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Abstract

We consider elliptic equations on RN+1 of the form

∆xu+ uyy + g(x, u) = 0, (x, y) ∈ RN × R, (1)

where g(x, u) is a sufficiently regular function with g(·, 0) ≡ 0. We give sufficient
conditions for the existence of solutions of (1) which are quasiperiodic in y and decaying
as |x| → ∞ uniformly in y. Such solutions are found using a center manifold reduction
and results from the KAM theory. We discuss several classes of nonlinearities g to which
our results apply.
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1 Introduction

In this paper, we consider elliptic equations of the form

∆u+ uyy + g(x, u) = 0, (x, y) ∈ RN × R, (1.1)

where (x, y) ∈ RN × R, ∆ is the Laplacian in x, and g : RN × R → R is a sufficiently
smooth function satisfying g(·, 0) ≡ 0. We investigate solutions of (1.1) which decay to 0
as |x| → ∞, uniformly in y. Our concern is the behavior of such solutions in the remaining
variable y; specifically, we are interested in the existence of solutions which are quasiperiodic
in y. The purpose of this article is twofold. First, we build a general framework for studying
solutions of (1.1) using tools from dynamical systems, such as the center manifold theorem
and the Kolmogorov-Arnold-Moser (KAM) theory. Then we show how these techniques
yield quasiperiodic solutions in some specific classes of equations.

Geometric properties of solutions of (1.1) have been extensively studied by many au-
thors. Best understood are positive solutions which decay to 0 in all variables. If g satisfies
suitable assumptions, involving in particular symmetry and monotonicity conditions with
respect to x, then a classical result of [30] establishes reflectional symmetry of such solutions,
or even the radial symmetry about some origin in RN+1 if g is independent of x (see also
[11, 12, 13, 25, 43, 44] or the surveys [10, 51, 55] for related symmetry results and additional
references). It is very likely, and has already been proved in some situations, that, under
similar hypotheses on g, bounded positive solutions which decay as |x| → ∞ uniformly in
y, but do not necessarily decay in y, enjoy the symmetry in x (see [33] for results of this
form). Several authors have also exposed complexities of various solutions which do not
decay at infinity. Examples, with g = g(u), include multi-bump solutions decaying along
all but finitely many rays [45], saddle shaped solutions and general multiple-end solutions
[22, 23, 40], as well as solutions having both fronts (transitions) and bumps [62].

Solutions of the form considered in the present paper (that is, solutions decaying in x
uniformly in y) were examined by Dancer in [18]. Considering homogeneous nonlinearities
g = g(u) of a certain type, with special focus on the nonlinearities g(u) = up − u with a
subcritical p, he proved the existence of solutions periodic (and nonconstant) in y. With the
existence of periodic solutions established, one wonders if solutions with more complicated
behavior in y may occur. The existence of quasiperiodic solutions then becomes one of the
most immediate compelling problems. Looking for tools to address this problem, one thinks
of the KAM theory quite naturally.

Since its inception [6, 39, 49], the KAM theory has been employed by many authors
in proving the existence of invariant tori filled with quasiperiodic solutions for finite di-
mensional Hamiltonian systems (see, for example, [15, 19] for an overview of results and
techniques, or [24] for a more detailed historical account and references). Extensions of
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the classical KAM results to infinite dimensional Hamiltonian systems generated by par-
tial differential equations (PDEs) have been made by several authors (see, for example,
[8, 14, 17, 29, 41, 42, 70] and references therein). In a recent paper [21], de la Llave
and Sire took an a posteriori (cp. [28]) approach to applying KAM techniques in PDEs.
This approach consists in finding approximate quasiperiodic solutions, and then proving
the existence of true quasiperiodic solutions nearby. The procedure does not rely on the
well-posedness of the initial value problem for the equation in question and is therefore
applicable to some ill-posed equations (this is illustrated by the Boussinesq equation in
[21]). Potentially, their approach could give a way to deal with problems similar to ours
if the nonlinearity is analytic. We take a different route, however. We examine (1.1) by
its “spatial dynamics,” formally viewing it as an evolution equation with the variable “y”
taking the role of time. Invoking a center manifold theorem, we find a finite-dimensional
Hamiltonian system to which classical KAM results can be applied.

Spatial dynamics, as a technique to study elliptic equations with an unbounded variable,
was first used by Kirchgässner [38] and developed by Mielke [46, 47, 48] and others (see,
for example, [16, 27, 32, 34, 52, 53, 69]). The main idea underlying this technique is that
although the equation has an ill-posed initial value problem, a large class of its solutions is
often described by a finite dimensional reduction – an ordinary differential equation with a
well defined flow, which can be studied using tools from dynamical systems.

An application of KAM theorems via spatial dynamics has also appeared in the lit-
erature: in [68], Valls proves the existence of quasiperiodic solutions of semilinear elliptic
equations on a strip. Applying a center manifold reduction and taking the Birkhoff normal
form of the Hamiltonian of the reduced equation to a sufficiently large order, she writes the
reduced equation as the sum of an integrable system and a (locally) small perturbation. This
puts the problem in the form suitable for the KAM theory, although, because of the lack of
analyticity of the center manifold reduction, KAM results for systems with finite degree of
smoothness have to be used. Semilinear elliptic equations on a strip were also considered in
an earlier work of Scheurle [64]. Similarly as in his paper [63] on analytic reversible ODEs,
he designs a Newton iteration scheme to find families of quasiperiodic solutions bifurcating
from an equilibrium. It is noteworthy that resolvent estimates typically used in the center
manifold reduction are involved in [64], although the center manifold theorem is not invoked
there. Working in the analytic setting (and not losing it in a center manifold reduction),
while restrictive, has the advantage of leading to a finer description of the solutions, such as
the analyticity of the solution branches. We also mention related results based on a varia-
tional approach to elliptic equations. In an extension of the Aubry-Mather theory to PDEs,
as developed by Moser [50] and Bangert [9] (see also [26, 58, 66] and references therein), one
considers integer-periodic elliptic equations (such as equation (1.1), where g is 1-periodic
in the variables x1, . . . , xN , and u) as Euler-Lagrange equations of an associated functional
and shows the existence of local minimizers whose graphs are within a bounded distance
from a given hyperplane and obey a certain “no self-intersection” property. The behavior of
such solutions depends on the orthogonal vector to the hyperplane, or the “rotation vector.”
For rationally independent rotation vectors one obtains solutions with a quasiperiodicity
property relative to the integer translation. Note, however, that this class of solutions is
quite different from those studied in [64, 68] or in this paper; in particular, they are all
unbounded.
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On a general level, our approach to constructing quasiperiodic solutions is similar to
that of [68]. However, applying these techniques to (1.1) poses significant difficulties. The
first one is that in our case the “cross-section” of the domain RN × R is RN . Thus, the
Schrödinger operator appearing in the evolution formulation of (1.1), namely, the operator
−∆ − a1(x) with a1(x) = gu(x, 0), has a nonempty essential spectrum. For the center
manifold reduction to apply, we need the essential spectrum to be away from and to the
right of the origin on the real axis. On the other hand, the KAM theory calls for some
eigenvalues of an underlying matrix operator to lie on the imaginary axis, and this in turn
requires the Schrödinger operator to have a number of negative eigenvalues. Whether such
eigenvalues exist, simultaneously with the essential spectrum contained in the positive half-
line, depends on the specific problem and it takes some work to verify that they do for
some equations of a given structure. The unboundedness of the cross-section complicates
matters in other ways as well. One is the lack of the Fourier eigenfunction expansion, which
is often useful for explicit computations when the cross-section is an interval or a rectangle
(cp. [28, 68, 70]).

There is also a difficulty coming from the nonlinearity itself, since we allow the expansion
of the function g at u = 0 to involve a nontrivial quadratic term. If the quadratic nonlinear
term is absent, the analysis becomes simpler when it comes to the verification of certain
nondegeneracy conditions needed in the KAM-type results [68, 70]. For example, in the
approach of [68], when the nonlinearity is odd—in particular, the quadratic terms are
absent—neither the reduction function (from the center manifold theorem) nor the change
of coordinates from the Darboux theorem (to bring the symplectic structure to the standard
one) enter the expansion of the reduced Hamiltonian up to order four. Since the Kolmogorov
nondegeneracy condition involves terms of order at most four, its verification amounts to an
explicit computation. Including quadratic terms in the nonlinearity complicates matters,
but it is necessary for some applications of our results to problems with a specific structure
(for more on this, see Remark 2.1(v) below).

Our main theorems give sufficient conditions for the existence of solutions of (1.1) which
are quasiperiodic in y with n frequencies, where n > 1 is a given integer. As usual in
KAM-type results, for equations satisfying the sufficient conditions, one automatically gets
uncountably many quasiperiodic solutions whose frequency vectors form a set of positive
measure in Rn. As indicated above, we are mainly interested in y-quasiperiodic solutions
which decay to zero as |x| → ∞, but our general results are flexible enough to deal with
other types of solutions, such as solutions which decay in some of the x-variables and are
periodic in the others (see Remark 2.1(iv) below). Our sufficient conditions are formulated
explicitly in terms of eigenvalues and eigenfunctions of the operator −∆ − a1(x) and the
third derivative a3(x) := guuu(x, 0) of the nonlinearity (our most general sufficient condition
also involves a2(x) := guu(x, 0), but not in an explicit way). It is not difficult to show that
the conditions are robust: if they hold for some a1, a3, then they continue to hold if a1, a3

are perturbed slightly. However, proving that they hold for some a1, a3 is not always so easy
and may become increasingly difficult when one starts imposing structural assumptions on
equation (1.1). Naturally, the more restrictive the structure, the less freedom one has to
choose the functions so that the given conditions are satisfied. We verify that the conditions
do hold for some radially symmetric a1, a3 (and all small, possibly nonradial, perturbations
thereof). In a separate work, we will have a closer look at these hypotheses and related
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properties of eigenfunctions and eigenvalues of Schrödinger operators and prove that they
are in fact generic in suitable topologies. In this paper, we do not specifically consider
spatially homogeneous equations: although they fit our general framework, the underlying
nondegeneracy conditions require extra considerations which will be dealt with elsewhere.

The remainder of the paper is organized as follows. Our main results and an informal
overview of the proofs are given in Section 2. We also show there examples of functions
satisfying our hypotheses. In Section 3, we apply a center manifold reduction to an abstract
form of (1.1). In Sections 4 and 5, we employ the Hamiltonian structure of the reduced
equation: using a Birkhoff normal form procedure, we write the Hamiltonian in a form
suitable for the KAM theory. This yields, under certain hypotheses, quasiperiodic solutions
and completes the proofs of our theorems. In Appendix A, we verify some of the technical
hypotheses needed for the center manifold theorem, including the smoothness of Nemytskii
operators acting on Sobolev spaces on RN .

2 Main results

In this section, we introduce some terminology and give precise statements of our main
results. We also verify our hypotheses for some equations of the form (1.1) and outline the
proofs of the main theorems.

Throughout the paper, Cb(RN ) stands for the space of continuous bounded (real-valued)
functions on RN and C k

b (RN ) for the space of functions on RN with continuous bounded
derivatives up to order k, k ∈ N := {0, 1, 2, . . . }. When needed, we assume that these spaces
are equipped with the usual norms.

Fix a positive integer N . The equation we consider in the article is

∆u+ uyy + a1(x)u+ f(x, u; s, b) = 0 for (x, y) ∈ RN × R = RN+1, (2.1)

where a1 ∈ Cb(RN ), b 6= 0 and s ∈ R are real parameters, and f is a sufficiently regular
function on RN × R× R2. We will formulate regularity and other hypotheses on a1 and f
shortly. Structurally, we will assume f to have the form

f(x, u; s, b) = b
(
sa2(x)u2 + a3(x)u3

)
+ u4f1(x, u; s, b), (2.2)

where a2, a3 ∈ Cb(RN ) and f1 : RN+1 × R2 → R are sufficiently smooth functions.

2.1 Hypotheses

Given integers n ≥ 2, k ≥ 1, a vector ω = (ω1, . . . , ωn) ∈ Rn is said to be nonresonant up
to order k if

ω · α 6= 0 for all α ∈ Zn \ {0} such that |α| ≤ k. (2.3)

(Here |α| = |α1| + · · · + |αn|, and ω · α is the usual dot product.) If (2.3) holds for all
k = 1, 2, . . . , we say that ω is nonresonant, or, equivalently, that the numbers ω1, . . . , ωn
are rationally independent. A special class of nonresonant vectors which will play a role
later on is the class of Diophantine vectors, see Section 5.

Assuming a1 ∈ Cb(RN ), consider the Schrödinger operator A1 = −∆− a1(x), viewed as
an unbounded self-adjoint operator on L2(RN ) with domain D(A1) = H2(RN ). Fixing an
integer n ≥ 2, we make the following assumptions on a1:
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(A1)(a) L := lim sup
|x|→∞

a1(x) < 0.

(A1)(b) A1 has exactly n negative eigenvalues µ1 < · · · < µn, all of which are simple, and
0 is not an eigenvalue of A1.

Sometimes, we collectively refer to assumptions (A1)(a) and (A1)(b) as (A1).
In our next hypotheses, K and m are integers satisfying

K ≥ 6(n+ 1), m >
N

2
. (2.4)

We assume the following smoothness and nonresonance conditions on a1:

(S1) a1 ∈ Cm+1
b (RN ).

(NR) Denoting ωj :=
√
|µj |, j = 1, . . . , n, the vector ω = (ω1, . . . , ωn) is nonresonant up

to order K.

Our smoothness requirement on the functions in (2.2) are as follows:

(S2) a2, a3 ∈ Cm+1
b (RN ); f1 ∈ CK+m+4(RN×R×R2) and for all ϑ > 0, ρ0 > 0, the function

f1 is bounded on RN × [−ϑ, ϑ]× [−ρ0, ρ0]2 together with all its partial derivatives up
to order K +m+ 4.

Hypotheses (A1), (NR), (S1), (S2) are our standing hypotheses throughout the paper.
In addition, we will assume one of the following two hypotheses. The first one, (A2), involves
the function a3 from (2.2) and eigenfunctions of A1; thus, in effect, it is a hypothesis on f
and a1. The other hypothesis, (A3), concerns a1 only.

Let ϕ1, . . . , ϕn be eigenfunctions of A1 corresponding to the eigenvalues µ1, . . . , µn, re-
spectively, normalized in the L2-norm (they are determined uniquely up to signs).

(A2) The n× n matrix M1 with entries

(M1)ij = (2− δij)
∫
RN

a3(x)ϕ2
i (x)ϕ2

j (x) dx (i, j = 1, . . . , n),

where δij is the Kronecker delta, is nonsingular.

(A3) The eigenfunctions ϕ1, . . . , ϕn have the following quartic independence property: the
set of functions {ϕ2

iϕ
2
j : 1 ≤ i ≤ j ≤ n} is linearly independent in some nonempty open

subset U ⊂ RN , that is, the coefficients of any linear combination of these functions
which vanishes identically in U are necessarily equal to 0.

We make some comments on the hypotheses made here.

Remark 2.1. (i) The sole role of hypothesis (A1)(a) is to guarantee that the essen-
tial spectrum σess(A1) of the operator A1 is contained in (−L,∞) [59]. The condition
σess(A1) ⊂ (−L,∞), or any explicit condition which implies this inclusion, can safely be
used as a hypothesis in place of (A1)(a). Note that, since σ(A1)\σess(A1) consists of isolated
eigenvalues, conditions (A1)(a), (A1)(b) imply in particular that there is γ > 0 such that
σ(A1)∩ (−γ, γ) = ∅. Also, it is well known that, as eigenfunctions corresponding to isolated
simple eigenvalues, the functions ϕj(x) have exponential decay as |x| → ∞ [3, 4, 57]. In
particular, the integrals in (A2) exist.
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(ii) The regularity of f is needed mainly for two reasons. An application of the KAM
theory forces us to a assume a sufficiently high smoothness of f(x, u) with respect to u.
The smoothness of a1 and f with respect to x has more to do with our choice to set up
a formulation of (2.1) in the spaces Hm(RN ) with a large enough m, rather than in the
spaces W 2,p(RN ) with a sufficiently large p. Working in a Hilbert space setting simplifies
some considerations, at the expense of the regularity requirements.

(iii) In our main results, Theorems 2.2 and 2.4 below, the smoothness of the function f1

with respect to the parameters s, b is not relevant, only what happens at the quadratic and
cubic terms of f is important (see Remark 4.12 for an explanation of this). However, in
other theorems, such as the reduction to the center manifold and the Darboux change of
coordinates, it is of interest to know how the smoothness of f with respect to the parameters
reflects in the conclusions of those theorems.

(iv) If one is specifically interested in problems with radial symmetry; that is, when the
functions a1, f , and the sought-after solutions are required to be radially symmetric in
x, then one can adapt the hypotheses to this situation. Most importantly, rather than
considering the Schrödinger operator A1 = −∆ − a1 on the full space L2(RN ), one can
take its restriction to the subspace L2

rad(RN ) consisting of radially symmetric functions (the
domain of A1 is then H2

rad(RN )). This makes a difference in hypothesis (A1)(b): in the
radial space, the eigenvalues are automatically simple, but in the full space the simplicity
is not guaranteed.

(v) The formulation of our hypotheses reflects our main objective to find y-quasiperiodic
solutions which decay to zero as |x| → ∞. To search for other types of y-quasiperiodic
solutions, one would need to modify the hypotheses suitably. Suppose, for example, that
a1(x) and f(x, u) are even and periodic in xn with period 2p > 0, and one wants to find
y-quasiperiodic solutions which decay in x′ = (x1, . . . , xn−1) and are even and 2p-periodic
in xn. The operator −∆ − a1 is then to be considered as a self-adjoint operator, with
natural domain, on the space of functions on RN which are even and 2p-periodic in xn and
whose restrictions to RN−1× (−p, p) are in L2(RN−1× (−p, p)). Hypothesis (A1)(a) has to
be replaced by the condition σess(A1) ⊂ (−L,∞) (or an explicit sufficient condition), and
the integrals in (A2) are taken over RN−1 × (−p, p), rather than over RN . The remaining
hypotheses can be kept intact. The evenness requirement can be dropped in this example,
although in some specific situations the simplicity of the eigenvalues, as required in (A1)(b),
may not be satisfied without it.

