(r) := ϕ(r − k) for k = 0, 1, 2, . . . . Set
u0,k(x) := uα(x, t0)ϕk(|x|), x ∈ RN . Then u0,k ∈ H1(RN) and E(u0,k) < 0 for
k sufficiently large, hence the solution u(k) of (1.1) with initial data u0,k blows
up in finite time by [20, Theorem 17.6]. Since uα(·, t+ t0) ≥ u(k)(·, t) ≥ 0 by
the comparison principle, we obtain a contradiction with the global existence
of uα.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. By (1.3), we have α∗ ∈ (0,∞) (see (1.2) and the
paragraph following it). Fix α ∈ (0, α∗]. By [16], there exists td ≥ 0 such
that uα(·, t) is radially decreasing for all t ≥ td. Without loss of generality
we may assume td = 0.

Let vα be the rescaled solution defined by (1.11) with u replaced by uα.
Then vα satisfies (1.12) and vα(·, s) is radially decreasing for any s ≥ 0, in
particular ‖v(·, s)‖∞ = vα(0, s). In what follows we will consider vα(·, s) as a
function of ρ = |y| ∈ [0,∞). For any λ > 0 let zλ(s) := z[0,∞)(vα(·, s) − wλ)
denote the zero number of the function vα(·, s)− wλ in [0,∞).

We next prove that there exists limt→∞ ‖uα(·, t)‖∞tβ or, equivalently,
there exists lims→∞ vα(0, s). Indeed, if not then there exists

λ ∈ (lim inf
s→∞

vα(0, s), lim sup
s→∞

vα(0, s)).

Fix such λ and recall that A(λ) := limρ→∞wλ(ρ)ρ
2β > 0 (see Proposi-

tion 2.1). Also fix constants S ∈ (0,∞) and a ∈ (0, A(λ)) and choose
CS > 0 such that vα(ρ, s) ≤ CS for all ρ ≥ 0 and s ∈ [0, S]. Proceeding
as in the proof of [19, Theorem 4.1], one can find R2 > R1 > 0 (depending
on a, S, λ) such that vα(ρ, s) ≤ a(ρ − R1)

−2β < wλ(ρ) for all ρ ≥ R2 and
s ∈ [0, S]. Consequently, zλ(s) = z[0,R2)(vα(·, s) − wλ) for s ∈ [0, S], hence,
by Proposition 2.2, zλ(s) is finite for s > 0, nonincreasing in s and drops
whenever vα(0, s) = λ. But by the choice of λ the latter occurs for infinitely
many s and we have a contradiction.
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Once the existence of a limit limt→∞ ‖uα(·, t)‖∞tβ has been proved, (1.7)
follows from Theorem 1.1(ii) and (1.8) will follow from that theorem if we
prove that limt→∞ ‖uα(·, t)‖∞tβ 6= ∞.

Assume to the contrary that 0 < α < α∗ and

lim
t→∞

‖uα(·, t)‖∞tβ = ∞. (3.3)

Then there exists t0 > 0 such that uα(0, t)tβ > 8β for all t ≥ t0. Fix
τ ≥ t0 and set η(t) := 2−puα(0, t)1−p. The differential inequality ∂tuα(0, t) ≤
uα(0, t)p guarantees that

uα(0, t+ t̃) ≤ 2uα(0, t) for all t̃ ∈ [0, η(t)]. (3.4)

In addition, we infer from [21, Lemma 5.2] (used with δ := τ and M(t) :=
uα(0, τ + t)) that there exist constants θ, µ ∈ (0, 1) (independent of τ) with
the following property: the measure of the set

H(τ) := {t ∈ (τ, 2τ − τ/8) : (∃T ∈ [t+ θη(t), t+ η(t)]) uα(0, T ) ≥ µuα(0, t)}

is greater than or equal to τ/8.
Set τk := 2kt0, k = 0, 1, 2, . . . , and H :=

⋃
k H(τk). We claim that there

exist tk ∈ H, k = 1, 2, . . . , such that tk →∞ and∫
RN

(∂tuα(x, tk))
2 dx <

1

tk log tk
. (3.5)

In fact, if such sequence tk did not exist then there would exist k0 such that∫
RN (∂tuα(·, t))2 dx ≥ 1

t log t
for all t ∈ H(τk) and all k ≥ k0, hence∫ ∞

τk0

∫
RN

(∂tuα)2 ≥
∞∑

k=k0

∫
H(τk)

