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Abstract

We study positive partially localized solutions of the elliptic equation

∆xu+ uyy + f(u) = 0, (x, y) ∈ RN × R, (1)

where N ≥ 2 and f is a C1 function satisfying f(0) = 0 and f ′(0) < 0.
By partially localized solutions we mean solutions u(x, y) which decay to zero
as |x| → ∞ uniformly in y. Our main concern is the existence of positive
partially localized solutions which are quasiperiodic in y. The fact that such
solutions can exist in equations of the above form was demonstrated in our
earlier work: we proved that the nonlinearity f can be designed in such a way
that equation (1) possesses positive partially localized quasiperiodic solutions
with 2 frequencies. Our main contributions in the present paper are twofold.
First, we improve the previous result by showing that positive partially localized
quasiperiodic solutions with any prescribed number n ≥ 2 of frequencies exist
for some nonlinearities f . Second, we give a tangible sufficient condition on f
which guarantees that equation (1) has such quasiperiodic solutions, possibly
after f is perturbed slightly. The condition, with n = 2, applies, for example,
to some combined-powers nonlinearities f(u) = up + λuq − u with suitable
exponents p > q > 1 and coefficient λ > 0.
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1 Introduction and main results

We consider the semilinear elliptic equation

∆u+ uyy + f(u) = 0, (x, y) ∈ RN × R, (1.1)

where N ≥ 2, ∆ is the Laplace operator in x ∈ RN , and f : R→ R is a C1 function
satisfying

f(0) = 0, f ′(0) < 0. (1.2)

We are mainly interested in positive solutions of this equation which decay to 0 in
the x-variables uniformly in y:

lim
|x|→∞

sup
y∈R

u(x, y) = 0. (1.3)

Henceforth, we refer to solutions satisfying (1.3) as partially localized solutions.
Partially localized solutions include in particular solutions which decay in the y

variable as well, so they are fully localized. Positive fully localized solutions, frequently
referred to as ground states of (1.1), are well understood: they are radially symmetric
about some center in RN+1 and radially decreasing away from that center (see [18]).
For basic results on the existence and nonexistence of ground states we refer the
reader to [4]; theorems on uniqueness (up to translations) and nonuniqueness can be
found in [1, 8, 9, 10, 11, 14, 25, 26, 29, 32, 33, 34, 38, 42].

A different class of partially localized solutions of (1.1) is obtained from ground
states of the equation on RN ,

∆u+ f(u) = 0, x ∈ RN , (1.4)
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if they exist, by extending them to functions on RN × R constant in y. This is a
rather trivial remark, but ground states of (1.4) will play an important role below.

More interesting partially localized positive solutions which are not fully localized
are solutions periodic (and nonconstant) in y. Their existence, as well as some struc-
tural properties, have been established in [2, 12, 28] for a large class of nonlinearities
including the power nonlinearity f(u) = up − u with 1 < p < (N + 2)/(N − 2).

Looking beyond periodic solutions, and considering that equation (1.1) has a
formal Hamiltonian structure (cp. [20, 30, 36]), one naturally asks if positive partially
localized solutions which are quasiperiodic (and not periodic) in y may exist for some
nonlinearities f .

Let us recall the definition of a quasiperiodic solution. Given an integer n ≥ 2,
we say that a vector ω = (ω1, . . . , ωn) ∈ Rn is nonresonant, or, equivalently, that the
numbers ω1, . . . , ωn are rationally independent, if

ω · α 6= 0 (α ∈ Zn \ {0}). (1.5)

Here ω · α is the usual dot product. A real function u(x, y) on RN × R is said to
be quasiperiodic in y if there exist an integer n ≥ 2, a nonresonant vector ω∗ =
(ω∗1, . . . , ω

∗
n) ∈ Rn, and an injective function U defined on Tn (the n-dimensional

torus) with values in the space of real-valued functions on RN such that

u(x, y) = U(ω∗1y, . . . , ω
∗
ny)(x) (x ∈ RN , y ∈ R). (1.6)

The vector ω∗ is called a frequency vector and its components the frequencies of
u. Note that the nonresonance of the frequency vector is a part of our definition.
In particular, a quasiperiodic function is not periodic and, if it has some regularity
properties, then the image of the map y 7→ u(·, y) is dense in an n-dimensional
manifold diffeomorphic to Tn.