(vi) Note that if (A1) is to be satisfied, a1 cannot be a constant function. This is conse-
quential for applications of our results to some specific equations, such as spatially homo-
geneous equations (1.1). Indeed, if g = g(u) or, more generally, if the derivative gu(x, 0)
is constant, then in (2.1), (2.2) one cannot simply take the coefficients aj from the Taylor
expansion of g at the trivial solution. Instead, the Taylor expansion has to be taken at a
nontrivial solution ϕ = ϕ(x). Such an expansion will typically involve quadratic terms in u,
regardless of any assumptions on the derivatives of g at 0. Mainly for this reason we insist
on including the quadratic term in (2.2).
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2.2 Existence of quasiperiodic solutions

A function u : (x, y) 7→ u(x, y) : RN × R → R is said to be quasiperiodic in y if there exist
an integer n ≥ 2, a nonresonant vector ω∗ = (ω∗1, . . . , ω

∗
n) ∈ Rn, and an injective function

U defined on Tn (the n-dimensional torus) with values in the space of real-valued functions
on RN such that

u(x, y) = U(ω∗1y, . . . , ω
∗
ny)(x). (x ∈ RN , y ∈ R). (2.5)

The vector ω∗ is called a frequency vector of u.
We emphasize that the nonresonance of the frequency vector is a part of our defini-

tion. In particular, a quasiperiodic function is not periodic and, if it has some regularity
properties, its image is dense in an n-dimensional manifold diffeomorphic to Tn.

In our first theorem, we consider one of the following two settings:

(a) b ∈ R \ {0} is fixed and |s| ≥ 0 is sufficiently small,

(b) s ∈ R is fixed and |b| > 0 is sufficiently small.

We refer to the above assumptions on the smallness of one of the parameters (with the other
parameter fixed) as Case (a) and Case (b). It is understood here that how small a parameter
has to be depends on the other parameter (and the other given data: the functions a1 and
f).

Theorem 2.2. Suppose that hypotheses (A1), (NR), (S1), (S2) (with K, m as in (2.4)), and
(A2) are satisfied. In both Cases (a) and (b), the following conclusion holds. There exists
a solution u(x, y) of equation (2.1) (with f as in (2.2)) such that u(x, y) → 0 as |x| → ∞
uniformly in y, and u(x, y) is quasiperiodic in y. In fact, there is an uncountable family
of such quasiperiodic solutions, their frequency vectors forming a set of positive measure in
Rn (n is as in (A1)(b)).

In Case (b), Theorem 2.2 is a perturbative result, where the quadratic and cubic terms
in f become small at the same rate, as b → 0. Case (a) is partly a perturbative result as
well, requiring the quadratic term to be small relative to the cubic term. Note, however,
that s = 0 with any fixed b > 0 is allowed in Case (a). Thus, in the class of functions with
no quadratic term, in particular, in the class of functions which are odd in u, there is no
smallness requirement and Theorem 2.2 is not a perturbative result.

Remark 2.3. The statement of Theorem 2.2 can be strengthened as follows. For an
arbitrary ρ0 > 0, if b ∈ [−ρ0, ρ0] \ {0} is fixed, then the conclusion of Theorem 2.2 holds
for all s ∈ {0} ∪ ([−ρ0, ρ0] \D1), where D1 ⊂ R is a finite set; if s ∈ [−ρ0, ρ0] \ {0} is fixed,
then the conclusion of Theorem 2.2 holds for all b ∈ [−ρ0, ρ0] \D2 where D2 ⊂ R is a finite
set containing 0. This is explained in detail in Remark 5.5 and Lemma 5.2, where we also
give a general sufficient condition for the validity of the conclusion of Theorem 2.2. The
condition is formulated in terms of the functions a2, a3, but it is rather implicit and hard
to verify for specific choices of these functions (with the parameters s and b fixed), unless
a2 = 0. On the other hand, Remark 5.5 shows that the condition is satisfied for all s, save
for isolated values (with b 6= 0 fixed), if it is satisfied for some s; and, likewise, it is satisfied
for all b, save for isolated values, if it is satisfied for some b (with s fixed).
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In our next theorem, both parameters s ∈ R and b ∈ R \ {0} are fixed and neither is
required to be small.

Theorem 2.4. Let a2 and f1 be as in (S2), and a1 as in (S1), where K, m are constants
satisfying (2.4). Suppose that conditions (A1), (NR), and (A3) are satisfied and let s ∈ R,
b ∈ R\{0} be arbitrary. Then there is an open and dense set B in Cm+1

b (RN ) such that the
conclusion of Theorem 2.2 holds for each a3 ∈ B.

We remark that, although it is easy to show that if a1 satisfies (A3), then the set of
functions a3 satisfying (A2) is open and dense, Theorem 2.4 does not follow from Theorem
2.2. Indeed, Theorem 2.2 states that (A2) is a sufficient condition for the validity of the
conclusion if one of the parameters s, b is small, which is not assumed in Theorem 2.4.

Remark 2.5. If the functions a1, a2 are radial, Theorem 2.4 remains valid if Cm+1
b (RN ) is

replaced by its subspace of all radial functions (cp. Remark 5.6 below).

2.3 Validity of the hypotheses

In this subsection, we give examples of functions a1, a3 which satisfy our hypotheses. First
of all, we show the robustness of the hypotheses.

Proposition 2.6. Let k ≥ 0 be an integer.

(i) The set of all functions (a1, a3) ∈ C k
b (RN )×C k

b (RN ) such that conditions (A1), (NR),
and (A2) are satisfied is open in C k

b (RN )× C k
b (RN ).

(ii) The set of all functions a1 ∈ C k
b (RN ) such that conditions (A1), (NR) are satisfied

is open in C k
b (RN ), and so is the set set of all functions a1 ∈ C k

b (RN ) such that all
three conditions (A1), (NR), and (A3) are satisfied.

Proof. The results are consequences of standard perturbation results [37]. Suppose first
that (A1), (NR), are satisfied for some a1 ∈ C k

b (RN ). The upper semicontinuity of the
spectrum, and the continuity of simple eigenvalues imply that (A1)(b), (NR) remain valid
if a1 is perturbed slightly in C k

b (RN ). The same is obviously true of (A1)(a). The simplicity
of the eigenvalues implies that the normalized eigenfunctions ϕ1, . . . , ϕn can be chosen such
that they depend continuously on a1 (in a small neighborhood of the unperturbed function)
as H2(RN )-valued functions. Standard elliptic regularity estimates allow us to bootstrap
this continuity to eventually show that ϕ1, . . . , ϕn depend continuously on a1 as W 2,p(RN )-
valued functions for any p ∈ (1,∞), and, in particular, as L4(RN )-valued functions. This
implies that if now a3 ∈ C k

b (RN ) is such that (A2) holds, then (A2) will continue to hold if
a1 and a3 are perturbed slightly in C k

b (RN ). Statement (i) is thus proved.
For statement (ii), we just need to observe, in addition, that the linear independence

of the functions ϕ2
iϕ

2
j , 1 ≤ i ≤ j ≤ n, is preserved because of the continuous dependence

of ϕ1, . . . , ϕn on a1 (in a small neighborhood of the unperturbed function a1) as Lp(RN )-
valued functions for any p ∈ (1,∞): a simple way to see this is by considering a suitable
Gram matrix of the functions ϕ2

iϕ
2
j .

To find examples of functions a1, a3 satisfying our hypotheses, we start with the following
statement concerning hypothesis (A1).
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Proposition 2.7. There exists a radially symmetric function a1 ∈ C∞b (RN ) such that (A1)
holds.

Proof. If N = 1, take c ≥ 0 and consider an even function a1 ∈ C∞(R) such that a1(x) ≡ −1
for |x| > 2, a1 ≡ c ∈ R for |x| < 3/2, and the rest of the values of a1 are between c and −1.
If c is sufficiently large, then the operator −∆− a1(x) has at least n negative eigenvalues.
All these eigenvalues are automatically simple. If c = 0, then a1 ≤ 0 and −∆ − a1(x) has
no eigenvalues in (−∞, 0]. Consequently, for suitable intermediate values of c, −∆− a1(x)
has exactly n negative eigenvalues and 0 is not an eigenvalue.

Let now N ≥ 2. A similar continuity argument as above yields a radial potential
such that (A1) holds for the restriction of the operator A1 = −∆ − a1(x) to L2

rad(RN )
(cp. Remark 2.1(iv)), but not necessarily in the full space L2(RN ). To show that (A1) holds
without the restriction to L2

rad(RN ), one has to make sure that A1, in addition to having n
negative eigenvalues with radial eigenfunctions, has no negative eigenvalue with a nonradial
eigenfunction (such an eigenvalue is never simple for a radial potential). This has been
done in [54]. More precisely, Lemmas 2.2 and 2.3 of [54] show that there is a smooth radial
function a1(x), identical to −1 outside a sufficiently large ball, with the following property.
The operator A1 has at least n negative eigenvalues with radially symmetric eigenfunctions
(all these eigenvalues are simple) and, at the same time, 0 is the minimal eigenvalue having
a nonradial eigenfunction. We now replace a1 by a1−d, where d is a positive constant. This
has the effect of shifting the spectrum σ(A1) to σ(A1) + d. Obviously, choosing d suitably,
we achieve that exactly n eigenvalues remain in (−∞, 0), while all the other eigenvalues are
contained in (0,∞). The resulting operator then has all the desired properties.

Next, we deal with the nonresonance condition.

Lemma 2.8. For any integer K > 1 and any set of negative numbers µ1 < · · · < µn, the
set of all ε > 0 such that the vector ω(ε) = (

√
|µ1|+ ε, . . . ,

√
|µn|+ ε) is nonresonant up to

order K is open and dense in (0,∞). Consequently, the set of all ε > 0 such that the vector
ω(ε) := (

√
|µ1|+ ε, . . . ,

√
|µn|+ ε) is nonresonant is residual, hence dense, in (0,∞).

Proof. Obviously, it is sufficient to prove that for any fixed α = (α1, . . . , αn) ∈ Zn \{0}, the
function ε 7→ ω(ε) · α has only isolated zeros. This follows, since the function is analytic in
[0,∞), if we prove that it has a nonzero derivative of some order at ε = 0. Suppose that,
to the contrary, all the derivatives at ε = 0 vanish. This implies that for all odd positive
integers ` one has

α1

|µ1|
`
2

+ · · ·+ αn

|µn|
`
2

= 0.

Since the |µj | are mutually distinct, we conclude from this that α = 0, a contradiction.

Corollary 2.9. Let a1 be as in Proposition 2.7. Then there is ε > 0 such that after replacing
a1 by a1 + ε, hypothesis (A1) is satisfied and the vector (

√
|µ1|, . . . ,

√
|µn|) is nonresonant.

In particular, (NR) holds for any K.

Proof. When a1 is replaced by a1 + ε, the eigenvalues µ1, . . . , µn of −∆ − a1 get replaced
by µ1− ε, . . . , µn− ε. The result now follows from Lemma 2.8 (we choose ε sufficient small,
so that (A1) remains valid after the replacement).
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We can now easily give examples of functions a1, a3 satisfying hypotheses (A1), (NR),
(A2).

Example 2.10. Proposition 2.7 and Corollary 2.9 yield a smooth radial function a1 sat-
isfying (A1) and (NR) (for any K). Let a3 be a smooth bounded function on RN which
is sufficiently close, as a distribution, to δz (Dirac delta), where z ∈ RN is not a zero of
any of the eigenfunctions ϕj , j = 1, . . . , n (the set of such z is open and dense in RN ).
Then (A2) holds. Alternatively, one can take a smooth radial function a3 sufficiently close
to the “radial δ-function” δρ, where ρ > 0 is not a zero of any of the eigenfunctions ϕj ,
j = 1, . . . , n, viewed as functions of r = |x| (in this view, the zeros of the eigenfunctions are
isolated).

To justify these statements, note that for a3 ≈ δz, the matrix M1 in (A2) is close to the
matrix with entries

(2− δij)ϕ2
i (z)ϕ

2
j (z) (i, j = 1, . . . , n).

It is sufficient to show that this matrix has nonzero determinant. This follows, since ϕ2
i (z) 6=

0 for i = 1, . . . , n, from the fact that the matrix whose diagonal entries are all equal to 1 and
the off-diagonal entries are all equal to 2 is nonsingular. (One can verify this by replacing
the first row by the sum of all the rows and then carrying out an elimination.) The radial
case can be dealt with similarly.

Finally, we include hypothesis (A3) into consideration.

Proposition 2.11. For any positive integer K, there exists a radially symmetric function
a1 ∈ C∞b (RN ) such that hypotheses (A1), (NR), and (A3) are satisfied.

Proof. Without loss of generality, we may assume that K ≥ 8. Fix any such K.
As in Example 2.10, we first use Proposition 2.7 and Corollary 2.9 to find a smooth radial

function a1 satisfying (A1) and (NR). By (A1)(b), a1 has to be positive somewhere, hence,
by (A2)(a), a1 vanishes somewhere. Thus, there is R0 such that a1(x) = 0 for |x| = R0. We
now introduce a radial perturbation of a1, modifying it near {x : |x| = R0} only, such that
the perturbed function vanishes identically in {x : R1 < |x| < R2} for some R1 < R2 near
R0. This can be done in such a way that the perturbation is small, as small as one wishes
in the supremum norm, but the perturbed function is smooth. By Proposition 2.6(ii), (A1)
and (NR) are unaffected by small perturbations.

Thus, we may proceed by assuming that a1 is a smooth radial function such that a1 ≡ 0
on {x : R1 < |x| < R2}, for some R2 > R1 > 0, and (A1), (NR) hold. We show that in this
situation (A3) is satisfied without any further perturbations of a1.

Assume first that N ≥ 2. For j = 1, . . . , n, the eigenfunction ϕj satisfies

∆ϕj + a1(x)ϕj + µjϕj = 0 in RN . (2.6)

In the radial variable r = |x|, this equation reads as follows:

ϕ′′j +
N − 1

r
ϕ′j + (a1(r) + µj)ϕj = 0, r > 0

Here ϕ′j = dϕj/dr, and we are abusing the notation slightly by writing a1 = a1(r), ϕj =
ϕj(r) (and viewing them as functions of r ≥ 0). On the interval (R1, R2) the equation
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simplifies, due to a1 ≡ 0:

ϕ′′j +
N − 1

r
ϕ′j + µjϕj = 0. (2.7)

Since µj < 0, the general solution of this equation, and therefore also the solution ϕj on
(R1, R2), can be expressed in terms of modified Bessel functions rescaled by ωj :=

√
|µj |.

More specifically, for some constants Cj1, Cj2 one has ϕj ≡ ϕ̃j on (R1, R2), where

ϕ̃j(r) := Cj1r
1−N/2IN/2−1(ωjr) + Cj2r

1−N/2KN/2−1(ωjr). (2.8)

Here IN/2−1 and KN/2−1 are modified Bessel functions of the first and second kind, respec-
tively. Note that these functions are defined for all r ∈ (0,∞) and are analytic in this
interval (of course, the eigenfunctions ϕj themselves may not be analytic outside (R1, R2)).
The constants Cj1, Cj2 cannot be both equal to zero: otherwise, ϕj ≡ 0 on [R1, R2], hence
ϕj , as a solution of a second order equation, vanishes identically on [0,∞), which is impos-
sible for an eigenfunction.

We now recall the asymptotics of the modified Bessel functions as r → ∞. For j =
1, . . . , n, we have:

IN/2−1(ωjr) = Cje
ωjrr−1/2(1 +O(1/r)),

KN/2−1(ωjr) = Cje
−ωjrr−1/2(1 +O(1/r)),

(2.9)

with some nonzero constants Cj .
For 1 ≤ j ≤ ` ≤ n (we call such indices j, ` admissible), define

b(j, `) =


2ωj + 2ω` if Cj1 6= 0, C`1 6= 0,

−2ωj + 2ω` if Cj1 = 0, C`1 6= 0,

2ωj − 2ω` if Cj1 6= 0, C`1 = 0,

−2ωj − 2ω` if Cj1 = 0, C`1 = 0.

Note that, as r →∞, we have, by (2.8), (2.9),

ϕ̃2
j (r)ϕ̃

2
` (r) ∼ r2−2Neb(j,`)r. (2.10)

Since (ω1, . . . , ωn) is nonresonant up to order 8, it follows that b(j, `) 6= b(j′, `′) for all
admissible (j, `) 6= (j′, `′). We can thus arrange all the admissible indices in a finite sequence
(j(k), `(k)), k = 1, . . . , n(n+ 1)/2, such that b(j(k), `(k)) > b(j(k′), `(k′)) if k < k′.

We now conclude the proof of the proposition by showing that, on (R1, R2), the functions
ϕ2
jϕ

2
` ≡ ϕ̃2

j ϕ̃
2
` , 1 ≤ j ≤ ` ≤ n, are linearly independent. For that aim, let cj`, 1 ≤ j ≤ ` ≤ n,

be constants such that
n∑
`=1

∑̀
j=1

cj`ϕ̃
2
j (r)ϕ̃

2
` (r) = 0 (2.11)

for all r ∈ (R1, R2). By the analyticity of ϕ̃j , (2.11) then holds for all r > 0. We rewrite
(2.11) as

n(n+1)/2∑
k=1

cj(k)`(k)ϕ̃
2
j(k)(r)ϕ̃

2
`(k)(r) = 0, (2.12)
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where j(k) and `(k) are as above. Dividing this identity by r2−2Neb(j(1),`(1))r, we obtain

n(n+1)/2∑
k=1

cj(k)`(k)

ϕ̃2
j(k)(r)ϕ̃

2
`(k)(r)

r2−2Neb(j(1),`(1))r
= 0. (2.13)

Since b(j(1), `(1)) > b(j(k), `(k)) for all k ∈ {2, . . . , n(n+ 1)/2}, using (2.10) we obtain

lim
r→∞

ϕ̃2
j(k)(r)ϕ̃

2
`(k)(r)

r2−2Neb(j(1),`(1))r

{
= 0 for k ∈ {2, . . . , n(n+ 1)/2},
6= 0 for k = 1.

Thus, taking r →∞ in (2.13), we deduce that cj(1),`(1) = 0. We then successively divide by

r2−2Neb(j(k),`(k))r, k = 2, . . . , n(n+ 1)/2, and take r →∞ to conclude that cj(k),`(k) = 0 for
k = 1, . . . , n(n + 1)/2. Hence, all the coefficients in (2.11) must vanish, which proves the
desired linear independence.

The case N = 1 can be treated similarly. This time, for r ∈ (R1, R2) the eigenfunctions
ϕj , j = 1, . . . , n, satisfy

ϕ′′j + µjϕj = 0.

Letting again ωj =
√
|µj | 6= 0, it follows that, on (R1, R2), one has ϕj ≡ ϕ̃j , where

ϕ̃j(r) = Cj1e
ωjr + Cj2e

−ωjr

with Cj1, Cj2 not both equal to 0. Using an argument based on the analyticity, very similar
to the one used above, our assertion follows.

2.4 An outline of the proofs of the main theorems

In the first step of the proof of our theorems, we write (2.1) as a system
du1

dy
= u2,

du2

dy
= A1u1 − f̃(u1).