∫
RN

(∂tuα)2 ≥
∞∑

k=k0

1

16

1

log(2τk)
= ∞

which contradicts Lemma 3.1.
Set Mk := uα(0, tk). Due to the definition of H and (3.4), there exist

Tk ∈ [tk + θη(tk), tk + η(tk)] such that

2Mk ≥ uα(0, Tk) ≥ µMk. (3.6)

We claim that given q ≥ 2,

‖∂tuα(·, Tk)‖q = o
(
M

(p−1)( 1
2
+N

2
( 1
2
− 1

q
))

k

)
as k →∞. (3.7)
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To prove this, we employ the following equation satisfied by z := ∂tuα

zt −∆z = pup−1
α z. (3.8)

Observe that (3.3) and (3.5) guarantee ‖∂tuα(·, tk)‖2 = o(M
(p−1)/2
k ). Using

this and obvious estimates in the variation of constants formula for equation
(3.8), we obtain for t ∈ [tk, tk + η(tk)]

‖z(t)‖2 ≤ ‖z(tk)‖2 +

∫ t

tk

p(2Mk)
p−1‖z(s)‖2 ds

≤ o(M
(p−1)/2
k ) + CMp−1

k (t− tk)
1/2

(∫ t

tk

‖z(s)‖2
2 ds

)1/2

= o(M
(p−1)/2
k ),

(3.9)

where z(t) = z(·, t) and C is a constant (we have used (3.4), t− tk ≤ η(tk) =
2−pM1−p

k , and
∫∞

tk
‖z(s)‖2

2 ds→ 0 as k →∞).
Next choose an integer m ≥ 1 and a sequence 2 = q0 ≤ q1 ≤ · · · ≤ qm = q

such that N
2
( 1

qj
− 1

qj+1
) < 1 for j = 0, 1, . . . ,m−1. Set tk,j := tk+(Tk−tk)j/m,

j = 0, 1, . . . ,m. We will prove that for j = 0, 1, . . . ,m

sup
t∈[tk,j ,Tk]

‖z(t)‖qj
= o

(
M

(p−1)( 1
2
+N

2
( 1
2
− 1

qj
))

k

)
as k →∞. (3.10)

In particular, claim (3.7) will follow. Estimate (3.10) for j = 0 follows from
(3.9). Next assume that (3.10) is true for some j < m. Using Lp − Lq

estimates in the variation of constants formula for equation (3.8) we obtain
for t ∈ [tk,j+1, Tk],

‖z(t)‖qj+1
≤ (t− tk,j)

−N
2

( 1
qj
− 1

qj+1
)‖z(tk,j)‖qj

+ p(2Mk)
p−1

∫ t

tk,j

(t− s)
−N

2
( 1

qj
− 1

qj+1
)‖z(s)‖qj

ds

= o
(
M

(p−1)( 1
2
+N

2
( 1
2
− 1

qj+1
))

k

)
.

Here we have also used (3.4) and the existence of constants C1, C2 > 0 such
that C1M

1−p
k ≤ t − tk,j ≤ C2M

1−p
k (these estimates follow from 2−pM1−p

k =
η(tk) ≥ Tk − tk ≥ t− tk,j ≥ (Tk − tk)/m ≥ θη(tk)/m). We have thus proved
(3.7).
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Set λk := M
−(p−1)/2
k and Uk(y, s) := 1

Mk
uα(λky, Tk +λ2

ks). Then Wk(y) :=

Uk(y, 0) satisfies the elliptic equation

−∆Wk = W p
k − Fk in RN , (3.11)

where Fk(y) := −∂sUk(y, 0). In addition, by (3.6), maxWk = Wk(0) ∈ [µ, 2].
Observe that

‖Fk‖q = M
p−1
2

N
q
−p

k ‖∂tuα(·, Tk)‖q = o(1), q ≥ 2,

due to (3.7) and p = pS. Therefore, using standard compactness arguments
and passing to a subsequence if necessary, one easily shows that Wk converges
to Vc in C1+κ

loc (RN) for any κ < 1 and some c ∈ [µ, 2], where Vc is the unique
positive radial solution of the equation −∆V = V p in RN satisfying V (0) = c.