The question whether positive quasiperiodic partially localized solutions can exist
in equations of the above type was first addressed in our earlier paper [37]. We proved
that for a carefully designed nonlinearity, equation (1) does have such quasiperiodic
solutions with 2 frequencies. Restricting the number of frequencies to 2 in this result
was not a matter of choice; the method used in the proof works in that case only.
The nonlinearity f was found in [37] by an elaborate construction which served well
the given purpose—finding quasiperiodic solutions for some nonlinearity satisfying
(1.2)—but did not give any feasible way of showing the existence of quasiperiodic
solutions in specific equations.

These shortcomings motivated our research documented in the present paper.
In our new existence result, there is no restriction on the number of frequencies of
quasiperiodic solutions. Moreover, what is perhaps more significant, we have found
tangible sufficient conditions for the existence of positive quasiperiodic partially lo-
calized solutions of (1.1). This result allows us, among other applications, to find
quasiperiodic solutions for nonlinearities which are arbitrarily small perturbations of
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some specific functions, such as the combined-powers nonlinearity f(u) = up+λuq−u
for suitable exponents p > q > 1 and coefficient λ. Under some natural conditions,
we are also able to find such solutions within a specific class of equations (without
needing a small perturbation).

We now give statements of our main results, starting with the following theorem
addressing the possible number of frequencies of quasiperiodic solutions of (1.1). In
this and the other three theorems stated in the introduction, the dimension N is fixed
and it is assumed that N ≥ 2.

Theorem 1.1. Given any integer n ≥ 2, there is a C∞ function f : R → R with
f(0) = 0 > f ′(0) such that equation (1.1) has a positive solution u satisfying (1.3)
which is radially symmetric in x and quasiperiodic in y with n frequencies.

A hypothesis in our second theorem involves a ground state of equation (1.4) (the
equation in one less dimension). We need to recall some definitions. As noted above,
any ground state φ is radially symmetric, so, possibly after a shift in RN , we can write
φ = φ(r), r = |x|. Consider now the Schrödinger operator A(φ) = −∆ − f ′(φ(r)),
viewed as a self-adjoint operator on L2

rad(RN), the space consisting of all radial
L2(RN)-functions, with domain H2(RN) ∩ L2

rad(RN). Since the potential f ′(φ(r))
has the limit f ′(φ(∞)) = f ′(0) < 0, the essential spectrum of A(φ) is contained in
[−f ′(0),∞) (cp. [40]). Therefore, the spectrum in (−∞, 0] consists of a finite number
of isolated eigenvalues; these eigenvalues are all simple due to the radial symmetry.
The Morse index of φ is defined as the number of negative eigenvalues of A(φ). We
remark that we allow 0 to be an eigenvalue of A(φ), but only (strictly) negative eigen-
values count toward the Morse index. If 0 is an eigenvalue, the ground state is said
to be degenerate, otherwise it is nondegenerate.

We will assume that for some integer n ≥ 2 the following holds.

(G) Equation (1.4) has a ground state φ of Morse index n.

For a C1 function g : R→ R, we denote

‖g‖1 := sup{|g(u)|, |g′(u)| : u ∈ R}.

Theorem 1.2. Assume that f : R→ R is a C1 function with f(0) = 0 > f ′(0) such
that (G) is satisfied for some n ≥ 2. Then for any ε > 0 there is a C∞ function
f̃ such that ‖f − f̃‖1 < ε and equation (1.1) with f replaced by f̃ has a positive
solution u satisfying (1.3) which is radially symmetric in x and quasiperiodic in y
with n frequencies.