(2.14)

Here, for any fixed (s, b), f̃(u)(x) = f(x, u(x); s, b) is the Nemytskii operator associated to
f , and A1 is the Schrödinger operator −∆− a1(x); they are considered on suitable Hilbert
spaces. Under our hypotheses, the linear operator A(u1, u2) = (u2, A1u1) has n pairs of
complex conjugate eigenvalues on the imaginary axis, and the rest of it spectrum does not
intersect the strip {λ ∈ C : |Reλ| < γ}, where γ > 0. Applying a center manifold theorem,
we obtain a system of 2n ordinary differential equations (the “reduced equation”):{

ξ̇ = h1(ξ, η),

η̇ = h2(ξ, η),
(2.15)

whose solutions are in one-to-one correspondence with a class of solutions of (2.14). Our
goal is to find quasiperiodic solutions of the reduced equation near the origin (which is an
equilibrium of (2.14)).
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The second step is to write the reduced equation as a Hamiltonian system in R2n with
respect to a suitable symplectic form. The Darboux theorem then allows us to choose local
coordinates in which the system is Hamiltonian with respect to the standard symplectic
structure on R2n. It is well known by abstract results [47] that all this can be done; but
it is important for us to have the Hamiltonian of the transformed system in as explicit a
form as possible, at least up to the fourth-order terms in its Taylor expansion. We rely
here on known procedures to compute the expansion for the center manifold, from which
we obtain the expansion for the first symplectic form and, subsequently, for the Darboux
transformation.

In the third step, we write the Hamiltonian as the sum of an integrable Hamiltonian H0

and a perturbation H1, which is small in a class of finitely differentiable functions. This
is achieved by bringing the Hamiltonian to its Birkhoff normal form to a sufficiently high
order; the Birkhoff normal form provides the integrable part, thanks to the nonresonance
condition (NR). In the perturbation H1, we include terms of high order of vanishing in
(ξ, η). Again, it is important to have some understanding of the second and fourth order
terms in the expansion of H0 (the third order terms all vanish in the normal form), and,
specifically, how the functions a1, a2, a3 from the original PDE enter into these terms.

The final step consists in verifying that the integrable part H0 satisfies the hypotheses
of a suitable KAM-type theorem (we use a theorem by Pöschel [56]). Having computed the
expansion of the Hamiltonian carefully when going through the above transformations, we
can easily translate a key nondegeneracy condition from the KAM theorem to a condition on
the functions a1, a2, a3. In the proof of Theorem 2.2, where one of the parameters is small,
the nondegeneracy condition follows from our hypothesis (A2). In the proof of Theorem
2.4, we verify that the nondegeneracy condition is satisfied for an open and dense set of
functions a3. The KAM theorem yields quasiperiodic solutions to the reduced equation
(2.15), and these correspond to y-quasiperiodic solutions of the original equation (2.1).

3 The center manifold reduction

In this section, we first state an abstract center manifold theorem, based on the exposition
in [34, 69] (see also [20, 47]). Then we write equation (2.1) in a form fitting the abstract
setting, so that the hypotheses of the center manifold theorem can be verified.

3.1 An abstract center manifold theorem

Let X and Z be Hilbert spaces such that Z ↪→ X (continuous imbedding). Consider the
following abstract equation with a parameter τ :

du

dt
= Au+R(u; τ), (t ∈ I). (3.1)

Here A ∈ L (Z,X), R : Z × Rd → Z, and I ⊂ R is an interval. We are primarily
interested in the case I = R, and we consider classical solutions of (3.1), that is, functions
u ∈ C 1(I, X)∩C (I, Z) satisfying (3.1). At this point, the dimension d ≥ 0 of the parameter
space Rd is arbitrary (d = 0 corresponds to the equation with no parameters), but in our
specific problem we will take τ = (s, b) ∈ R2. We also fix an open and bounded set P ⊂ Rd
and make the following assumptions on R:
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(H1) There is a neighborhood V of 0 ∈ Z such that R ∈ C k(V × Rd, Z) for some k ≥ 2,
and

R(0; τ) = 0, DuR(0; τ) = 0 (τ ∈P). (3.2)

In the following hypotheses concerning the spectral properties of the operator A, we view
it as an unbounded operator in X with domain D(A) = Z ⊂ X. While we assume that Z
and X are real spaces, for the spectral properties we consider, as usual, the complexifications
of Z, X, and A.

(H2) σ(A) = σc ∪ σh, where σh ⊂ {z ∈ C : |Re z| > γ} for some γ > 0 and σc consists of
finitely many purely imaginary eigenvalues with finite algebraic multiplicities.

Hypothesis (H2) implies that the resolvent set of A is nonempty; moreover, A is a closed
operator whose graph norm is equivalent to the norm of Z. To the decomposition σ(A) =
σc ∪ σh, there corresponds the spectral projection Pc ∈ L (X), characterized uniquely by
the properties that it commutes with A and that its range Xc := PcX is spanned by the
set of all generalized eigenvectors of A corresponding to the eigenvalues in σc (see [37]).
Clearly, Xc ⊂ Z. Letting Ph := 1− Pc, we note further that Pc and Ph restrict to bounded
operators on Z. In particular, PhZ is a closed subspace of Z. When needed, we consider
PhZ as a Banach space with the norm induced from Z.

The third hypothesis concerns the resolvent of A:

(H3) There exist ω̂0 > 0 and c > 0 such that for all ω̂ ∈ R \ (−ω̂0, ω̂0) we have:

(a) iω̂ is in the resolvent set of A.

(b) ‖(iω̂ −A)−1‖L (X) ≤
c

|ω̂|
.

Theorem 3.1. Assume that hypotheses (H1)–(H3) are satisfied. Then there exist a map
σ ∈ C k(Xc × P̄, PhZ) and a neighborhood N of 0 in Z such that

σ(0; τ) = 0, Duσ(0; τ) = 0 (τ ∈P) (3.3)

and for each τ ∈ P̄ the manifold

Wc(τ) = {u0 + σ(u0; τ) : u0 ∈ Xc} ⊂ Z

has the following properties:

(a) If u(t) is a solution of (3.1) on I = R and u(t) ∈ N for all t ∈ R, then u(t) ∈Wc(τ)
for all t ∈ R; that is, Wc(τ) contains the orbit of each solution of (3.1) which stays
in N for all t ∈ R.

(b) If z : R→ Xc is a solution of the equation

dz

dt
= A

∣∣
Xc
z + PcR(z + σ(z; τ); τ) (3.4)

on some interval I, and u(t) := z(t) + σ(z(t); τ) ∈ N for all t ∈ I, then u : I → Z
is a solution of (3.1) on I.
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Moreover, σ satisfies the following relations:

(i) σ(·; τ) ≡ 0 whenever τ ∈P is such that R(·; τ) ≡ 0;

(ii) if 2 ≤ ` ≤ k− 1 is an integer, then σ(u; τ) = O(‖u‖`+1) as u→ 0 whenever τ ∈P is
such that R(u; τ) = O(‖u‖`+1) as u→ 0.

Remark 3.2. Since ` ≤ k − 1, the notation σ(u; τ) = O(‖u‖`+1) as u → 0 in (ii) simply
means that the derivatives of σ(·; τ) up to order ` vanish at u = 0. If this is true for
all τ ∈ P̄, then, in view of compactness of P̄, we have σ(u; τ) = O(‖u‖`+1), as u → 0,
uniformly for τ ∈ P̄, simply because the derivative of order `+ 1 is bounded uniformly for
u a neighborhood of 0 ∈ Xc and τ ∈ P̄. This simple observation will be used below for
other sufficiently smooth functions depending on parameters.

With the exception of statements (i), (ii), the proof of the theorem can be found in [34,
69], although a comment on the parameter dependence is necessary here. In our formulation
the manifold Wc(τ) is defined for all parameters τ ∈ P̄. It is more common to just
take τ in a small neighborhood of some point τ0 (such a local-parameter version of the
theorem follows from a version without parameters, cp. [34, Section 2.3.1], for example).
If the center manifold were unique—which is not the case in general—then, due to (3.2)
and the compactness of P̄, the global-parameter version would be a consequence of the
local-parameter version. Nonetheless, such a compactness argument can be made if we
recall how the center manifold theorem is proved, that is, how the function σ is found.
This is done by first modifying the nonlinearity outside a small neighborhood N 3 0
using a suitable cutoff function, so that the new nonlinearity is globally Lipschitz in u
with a small Lipschitz constant. For the modified nonlinearity, one finds a unique global
center manifold, which then serves as local center manifold for the original equation in the
sense that statements (a) and (b) are satisfied. Our point is that, under hypothesis (H1),
the modification of the nonlinearity can be done once—with one cut-off function—for all
parameters in a neighborhood of the compact set P̄. One then gets a function σ with the
stated regularity properties and a fixed neighborhood N such that (3.3) and statements
(a), (b) hold.

The uniqueness of the global center manifold for the modified nonlinearity implies that
statement (i) holds: in fact, the center space Xc itself is the center manifold whenever the
modified nonlinearity vanishes identically, which is the case when R(·; τ) vanishes identically.

Statement (ii) follows from a recursive computation of the Taylor expansion of σ up
to order k (although there is nonuniqueness of σ stemming from the choice of the cutoff
function, the Taylor expansion is uniquely determined). The procedure is described in [35,
Section 6] and [47, Section 2] and it goes as follows. The starting point is the following
identity for σ:

Duσ(u; τ)[A
∣∣
Xc
u+ PcR(u+ σ(u; τ); τ)] = A

∣∣
Xh
σ(u; τ) + PhR(u+ σ(u; τ); τ) (3.5)

(cp. equation (2.10) in [47]). Now expand σ as

σ(u; τ) = σ2(u; τ) + · · ·+ σ`(u; τ) + σ′(u; τ),

where σj is a homogeneous PhZ-valued polynomial in u of degree j (with τ -dependent
coefficients) and ‖σ′(u; τ)‖Z = O(‖u‖`+1) as u → 0, uniformly for τ ∈ P̄. Substituting
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in (3.5) and equating terms of the same order one finds an equation for σj(·; τ), for each
τ ∈ P̄:

Duσ
j(u; τ)A

∣∣
Xc
u−A

∣∣
Xh
σj(u; τ) = rj(u; τ), (3.6)

where rj(·; τ) is determined by the Taylor expansion of R(·; τ) at 0 of order j and the terms
σ2(·; τ), . . . , σj−1(·; τ) (if j = 2, r2 is determined by PhD

2
uR(0; τ) alone). This equation

determines the polynomial σj(·; τ) uniquely (see [35, 47] for explicit forms of the solution).
An induction argument then allows one to conclude that R(u; τ) = O(‖u‖`+1) as u → 0
implies σ2(·; τ) = · · · = σ`(·; τ) = 0, which gives the conclusion in (ii).

In the sequel, the function σ is called the reduction function, Xc the center space, Wc

the center manifold, and equation (3.4) is the reduced equation.
For us, the most important conclusion of Theorem 3.1 is statement (b): if we can find

a “small” solution of the reduced equation (3.4) (that is, ‖z(t)‖Z is sufficiently small for all
t), then we have a solution of the original equation via the reduction function. Our goal is
to find quasiperiodic solutions this way. Note also that the reduced equation is an ordinary
differential equation: the space Xc is finite-dimensional due to hypothesis (H2).

3.2 Center manifold for equation (2.1)

We now verify that (2.1) can be rewritten as a system of the form (3.1), with operators A
and R, and spaces X and Z chosen in such a way that hypotheses (H1)–(H3) hold with
k = K + 1, K as in (2.4) if condition (A1), (S1), and (S2) are satisfied.

Fixing an integer m > N/2, as in (2.4), we set X = Hm+1(RN ) × Hm(RN ), V =
Z = Hm+2(RN ) × Hm+1(RN ). Note that the relation m > N/2 implies that Hm(RN ) is
continuously imbedded in a space of bounded Hölder continuous functions on RN .

Further, we fix any finite ρ0 > 0 and set P := (−ρ0, ρ0)2 ⊂ R2.
Consider the Hm(RN )-realization of the Schrödinger operator −∆− a1(x), that is, the

operator u 7→ −∆u − a1u defined on Hm+2(RN ). We will view it, as appropriate for the
context, either as a bounded operator in L (Hm+2(RN ), Hm(RN )) (which is justified when
a ∈ Cm

b (RN )) or as an unbounded operator on Hm(RN ) with domain Hm+2(RN ). Without
fearing confusion, we use the same symbol A1 as in Section 2.1 for this operator, noting
that, by elliptic regularity estimates, the spectrum, the eigenvalues and their multiplicity,
as well as the eigenfunctions do not change if instead of the L2(RN )-realization we take the
Hm(RN )-realization.

The abstract form of (2.1) is given by
du1

dy
= u2,

du2

dy
= A1u1 − f̃(u1; s, b),

(3.7)

where A1 is the Hm-realization of −∆ − a1(x), as above, and f̃ : Hm+2(RN ) × R2 →
Hm+1(RN ) is the Nemytskii operator of f , that is, f̃(u; s, b)(x) = f(x, u(x); s, b). In Ap-
pendix A.1, we verify that this operator is well defined.
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System (3.7) can be written in the form (3.1) by defining the operator A on X, with
domain D(A) = Z, and R : Z × R2 → Z as

A(u1, u2) = (u2, A1u1)T ,

R(u1, u2; s, b) = (0, f̃(u1; s, b))T .
(3.8)

The smoothness of the operator R is inherited from the smoothness of f̃ , which is shown in
Appendix A.1 (see Theorem A.1 and Lemma A.3). More precisely, if f satisfies (S2), then
the map f̃ : Hm+2(RN )× R2 → Hm+1(RN ) is of class CK+1 and so

R ∈ CK+1(V × R2, Z). (3.9)

In addition, relation (2.2) implies that R(0; s, b) = 0, DuR(0; s, b) = 0 for all (s, b) ∈ R2.
In order to find the spectrum of A, viewed as an unbounded operator on X, consider

the problem

A

(
v1

v2

)
− λ

(
v1

v2

)
=

(
g1

g2

)
, (3.10)

where (g1, g2) ∈ X. Equivalently, (3.10) reads

v2 − λv1 = g1,

−∆v1 − a1(x)v1 − λv2 = g2,

and eliminating v2 we obtain

−∆v1 − a1(x)v1 − λ2v1 = g2 + λg1, (3.11)

where g2 + λg1 ∈ Hm(RN ). From (3.11) we deduce that

σ(A) = {±
√
λ : λ ∈ σ(A1)}.

We know that, by (A1), σ(A1) contains exactly n negative eigenvalues µj , j = 1, . . . , n and
the rest of the spectrum is contained in (γ2,∞), for some γ > 0 (see Remark 2.1(i)). We
conclude that the spectrum of A contains 2n (purely) imaginary eigenvalues ±i

√
|µj |, with

simple multiplicities, and the rest of the spectrum is contained in {λ ∈ C : |Reλ| > γ}. So
we can write

σ(A) = σc ∪ σh,

with σc = {±i
√
|µj | : j = 1, . . . , n} and σh = σ(A) \ σc. The bound on the resolvent of A

(hypothesis (H3)(b)) is verified in Appendix A.2. We have thus verified all the hypotheses
of Theorem 3.1.

Hence, Theorem 3.1 with k = K + 1 applies in our problem. Moreover, fixing s = 0 and
applying statement (ii) (with just one parameter b), we obtain that, as u→ 0,

σ(u; 0, b) = O(‖u‖3) (b ∈ (−ρ0, ρ0)). (3.12)

We now write the reduced equation in suitable coordinates. Denote

ωj :=
√
|µj |, j = 1, . . . , n.
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The eigenfunction of A associated to ±iωj is, up to a constant multiple, (ϕj ,±iωjϕj)T .
(As in Section 2.1, ϕ1, . . . , ϕn are the eigenfunctions of A1 corresponding to the eigenvalues
µ1, . . . , µn, respectively, normalized in the L2-norm). Taking real and imaginary part, we
obtain the center space:

Xc = {(g, g̃)T : g, g̃ ∈ span{ϕ1, . . . , ϕn}}.

The spectral projection Pc : X → Xc corresponding to the imaginary eigenvalues of A is
given by

Pc

(
v1

v2

)
=

(
Πv1

Πv2

)
, (3.13)

where Π is the orthogonal projection of L2(RN ) onto span{ϕ1, . . . , ϕn}. Indeed, Π (or,
more precisely, its restriction to Hm(RN )) is the spectral projection of A1 associated with
the spectral set {µ1, . . . , µn}. Using this, one shows easily that Pc, as defined in (3.13),
commutes with A. It is obviously a projection: P 2

c = Pc. Finally, its range is clearly the
space Xc, thus Pc is the spectral projection, as claimed.

Setting Xh = (1− Pc)X, we have Hm+1 ×Hm = Xc ⊕Xh and, additionally, the spaces
Xc and Xh are orthogonal with respect to the (L2(RN ))2-inner product.

For j = 1, . . . , n, let ψj = (ϕj , 0)T , ζj = (0, ϕj)
T , so

B = {ψ1, . . . , ψn, ζ1, . . . , ζn}

is a basis of Xc. If

ξ = (ξ1, . . . , ξn) ∈ Rn,
η = (η1, . . . , ηn) ∈ Rn,
ψ := (ψ1, . . . , ψn) : RN → R2n,

ζ := (ζ1, . . . , ζn) : RN → R2n,

we can write the center space as

Xc = {ξ · ψ + η · ζ : ξ, η ∈ Rn},

where ξ · ψ = ξ1ψ1 + · · ·+ ξnψn, and similarly for η · ζ.
We use (ξ, η) ∈ R2n as coordinates on the center manifold. Let σ̂ : Xc × P̄ → PhZ

be the reduction function, as in Theorem 3.1. If (g, g̃) ∈ Xc, then there exists a unique
(ξ, η) ∈ R2n such that

(g, g̃) = ξ · ψ + η · ζ,

so
σ̂(g, g̃; s, b) = σ̂(ξ · ψ + η · ζ; s, b).

Thus, we can define σ : R2n × P̄ → PhZ by

σ(ξ, η; s, b) = σ̂(ξ · ψ + η · ζ; s, b). (3.14)

Defining further a function Λ : R2n × P̄ → PhZ as

Λ(ξ, η; s, b) = ξ · ψ + η · ζ + σ(ξ, η; s, b), (3.15)
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the center manifold can be written as

Wc(s, b) = {Λ(ξ, η; s, b) : ξ, η ∈ Rn}.