Next fix ϑ ∈ (α, α∗) and rescale uϑ in the same way as uα: Set Ũk(y, s) :=
1

Mk
uϑ(λky, Tk + λ2

ks), where Mk = uα(0, tk) and λk, tk, Tk are defined above,

and W̃k(y) := Ũk(y, 0). Since ϑ
α
uα is a subsolution of (1.1) satisfying the same

initial condition as uϑ, we have uϑ ≥ ϑ
α
uα and, consequently, W̃k ≥ ϑ

α
Wk.

Fix ε ∈ (0, ϑ/α− 1). With c ∈ [µ, 2] as above, given any R > 0, we have

W̃k ≥ (1 + ε)Vc on BR for k large enough. (3.12)

The solution u(·, ·; (1 + ε)Vc) of (1.1) with initial data (1 + ε)Vc blows up
completely in a finite time T ∗ (see [6] and the proof of [20, (22.26)], for
example). This means in particular that if u(j) = u(j)(·, ·; (1 + ε)Vc) denotes
the solution of (1.1) with initial data (1+ε)Vc and the nonlinearity up replaced
by fj(u) := min(up, j), j = 1, 2, . . . , then∫

RN

u(j)(x, T )e−|x|
2

dx→∞ as j →∞,

whenever T > T ∗. Fix T > T ∗ and j such that∫
RN

u(j)(x, T )e−|x|
2

dx > πN/2(2N)1/(p−1).

Let u
(j)
R denote the solution of (1.1) with initial data (1 + ε)VcχBR

and the

nonlinearity up replaced by fj(u). Then u
(j)
R (·, T ) converge monotonically to

u(j)(·, T ) as R→∞, hence there exists R > 0 such that∫
RN

u
(j)
R (x, T )e−|x|

2

dx > πN/2(2N)1/(p−1).

12



Now [20, Theorem 17.1] guarantees that the solution u(·, ·; (1 + ε)VcχBR
) of

(1.1) blows up in finite time, hence Ũk blows up in finite time if k is large
enough by (3.12) and the comparison principle. This contradicts the global
existence of uϑ and concludes the proof.

Remark 3.2. The arguments used in the proof of Theorem 1.2 show the
existence of Tk → ∞ such that 1

Mk
uα∗(λky, Tk) → Vc in C1

loc(RN), where
Mk, λk and Vc are as in the proof of Thm 1.2. This convergence result can
be compared with an analogous result for the Cauchy-Dirichlet problem in a
ball, see [20, Proposition 23.11] (cf. also [12, Proposition 4.1]). The asymp-
totic behavior of the L∞ norm of threshold solutions of the Cauchy-Dirichlet
problem was studied in [5].

4 The subcritical case

The proof of Theorem 1.3 is carried out in several steps, comprising the
following lemmas. In all of them we assume the hypotheses of Theorem 1.3
to be satisfied. As a consequence of (1.3) we have α∗ ∈ (0,∞) (see (1.2) and
the paragraph following it).

Lemma 4.1. There are constants C0, C1 such that

‖uα∗(·, t)‖∞ ≤ C0t
−β (t > 0), (4.1)

‖vα∗(·, s)‖∞ ≤ C1 (s > 0). (4.2)

Proof. The arguments here are essentially those used in [19, Proof of Theo-
rem 4.1]. The estimate on uα∗, as given in (4.1), follows from the fact that for
the global solutions uα, α ∈ (0, α∗), such an estimate holds with a constant
C0 independent of α. This is a consequence of universal estimates of [18]
(which depend on the assumption (LT)). Estimate (4.2) follows from (4.1)
and the fact that φ ∈ L∞(RN) (hence uα∗ remains bounded for t ≈ 0).

Next we establish a uniform spatial decay rate of vα(·, s).

Lemma 4.2. For each α ∈ (0, α∗) one has

vα(y, s) = o(|y|−2β) as |y| → ∞, uniformly in s ≥ 0. (4.3)

13



Proof. Fix any ε > 0. We need to find R such that

vα(y, s) ≤ ε

|y|2β
(|y| > R, s ≥ 0). (4.4)

Choose δ > 0 so small that
εδ−2β

2
> C1, (4.5)

where C1 is in (4.2). One can easily verify (or see [19, Proof of Theorem 4.1])
that if R1 is sufficiently large, then the function w(y) = ε(|y| − R1)

−2β/2 is
a supersolution of (1.12) on {y : |y| > R1 + δ}. Fix such R1, assuming also
that

α∗φ(y) ≤ ε

2(|y| −R1)2β
(|y| > R1 + δ) (4.6)

(the latter is justified by (1.3)). Then (4.6) and (4.5) guarantee that w
dominates vα∗ (hence also vα) on the parabolic boundary of the set {(y, s) :
|y| > R1 + δ, s > 0}. The comparison principle therefore yields

vα(y, s) ≤ w(y) (|y| > R1 + δ, s > 0, α ∈ (0, α∗]).