We emphasize that hypothesis (G) is a condition on the eigenvalues of the lin-
earization at a ground state. Unlike the construction in [37], the hypothesis involves
neither the corresponding eigenfunctions nor higher-order terms of the Taylor expan-
sion of f at the ground state φ. This makes Theorem 1.2 much easier to apply; we
show some interesting applications in a moment. On the other hand, the construction
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in [37] has its advantages when it does apply. Namely, it yields an uncountable fam-
ily of positive partially localized quasiperiodic solutions (disregarding translations) of
an equation of the form (1.1). Our present results do not have such a multiplicity
statement (see Remark 2.4(iv) for an explanation). This is a relatively small price to
pay for a much broader applicability of the new results.

We now give some applications of Theorem 1.2; the first one is a proof of Theo-
rem 1.1.

Proof of Theorem 1.1. Theorem 1.1 follows directly from Theorem 1.2 and a theorem
of [34] which says that for any n ≥ 2 (andN ≥ 2) there is a smooth function f : R→ R
satisfying conditions (1.2) and (G).

Besides [34], examples of functions satisfying conditions (1.2) and (G) (with n = 2)
can also be found in [11, 14]. The most explicit among these examples is the combined-
powers nonlinearity

f(u) = up + λuq − u, (1.7)

where 1 < q < p < 5 and λ > 0. As shown in [14], fixing a sufficiently large λ
and then taking p sufficiently close to 5—note that 5 is the critical Sobolev exponent
(N + 2)/(N − 2) in dimension N = 3—one achieves that equation (1.4) with N = 3
has a ground state with Morse index 2 (in addition to two other ground states with
Morse index 1). Thus, by Theorem 1.2, one can find quasiperiodic partially localized
positive solutions for equation (1.1), where f is an arbitrarily small perturbation of
a function of the form (1.7).

It is an interesting question whether partially localized quasiperiodic solutions
can also be found for a combined-powers nonlinearity itself, that is, without a small
perturbation. We believe that our techniques can be used to give a positive answer,
although most exponents p, q have to be excluded due to smoothness requirements in
our method. We state here one theorem for analytic nonlinearities (a related result
for Ck nonlinearities with k large enough is given in the next section) and then discuss
its possible applicability to combined-powers nonlinearities.

Consider an equation of the form (1.1) involving a real parameter λ > 0:

∆u+ uyy + f(u;λ) = 0, (x, y) ∈ RN × R. (1.8)

Here, f is an analytic function on R× J , J being an open interval in R, such that

f(0;λ) = 0, fu(0;λ) < 0 (λ ∈ J). (1.9)

Also consider the corresponding equation for the ground states on RN :

∆u+ f(u;λ) = 0, x ∈ RN . (1.10)

We assume that for some constants λ0, λ̂0 ∈ J with λ0 < λ̂0 the following holds:
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(GP) For each λ ∈ [λ0, λ̂0) equation (1.10) has a ground state φλ such that the
following conditions are satisfied:

(c1) The map λ 7→ φλ : [λ0, λ̂0)→ L∞(RN) is continuous;

(c2) for each λ ∈ (λ0, λ̂0), φ
λ is a nondegenerate ground state with Morse index 2;

(c3) φλ0 is a degenerate ground state with Morse index 1.

What we have in mind here is that there is a branch (φλ, λ), λ ∈ (λ0, λ̂0), of ground
states of (1.8) of Morse index 2 emanating from a “bifurcation point” (φλ0 , λ0) (note
that the linearization of the equation at the degenerate ground state φλ0 has 0 as the
second eigenvalue, as the Morse index of φλ0 is 1).

Theorem 1.3. Assume that f is an analytic function on R× J satisfying (1.9), and
(GP) holds for some λ0, λ̂0 ∈ J with λ0 < λ̂0. Then there is a dense subset Λ of
the interval (λ0, λ̂0) such that for each λ ∈ Λ equation (1.8) has a positive solution
u satisfying (1.3) which is radially symmetric in x and quasiperiodic in y with 2
frequencies.