We next find the matrix of A
∣∣
Xc

with respect to the basis B. Denoting ϕ := (ϕ1, . . . , ϕn),

for any (ξ, η) ∈ R2n we have

A(ξ · ψ + η · ζ) = A

(
ξ · ϕ
η · ϕ

)
=

(
η · ϕ

A1(ξ · ϕ)

)
=

(
η · ϕ

(M0ξ) · ϕ

)
= η · ψ + (M0ξ) · ζ,

where M0 = diag(µ1, . . . , µn). Therefore, setting

MA =

[
0 1
M0 0

]
,

we find

A(ξ · ψ + η · ζ) = MA

(
ξT

ηT

)
·
(
ψT

ζT

)
.

To write the reduced equation (3.4) in the coordinates (ξ, η), we use y for the time
variable and view ξ, η as functions of y: (3.4) becomes

d

dy
(ξ · ψ + η · ζ) = MA

(
ξT

ηT

)
·
(
ψT

ζT

)
+ Pc

(
0

f̃(Λ(ξ, η; s, b); s, b)

)
.

Equivalently, this equation can be written as{
ξ̇ = h1(ξ, η; s, b),

η̇ = h2(ξ, η; s, b),
(3.16)

where ξ̇ = dξ/dy, η̇ = dη/dy, and

h(ξ, η; s, b) =

(
h1(ξ, η; s, b)
h2(ξ, η; s, b)

)
= MA

(
ξT

ηT

)
+

{(
0

Πf̃(Λ(ξ, η; s, b)); s, b)

)}
B

,

where Π is as in (3.13) and {·}B denotes the coordinates of the argument with respect to
the basis B.

We remark that system (3.7) is reversible (specifically, if (u1(x, y), u2(x, y)) a solution,
so is (u1(x,−y),−u2(x,−y))). As a consequence, one can show a reversibility property of
the reduced equation [34, 47], but we do not employ this additional structure.

The specific form of the nonlinearity, see (2.2), implies the following properties of the
reduction function σ.

Lemma 3.3. One has

σ(ξ, η; s, b) = sbσ2(ξ, η) + σ̃(ξ, η; s, b), (3.17)

where σ2 is a PhZ-valued homogeneous polynomial in (ξ, η) of degree 2 and σ̃ is a CK+1

function on R2n × P̄ of order O(|(ξ, η)|3) as (ξ, η)→ (0, 0), uniformly for (s, b) ∈ P̄.
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Proof. Recall that σ(ξ, η; s, b) = σ̂(ξ · ψ + η · ζ; s, b) (cp. (3.14)), and the quadratic term in
the expansion of σ̂(·; s, b) is determined uniquely from (3.6) with j = 2 (take σ̂ in place of
σ there). For j = 2, the right hand side of (3.6) is given by PhD

2
uR(0; τ)[u, u]/2. In our

specific case,
D2
uR(0; τ)[u, u]/2 = (0, bsa2u

2
1))T (u = (u1, u2) ∈ Z)

(cp. (3.8), (2.2)). Using this, the uniqueness of the solution of (3.6), and the fact that the
left-hand side of (3.6) is linear in σ2, we obtain (3.17), with σ̃(ξ, η; s, b) = O(|(ξ, η)|3) as
(ξ, η) → (0, 0) for each (s, b). Relation (3.17) implies that σ̃ is of class CK+1, which also
gives the uniformity in (s, b) as stated in the lemma (cp. Remark 3.2).

Remark. For the sake of notational simplicity, in the sequel, we sometimes omit the ar-
gument (s, b) from R, σ, Λ, Wc, h, and other similar functions when there is no need to
emphasize the dependence on the parameters.

The following simple lemma will be useful in Section 4:

Lemma 3.4. Let DΛ(ξ, η) denote the derivative of Λ with respect to (ξ, η). Then, in a
neighborhood of the origin,

DΛ(ξ, η)h(ξ, η) = AΛ(ξ, η) +R(Λ(ξ, η)).

Proof. Fix (ξ0, η0) close to the origin, and let (ξ(y), η(y)) be the solution of (3.16) with
(ξ(0), η(0)) = (ξ0, η0). Substituting Λ(ξ, η) in (3.1), and using Theorem 3.1(b), we obtain

AΛ(ξ0, η0) +R(Λ(ξ0, η0)) =
d

dy
Λ(ξ, η)

∣∣∣∣
y=0

= DΛ(ξ, η)(ξ̇, η̇)
∣∣
y=0

= DΛ(ξ0, η0)(h1(ξ0, η0), h2(ξ0, η0))

= DΛ(ξ0, η0)h(ξ0, η0),

where we used (3.16) to derive the second to last equality.

4 The reduced Hamiltonian

In this section, we write the reduced equation (3.16) as a Hamiltonian system with respect
to a certain symplectic structure on R2n. Using the Darboux theorem, we then transform
it locally to a Hamiltonian system with respect to the standard symplectic form. Finally,
employing the Birkhoff normal form, we write the Hamiltonian as the sum of of an integrable
Hamiltonian and a small perturbation. We compute the expansion of the integrable part
explicitly up to order four; this will later allow us to verify a nondegeneracy condition from
a KAM theorem.

Throughout this section, we assume the standing hypotheses (A1), (S1), (NR), and (S2)
to be satisfied. We use the notation introduced in Section 3. In particular, we use the
coordinates (ξ, η) as in Subsection 3.2 and view the reduction function σ as a function of
(ξ, η) (and the parameters (s, b)) with values in PhZ, Z = Hm+2(RN ) × Hm+1(RN ), see
(3.14).
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4.1 The Hamiltonian and the symplectic structure

Define

F (x, u; s, b) =

∫ u

0
f(x, ϑ; s, b) dϑ.

For (u, v) ∈ Z, and any fixed (s, b) ∈ P̄, let

H(u, v) =

∫
RN

−1

2
|∇u(x)|2 +

1

2
a1(x)u2(x) + F (x, u(x); s, b) +

1

2
v2(x) dx. (4.1)

An integration by parts shows that

DH(u, v)(ū, v̄) =

∫
RN

(
∆u(x) + a1(x)u(x) + f(x, u(x); s, b)

)
ū(x) dx+

∫
RN

v(x)v̄(x) dx.

In other words, (∆u + a1u + f(·, u(·); s, b), v) is the gradient, ∇H(u, v), of H(u, v) with
respect to the (L2(RN ))2 inner product.

Denoting by JL2 the operator on (L2(RN ))2 given by

JL2 =

[
0 IL2

−IL2 0

]
,

IL2 being the identity operator on L2(RN ), we can write equation (3.7) as

d

dy

(
u1

u2

)
= JL2∇H(u1, u2). (4.2)

Written this way, (3.7) fits the context of abstract Hamiltonian systems considered in
[47]. General results from [47] can then be used to show that the reduction of the equation to
the center manifold is the Hamiltonian system with respect to the Hamiltonian H restricted
to the center manifold and with respect to the symplectic form which is also the restriction
of a symplectic form on the space Z to the center manifold. Lemmas 4.1 and 4.2 below
are essentially an interpretation of these remarks in the coordinates (ξ, η), and they can
certainly be derived from [47]. But it is simple enough to prove them instead by direct
explicit computations, and we will do it that way. These explicit computations will also
help us find the Taylor expansion of the Hamiltonian up to order four.

Let Λ be as in (3.15). Recalling that for (ξ, η) ∈ R2n, Λ(ξ, η) and σ(ξ, η) are ele-
ments of the product space Z = Hm+2(RN ) × Hm+1(RN ), we write them as Λ(ξ, η) =
(Λ1(ξ, η),Λ2(ξ, η)) and σ(ξ, η) = (σ1(ξ, η), σ2(ξ, η)). Define

Φ(ξ, η) := H(Λ(ξ, η)) = H(u, v)

u=Λ1(ξ,η), v=Λ2(ξ,η)

((ξ, η) ∈ R2n). (4.3)

The parameters (s, b) ∈ P̄ will not be specifically included the notation until they start
playing a role again. For now they can be considered fixed.

In the next two lemmas, we show that the reduced equation (3.16) is the Hamilto-
nian system corresponding to the Hamiltonian Φ and the symplectic form ω defined on a
neighborhood of the origin of R2n by

ω(ξ, η)
(
(t1, t2), (t̄1, t̄2)

)
= t1 · t̄2 − t2 · t̄1 +

∫
RN

Dσ1(ξ, η)(t1, t2)Dσ2(ξ, η)(t̄1, t̄2) dx

−
∫
RN

Dσ2(ξ, η)(t1, t2)Dσ1(ξ, η)(t̄1, t̄2) dx
(
(ξ, η), (t1, t2), (t̄1, t̄2) ∈ R2n

)
, (4.4)
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where D denotes the derivative with respect to (ξ, η). Note that for all (ξ, η), (t1, t2) ∈ R2n

the values σj(ξ, η) and Dσj(ξ, η)(t1, t2) are elements of Hm+1(RN ), hence they are functions
of x ∈ RN . In the integrals above, and similar integrals below, we suppress the argument x
for the sake of notational simplicity.

For (ξ, η) ∈ R2n, the (ξ, η)-dependent matrix of the bilinear map ω(ξ, η) defined by (4.4)
is the block matrix:

S(ξ, η) :=

[
0 I
−I 0

]
+

∫
RN

[
∇ξσ1(ξ, η)

(
∇ξσ2(ξ, η)

)T ∇ξσ1(ξ, η)
(
∇ησ2(ξ, η)

)T
∇ησ1(ξ, η)

(
∇ξσ2(ξ, η)

)T ∇ησ1(ξ, η)
(
∇ησ2(ξ, η)

)T
]
dx

−
∫
RN

[
∇ξσ2(ξ, η)

(
∇ξσ1(ξ, η)

)T ∇ξσ2(ξ, η)
(
∇ησ1(ξ, η)

)T
∇ησ2(ξ, η)

(
∇ξσ1(ξ, η)

)T ∇ησ2(ξ, η)
(
∇ησ1(ξ, η)

)T
]
dx,

(4.5)

where I is the n × n identity matrix and ∇ξ, ∇η stand for the usual gradients written as
columns (so the blocks are n× n matrices).

Lemma 4.1. Let h = (h1, h2) be as in (3.16) and ω be as in (4.4). For all (ξ, η) in a
neighborhood of (0, 0) and (ξ̄, η̄) ∈ R2n we have

DΦ(ξ, η)(ξ̄, η̄) = ω(ξ, η)
(
h(ξ, η), (ξ̄, η̄)

)
. (4.6)

Proof. Let 〈·, ·〉 denote the inner product in (L2(RN ))2. Differentiating Φ with respect to
(ξ, η), we obtain, by (3.8), (4.2), and Lemma 3.4,

DΦ(ξ, η)(ξ̄, η̄) = DH(Λ(ξ, η))DΛ(ξ, η)(ξ̄, η̄)

=
〈
JL2

(
AΛ(ξ, η) +R(Λ(ξ, η))

)
, DΛ(ξ, η)(ξ̄, η̄)

〉
=
〈
JL2DΛ(ξ, η)h(ξ, η), DΛ(ξ, η)(ξ̄, η̄)

〉
.

Here, writing ϕ = (ϕ1, . . . , ϕn) and (a, b) ∈ R2n,

DΛ(ξ, η)(a, b) =

(
DΛ1(ξ, η)(a, b)
DΛ2(ξ, η)(a, b)

)
=

(
a · ϕ+Dσ1(ξ, η)(a, b)
b · ϕ+Dσ2(ξ, η)(a, b)

)
;

thus,

DΦ(ξ, η)(ξ̄, η̄) =

=

∫
RN

(
− h2(ξ, η) · ϕ−Dσ2(ξ, η)(h1(ξ, η), h2(ξ, η))

)(
ξ̄ · ϕ+Dσ1(ξ, η)(ξ̄, η̄)

)
dx

+

∫
RN

(
h1(ξ, η) · ϕ+Dσ1(ξ, η)(h1(ξ, η), h2(ξ, η))

)(
η̄ · ϕ+Dσ2(ξ, η)(ξ̄, η̄)

)
dx.

Since the eigenfunctions ϕ1, . . . , ϕn are L2(RN )-orthonormal,∫
RN

(−h2(ξ, η) · ϕ)(ξ̄ · ϕ)dx = −h2(ξ, η) · ξ̄, and

∫
RN

(h1(ξ, η) · ϕ)(η̄ · ϕ)dx = h1(ξ, η) · η̄.

Now, σ takes values in Xh, which is (L2(RN ))2-orthogonal to Xc (cp. (3.13)). It follows
that ∫

RN
(−h2(ξ, η) · ϕ)Dσ1(ξ, η)(ξ̄, η̄) dx = 0,
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and similarly for the other integrals involving the product of a linear combination of the
functions ϕj with Dσ1 or Dσ2. Thus,

DΦ(ξ, η)(ξ̄, η̄) = h1(ξ, η) · η̄ − h2(ξ, η) · ξ̄

+

∫
RN

Dσ1(ξ, η)(h1(ξ, η), h2(ξ, η))Dσ2(ξ, η)(ξ̄, η̄) dx

−
∫
RN

Dσ2(ξ, η)(h1(ξ, η), h2(ξ, η))Dσ1(ξ, η)(ξ̄, η̄) dx.

Therefore, with ω as in (4.4), we have

DΦ(ξ, η)(ξ̄, η̄) = ω(ξ, η)
(
h(ξ, η), (ξ̄, η̄)

)
.

Below, α denotes the standard symplectic form on R2n, that is, the constant 2-form
given by

α(ξ, η)
(
(t1, t2), (t̄1, t̄2)

)
:= (t1, t2)J(t̄1, t̄2)T (ξ, η, t1, t2, t̄1, t̄2 ∈ Rn),

with the matrix

J =

[
0 I
−I 0

]
,

where I is the identity matrix in Rn.

Lemma 4.2. Let ω be the 2-form defined in (4.4). There is a neighborhood of (0, 0) ∈ R2n

independent of the parameters (s, b) ∈ P̄ on which ω is a symplectic form of class CK .

Proof. Since σ = (σ1, σ2) is of class CK+1 as a Z-valued map (hence also as a (L2(RN ))2-
valued map), the matrix-valued function (ξ, η)→ S(ξ, η), with S(ξ, η) as in(4.5), is of class
CK , that is, the form ω is of class CK .

Since σ(ξ, η) = O(|(ξ, η)|2) as (ξ, η)→ (0, 0) (uniformly for (s, b) ∈ P̄), (ω − α)(ξ, η) =
O(|(ξ, η)|2) as well. This implies that there exists a neighborhood of (0, 0) ∈ R2n inde-
pendent of the parameters (s, b) ∈ P̄ on which ω is nondegenerate. A straightforward
computation, which we omit, shows that dω = 0, so ω is a closed form. Obviously, the
matrix S(ξ, η) is skew-symmetric. Thus ω is a symplectic form in the aforementioned
neighborhood of (0, 0) ∈ R2n for all (s, b) ∈ P̄.

Remark 4.3. When the parameters are taken into account, σ = (σ1, σ2) is of class CK+1

in (ξ, η) ∈ R2n and (s, b) ∈ P̄, therefore the matrix-valued function (4.5) is of class CK in
(ξ, η) ∈ R2n and (s, b) ∈ P̄.

We now specifically consider the dependence of ω on (s, b) ∈ P̄; we write ω(ξ, η; s, b)
for the bilinear map defined in (4.4), stressing its dependence on (s, b) ∈ P̄ via σ. The
following result is a direct consequence of Lemma 3.3.

Corollary 4.4. One has

ω(ξ, η; s, b) = α(ξ, η) + s2b2ω2(ξ, η) + ω̃(ξ, η; s, b), (4.7)

where ω2 and ω̃(·, ·; s, b) are 2-forms on a neighborhood of (0, 0), ω2(ξ, η) is a homogeneous
polynomial in (ξ, η) of degree 2 (taking values in the space of skew-symmetric bilinear maps),
and ω̃(ξ, η; s, b) is of order O(|(ξ, η)|3) as (ξ, η)→ (0, 0), uniformly for (s, b) ∈ P̄.
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Using Lemma 4.1, we can write equation (3.16) as

d

dy

(
ξ
η

)
= XΦ(ξ, η), (4.8)

where XΦ is the Hamiltonian vector field associated to Φ on a neighborhood of 0 ∈ R2n

endowed with the symplectic form ω.

4.2 Transforming to the standard symplectic form

We recall the Darboux theorem:

Theorem 4.5. Let ω be a C k-symplectic form on a ball around 0 ∈ R2n and α be the
standard symplectic form on R2n. Then there exists a near-identity C k-transformation φ
such that

φ∗ω = α.

Here φ∗ω, the pull-back of ω, is the form obtained from ω by the change of coordinates
(ξ, η) = φ(ξ′, η′). The effect of the change of coordinates from the Darboux theorem on
Hamiltonian systems is well known: any Hamiltonian system with respect to the symplectic
form ω transforms to a Hamiltonian system with respect to the standard symplectic form
α (and the transformed Hamiltonian).

We want to apply this change of coordinates to the symplectic form in (4.4). It will be
useful to choose the diffeomorphism φ—which is not unique—so that it satisfies additional
estimates, as stated in the following lemma.

Lemma 4.6. Let ω be the 2-form defined in (4.4). Then there exist a neighborhood V of
(0, 0) ∈ R2n and a CK map φ : V ×R2 → R2n such that φ∗(·, ·; s, b)ω(·, ·; s, b) = α, and one
has

φ(ξ, η; s, b) = (ξ, η) + s2b2φ3(ξ, η) + φ̃(ξ, η; s, b), (4.9)

where φ3 : R2n → R2n is a homogeneous polynomial of degree 3 and φ̃ is (a map of class
CK which is) of order O(|(ξ, η)|4) as (ξ, η)→ (0, 0), uniformly for (s, b) ∈ P̄.

Proof. The statement holds if the map φ is constructed in a suitable way. We recall briefly
how the Lie transform method of the proof of the Darboux theorem goes (see, e.g., [1, 36]).

For t ∈ [0, 1], let
ωt = α+ t(ω − α),

so ω0 = α and ω1 = ω. For each (s, b) ∈ P̄, we seek a family of diffeomorphisms φt

satisfying φ0 = Id (the identity map in R2n), and

(φt)∗ωt = α,

so φ = φ1 is the desired transformation. Such φt is found as the flow of a t-dependent vector
field Xt; namely, φt has the desired property if

ωt(Xt, ·) = −λ, (4.10)
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where λ is a 1-form of class CK on a neighborhood of (0, 0) ∈ R2n such that dλ = ω − α.
The existence of such a 1-form is guaranteed by the Poincaré lemma (because dω = 0), but,
again, because of nonuniqueness, some care is needed in selecting a “good” one. We claim
that λ can be chosen such that

λ(ξ, η; s, b) = s2b2λ3(ξ, η) + λ̃(ξ, η; s, b), (4.11)

where λ3 is a 1-form whose coefficients are homogeneous polynomials of degree 3 and
λ̃(ξ, η; s, b) = O(|(ξ, η)|4), as (ξ, η) → (0, 0), uniformly for (s, b) ∈ P̄. Indeed, this fol-
lows from Corollary 4.4 if one uses the Lie transform method in the proof of the Poincaré
lemma, which amounts to taking integrals with respect to (ξ, η) of the coefficients of the
2-form ω − α (see the proofs in [1, Theorem 6.4.14] or [60, Theorem 10.39]).