Since
w(y) ≤ ε

|y|2β
(|y| > R)

provided R > R1 + δ is large enough, we see that (4.4) holds for such R.

Recall that λ0 is defined in Proposition 2.1. The next lemma gives a lower
bound on vα∗ . Its proof is contained in the proof of Theorem 4.1 [19] (see
the two paragraphs in [19] containing (4.9)-(4.13), note that the symmetry
of v is not used there).

Lemma 4.3. Fix λ ∈ (0, λ0). There exists R0 with the following property.
For each s > 0 there is y ∈ BR0 such that vα∗(y, s) = wλ(y). Consequently,
one has

‖vα∗(·, s)‖∞ ≥ C2 (s > 0),

where C2 is a positive constant.

For any α ∈ (0, α∗] we now introduce the ω-limit set of vα:

ω(vα) = {ψ : ψ = lim
k→∞

vα(·, sk) for some sk →∞},

14



where the limit is taken in L∞(RN). Observe that (4.2),(4.3), and parabolic
estimates imply that the set O(vα) := {vα(·, s) : s ≥ 1} is relatively compact
in L∞(RN). Hence ω(vα) is a nonempty compact connected subset of L∞(RN)
and it attracts vα in the sense that

lim
s→∞

distL∞(RN )(vα(·, s), ω(vα)) = 0.

Moreover, the compactness of O(vα) and standard limiting arguments show
that with each ψ, ω(vα) contains an entire solution of (1.12). Specifically,
for each ψ ∈ ω(vα), there exists a solution ζ(y, s) of (1.12) on RN × R such
that ζ(·, 0) = ψ and ζ(·, s) ∈ ω(vα) for all s. By (4.3), we also know that
each such entire solution ζ also satisfies

ζ(y, s) = o(|y|−2β) as |y| → ∞, uniformly in s ∈ R. (4.7)

In addition, ζ is nonnegative (because vα is) and therefore Theorem 5.1
proved in the appendix applies to ζ. It implies that for each s ∈ R the
function ζ(·, s) is radially symmetric. Thus to understand ω(vα) we need
to examine radial entire solutions. Our ultimate goal is prove the following
lemma.

Lemma 4.4. One has

(a) ω(vα) = {0} for each α ∈ (0, α∗) and

(b) ω(vα∗) = {wλ0}.

These statements can be equivalently written as

(a’) lims→∞ vα(·, s) = 0 for each α ∈ (0, α∗) and

(b’) lims→∞ vα∗(·, s) = wλ0 ,

with the limits in L∞(RN). Interpreted in terms of the solutions uα, (a’)
and (b’) give statements (i) and (ii) of Theorem 1.3. Hence the proof of
Theorem 1.3 will be complete once we prove Lemma 4.4.

Proof of Lemma 4.4. Fix an entire solution ζ(·, s) ∈ ω(vα) for some α ∈
(0, α∗]. In acordance with our conventions, ζ(·, s) being radially symmetric,
we can view it as a function of y ∈ RN or of ρ = |y| ∈ (0,∞). We first prove
that there exist the L∞(RN)-limits

w± := lim
s→±∞

ζ(·, s). (4.8)
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The proof involves rather standard arguments based on the intersection com-
parison principle. We only consider the limit at −∞, the arguments for ∞
are analogous and even simpler (also they are very similar to arguments used
in [19]). To start off, we consider the set J of all accumulation points of
ζ(0, s) as s→ −∞. We want to show that J is a singleton. Assume not and
fix λ ∈ (inf J, sup J) \ {λ0}. We use the stationary solution wλ for compari-
son. Since ζ is nonnegative, the maximum principle implies that it is strictly
positive everywhere.