Note that this is not a local result: we are not making the given interval [λ0, λ̂0)
smaller in the conclusion. We are able to make such a global statement due to the
analyticity assumption. In the next section, we give a local version of this result for
finitely differentiable nonlinearities f(u;λ).

Parameter dependent functions satisfying (c1)–(c3) are not difficult to find (an
example of a smooth function with these properties is used in [37]). In fact, they are
likely to arise when one considers suitable homotopies between two equations of the
form (1.4): one with a nondegenerate ground state of Morse index 2 and the other
one with a unique ground state of Morse index 1. The nondegenerate ground state
can often be continued up to a bifurcation point with a degenerate ground state,
so there is a good chance that a part of the homotopy will give a function f(u;λ)
with the desired properties. We speculate that such a scenario plays out in equations
with some nonlinearities (1.7) when λ is decreased or increased from a fixed value
λ = λ̂0 for which a nondegenerate ground state of Morse index 2 exists. The analysis
in [14] strongly suggests that this is indeed the case for suitable p < 5, p ≈ 5, and
N = 3. Note, however, that to make use of Theorem 1.3 we need f to be analytic,
hence we are bound to take integer exponents p and q. With p = 5 (the critical
exponent) and q = 2, say, [14] still provides some evidence, partly numerical in this
case, that the family of ground states as in (GP) exists. If this is confirmed, Theorem
1.3 yields quasiperiodic partially localized positive solutions of some equations with
combined-powers nonlinearities.

As will become transparent in Subsection 2.3, the only role of the degenerate
ground state φλ0 in (GP)(c3) is to ensure that a certain function of λ is nonconstant,
and this nonconstancy can be used in place of condition (c3). Specifically, assuming
conditions (c1) and (c2) in (GP), let µ1(λ) < µ2(λ) be the two negative eigenvalues
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of the Schrödinger operator −∆− fu(φλ(x);λ) (acting on L2
rad(RN)), for λ ∈ (λ0, λ̂0).

They are defined due to (c2). Now assume the following condition.

(c3)’ The function λ 7→ µ1(λ)/µ2(λ) is nonconstant on (λ0, λ̂0).

Theorem 1.4. Theorem 1.3 remains valid if condition (c3) in (GP) is replaced by
condition (c3)’.

It is not difficult to show that condition (c3) implies condition (c3)’ (see Subsection
2.3). We have stated one of our theorems with (c3) as a hypothesis because it is more
explicit than (c3)’, and, as indicated above, it may be relatively easy to verify for
equations of the form (1.1) for which one has some information about their ground
states. Condition (c3)’, on the other hand, is more general, and it only involves
nondegenerate ground states. For this reason, (c3)’ appears to be a robust condition
which is likely to hold in a “typical” application. Its verification in specific equations
may not be easy, however.

It is clear from the above results and discussion that the existence of a ground state
of (1.4) with Morse index greater than 1 is an essential prerequisite for our results
on quasiperiodic partially localized solutions. Now, for some important classes of
nonlinearities, including for instance the function f(u) = up − u with any p > 1, the
ground state of (1.4) is unique up to translations if it exists (see [8, 10, 25, 26, 33, 42]).
In that case, there is no ground state of (1.4) with Morse index greater than 1 (see
[11] or the introduction in [34] for a discussion of this point). The same goes for
any equation (1.1) if N = 1. By elementary considerations, the ground state of (the
ordinary differential equation) (1.4) is unique up to translations and has Morse index
1. The problem whether positive quasiperiodic partially localized solutions can exist
in such equations cannot be resolved by our current method.

We remark that it is likely that all positive partially localized solutions are radially
symmetric in x about some center in RN , cp. [6, 17, 21], although this has not been
proved in full generality yet. In our theorems, we only consider solutions that are
radial in x.

Positive partially localized solutions are but one class of solutions of (1.1) which
are not fully localized, and other types of interesting solutions have been studied by
a number of authors. We mention saddle-shaped and multiple-end solutions [7, 13,
15, 16, 23], solutions with infinitely many bumps and/or fronts formed along some
directions [28, 41], solutions periodic and/or discretely symmetric in the x-variables
with homoclinic or heteroclinic transitions in the y variable [3, 31, 39], solutions whose
limit profiles at infinity are given by ground states in lower dimensions [27], as well as
solutions periodic in at least one variable and quasiperiodic in another variable [35].