Now, ωt − α is of order O(|(ξ, η)|2) as (ξ, η)→ (0, 0) uniformly in (s, b) ∈ P̄, t ∈ [0, 1];
in particular, ωt is nondegenerate near (0, 0). Thus we can solve (4.10) for Xt uniquely; for
this, we just need to invert the (ξ, η)-dependent matrix of the bilinear map ωt and apply
it to the coefficients of the 1-form on the left. This yields the following form of the vector
field Xt:

Xt(ξ, η; s, b) = s2b2X3(ξ, η) + X̃t(ξ, η; s, b)

whereX3 is a homogeneous polynomial vector field of degree 3 and X̃t(ξ, η; s, b) = O(|(ξ, η)|4),
as (ξ, η) → (0, 0), uniformly for (s, b) ∈ P̄ and t ∈ [0, 1]. Moreover, X̃t and Xt inherit the
smoothness of α and ω: they are of class CK in (ξ, η) ≈ 0 and (s, b) ∈ P̄.

Finally, we take the flow φt of the vector field Xt. The vector field Xt vanishes at
(ξ, η) = (0, 0) together with its derivatives up to order 2. From this we obtain, first of all,
that near the origin (and for all (s, b) ∈ P̄) the flow is defined up to t = 1. Computing the
derivatives of φt with respect (ξ, η) by solving the corresponding ODEs we conclude that
φ = φ1 has the form as stated in Lemma 4.6.

Remark 4.7. Note that (3.6) implies that the term σ2 in (3.17) and, consequently, the
term ω2 in (4.7) are determined by the quadratic term a2u

2 of the nonlinearity f only –
both are independent of the higher order terms a3u

3 +u4f1(x, u; s, b). Examining the above
proof carefully, one can check that the term φ3 is determined only by ω2. This shows that
φ3 is determined by a2 and is independent of a3 and f1.

We now examine more closely the structure of the Hamiltonian Φ, first in the original
coordinates (ξ, η) introduced in Section 4.1, see (4.3), then in the Darboux coordinates from
Lemma 4.6. This is the content of the following two results. We write Φ(ξ, η; s, b) for the
Hamiltonian, accounting for its dependence of the parameters (s, b). Recall that a1, a2, a3

are the functions in (2.2) and ϕ = (ϕ1, . . . , ϕn), ϕj being the eigenfunctions of −∆− a1(x)
as in Section 2.1.

Lemma 4.8. There is a neighborhood V of (0, 0) ∈ R2n such that the Hamiltonian Φ defined
in (4.3) has the following property. For each (ξ, η) ∈ V and (s, b) ∈ P̄ one has

Φ(ξ, η; s, b) =
1

2

n∑
j=1

(−µjξ2
j + η2

j ) +
sb

3

∫
RN

a2(x)(ξ · ϕ(x))3 dx

+
b

4

∫
RN

a3(x)(ξ · ϕ(x))4 dx+ s2b2Φ′4(ξ, η) + Φ′′(ξ, η; s, b), (4.12)
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where Φ′4 is a homogeneous polynomial on R2n of degree 4 and Φ′′ is a CK-function on
V × P̄ such that Φ′′(ξ, η; s, b) = O(|(ξ, η)|5) as (ξ, η)→ (0, 0), uniformly for (s, b) ∈ P̄.

The regularity of Φ′′ is in fact one degree higher: it is of class CK+1; we take CK here
for consistency with the statement of Proposition 4.9 below, where a degree of regularity is
lost due to the Darboux transformation.

Proof of Lemma 4.8. Recalling (2.2), (4.1), and using an integration by parts, we write the
functional H(u, v) as

H(u, v) =
1

2

∫
RN

(
∆u(x) + a1(x)u(x)

)
u(x) dx+

1

2

∫
RN

v2(x) dx

+
sb

3

∫
RN

u3(x) dx+
b

3

∫
RN

u3(x) dx+G1(x, u; s, b), (4.13)

where

G1(x, u; s, b) =

∫ u

0
ϑ4f1(x, ϑ; s, b) dϑ = u5

∫ 1

0
%4f1(x, u%; s, b) d%.

According to (4.3), (3.15), to obtain Φ(ξ, η), we need to substitute

u = ξ · ϕ+ σ1(ξ, η; s, b), v = η · ϕ+ σ2(ξ, η; s, b) (4.14)

in (4.13). Clearly, by Lemma 3.3, after substituting for u, the last 3 terms of (4.13) give

sb

3

∫
RN

a2(x)(ξ · ϕ(x))3 dx+
b

4

∫
RN

a3(x)(ξ · ϕ(x))4 dx+ Φ′′(ξ, η; s, b),

where Φ′′ has the properties as stated in Lemma 4.8 (the function Φ′′, and later Φ′4, will be
modified in the course of this proof).

Next we substitute for u in the first integral in (4.13). Remembering that σ1 takes
values in the L2(RN )-orthogonal complement of span{ϕ1, . . . , ϕn} (cp. (3.13)) and that
both span{ϕ1, . . . , ϕn} and its orthogonal complement are invariant under the operator
A1 = −∆ − a1, we are left with the following integrals (omitting the argument x of the
integrands)

1

2

∫
RN

(
−A1(ξ · ϕ)

)(
ξ · ϕ

)
dx+

1

2

∫
RN

(
−A1σ1(ξ, η; s, b)

)
σ1(ξ, η; s, b) dx. (4.15)

The first of these integrals is equal to

−1

2

n∑
j=1

µjξ
2
j ,

due to the relations A1ϕj = µjϕj and the L2(RN )-orthonormality of {ϕ1, . . . , ϕn}. The
second integral in (4.15) is equal to s2b2Φ′4(ξ, η) + Φ′′(ξ, η; s, b) for some functions Φ′4, Φ′′ as
in Lemma 4.8(a). This follows from Lemma 3.3, noting also that σ being a Z-valued CK+1

function implies that A1σ1 is an Hm-valued function of class CK+1.
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Finally, substituting v = η · ϕ + σ2(ξ, η; s, b) in the second integral in (4.13) and using
the orthogonality again, we obtain the following integrals:

1

2

∫
RN

(
η · ϕ

)2
dx+

1

2

∫
RN

(
σ2(ξ, η; s, b)

)2
. (4.16)

A similar argument as above shows that the first of these terms is equal to

1

2

n∑
j=1

η2
j

and the second one is equal to s2b2Φ′4(ξ, η) + Φ′′(ξ, η; s, b) for some functions Φ′4, Φ′′ as in
Lemma 4.8.

Summing up all the terms obtained above and redefining Φ′4, Φ′′, we see that the con-
clusion of Lemma 4.8 holds.

The next proposition says that the structure of the Hamiltonian as given in Lemma 4.8
remains unchanged after the Darboux change of coordinates given by Lemma 4.6.

Proposition 4.9. Given (s, b) ∈ P̄, consider the change of coordinates (ξ, η) = φ(ξ′, η′; s, b),
where φ is as in Lemma 4.6, and let Φ(ξ′, η′; s, b) stand for the Hamiltonian Φ in the coordi-
nates (ξ′, η′) (this is really the function Φ(φ(ξ′, η′; s, b); s, b)). Then there is a neighborhood
V of (0, 0) ∈ R2n such that the conclusion of Lemma 4.8 remains valid with (ξ, η) replaced
by (ξ′, η′).

Proof. Substituting (ξ, η) = φ(ξ′, η′; s, b) in (4.12) and using Lemma 4.6, it is straightforward
to verify that the statement of Lemma 4.8 remains valid (with some new functions Φ′4, Φ′′)
when (ξ, η) is replaced by (ξ′, η′).

Remark 4.10. The proof of Lemma 4.8 (see in particular formulas (4.15), (4.16)) reveals
that the function Φ′4 in (4.12) is determined by the quadratic terms of

σ(·, ·; s, b) = (σ1(·, ·; s, b), σ2(·, ·; s, b)).

When applying the transformation (ξ, η) = φ(ξ′, η′; s, b) in (4.12) one gets further contri-
bution to the new function Φ′4 from the cubic terms of φ(·, ·; s, b) only. By Remark 4.7,
this means that Φ′4 is determined only by the coefficient a2 in the nonlinearity f (and is
independent of a3 and f1).

4.3 The normal form

We now consider the Hamiltonian Φ in the coordinates (ξ′, η′), as in Proposition 4.9. Ac-
cording to that proposition,

Φ(ξ′, η′; s, b) =
1

2

n∑
j=1

(−µj(ξ′j)2 + (η′j)
2) +

sb

3

∫
RN

a2(x)(ξ′ · ϕ(x))3 dx

+
b

4

∫
RN

a3(x)(ξ′ · ϕ(x))4 dx+ s2b2Φ′4(ξ′, η′) + Φ′′(ξ′, η′; s, b), (4.17)
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where Φ′4, Φ′′ are as in Lemma 4.8.
The reduced equation (3.16) written in the coordinates (ξ′, η′) is the Hamiltonian system

corresponding to Φ with respect to the standard symplectic form α. In this subsection, we
will use further changes of coordinates, all of which are canonical in the sense that they do
not alter the symplectic form α.

The main result of this subsection is the following proposition.

Proposition 4.11. Let kB be an integer with 2 ≤ kB ≤ K/2 − 1, where K is as in (2.4),
and let Φ = Φ(ξ′, η′; s, b) be as in (4.17) and Proposition 4.9. For each (s, b) ∈ P̄ there
is a smooth map φ̄ : V → R2n defined on a neighborhood V of (0, 0) ∈ R2n such that the
following statements are valid:

(a) φ̄ is a diffeomorphism onto its image, it is a canonical transformation, and

φ̄(ξ̄, η̄)− (ξ̄, η̄) = O(|(ξ̄, η̄)|3) as (ξ̄, η̄)→ (0, 0).

(b) Making the (canonical) change of coordinates

(ξ′, η′) = φ̄(ξ̄, η̄), (ξ̄, η̄) := (ξ̄1, . . . , ξ̄n, η̄1, . . . , η̄n), (4.18)

let Φ(ξ̄, η̄) stand for the transformed Hamiltonian (that is, the function Φ(φ̄(ξ̄, η̄); s, b)).
Then, setting Ij = (ξ̄2

j + η̄2
j )/2 and I = (I1, . . . , In), we have

Φ(ξ̄, η̄) = ω · I + Φ0(I) + Φ1(ξ̄, η̄), (4.19)

where Φ0 is a polynomial in I of degree at most kB, and Φ1 is of class CK and of
order O(|(ξ̄, η̄)|2kB+2) as (ξ̄, η̄)→ (0, 0).

(c) Φ0 is given by

Φ0(I) =
b

2
I ·MI +

s2b2

2
I · M̃I + P̂ (I), (4.20)

where P̂ (I) is a polynomial in I of degree at most kB with no constant, linear, or
quadratic terms, and M , M̃ are n×n matrices with entries independent of (s, b) (the
coefficients of P̂ (I) do depend on (s, b)). Moreover, the matrix M is given explicitly
as follows. Setting

Θ̂(i, j) =
1

4ωiωj

∫
RN

a3(x)ϕ2
i (x)ϕ2

j (x)dx,

the matrix M is given by

M = 3


Θ̂(1, 1) 2Θ̂(1, 2) . . . 2Θ̂(1, n)

2Θ̂(2, 1) Θ̂(2, 2) ffl
...

... ffl
. . . 2Θ̂(n− 1, n)

2Θ̂(n, 1) . . . 2Θ̂(n, n− 1) Θ̂(n, n)

 . (4.21)
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Remark 4.12. (i) The only specific information on the dependence of the transformed
Hamiltonian on the parameters s, b that will be needed below is obtained from (4.19), (4.20).
Just for the sake of completeness, we add at this point that the precise dependence on s,
b of the transformation φ̄—and thus of the transformed Hamiltonian—can be established
from the normal-form computations. Namely, the map φ = φ(ξ̄, η̄; s, b) is of class CK−2kB

on V × P̄, for some neighborhood V of (0, 0) ∈ R2n. Indeed, the transformation φ is the
composition of finitely many transformations – Lie transforms of homogeneous polynomial
vector fields of degrees ` = 3, 4, . . . The vector field of degree ` is determined from the so-
called homological equation (see equation (4.24) below), which is a linear nonhomogeneous
equation in the finite-dimensional space of homogeneous polynomial vector fields of degree
`. The matrix of this linear equation, in suitable coordinates (see (4.27) below), is diagonal
and its right-hand side is a homogeneous polynomial whose coefficients are at least of class
CK−2kB in (s, b). This implies that the corresponding transformation can be chosen of class
CK−2kB .

(ii) The matrix M̃ in (4.20) is determined by the function a2 and is independent of a3,
f1 (and s, b). We give an argument for this in Remark 4.14.

Proposition 4.11 shows that, after a canonical transformation, the Hamiltonian Φ is the
sum of a polynomial Hamiltonian depending only on I, and terms of high order. In our
application of a KAM theorem, the terms depending only on I will be taken as an integrable
analytic Hamiltonian, while the high order terms will be considered as a small perturbation.
Knowing explicitly the matrix M will allow us to verify a nondegeneracy condition for the
KAM theorem.

The proof of Proposition 4.11 consists in taking the Birkhoff normal form of the Hamil-
tonian Φ up to order |(ξ̄, η̄)|2kB+1 and computing its terms explicitly up to order |(ξ̄, η̄)|4.

We start by recalling a basic normal form theorem.

Theorem 4.13. Let k0 ≥ 4 and k ≥ k0 + 1 be integers, Ω ⊂ R2n be a domain containing
the origin, and H : Ω→ R be a C k map. Assume that H = H2 + P , where

H2(ξ, η) =
n∑
j=1

ωj
ξ2
j + η2

j

2
,

P is of order O(|(ξ, η)|3) as (ξ, η) → (0, 0), and ω = (ω1, . . . , ωn) is nonresonant up to
order k0. Then there exist two neighborhoods U and V of 0, and a smooth canonical
transformation ν : U → V mapping (ξ̄, η̄) ∈ U to (ξ, η) ∈ V such that ν(ξ̄, η̄)− (ξ̄, η̄) is of
order O(|(ξ̄, η̄)|2) as (ξ̄, η̄)→ (0, 0) and one has

H ◦ ν = H2 + Z +R,

where

(a) Z depends on (ξ̄, η̄) only via I = (I1, . . . , In), with Ij = (ξ̄2
j + η̄2

j )/2, and it is a
polynomial in I of degree at most [k0/2] ( [·] stands for the integer part).

(b) R is (of class C k and) of order O(|(ξ̄, η̄)|k0+1) as (ξ̄, η̄)→ (0, 0).
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Proofs of this theorem, including algorithms to find the normal form Z, can be found
in many texts on Hamiltonian systems (see [7, 31, 36], for example). The theorem tells
us that we can write our Hamiltonian as in (4.19), but to explicitly compute the terms of
order four (order 2 in I), we need to recall some steps from the proof, as found in the above
references.

If h and g are C 2 functions on a domain in R2n, their Poisson bracket {h, g} is defined
by

{h, g} :=
n∑
j=1

(
∂h

∂ξj

∂g

∂ηj
− ∂h

∂ηj

∂g

∂ξj

)
. (4.22)

In the proof of Theorem 4.13 one successively eliminates the nonresonant terms (as
defined below) in the expansion of H. The cubic terms are all nonresonant and they are
eliminated by a first transformation. This transformation alters terms of degree 4 and
higher, but does not change the quadratic terms. The next transformation eliminates the
nonresonant terms from the (altered) fourth-order terms, keeping the quadratic and cubic
terms intact and altering the terms of degree 5 and higher; and so on.

The transformations in this procedure are always found as the Lie transforms corre-
sponding to a polynomial Hamiltonian (which guarantees that they are canonical). The
key observation here is as follows. Let χ` be a homogeneous polynomial on R2n of degree
` ≥ 3 and let ν` be the time-1 map of the Hamiltonian flow with the Hamiltonian χ` (ν` is
defined in a neighborhood of the origin and it is a near identity transformation). Let now
H = H2 + H3 + · · · + H` + h.o.t., where H2 is as in Theorem 4.13, Hj is a homogeneous
polynomial of degree j, j = 1, . . . , `, and “h.o.t.” stands for terms of order greater than `.
Then

H ◦ ν` = H2 +H3 + · · ·+H` + {H2, χ`}+ h.o.t. (4.23)

Thus, if χ` can be chosen such that

{H2, χ`} = −H`, (4.24)

then the terms of degree ` can be completely eliminated. This is always possible, with a
uniquely determined χ`, if ` is odd. If ` is even, only certain terms of degree `, as specified
below, can be eliminated by a suitable (nonunique) choice of χ`.

In the first step of the above procedure, one takes the (unique) solution χ3 of

{H2, χ3} = −H3. (4.25)

The corresponding Lie transform ν3 eliminates the cubic terms and alters the quartic terms
as follows (see [7, 31, 36] for details):

H ◦ ν3 = H2 +H4 +
1

2
{{H2, χ3}, χ3}+ {H3, χ3}+ h.o.t.

= H2 +H4 +
1

2
{H3, χ3}+ h.o.t. (4.26)

where “h.o.t.” now stands for terms of order 5 or higher and (4.25) was used to get the
second equality in (4.26).
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Thus, the new degree-four homogeneous polynomial is H4 + 1
2{H3, χ3}. The second step

is to determine which terms in this polynomial can be eliminated by the next transformation
ν4. For this, we use the complex coordinates (α, β) = (α1, . . . , αn, β1, . . . βn) given by

(αj , βj) =
1√
2

(
ξj + iηj , i(ξj − iηj)

)
. (4.27)

We remark, without using this fact explicitly below, that when the homological equation
(4.24) is rewritten in the coordinates (α, β) and then as a linear system with respect to
the basis consisting of the monomials, the coefficient matrix of the system is diagonal. We
employ the coordinates (α, β) only to identify the fourth-order terms in (4.26) which are
eliminated after the next transformation.

Substituting the inverse relations ξj = 1√
2
(αj − iβj), ηj = 1√

2
(βj − iαj), in the Hamilto-

nian, we obtain a sum of homogeneous polynomials in (α, β) of the same degrees as before
the substitution. In particular, for the fourth order term H̃4 := H4 + 1

2{H3, χ3} in (4.26),
we find coefficients hJL4 such that

H̃4(α, β) =
∑

|J |+|L|=4

hJL4 αJβL, (4.28)

where J = (j1, . . . , jn) ∈ Nn, L = (`1, . . . , `n) ∈ Nn are multiindices, |J | = j1 + · · · + jn,
αJ = αj11 . . . αjnn , and similarly for βL.