Consider first the case λ > λ0, so that ζ(ρλ, s) > 0 = wλ(ρλ). Then
z[0,ρλ)(ζ(·, s) − wλ) is finite for each s ∈ R, it is nonincreasing, and drops
whenever ζ(0, s) = λ = wλ(0). By the choice of λ, the latter happens for
infinitely many values of s, hence, necessarily,

lim
s→−∞

z[0,ρλ)(ζ(·, s)− wλ) = ∞. (4.9)

Take a sequence sk → −∞. By standard compactness and limiting argu-
ments, we may assume that he sequence ζ(·, sk + ·) converges in C1,0

loc (RN×R)
to a solution ζ∞ of (1.12). Clearly, the sequence sk can be chosen such that
ζ∞ 6≡ 0 on any set of the form RN×(−∞, T ) (for example, choose it such that
ζ(0, sk) = λ). Then ζ∞ is positive everywhere and, as above for ζ, one shows
that z[0,ρλ)(ζ∞(·, s)− wλ) is finite for each s. Moreover, we can choose s0 so
that ζ∞(·, s0)−wλ has only simple zeros in [0, ρλ], all of them being contained
in [0, ρλ). It then follows that for all k sufficiently large ζ(·, sk + s0)−wλ has
the same - finite number of zeros, contradicting (4.9).

In the other case, λ < λ0, the function wλ satisfies wλ(ρ)ρ
2β → A(λ) > 0

as ρ→∞. Therefore, using (4.7) we find R2 such that ζ(R2, s) < wλ(ρλ)/2
for all s. We can then proceed similarly as in the previous case, replacing
the interval [0, ρλ] with [0, R2], and arrive at a contradiction.

The contradiction shows that J is a singleton, that is, ζ(0, s) has a limit
as s → −∞. Denote the limit by λ. Clearly, λ ∈ [0,∞). We claim that
ζ(·, s) → wλ in L∞(RN) as s → −∞. Assume this is not true. Then using
compactness and limiting arguments again, we find a sequence sk → −∞
such that ζ(·, sk + ·) converges in C1,0

loc (RN × R) to a solution ζ∞ of (1.12)
and ζ∞(·, 0) 6≡ wλ. In particular, we can find ρ > 0 and a small ε such that
ζ∞(ρ, s) 6= wλ(ρ) for all s ∈ (−ε, ε). The zero number z[0,ρ)(ζ∞(·, s) − wλ) is
then finite for s ∈ (−ε, ε). However, the choice of λ implies that ζ∞(0, s) =
λ = wλ(0, s) for each s, thus the zero number has to drop at each s, a
contradiction.
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Thus we have proved the existence of the limits in (4.8), in fact, each of
the limits is equal to the steady state wλ, for some λ ∈ [0,∞). Since the
limit have to be nonnegative and inherit the decay property of ζ, see (4.7),
the only possible limits are w0 ≡ 0 and wλ0 .

We shall now treat the cases α = α∗ and α < α∗ separately.
Proof of statement (b). Take α = α∗. Lemma 4.3 implies that 0 6∈ ω(vα∗).

For each entire solution ζ(·, s) ∈ ω(vα∗) the limits w+ and w− in (4.8)
belong to ω(vα∗), hence these limits coincide and are equal to wλ0 . In
particular, as ω(vα∗) is compact and contains at least one such solution
ζ, we have wλ0 ∈ ω(vα∗). To prove that ω(vα∗) = {wλ0}, we need to
rule out the existence of a homoclinic solution ζ in ω(vα∗). Assume that
ζ(·, s) ∈ ω(vα∗) is a homoclinic to wλ0 : ζ 6≡ wλ0 and ζ(·, s) → wλ0 as
s → ±∞. The limits here are in L∞(RN) a priori, but by parabolic esti-
mates also in C1

loc(RN). We have ζ(0, ·) 6≡ λ0 (otherwise, considering the
zero number of ζ(·, s) − wλ0 on a suitable interval one shows ζ ≡ wλ0 , simi-
larly as in the proof of the convergence properties (4.8) above). Hence we can
choose λ ∈ (infs ζ(0, s), sups ζ(0, s))\{λ0}. Consider the function ζ(·, s)−wλ.
We find R > 0 such that that ζ(R, s) − wλ(R) 6= 0 for each s ∈ R and
wλ0(R) − wλ(R) 6= 0. If λ > λ0, we can take R = ρλ, the first zero of wλ

(cf. Proposition 2.1), since ζ and wλ0 are both positive. In the case λ < λ0,
it is sufficent to take R large enough; the relations are then satisfied due
to (4.7) and limρ→∞ ρ

2βwλ0(ρ) = 0 < limρ→∞ ρ
2βwλ(ρ) (see Proposition 2.1).