We have organized the rest of this paper as follows. In the next section, we consider
equations depending on parameters and give sufficient conditions for the existence of
partially localized quasiperiodic solutions. In the same section, we give a proof of
Theorems 1.3, 1.4, and related results in finite-differentiability settings. Theorem 1.2
is proved in Section 3.
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2 Equations with parameters

In this section, we first recall a result from [35] dealing with a class of (possibly
nonhomogeneous) elliptic problems with parameters. The theorem gives sufficient
conditions for the existence of partially localized quasiperiodic solutions. We then
show how equation (1.1) can be put in the context of such elliptic problems via the
linearization of (1.1), or its parameter dependent version, at a ground state. We
examine the behavior of negative eigenvalues of such a linearization as parameters
are varied, which is a crucial ingredient in the proofs of our theorems. Finally, we
specifically consider the case of a single parameter and prove existence of quasiperiodic
solutions with 2 frequencies in some settings.

When considering a radial function h on RN , we often abuse the notation slightly
and use the same symbol h in h = h(x) (viewing h as a function of x ∈ RN) as well
as in h = h(r) (viewing h as a function of r = |x|).

2.1 A general setup

Consider the following equation with a parameter s ∈ Rd, s ≈ 0:

∆u+ uyy + a(x; s)u+ f1(x, u; s) = 0, x ∈ RN , y ∈ R. (2.1)

Here f1 is a function on RN ×R×B, B being an open neighborhood of the origin in
Rd, such that

f1(x, 0; s) =
∂

∂u
f1(x, u; s)


u=0

= 0 (x ∈ RN , s ∈ B). (2.2)

To formulate our hypotheses on the functions a and g, we need to introduce some no-
tation. We denote by Cb(RN) the space of all continuous bounded (real-valued) func-
tions on RN and by Ck

b(RN) the space of functions on RN with continuous bounded
derivatives up to order k, k ∈ N := {0, 1, 2, . . . }. By Crad(RN), Ck

rad(RN) we denote
the subspaces of Cb(RN) and Ck

b(RN), respectively, consisting of the functions which
are radially symmetric in x; L2

rad(RN) is the space of all radial L2(RN)-functions,
and for k ∈ N, Hk

rad(RN) := Hk(RN) ∩ L2
rad(RN) is the space of all radial Hk(RN)-

functions. When needed, we assume that these spaces are equipped with the usual
norms and take the induced norms on the subspaces.

Given integers n > 1 and d ≥ n− 1, let B be an open neighborhood of the origin
in Rd. We assume that the functions a and f1 satisfy the following hypotheses with
some integers

K > 4n+ 1, m >
N

2
. (2.3)

(S1) a(·; s) ∈ Cm+1
rad (RN) for each s ∈ B, and the map s ∈ B 7→ a(·; s) ∈ Cm+1

rad (RN)
is of class CK+1.
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(S2) f1 ∈ CK+m+4(RN × R× B), and for each ϑ > 0 the function f1 is bounded on
RN × [−ϑ, ϑ]×B together with all its partial derivatives up to order K+m+4.
Also, (2.2) holds and f1(x, u; s) is radially symmetric in x.

The next hypotheses concern the Schrödinger operator A1(s) := −∆ − a(x; s)
acting on L2

rad(RN) with domain H2
rad(RN).

(A1)(a) There exists L < 0 such that

lim sup
|x|→∞

a(x; s) ≤ L (s ∈ B).

(A1)(b) For all s ∈ B, A1(s) has exactly n nonpositive eigenvalues,

µ1(s) < µ2(s) < · · · < µn(s), (2.4)

and µn(s) < 0.