We say a term hJLαJβL is resonant if ω · (J −L) = 0; otherwise, it is nonresonant. Due
to the nonresonance assumption on ω, for any |J |+ |L| ≤ k0, in particular for |J |+ |L| = 4,
the term hJLαJβL is nonresonant if and only if J = L. Now, the crux of the second
step consists in choosing a homogeneous polynomial χ4 (real in the coordinates (ξ, η)) such
that the corresponding transformation ν4 eliminates all nonresonant terms in (4.28) while
keeping the resonant terms intact. The final form of the quartic terms in H ◦ ν3 ◦ ν4 is then
obtained by substituting (4.27) in the sum of all the resonant terms,∑

|J |=2

hJJ4 αJβJ , (4.29)

and noting that for |J | = 2 one gets hJJ4 αJβJ = −hJJ4 IJ , with I = (I1, . . . , In) as in
Theorem 4.13.

To conclude these preparatory remarks, we rewrite (4.29) in a more convenient way. For
any J = (J1, . . . , Jn) with |J | = 2, there exist two integers 1 ≤ j2 ≤ j1 ≤ n such that either
j2 < j1 and

Jj =

{
1 if j = j1 or j = j2

0 otherwise,

or j1 = j2 and

Jj =

{
2 if j = j1

0 otherwise.

Therefore, denoting h̄j1,j24 = hJJ4 , we have

∑
|J |=2

hJJ4 αJβJ =
n∑

j1=1

j1∑
j2=1

h̄j1,j24 αj1αj2βj1βj2 . (4.30)
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Proof of Proposition 4.11. We apply the above normal form procedure to the Hamiltonian
Φ in (4.17). Recalling that ωj = |µj |1/2, we start with the canonical change of coordinates

ξ′j =
1
√
ωj
ξj , η′j =

√
ωj ηj , (4.31)

so the quadratic part of Φ becomes

Φ2(ξ, η) :=
1

2

n∑
j=1

ωj(ξ
2
j + η2

j ),

as in Theorem 4.13 (needless to say, (ξ, η) no longer represent the original coordinates on
the center manifold). We write the Hamiltonian (4.17) in the coordinates (ξ, η) as follows

Φ(ξ, η) = Φ2(ξ, η) + sbΦ3(ξ, η) + bΦ4(ξ, η) + s2b2Φ′4(ξ, η) + Φ′′(ξ, η; s, b),

where, with ξ′ = (ξ′1, . . . , ξ
′
n), η′ = (η′1, . . . , η

′
n) and the ξ′j , η

′
j as in (4.31),

Φ3(ξ, η) =

∫
RN

a2

3
(ξ′ · ϕ)3 dx,

Φ4(ξ, η) =

∫
RN

a3

4
(ξ′ · ϕ)4 dx,

(4.32)

and Φ′4, Φ′′ are as in Lemma 4.8 (and (4.17)). Although Φ3 and Φ4 are independent of η,
for consistency we write them as functions of (ξ, η) anyway.

After the first step of the normal form procedure (cp. (4.25), (4.26)), taking the unique
homogeneous cubic polynomial vector field χ3 satisfying

{Φ2, χ3} = −Φ3, (4.33)

and ν3 the Lie transform corresponding to sbχ3, we obtain

Φ ◦ ν3 = Φ2 + Φ4 + s2b2Φ′4(ξ, η) + s2b2
1

2
{Φ3, χ3}+ h.o.t., (4.34)

where “h.o.t.” stands for terms of order O(|(ξ, η)|5) (we will not keep track of the parameter
dependence in the higher order terms).

After expanding (ξ′ · ϕ)4:

(ξ′ · ϕ)4 =

n∑
j1,...,j4=1

ξ′j1ξ
′
j2ξ
′
j3ξ
′
j4ϕj1ϕj2ϕj3ϕj4 =

n∑
j1,...,j4=1

ξj1ξj2ξj3ξj4
(ωj1ωj2ωj3ωj4)1/2

ϕj1ϕj2ϕj3ϕj4 ,

Φ4 becomes

Φ4(ξ, η) =
1

4

n∑
j1,...,j4=1

ξj1ξj2ξj3ξj4
(ωj1ωj2ωj3ωj4)1/2

∫
RN

a3ϕj1 . . . ϕj4dx.

Setting

Θ(j1, j2, j3, j4) =
1

4(ωj1ωj2ωj3ωj4)1/2

∫
RN

a3ϕj1 . . . ϕj4dx,
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we can write

Φ4(ξ, η) =
n∑

j1,...,j4=1

Θ(j1, . . . , j4)ξj1 . . . ξj4 . (4.35)

As in the above remarks, we use the complex variables (4.27), so

ξj =
1√
2

(αj − iβj), ηj =
1√
2

(βj − iαj).

(This change of variables is used only to identify the resonant terms in (4.35), and we
revert to the variables (ξ, η) afterwards.) We must now write the product ξj1ξj2ξj3ξj4 in
terms of (α, β) = (α1, . . . , αn, β1, . . . , βn). Since resonant terms are given by (4.30), we seek
terms of the form αjα`βjβ`, with j, ` ∈ {1, . . . , n}. One verifies easily that such terms arise
from the monomial ξj1ξj2ξj3ξj4 only if j(1) = j(2) and j(3) = j(4), where ((1), (2), (3), (4)) is a
permutation of (1, 2, 3, 4). For any such monomial, we have j(1) = j(2) = j and j(3) = j(4) = `
for some j, ` ∈ {1, . . . , n} and

ξj1ξj2ξj3ξj4 = ξ2
j ξ

2
`

=
1

4
(α2

jα
2
`−2iαjα

2
`βj−α2

`β
2
j−2iα2

jα`β`−4αjα`βjβ`+2iα`β
2
j β`−α2

jβ
2
` +2iαjβjβ

2
` +β2

j β
2
` ).

(4.36)

If j 6= `, the only resonant term in (4.36) is −αjα`βjβ`. If j = `, then the resonant terms
are −αjα`βjβ` − (1/4)(α2

`β
2
j + α2

jβ
2
` ). Thus, for any given j, `, the contribution of ξ2

j ξ
2
` to

the resonant terms is given by −αjα`βjβ` if j 6= ` and −(3/2)α2
jβ

2
j if j = `.

Note that if j = `, then there is only one permutation of (j, j, j, j), whereas if j 6= `,
there are six different permutations of (j, j, `, `); thus, the term ξ4

j , for j fixed, appears only

once in (4.35), while, for j 6= ` fixed, the term ξ2
j ξ

2
` = ξ2

` ξ
2
j appears precisely six times.

These remarks imply that, in terms of (α, β),

Φ4(ξ, η) = −3

2

n∑
j=1

Θ(j, j, j, j)α2
jβ

2
j − 6

n∑
j=1

j−1∑
`=1

(−Θ(j, j, `, `))αjβjα`β` + nonresonant terms.

Since αjβj = i(ξ2
j + η2

j )/2,

Φ4(ξ, η) =
3

2

n∑
j=1

Θ(j, j, j, j)

(
ξ2
j + η2

j

2

)2

+ 6

n∑
j=1

j−1∑
`=1

Θ(j, j, `, `)

(
ξ2
j + η2

j

2

)(
ξ2
` + η2

`

2

)
+ nonresonant terms.

This can be written, with Ij = (ξ2
j + η2

j )/2, I = (I1, . . . , In), Θ̂(j, `) = Θ(j, j, `, `), as

Φ4(ξ, η) =
3

2

n∑
j=1

Θ̂(j, j)I2
j + 3

n∑
j,`=1
j 6=`

Θ̂(j, `)IjI` + nonresonant terms

=
1

2
I ·MI + nonresonant terms,
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where M is as in (4.21). Here, under “nonresonant terms” we group the terms which get
eliminated after the second transformation in the normal form procedure.

Similarly,

s2b2
(

Φ′4(ξ, η) +
1

2
{Φ3, χ3}

)
= s2b2

1

2
I · M̃I + nonresonant terms,

for some n × n matrix M̃ determined only by Φ′4(ξ, η) + {Φ3, χ3}/2. Thus, the second
transformation results in the quartic terms (I ·MI + s2b2IM̃I)/2, as stated in Proposition
4.11.

The subsequent steps in the normal form procedure do not alter the terms up to order
4. Carrying out the procedure up to order 2kB +1, we obtain, as a consequence of Theorem
4.13, all the statements of Proposition 4.11.

Remark 4.14. It will be useful to note that since the matrix M̃ is determined only by
Φ′4(ξ, η) + {Φ3, χ3}/2, it is independent of a3. Indeed, Φ3 and χ3 are determined by a2 (see
(4.32), (4.33)) and, by Remark 4.10, the same is true of Φ′4.

5 An application of a KAM-type result: proofs of Theorems
2.2, 2.4

In this section, we find quasiperiodic solutions of the reduced equation via an application
of a KAM-type theorem. The application is rather standard: after the results from the
previous sections, we are dealing with a finite-dimensional Hamiltonian system with an
elliptic equilibrium at (0, 0) whose frequencies are rationally independent to a high order.
The main issue is the verification of a nondegeneracy condition. And, of course, we need a
finite-differentiability version of the KAM theorem. We use a theorem by Pöschel [56] for
this purpose.

To recall the theorem, consider a Hamiltonian H : Tn × Ω→ R given by

H(θ, I) = H0(I) +H1(θ, I), (5.1)

where Ω ⊂ Rn is a domain, and Tn is the n-dimensional torus (in other words, H1(θ, I) is pe-
riodic in θ1, . . . , θn with a common period, 2π, say). The Hamiltonian system corresponding
to H is

θ̇ = ∇IH(θ, I),

İ = −∇θH(θ, I).
(5.2)

We make the assumption that H0 is analytic on Ω and its frequency map ω∗(I) :=
∇H0(I) : Ω → Rn is a diffeomorphism onto its image G := {ω∗(I) : I ∈ Ω}; in particular,
the Hessian matrix

∂2H0

∂I2
(I)

is nonsingular on Ω. Moreover, we assume that there is a complex neighborhood Ωρ of Ω,

Ωρ =
⋃
I∈Ω

{ζ ∈ Cn : |ζ − I| < ρ} (5.3)
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with ρ > 0, such that H0 has an analytic extension to Ωρ whose Hessian is nonsingular on
Ωρ and ω∗(I) is a one-to-one map of Ωρ onto its image in Cn.

The perturbation term H1 is assumed sufficiently small (as specified in the theorem, see
equation (5.7)) in a Hölder norm: if ϑ > 0 is a noninteger, ‖H‖Cϑ(Tn×Ω) is the infimum of
all M satisfying the following inequalities:

‖DJH(θ, I)‖L∞(Tn×Ω) ≤M for all J ∈ N2n, |J | ≤ [ϑ],

and

sup
θ,θ′∈Tn
θ 6=θ′

|DJH(θ, I)−DJH(θ′, I)|
|θ − θ′|ϑ−[ϑ]

≤M, sup
I,I′∈Ω
I 6=I′

|DJH(θ, I)−DJH(θ, I ′)|
|I − I ′|ϑ−[ϑ]

≤M

for all J ∈ N2n such that |J | = [ϑ]. Here [ϑ] is the integer part of ϑ and, for J =
(j1, . . . , jn, `1, . . . , `n),

DJ =
∂|J |

∂θj11 . . . ∂θjnn ∂I
`1
1 . . . ∂I`nn

, |J | = j1 + · · ·+ jn + `1 + · · ·+ `n.

A vector ω ∈ Rn is said to be κ, ν-Diophantine, for some κ > 0 and ν > n− 1, if

|ω · α| ≥ κ|α|−ν (α ∈ Zn \ {0}). (5.4)

For κ > 0 and ν > n − 1, we denote by Gκ the set of vectors ω ∈ G such that ω
is κ, ν-Diophantine and, additionally, the distance from ω to ∂G is at least κ. (We only
emphasize the dependence on κ of the set Gκ in our notation, since in our proofs ν will
always be fixed.)

The following statement is contained in [56, Theorem A].

Theorem 5.1. Let Ω, H0, ρ, and G be as above. Suppose additionally that for some R > 0
one has ∣∣∣∣∂2H0

∂I2
(I)

∣∣∣∣ ,
∣∣∣∣∣
(
∂2H0

∂I2

)−1

(I)

∣∣∣∣∣ ≤ R (I ∈ Ωρ). (5.5)

Fix constants λ, ν and α satisfying

λ > ν + 1 > n, α > 1, α 6∈ {`/λ+ j : j, ` ∈ N}. (5.6)

Then there exists δ, depending on n, ν, λ, ρ, R (but independent of Ω and κ), such that for
any κ ∈ (0, ρ/R) and H1 ∈ C αλ+λ+ν(Tn × Ω) satisfying

‖H1‖Cαλ+λ+ν(Tn×Ω) ≤ κ2δ (5.7)

the Hamiltonian H = H0 + H1 has the following property. There exists a diffeomorphism
T : Tn × G → Tn × Ω of class C α such that for each I ∈ Ω with ω∗(I) ∈ Gκ the manifold
T̃I := T (Tn × ω∗(I)) is invariant under the flow of (5.2) and the solution of (5.2) with the
initial condition T (θ0, ω

∗(I)), θ0 ∈ Tn, is given by T (θ0 + ω∗(I)t, ω∗(I)), t ∈ R.

36



We remark that [56, Theorem A], besides having additional statements, is more pre-
cise in using a weaker norm in (5.7) and giving a stronger (anisotropic) regularity of the
transformation T .

The stated property of the diffeomorphism T can be phrased, as it usually is, in the
following way: T conjugates the flow of (5.2) to a flow for which each torus TN × {J},
J ∈ Gκ, is invariant and whose restriction to this torus is a linear flow with frequencies
ω∗(I). The transformation T is not necessarily canonical, but this is of no concern to us.

The theorem provides a class of quasiperiodic solutions of (5.2) whose frequencies cover
Gκ. Of course, to use this conclusion, we want Gκ 6= ∅, or, better, |Gκ| > 0, where | · |
stands for the Lebesgue measure.

In an application of the above results, we want to put our Hamiltonian system in the
framework of Theorem 5.1. We will be working with the Hamiltonian Φ(ξ̄, η̄) as in Propo-
sition 4.11. This is the Hamiltonian of the reduced equation put in the normal form up
to a high order (the order is to be specified). We introduce the action-angle variables
I = (I1, . . . , In) ∈ Rn, θ = (θ1, . . . , θn) ∈ Tn by

(ξ̄j , η̄j) =
√

2Ij(cos θj , sin θj).

The change of coordinates from (ξ̄j , η̄j) to (θ, I) is defined in regions where Ij = ξ̄2
j + η̄2

j > 0
for all j ∈ {1, . . . , n}, and it is well known that this transformation is canonical. Thus, the
relation between the Hamiltonian and the corresponding Hamiltonian system, after both
have been written in the (θ, I)-coordinates, is as in (5.2).

The domain Ω we will be working with is

Ω = Ωq := {I ∈ Rn : q ≤ Ij ≤ 2q (j = 1, . . . , n)} (5.8)

where q > 0 is sufficiently small, as specified below (we write Ωq when we want to stress
the dependence on q).

In the next lemma, we fix constants α, λ, and ν such that

3n > αλ+ λ+ ν and relations (5.6) hold. (5.9)

One shows easily that such a choice is possible (for example, take α, λ, ν as in (5.6) with
λ ≈ ν + 1 ≈ n, α ≈ 1).

Lemma 5.2. Suppose the hypotheses (A1), (A2), (S1), (S2), and (NR) are satisfied. Set
kB = [K/2]− 1, and let Φ(ξ̄, η̄) be as in Proposition 4.11 and M , M̃ as in (4.20). Assume
further that (s, b) ∈ P̄ is such that the following condition is satisfied:

the n× n-matrix M + s2bM̃ is nonsingular. (5.10)

With Ω as in (5.8), let Φ(θ, I), (θ, I) ∈ Tn ×Ω, stand for the Hamiltonian Φ in the coordi-
nates (θ, I). Fix constants α, λ, ν satisfying (5.9). Then there exists q∗ > 0 such that for
each q ∈ (0, q∗) the following statements are valid. One can write Φ(θ, I) = H0(I)+H1(θ, I),
where:

(a) H0 is a polynomial in I, and there are R, ρ > 0 such that (5.5) holds (with Ωρ as in
(5.3)) and the map I → ω∗(I) = ∇H0(I) is one-to-one on Ωρ. We denote by G the
image of Ω under this map ω∗.
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(b) H1 ∈ C αλ+λ+ν(Tn × Ω) and, with R, ρ as in statement (a) and δ = δ(n, ν, α, ρ,R)
as in Theorem 5.1, there is κ ∈ (0, ρ/R) such that (5.7) holds and |Gκ| > 0 (Gκ is
defined in the paragraph containing (5.4)).

The choice of functions H0, H1 in this statement is naturally given by Proposition 4.11:

H0(I) = ω · I + b
1

2
I ·MI +

s2b2

2
I · M̃I + P̂ (I),

H1(θ, I) = Φ(θ, I)−H0(I).

(5.11)

In particular, the frequency map is given by

ω∗(I) = ω + b(MI + s2bM̃I) +∇P̂ (I), (5.12)

where the vector polynomial ∇P̂ (I) has no constant or linear terms.
In preparation for the proof of Lemma 5.2, we estimate the size of the set Gκ, when κ

is proportional to q.

Lemma 5.3. Assume that (5.10) holds. Consider the frequency map (5.12) on Ω = Ωq and
let G be its range. There exist constants q∗, m1 > 0, and C1 > 0 (independent of q) such
that

|{ω̄ ∈ G: dist(ω̄, ∂G) ≥ C1q)| ≥ m1q
n (q ∈ (0, q∗)). (5.13)

Proof. For q > 0 small, the map ω∗ is a bijection from Ω onto G, such that both ω∗ and its
inverse have a Lipschitz constant independent of q. This is a consequence of (5.12), (5.10).
The result follows from this and the following obvious estimate, where C > 0 and ε > 0 are
independent of q and ε is sufficiently small:

|{I ∈ Ωq : dist(I, ∂Ωq) > εq}| > Cqn.

Lemma 5.4. Let ω∗, G be as in Lemma 5.3. Then for all sufficiently small q > 0, κ > 0
one has

|G \D(κ, ν)| ≤ cκqn−1,

where c > 0 is a constant (independent of q and κ).