Also note that wλ0 , wλ being two different solutions of the same second-order
ODE, their difference has only simple zeros. We now examine the function
s 7→ z[0,R)(ζ(·, s) − wλ). On the one hand, this nonincreasing function must
be constant since for s ≈ ±∞ it takes the value z[0,R)(wλ0 − wλ), due to the
C1 convergence of ζ(·, s) to wλ0 . On the other hand, our choice of λ implies
that ζ(0, s) = λ = wλ(0) for some s, hence the function cannot be constant
by the dropping property. This contradiction rules out the homoclinic and
completes the proof of statement (b).

Proof of statement (a). Take α ∈ (0, α∗). By the same arguments as
in the previous case, ω(vα) cannot contain a homoclinic to either wλ0 or 0.
Thus ω(vα) = {0} will be proved, if we show that wλ0 6∈ ω(vα).

It is easy to verify that the function α∗

α
uα is a subsolution of (1.1) with the

same initial condition as uα∗ . Hence uα∗ ≥ α∗

α
uα and therefore vα∗ ≥ α∗

α
vα.

Since we already know that vα∗(·, s) → wλ0 as s→∞, we conclude that each
ψ ∈ ω(vα) satisfies α∗

α
ψ ≤ wλ0 , in particular, wλ0 6∈ ω(vα).
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5 Appendix

In this section we extend the symmetry result of [15] to solutions of the
following equation

ut = ∆u+
1

2
x · ∇u+ ku+ f(u), x ∈ RN , t ≤ t0. (5.1)

Here N ≥ 2, k is a positive constant, t0 ∈ R, and f : [0,∞) is a C1-function
satisfying

f(u) = O(uσ) as u↘ 0 for some σ > 1. (5.2)

The constants appearing in (5.1), (5.2) are fixed for the whole section.
We consider (classical) solutions of (5.1) defined for all t ∈ (−∞, t0]

(ancient solutions). As we refer to [15] for parts of the proof of our result,
we adopt the notation of [15], rather than that of the previous sections. Like
the notation, the results here are independent of the previous sections.

Theorem 5.1. Under the above assumptions, let u be a nonnegative bounded
solution of (5.1) satisfying

u(x, t) = o(|x|−2k) as |x| → ∞, uniformly in t ≤ t0. (5.3)

Then for each t ≤ t0 the function u(·, t) is radially symmetric.

In the special case of steady state solutions u, this is Theorem 2.1 of [15].
To extend it to the setting of ancient solutions, we follow the steps of the
proof of [15]. The only essential difference from [15] is that in place of the
maximum principle for elliptic equations we need a maximum principle for
ancient solutions of parabolic equations, as given in Lemma 5.2 below. In its
formulation, L(x) is the elliptic operator defined by

L(x)v = ∆v +
1

2
x · ∇v − 2β

|x|2
x · ∇v (x ∈ RN \ {0}), (5.4)

where β is a positive constant.

Lemma 5.2. Given positive constants β, ρ, assume that v is a continuous
function on (RN \ Bρ) × (−∞, t0] such that v is bounded from above, v ∈
C2,1(RN \ B̄ρ)× (−∞, t0]), and the following inequalities are satisfied

vt ≤ L(x)v, (x, t) ∈ (RN \ B̄ρ)× (−∞, t0], (5.5)

v(x, t) ≤ 0, (x, t) ∈ ∂Bρ × (−∞, t0]), (5.6)

lim sup
|x|→∞
t≤t0

v(x, t) ≤ 0. (5.7)
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Then v ≤ 0 on (RN \Bρ)× (−∞, t0].

Proof. Assume v is positive somewhere. Then by (5.5)-(5.7) and the max-
imum principle (see e.g. [20, Proposition 52.4]), there exists t1 < t0 such
that

M(t) := sup
|x|>ρ

v(x, t) > 0 (t ≤ t1).

Also by the maximum principle, noting that L(x) has no zero order term,
M(t) is a nonincreasing function. Hence there exists M := limt→−∞M(t)
and, in view of the boundedness of v, M ∈ (0,∞). By (5.7), there exists
ρ1 > ρ such that

m := max
(
0, sup
|x|>ρ1
t≤t1

v(x, t)
)
< M.