Proof. Note that for small q > 0 the set G is contained in a ball of radius 2b‖M+s2bM̃‖q
√
n,

hence also in an n-dimensional cube Q with the edge of length 4b‖M + s2bM̃‖q
√
n. This

implies (see, for example, [65, Theorem 9.3]) that

|Q \D(κ, ν)| ≤ cκqn−1,

where c depends only on n, ν and b‖M + s2bM̃‖. Since G ⊂ Q, our assertion follows.

Proof of Lemma 5.2. Let α, λ, and ν be as in (5.9). Since K > 6(n + 1), kB := [K/2] − 1
satisfies

K ≥ 2kB + 2 > 6(n+ 1) > 2([αλ+ λ+ ν] + 1) + 3. (5.14)

Define H0, H1 as in (5.11), where the notation comes from Proposition 4.11.
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Note, first of all, that H0 is a polynomial in I. Due to the assumption (5.10), if q∗ > 0,
ρ > 0 are sufficiently small and q ∈ (0, q∗), then H0 extends to (the same polynomial on) Ωρ

q

(Ωq is as in (5.8)), its frequency map ω∗ is one-to-one on Ωρ
q , and for some R independent

of q ∈ (0, q∗) relations (5.5) hold. This verifies the properties of H0 stated in (a) with some
constants ρ, R, which will no longer be changed.

We denote by G the image of Ωq under the map ω∗ = ∇H0.
Remember that in Proposition 4.11, the Birkhoff normal form is taken up to the order

2kB+1, so, in the variables (ξ̄, η̄), H1 is a CK map of orderO(|(ξ̄, η̄)|2kB+2) as (ξ̄, η̄)→ (0, 0).
In the variables (θ, I), H1 is a CK map on Tn × Ωq and, since for I ∈ Ωq one has Ij > q
for all j (this controls the singularities introduced by differentiating

√
Ij) and |I| ≤ q

√
n,

using (5.14) and making q∗ smaller, if necessary, we find a positive constant C2 such that

‖H1‖Cαλ+λ+ν(Tn×Ωq) ≤ C2q
3 (q ∈ (0, q∗)). (5.15)

Recall further that the frequency map ω∗ : Ωq → G is as in (5.12). Making q∗ smaller if
necessary, we find constants C1 andm1, as in Lemma 5.3, such that (5.13) holds. With c as in
Lemma 5.4, we set C3 := min{C1,m1/(2c)} and take κ := C3q. Making q∗ smaller again, we
achieve that for each q ∈ (0, q∗) one has 0 < κ < ρ/R and the estimates in Lemmas 5.3 and
5.4 both apply. This yields |G\D(κ, ν)| ≤ m1q

n/2 and |{ω̄ ∈ G : dist(ω̄, ∂G) ≥ κ}| ≥ m1q
n,

thus
|Gκ| ≥

m1

2
qn.

Finally, let δ > 0 be the constant in (5.7) (independent of κ and Ω). Making q∗ smaller
one more time, we make the following hold:

q∗ ≤ C2
3

C2
δ.

Then, for q ∈ (0, q∗), κ = C3q, relation (5.15) gives

‖H1‖Cαλ+λ+ν(Tn×Ωq) ≤ C2q
3 =

C2

C2
3

κ2q ≤ C2

C2
3

κ2C
2
3

C2
δ = κ2δ,

so (5.7) is satisfied. Thus all statements in (b) have been verified and the proof is complete.

We can now give the proofs of our main theorems.

Proof of Theorem 2.2. Under the assumptions of Theorem 2.2, the matrix M in (5.10) is
nonsingular, hence (5.10) holds if either b 6= 0 is fixed and s is sufficiently small (possibly
s = 0), or s is fixed and b 6= 0 is sufficiently small. Lemma 5.2 tells us that Theorem 5.1,
with a suitable choice of the constants, applies to our Hamiltonian Φ in the action-angle
variables (θ, I) and, moreover, |Gκ| > 0. This yields, as noted above, quasiperiodic solutions
of the corresponding Hamiltonian system with trajectories contained in Tn ×Ωq: there are
such quasiperiodic solutions with frequency vector ω∗, for all ω∗ ∈ Gκ. Adjusting q > 0, we
can make these solutions as close to Tn × {0} as we like.

We now reverse all the changes of variables (action-angle variables, normal form trans-
formation, the Darboux transformation) to get back to the reduced equation (4.8), and
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find its quasiperiodic solutions (ξ(y), η(y)) with frequencies covering Gκ. The trajectories
of these solutions are contained in a small neighborhood of 0 ∈ R2n. For any such solution,
we have

Λ(ξ(y), η(y)) ∈ N (y ∈ R),

where Λ is as in (3.15) and N is the neighborhood of 0 ∈ Z = Hm+2(RN ) × Hm+1(RN )
from Theorem 3.1. By Theorem 3.1(b),

U(y) = (U1(y), U2(y))T = ξ(y) · ψ + η(y) · ζ + σ(ξ(y), η(y))

is a solution of system (3.7). Letting

u(x, y) = U1(y)(x) = ξ(y) · ϕ(x) + σ1(ξ(y), η(y))(x), (5.16)

where ϕ(x) = (ϕ1(x), . . . , ϕn(x)) and σ = (σ1, σ2), we obtain a solution of (2.1). This
solution is quasiperiodic in y, in the sense of the definition given in Section 2.2. The
frequencies of the quasiperiodic solutions obtained this way cover the set Gκ of positive
measure.

It remains to show that the solution u(x, y) in (5.16) decays to 0 as |x| → ∞, uniformly
in y. This follows immediately from the fact that the set {u(·, y) : y ∈ R} is contained in a
compact set—continuous image of a torus—in Hm+2(RN ), with m > N/2.

Remark 5.5. (a) The above proof shows that if the standing hypotheses (A1), (S1),
(NR), (S2) are satisfied, and (5.10) holds, with matrices M , M̃ as in Proposition 4.11, then
the conclusion of Theorem 2.2 holds. The analytic dependence of the matrix in (5.10) on s
and b implies that if (5.10) holds for some s with b 6= 0 fixed, then it holds for all s, save
for isolated values, and, likewise, if it holds for some b 6= 0 (with s fixed), then it holds for
all b 6= 0, save for isolated values.

(b) If the parameters (s, b) are fixed, (5.10) can be viewed as a sufficient condition (as-
suming also the standing hypotheses (A1), (S1), (NR), (S2)) for the conclusion of Theorem
2.2 to be valid. In fact, (5.10) is a condition on the functions a3 (which appears in the
definition of the matrix M) and a2, which determines the matrix M̃ , see Remark 4.12(ii).
If a2 = 0, which is equivalent to taking s = 0, then this condition just requires that the
matrix M be nonsingular. For a2 6= 0 the condition is rather implicit and hard to verify
without parameters.

(c) The nondegeneracy of the Hessian D2H0(I) is called Kolmogorov’s nondegeneracy
condition. Other nondegeneracy conditions (Arnold’s isoenergetic condition, Rüssman’s
condition) are also known to imply the existence of quasiperiodic solutions for Hamiltonian
systems in R2n. Theorems based on such conditions could be used here as well, leading
to different sufficient conditions in place of (5.10). However, we stress again that because
of the center manifold reduction, only C k versions of KAM theorems are applicable in our
setting, even when the nonlinearity in the original problem (2.1) is analytic.

Proof of Theorem 2.4. Assume that a2, f1 are as in (S2), a1 is as in (S1), hypotheses (A1),
(NR), (A3) hold, and s, b are fixed with b 6= 0. As noted in Remark 5.5(a), the conclusion
of Theorem 2.2 holds provided a3 ∈ Cm+1

b (RN ) is such that (5.10) holds. Thus, in order
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to prove Theorem 2.4, all we have to do is show that the set B of all a3 ∈ Cm+1
b (RN ) for

which (5.10) holds is open and dense in Cm+1
b (RN ).

To stress the dependence on a3, we write the matrix in (5.10) as M(a3) + s2bM̃ (M̃
is independent of a3, see Remark 4.12(ii)). Obviously, M(a3) depends continuously on a3

which gives the openness of B.
To prove the density, we first find b̃3 ∈ L2(RN ) such that∫

RN
b̃3(x)ϕ2

i (x)ϕ2
j (x) dx = δij , i, j ∈ {1, . . . , n}, (5.17)

where δij is the Kronecker delta. Such b̃3 exists, due to the linear independence of the
functions ϕ2

iϕ
2
j , 1 ≤ i ≤ j ≤ n, since the linear operator

b3 7→
(∫

RN
b3ϕ

2
iϕ

2
j dx

)
1≤i≤j≤n

is easily verified to be surjective onto Rn(n+1)/2.
Next, we approximate b̃3 by b3 ∈ C∞0 (RN ) so that∣∣∣∣∫

RN
b̃3(x)ϕ2

i (x)ϕ2
j (x) dx−

∫
RN

b3(x)ϕ2
i (x)ϕ2

j (x) dx

∣∣∣∣ < ε

for all 1 ≤ i, j ≤ n. If ε is sufficiently small, then the matrix M(b3) is nonsingular:
detM(b3) 6= 0, and we fix such b3.

Now, for any a3 ∈ Cm+1
b (RN ) and t > 0, we have

det(M(a3 + tb3)) = det(M(a3) + tM(b3)) = tn det

(
1

t
M(a3) +M(b3)

)
6= 0

if t is sufficiently large. Thus t 7→ det(M(a3 + tb3)) is a nonconstant analytic function, so
we can find arbitrarily small t > 0 such that det(M(a3 + tb3)) 6= 0. This proves the density
of B.

Remark 5.6. Clearly, the above proof works in the radial setting—with the space Cm+1
b (RN )

replaced by its subspace of all radial functions—if a1 and the eigenfunctions ϕ1, . . . , ϕn are
radial.

A Hypotheses for the center manifold theorem

In this appendix we complete the verification of hypotheses (H1) and (H3) from Section 3.1
for the center manifold theorem.

Throughout this appendix we denote by ‖ · ‖` the usual norm of H`(RN ), where ` ≥ −1
is an integer, and ‖·‖k,p the norm in W k,p(RN ); in particular, ‖·‖0,p is the norm in Lp(RN ).
For the sake of brevity, we will omit the domain RN from the spaces H`, W k,p, and Lp.
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A.1 Smoothness of the Nemytskii operator

In this subsection, we consider a function f : RN × R × Rd → R, where Rd with d ∈ N is
a parameter space (d = 0 is the case with no parameters). Under suitable assumptions, we
prove the C k-smoothness of the corresponding Nemytskii operator f̃ acting on the space
H`×Rd. In Section 3.2, the results proved here are applied with d = 2, ` = m+1, k = K+1,
and f as in (2.2), (S2). Actually, for that application it would be sufficient to consider f̃ as
a map defined on Hm+2(RN ) (with values in Hm+1(RN )) and m > N/2, so our result here
is slightly more general than needed above.

While there are many texts on continuity and smoothness of Nemytskii and substitution
operators in Sobolev spaces (see, for example, the monographs [5, 61, 67]), we were not
able to locate the results in the form we need. For bounded domains, the smoothness of
Nemytskii operators in Sobolev spaces is treated in detail in [67]. It is not difficult, although
not completely trivial, to modify the proofs in [67] so that they also apply to the Sobolev
spaces on RN if suitable assumptions on f are made. We give here a different proof based
on the boundedness of Nemytskii operators and the converse to Taylor’s theorem. Although
we only consider the spaces H`, ` > N/2, we make no use of the Hilbert space structure
here. The same proof works for Nemytskii operators on W `,p(RN ), p ∈ (1,∞), if ` > N/p.

We state the result in the following theorem, first, for operators without parameters,
then with parameters. Given a function f ∈ C k+1+`(RN ×R), the Nemytskii operator f̃ of
f takes a function u on R to a function f̃(u) defined by

f̃(u)(x) = f(x, u(x)) (x ∈ RN ). (A.1)

We will only be dealing with functions u ∈ H`, with ` > N/2. In view of the Sobolev
imbedding theorem, we may assume that u is continuous on RN (more precisely, it has a
continuous representative, but we will not be making this distinction). Thus, f̃(u)(x) is
defined for all x ∈ RN .

When f depends on a parameter τ ∈ Rd, f = f(x, u; τ), we define its Nemytskii operator
f̃ by

f̃(u; τ)(x) = f(x, u(x); τ). (A.2)

For j = 1, . . . , k, we denote by L j
s (H`, H`) the space of all bounded symmetric j-linear

maps from H` to itself; it is equipped with the standard operator norm.

Theorem A.1. Let ` > N/2 and k ≥ 0 be integers.

(a) Assume that f ∈ C k+`+1(RN × R) and for each ϑ > 0 the function f is bounded on
RN × [−ϑ, ϑ] together with all its partial derivatives up to order k + ` + 1. Assume
further that f(·, 0) ∈ H` and for some constant C1 > 0 one has∣∣∣∣∂`+k+1f(x, y)

∂x`i ∂y
k+1

− ∂`+k+1f(x, 0)

∂x`i ∂y
k+1

∣∣∣∣ ≤ C1|y| (x ∈ RN , y ∈ (−1, 1), i = 1, . . . , N).

(A.3)
Then the Nemytskii operator f̃ takes H` to itself and, considered as an operator on H`,
f̃ is of class C k. Moreover, the k-th derivative of f̃ , as a map from H` to L k

s (H`, H`),
is Lipschitz on each bounded subset of H`.
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(b) Assume that f ∈ C k+`+2(RN × R × Rd), f(x, 0; τ) = 0 for all x ∈ RN and τ ∈ Rd,
and for each ϑ > 0 the function f is bounded on RN × [−ϑ, ϑ] × {τ ∈ Rd : |τ | ≤ ϑ}
together with all its partial derivatives up to order k + ` + 2. Then the Nemytskii
operator f̃ : H` × Rd → H` is of class C k.

Remark A.2. (a) The assumption f ∈ C k+`+1(RN ×R) in statement (a) can be relaxed
a little. The continuity of the derivatives of f of order k + `+ 1 is not needed; their existence
and boundedness on the sets RN × [−ϑ, ϑ], ϑ > 0, is sufficient.

(b) The mean value theorem implies that (A.3) holds if the regularity of f is “one-degree”
higher, that is, f ∈ C k+`+2(RN × R) and for each ϑ > 0 the function f is bounded on
RN × [−ϑ, ϑ] together with all its partial derivatives up to order k + ` + 2. Such a higher
regularity is assumed in statement (b) for the sake of simplicity.

(c) In the proof of statement (a), we also show that the derivative Dj f̃(u) is given by the
pointwise multiplication operator:

Dj f̃(u)[v, . . . , v](x) = Dj
yf(x, u(x))(v(x))j (u, v ∈ H`, j = 1, . . . , k), (A.4)

where

Dj
yf(x, y) =

∂j

∂yj
f(x, y). (A.5)

In the rest of this subsection, ` > N/2 is fixed. By the Sobolev imbedding theorem,
H` ↪→ Cb(RN ), thus we view each element of H` as a continuous function.

We prepare the proof of the theorem by several preliminary results. First of all, we note
that in statement (a) we may assume, without loss of generality, that

f ∈ C k+`+1
b (RN × R), (A.6)

that is, f and all its partial derivatives up to order k+`+1 are bounded globally on RN ×R
(and not just on sets of the form RN × [−ϑ, ϑ]). Indeed, smoothness is a local property;
thus, to prove statement (a) (including the boundedness of the k-th derivative) we just need
to consider the restrictions of f̃ to bounded sets of H`. Dealing with such restrictions, the
values of f(x, y) for large |y| are irrelevant, thanks to the imbedding H` ↪→ Cb(RN ), thus
we can modify f(x, y) for large |y| so as to achieve (A.6).

We recall the following Banach algebra properties of H`. For the proof see [2, 67], for
example.

Lemma A.3. The space H` is closed under pointwise multiplication and for any integer
j ≥ 1 one has

‖v1 . . . vj‖` ≤ C‖v1‖` . . . ‖vj‖` (v1, . . . , vj ∈ H`), (A.7)

where C = C(j,N, `) is a constant. Consequently, if a ∈ Y , where Y = H` or Y = C `
b(RN ),

then for any integer j ≥ 1 the map

Lj : (v1, . . . , vj) 7→ av1 . . . vj (A.8)

belongs to L j
s (H`, H`) and

‖Lj‖L j
s (H`,H`)

≤ C‖a‖Y , (A.9)

for some constant C = C(j,N, `) (independent of a).
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In the next two lemmas, we show a boundedness and Lipschitz continuity property of
Nemytskii operators under lower regularity assumptions.

Lemma A.4. Assume that f ∈ C `
b(RN × R), f(·, 0) ≡ 0, and for some constant C1 > 0

one has ∣∣∣∣ ∂`∂x`i f(x, y)

∣∣∣∣ ≤ C1|y| (x ∈ RN , y ∈ (−1, 1), i = 1, . . . , N). (A.10)

Then the Nemytskii operator f̃ takes H` to itself and it is bounded: for each ρ > 0 there is
a constant C(ρ) (depending on f and ρ) such that for all u ∈ H` with ‖u‖` ≤ ρ one has

‖f̃(u)‖` ≤ C(ρ).

Remark A.5. If the condition f(·, 0) ≡ 0 is dropped, then the lemma can be applied to
the function f(x, u)− f(x, 0) if∣∣∣∣∂`f(x, y)

∂x`i
− ∂`f(x, 0)

∂x`i

∣∣∣∣ ≤ C1|y| (x ∈ RN , y ∈ (−1, 1), i = 1, . . . , N).

Proof of Lemma A.4. For f independent of x, the result is proved in [61, Section 5.24]. We
just need minor modifications of the proof given there to yield the present result.

As in [61], we use the fact that, due to the Fourier-multiplier characterization of H`,
the following expression gives an equivalent norm on H`:

‖v‖′` := ‖v‖0,2 +

N∑
i=1

∥∥∥∥∂`v∂x`i
∥∥∥∥

0,2

.

Thus, to prove the statement, we need to show that for each u ∈ H` the L2-norms of the
functions

f(x, u(x)),
∂`

∂x`i

(
f(x, u(x))

)
, i = 1, . . . , N, (A.11)

are finite, and are bounded from above by a constant determined by ρ if ‖u‖` ≤ ρ.
For f(x, u(x)), the estimate is simple. The bound ‖u‖` ≤ ρ yields a bound on ‖u‖0,∞.