Replacing t1 by a smaller number if necessary, we may assume thatM(t) > m
for all t ≤ t1. Set w = v −m. Then w satisfies

wt ≤ L(x)w, ρ < |x| < ρ1, t ≤ t1, (5.8)

w(x, t) ≤ 0, |x| ∈ {ρ, ρ1}, t ≤ t1, (5.9)

M −m ≥ max
ρ≤|x|≤ρ1

w(x, t) = M(t)−m > 0, t ≤ t1. (5.10)

Let λ1 and ϕ1 > 0 stand for the principal eigenvalue and eigenfunction
of the problem

L(x)ϕ = λϕ, x ∈ Bρ1+1 \ B̄ρ/2,

w = 0, x ∈ ∂Bρ1+1 ∪ ∂Bρ/2.

As L(x) has no zero order term, the strong maximum principle implies that
λ1 < 0. Choose c > 0 so large that cϕ1 > M − m on B̄ρ1 \ Bρ. Then for
any τ < t1 the function z(x, t) = ceλ1(t−τ)ϕ1(x) is a solution of zt = L(x)z
on (Bρ1 \ B̄ρ)× (τ, t1] and it dominates w on the parabolic boundary of that
set. The comparison principle therefore yields

w(x, t1) ≤ ceλ1(t1−τ)ϕ1(x) (ρ ≤ |x| ≤ ρ1).

Since this is true for any τ , we can take τ → −∞ to obtain

0 < M(t1)−m = max
ρ≤|x|≤ρ1

w(x, t1) ≤ 0.

This contradiction shows that, as stated in the lemma, v cannot assume any
positive value.
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We now show how Lemma 5.2 and a modification of arguments of [15] are
used in the proof Theorem 5.1. In the remainder of the section we assume
that the hypotheses of Theorem 5.1 are satisfied. We first derive a stronger
decay estimate on the solution u.

Proposition 5.3. For each β > 0 one has

u(x, t) = o(|x|−β) as |x| → ∞, uniformly in t ≤ t0. (5.11)

We start with the following preliminary statement.

Lemma 5.4. If (5.11) holds for some β > 2k, then it holds for each β > 0.

Proof. Let β > 2k be such that (5.11) holds. Set v(x, t) := |x|βu(x, t) and,
for an arbitrary m > 0, w(x) := |x|−m. Let L(x) be as in (5.4). The
computation of [15, Proof of Lemma 2.1] shows that for a large enough R0

the functions v, w satisfy

vt − L(x)v ≤ 0 ≤ −L(x)w (|x| ≥ R0, t ≤ t0).

We further choose a sufficiently large C so that v(x, t) ≤ Cw(x) for each
x ∈ ∂BR0 , t ≤ t0. Then, using also (5.11), we conclude that Lemma 5.2
applies to v−Cw and it gives v(x, t) ≤ Cw(x) for each x ∈ RN \BR0 , t ≤ t0.
This show that (5.11) holds with β replaced by β+m. Since m was arbitrary,
we obtain the conclusion.

Proof of Proposition 5.3. Set β := 2k and note that (5.11) holds for this β
due to (5.3). Also set δ := min{1, k(σ − 1)} (with σ as in (5.2)), v(x, t) :=
|x|βu(x, t), and w(x) := |x|−δ. Let again L(x) be as in (5.4). The same
arguments as in the previous proof, only this time one uses the computations
of [15, Proof of Proposition 2.1] in place of those in [15, Proof of Lemma 2.1],
show that if R0 and C are sufficiently large, then v(x, t) ≤ Cw(x) for each
x ∈ RN \ BR0 , t ≤ t0. Consequently, (5.11) holds for β = 2k + δ and using
Lemma 5.4 we conclude that it holds for each β > 0.

Proof of Theorem 5.1. Choose a constant α with

α > k + max{|f ′(s)| : 0 ≤ s ≤ ‖u‖L∞(RN×(−∞,t0))}.

Fix an arbitrary τ < t0 and set

w(x, t) := (t− τ)−αu
( x√

t− τ
, t− τ

)
((x, t) ∈ RN × (τ, t0)).
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The function w solves a suitable parabolic equation as in [15]. Observe that
it is time-dependent regardless of whether u depends on t or not. For this
reason, the arguments for the symmetry of u as given in [15, Section 2] apply
equally well in our more general setting, as long as (5.11) is valid with β = α.
The only modification needed in the actual proof is that in all estimates and
in the process of moving hyperplanes carried out in [15, Section 2], the time
interval (0, T ] is replaced by (τ, t0].
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