The assumptions f ∈ C `
b(RN × R), f(·, 0) ≡ 0, imply that for any y ∈ R with |y| ≤ ‖u‖0,∞

one has |f(x, y)| ≤ C̃|y|, where C̃ = C̃(ρ) is constant. Therefore

|f(x, u(x))| ≤ C̃|u(x)| (x ∈ R),

from which the desired estimate follows immediately.
Next, we estimate the derivatives in (A.11). As in [61], this is done by first taking

u ∈ C∞0 (RN ) and then using the approximation properties of H`. Fix any i ∈ {1, . . . , N}.
Using the chain rule, one shows by induction that

∂`

∂x`i

(
f(x, u(x))

)
=

∂`

∂x`i
f(x, y)


y=u(x)

+Q(x), (A.12)

where Q is the sum of finitely many terms of the form p(x)q(x), where

p(x) =
∂j+s

∂xji∂y
s
f(x, y)


y=u(x)

(A.13)
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for some integers s ≥ 1, j ≥ 0 satisfying j + s ≤ `, and

q(x) =
∂r1u(x)

∂xr1i

∂r2u(x)

∂xr2i
. . .

∂rsu(x)

∂xrsi
(A.14)

for some positive integers r1, . . . , rs satisfying j+r1 + · · ·+rs = `. In the proof of Theorem 1
in [61, Section 5.2.4], the L2-norms of the products of the form (A.14) are estimated in terms
of a finite number of powers of ‖u‖`; in particular, the L2-norms are bounded by a constant
determined by ρ if ‖u‖` ≤ ρ. Obviously, the same can then be said of the L2-norms of the
products p(x)q(x), since the function p(x) given by (A.13) is bounded.

It remains to estimate the first term on the right-hand side of (A.12). For that we
use (A.10). Each (continuous) function u ∈ H` with ‖u‖` ≤ ρ has its range contained in
(−cρ, cρ) (c is a constant from the Sobolev imbedding). Clearly, (A.10) continues to hold
if we take the interval (−cρ, cρ) in place of (−1, 1), possibly after replacing the constant C1

by a larger constant C1(ρ). Consequently, for u ∈ H` with ‖u‖` ≤ ρ the L2-norm of the
function

∂`

∂x`i
f(x, y)


y=u(x)

is not greater than C1(ρ)‖u‖0,2 ≤ C1(ρ)ρ. This, in conjunction with the previous estimates,
completes the proof.

Lemma A.6. Assume that f ∈ C `+1
b (RN × R) and for some constant C0 > 0 one has∣∣∣∣∂`+1f(x, y)

∂x`i∂y
− ∂`+1f(x, 0)

∂x`i∂y

∣∣∣∣ ≤ C1|y| (x ∈ RN , y ∈ (−1, 1), i = 1, . . . , N). (A.15)

Then for each ρ > 0 and any two functions u, v ∈ H` with ‖u‖`, ‖v‖` ≤ ρ, one has f̃(u) −
f̃(v) ∈ H` and

‖f̃(u)− f̃(v)‖` ≤ C2(ρ)‖u− v‖`, (A.16)

where C2(ρ) is a constant determined by ρ (and independent of u and v).

Proof. Fix u, v ∈ H` with ‖u‖`, ‖v‖` ≤ ρ. For each x ∈ RN ,

(f̃(u)− f̃(v))(x) =

(∫ 1

0
Dyf

(
x, u(x) + t(u(x)− v(x))

)
dt

)(
u(x)− v(x)

)
. (A.17)

Write the integral in (A.17) as follows:∫ 1

0
(Dyf

(
x, u(x) + t(u(x)− v(x))

)
−Dyf(x, 0)) dt+Dyf(x, 0). (A.18)

We now apply Lemma A.4 to the function fy(x, y)− fy(x, 0), which is legitimate by (A.15)
(cp. Remark A.5). Thereby we obtain that for each t ∈ [0, 1] the function fy(x, u(x) +
t(u(x)− v(x))) belongs to H` and its H`-norm is bounded by a constant C = C(ρ). From
this it follows that the integral in (A.18) is also a function in H` with norm bounded by
C(ρ). Since fy(x, 0) is a function in C `

b , we conclude, using (A.17) and the second statement
of Lemma A.3 with j = 1, that f̃(u)− f̃(v) ∈ H` and its norm is estimated as in (A.16).
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We are in a position to prove Theorem A.1.

Proof of statement (a) of Theorem A.1. As noted above, we may assume without loss of
generality that (A.6) holds.

Given u ∈ H`, we have f̃(u) = f̃(u)− f̃(0) + f̃(0). Since the function f̃(0)(x) = f(x, 0)
belongs to H` by assumption, Lemma A.6 (with v = 0) implies that f̃(u) ∈ H`. Thus f̃
takes H` into itself.

Next, given any two functions u, v ∈ H`, Taylor’s theorem gives, for each x ∈ RN , the
following expansion

(f̃(u+ v)− f̃(u))(x) =
k∑
j=1

1

j!
Dj
yf(x, u(x))(v(x))j +R(x, u(x), v(x))(v(x))k, (A.19)

where Dj
yf(x, y) is as in (A.5) and

R(x, y, z) =

∫ 1

0

(1− t)k−1

(k − 1)!

(
Dk
yf(x, y + tz)−Dk

yf(x, y)
)
dt. (A.20)

According to the converse to Taylor’s theorem [1, 35], the map f̃ is of class C k, with the
derivatives as in (A.4), provided the following holds. The symmetric multilinear operators
Lj(u), j = 1, . . . , k, and L(u, v) defined by

Lj(u)[v1, . . . , vj ](x) = Dj
yf(x, u(x))v1(x) . . . vj(x) (v1, . . . , vj ∈ H`), (A.21)

L(u, v)[v1, . . . , vk](x) = R(x, u(x), v(x))v1(x) . . . vk(x) (v1, . . . , vk ∈ H`), (A.22)

are bounded, the maps

u 7→ Lj(u) : H` → L j
s (H`, H`), (A.23)

(u, v) 7→ L(u, v) : H` ×H` → L j
s (H`, H`) (A.24)

are continuous, and L(u, 0) = 0. The last property is obvious. Consider now the operator
Lj(u), for any j ∈ {1, . . . , k}. Observe that Lemma A.6 applies to the function Dj

yf . Indeed,

condition (A.15) (with f replaced by Dj
yf) holds for j < k due to Dj

yf ∈ C `+2
b and for j = k

due to assumption (A.3). Let D̃j
yf be the Nemytskii operator of Dj

yf . From Lemma A.6,
we obtain, first of all, that for each u ∈ H`,

D̃j
yf(u)− D̃j

yf(0) ∈ H`.

Writing

D̃j
yf(u) = D̃j

yf(u)− D̃j
yf(0) + D̃j

yf(0)

and noting that D̃j
yf(0) is the C `

b -function Dj
yf(x, 0), we obtain from Lemma A.3 that the

j-linear map Lj(u) is bounded. Moreover, using (A.9) and Lemma A.6, we infer that for
arbitrary ρ > 0 and u, ū ∈ H` with ‖u‖`, ‖ū‖` ≤ ρ one has

‖Lj(u)− Lj(ū)‖
L j
s (H`,H`)

≤ C(ρ)‖u− ū‖`, (A.25)
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where C(ρ) is a constant independent of u, ū. This gives the continuity—even Lipschitz
continuity on bounded sets—of u 7→ Lj(u).

The boundedness of L(u, v) and its Lipschitz continuity on bounded subsets of H`×H`

are proved by similar arguments (cp. the proof of Lemma A.6) and we omit the details.
The proof of statement (a) is now complete.

Proof of statement (b) of Theorem A.1. The hypotheses of statement (b) guarantee (cp. Re-
mark A.2), that statement (a) applies to f(·, ·; τ) for each τ . This implies in particular that
f̃ takes H` × Rd to H`.

As in statement (a) (cp. (A.6)), we may assume without loss of generality that

f ∈ C k+`+2
b (RN × R× Rd). (A.26)

To prove that f̃ : H`×Rd → H` is of class C k, we use the converse to Taylor’s theorem again.
Given any u, v ∈ H`, τ, ς ∈ Rd, we first write down the multivariable Taylor expansion at
each x ∈ RN . Taking τ = (τ1, . . . , τd), ς = (ς1, . . . , ςd), and using the standard multiindex
notation, we have

(
f̃(u+ v; τ + ς)− f̃(u; τ)

)
(x) =

k∑
j=0

∑
β∈Nd

1≤j+|β|≤k

1

j!β!
Dβ
τD

j
yf(x, u(x); τ)(v(x))jςβ

+
k∑
j=0

∑
β∈Nd
j+|β|=k

Rj,β(x, u(x), v(x); τ, ς)(v(x))jςβ, (A.27)

where, for β = (β1, . . . , βd),

Dβ
τD

j
yf(x, y; τ) =

∂j+|β|

∂τβ11 . . . ∂τβdd ∂yj
f(x, y; τ), (A.28)

and

Rj,β(x, y, z; τ, ς) =
1

j!β!

∫ 1

0

(1− t)k−1

(k − 1)!

(
Dβ
τD

j
yf(x, y + tz; τ + tς)−Dβ

τD
j
yf(x, y; τ)

)
dt.

(A.29)
As in the proof of statement (a), the functional coefficients in this expansion define symmet-
ric multilinear maps (by pointwise multiplication). We need to prove that these multilinear
maps are bounded on H`×Rd and depend continuously in the multilinear-operator norm on
(u, τ) ∈ H`×Rd, or, in the case of Rj,β, on (u, v, τ, ς) ∈ H`×H`×Rd×Rd (the additional
needed relations Rj,β(x, u(x), 0; τ, 0) = 0 are trivial). The boundedness is proved as in (a)
(since τ is in a finite dimensional space, we only need to worry about the boundedness
in u ∈ H`). Also as in (a), the proof of the continuity amounts to proving the continuous
dependence of the Nemytskii operators, viewed as maps from H`×Rd to H`, of the functions

Dj
yD

β
τ f(x, y; τ)−Dj

yD
β
τ f(x, 0; τ) (j = 0, . . . , k, β ∈ Nd, 1 ≤ j + |β| ≤ k). (A.30)
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We claim that these Nemytskii operators are Lipschitz on each bounded subset of H`×Rd.
Indeed, each of the functions (A.30) is at least of class C `+2

b . Therefore, as in (a), its
Nemytskii operator is Lipschitz in u, uniformly for (u, τ) in any given bounded subset of
H`×Rd. The uniform Lipschitz continuity in τ follows from (A.26). Similar considerations
show the continuity of the operators defined by Rj,β.

A.2 Bound on the resolvent

This subsection is devoted to the proof of the resolvent bound stated in hypothesis (H3) in
Section 3.1. We essentially use a proof found in [69], modifying and extending it slightly to
account for the differences in our setting.

Recall that in Section 3 we defined the operator A1 = −∆− a1(x) on Hm, with domain
D(A1) = Hm+2. Here we assume, as in (S2), a1 ∈ Cm+1

b , and the integer m satisfies
m > N/2 (it actually suffices here to assume a1 ∈ Cm

b ). Recall also that A is the operator
on Hm+1 ×Hm, with domain D(A) = Hm+2 ×Hm+1, given by

A(u1, u2) = (u2, A1u1)T . (A.31)

Below, we suppress the argument x from a1 for the sake of clarity.

Proposition A.7. Assume that a1 ∈ Cm+1
b , where m > N/2 is an integer, and A be defined

as above. Then there exist C > 0 and ω̂0 > 0 such that for all ω̂ ∈ R satisfying |ω̂| > ω̂0

one has

‖(iω̂ −A)−1‖L (Hm+1×Hm) ≤
C

|ω̂|
. (A.32)

The proof of Proposition A.7 goes along similar lines as an example in [69], where a
domain with a bounded cross-section is considered. We will use estimates of solutions of
the equation

−∆u− a1u+ τ2u = v, (A.33)

where τ ∈ R. By standard results, if |τ | >
√

1 + ‖a1‖0,∞, then for each v ∈ L2 this equation
has a unique solution u ∈ H2. Moreover, if v ∈ Hj , j ∈ {m− 1,m}, then v ∈ Hj+2.

Lemma A.8. Under the assumptions of Proposition A.7, there exist constants Bm,N and
Cm,N , depending only on m and N , such that if |τ | >

√
1 + α1, where α1 := Cm,N‖a1‖m,∞,

then the following statements hold:

(a) If v ∈ Hm and u ∈ Hm+2 is the solution of (A.33), then

(τ2 − α1)‖u‖m ≤ Bm,N‖v‖m, (A.34)

and
(τ2 − α1 − 1)1/2‖u‖m+1 ≤ Bm,N‖v‖m. (A.35)

(b) If v ∈ Hm−1 and u ∈ Hm+1 is the solution of (A.33), then

‖u‖m+1 ≤ Bm,N‖v‖m−1, (A.36)

and
(τ2 − α1 − 1)1/2‖u‖m ≤ Bm,N‖v‖m−1. (A.37)
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Proof. Recall that for J = (j1, . . . , jn) ∈ Nn

DJ =
∂|J |

∂xj11 . . . ∂xjnn
.

For |J | ≤ m, applying DJ to (A.33), we obtain

−∆(DJu)−DJ(a1u) + τ2DJu = DJv. (A.38)

Multiplying (A.38) by DJu, integrating by parts, and applying the Hölder inequality, we
obtain∫

RN
|∇DJu|2 dx+ τ2‖DJu‖20,2 ≤ ‖DJv‖0,2‖DJu‖0,2 +

∫
RN

DJ(a1u)DJu dx. (A.39)

Computing the derivative of a1u using the Leibniz rule, one finds a constant C ′, depending
only on m and N , such that∫

RN
DJ(a1u)DJu dx ≤ C ′‖a1‖m,∞‖u‖2m.

Substituting in (A.39), we obtain∫
RN
|∇DJu|2 dx+ τ2‖DJu‖20,2 ≤ ‖v‖m‖u‖m + C ′‖a1‖m,∞‖u‖2m. (A.40)

Dropping the first term of (A.40), and adding over all multiindices J satisfying |J | ≤ m,
we obtain

τ2‖u‖2m ≤ Bm,N (‖v‖m‖u‖m + C ′‖a1‖m,∞‖u‖2m).

Setting Cm,N = Bm,NC
′, α1 = Bm,NC

′‖a1‖m,∞, we have

(τ2 − α1)‖u‖2m ≤ Bm,N‖v‖m‖u‖m,

that is, (A.34) holds.
Equation (A.40) can also be rewritten as

‖DJu‖21 + (τ2 − 1)‖DJu‖20,2 ≤ ‖v‖m‖u‖m + C ′‖a1‖m,∞‖u‖2m. (A.41)

Since ∑
J∈NN
|J |≤m

‖DJu‖21 ≥
∑
J∈NN
|J |≤m+1

‖DJu‖20,2 = ‖u‖2m+1,

adding over all multiindices J satisfying |J | ≤ m in (A.41), we obtain

‖u‖2m+1 + (τ2 − 1− α1)‖u‖2m ≤ Bm,N‖v‖m‖u‖m.

Since the left hand side dominates (τ2 − 1− α1)1/2‖u‖m+1‖u‖m, (A.35) follows.
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To prove statement (b), we return to (A.38) again. Similar computations as above, but
with an extra integration by parts (to move a derivative from v to u), yield

‖u‖2m+1 + (τ2 − α1 − 1)‖u‖2m ≤ Bm,N‖v‖m−1‖u‖m+1. (A.42)

Strictly speaking, in the above computations we assumed that v ∈ Hm and u ∈ Hm+2, but
it can be verified easily that the result remains valid if v ∈ Hm−1, taking into account that
in the worst case one may have DJv ∈ H−1 (alternatively, one can prove the final estimate
by approximating v in Hm−1 by functions in Hm).

Since τ2−α1−1 > 0, we can drop the second term of the left hand side of (A.42) to get
(A.36). The left hand side of (A.42) dominates (τ2 − α1 − 1)1/2‖u‖m+1‖u‖m, from which
we obtain (A.37).

Proof of Proposition A.7. In this proof, C1, C2, C3, C ′3, and C4 are constants depending
only on m, N , and ‖a1‖m,∞.

Recall that the operator A has 2n (purely) imaginary eigenvalues ±iω1, . . . ,±iωn, with
ωj > 0. Set ωM = maxj ωj . Let λ = iω̂, where ω̂ ∈ R satisfies |ω̂| > ωM +1 and ω̂2 > α1 +1,
with α1 = Cm,N‖a1‖m,∞, as in Lemma A.8. For u = (u1, u2) and v = (v1, v2), consider the
equation Au = λu+ v, or, equivalently,

u2 = λu1 + v1

−∆u1 − a1u1 = λu2 + v2.
(A.43)

Eliminating u2 from (A.43), we get

−∆u1 − λ2u1 − a1u1 = λv1 + v2,

or,
−∆u1 + ω̂2u1 − a1u1 = λv1 + v2. (A.44)

If v1 ≡ 0 and v2 ∈ Hm, applying Lemma A.8(a) to (A.44) gives

‖u1‖m ≤
Bm,N
ω̂2 − α1

‖v2‖m,

‖u1‖m+1 ≤
Bm,N

(ω̂2 − α1 − 1)1/2
‖v2‖m ≤

C1

|ω̂|
‖v2‖m. (A.45)

Since u2 = iω̂u1,

‖u2‖m ≤
Bm,N |ω̂|
ω̂2 − α1

‖v2‖m ≤
C2

|ω̂|
‖v2‖m. (A.46)

Now take v2 ≡ 0, v1 ∈ Hm+1. Eliminating u1 from (A.43), we get

−∆u2 + ω̂2u2 − a1u2 = −∆v1 − a1v1.

From Lemma A.8(b), we deduce

‖u2‖m+1 ≤ Bm,N‖∆v1 + a1v1‖m−1 ≤ C3‖v1‖m+1, (A.47)
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and
(ω̂2 − α1 − 1)1/2‖u2‖m ≤ Bm,N‖∆v1 + a1v1‖m−1 ≤ C3‖v1‖m+1. (A.48)

Relations (A.48) imply

‖u2‖m ≤
C3

(ω̂2 − α1 − 1)1/2
‖v1‖m+1 ≤

C ′3
|ω̂|
‖v1‖m+1; (A.49)

while, using u1 = (u2 − v1)/(iω), relations (A.47) yield

‖u1‖m+1 ≤
C4

|ω̂|
‖v1‖m+1. (A.50)

Combining (A.46), (A.49); (A.45), (A.50); and the fact that (iω̂ − A)−1 is a linear
operator, we conclude that (A.32) holds for all ω̂ ∈ R satisfying |ω̂| ≥ ω̂0, where ω̂0 ∈ R
satisfies ω̂0 > max{

√
α1 + 1, ωM + 1}.
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[8] D. Bambusi, M. Berti, and E. Magistrelli. Degenerate KAM theory for partial differ-
ential equations. J. Diff. Eqns., 250:3379–3397, 2011.

[9] V. Bangert. On minimal laminations of the torus. Ann. Inst. H. Poincaré, Anal. non
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[54] P. Poláčik. Morse indices and bifurcations of positive solutions of ∆u + f(u) = 0 on
Rn. Indiana University Mathematics Journal, 50:1407–1432, 2001.
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