Hypotheses (A1)(a) and (A1)(b) will collectively be referred to as (A1). Hypothesis
(A1)(a) guarantees that for all s the essential spectrum σess(A1(s)) is contained in
[−L,∞) (see [40]). Since we work in the radially symmetric setting, the eigenval-
ues (2.4) are all simple, while −L > 0, hypothesis (S1) and the simplicity of the
eigenvalues in (A1)(b) imply that µ1(s), . . . , µn(s) are CK+1 functions of s (see [22]).

We further assume the following nondegeneracy condition. Consider the map
s 7→ ω(s) := (ω1(s), . . . , ωn(s))T (ω(s) is a column vector), where

ωj(s) :=
√
|µj(s)|, j = 1, . . . , n. (2.5)

(ND) The n× (d+ 1) matrix
[
∇ω(0) ω(0)

]
has rank n.

The following theorem is a minor reformulation of Theorem 2.5 of [35]. (We remark
that condition (ND) also appears in a theorem of [43] on quasiperiodic solutions of
elliptic equations on a 2-dimensional strip.)

Theorem 2.1. Let K and m be as in (2.3). Assume that hypotheses (S1), (S2), (A1),
(ND) are satisfied. Then there is an uncountable set W ⊂ Rn consisting of rationally
independent vectors, no two of them being linearly dependent, such that for every
(ω̄1, . . . , ω̄n) ∈ W the following holds: equation (2.1) has for some s ∈ B a solution
u such that (1.3) holds, and u(x, y) is radially symmetric in x and quasiperiodic in y
with frequencies ω̄1, . . . , ω̄n.
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2.2 Spatially homogeneous equations

In this subsection, we assume that n, d, and ` are fixed integers satisfying

n > 1, d ≥ n− 1, ` > N/2 + 4n+ 7. (2.6)

Denoting by Bδ the open ball around the origin in Rd of radius δ, we also assume

for some δ > 0, f : R×Bδ → R is a C` function such that

f(0; s) = 0, fu(0; s) < 0 (s ∈ Bδ).
(2.7)

Our goal is to show how Theorem 2.1 can be applied in the spatially homogeneous
equation

∆u+ uyy + f(u; s) = 0, (x, y) ∈ RN+1, (2.8)

where s ∈ Bδ serves as a parameter. The associated equation for the ground states
on RN is

∆u+ f(u; s) = 0, x ∈ RN . (2.9)

We formulate two additional hypotheses. The first one concerns the equation for
s = 0 only.

(G0) Equation (2.9) with s = 0 has a nondegenerate ground state φ0 with Morse
index n.

To formulate our second hypothesis, which involves equation (2.9) for s ≈ 0,
we need some preparation. Denote by Crad,0(RN) the closed subspace of Crad(RN)
consisting of the functions converging to 0 as |x| → ∞; as usual we assume the
induced norm (the supremum norm) on Crad,0(RN). Condition (G0) implies, upon
an application of the implicit function theorem, that the following statement is valid
(see Lemma 2.3 below for a more detailed statement), possibly after the radius δ > 0
is shrunk.

(Gs) There is neighborhood U of φ0 in Crad,0(RN) such that for each s ∈ Bδ equation
(2.9) has a unique ground state φs in U ; this ground state is nondegenerate with
Morse index n; and the map s 7→ φs : Bδ → Crad,0(RN) is of class C`.

The fact that the ground states φs are nondegenerate and have Morse index n
means that for each s ∈ Bδ the Schrödinger operator −∆ − fu(φs(x); s) (acting on
L2
rad(RN) with domain H2

rad(RN)) has exactly n negative eigenvalues

µ1(s) < µ2(s) < · · · < µn(s), (2.10)

and 0 is not its eigenvalue. The eigenvalues are of class C`−1 as functions of s ∈ Bδ.
Consider now the n× (d+ 1) matrix

M(s) :=
[
∇ω(s) ω(s)

]
, s ∈ Bδ, (2.11)
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where ω(s) = (ω1(s), . . . , ωn(s))T and ωj(s) :=
√
−µj(s) (j = 1, . . . , n). We impose

on this matrix the same condition as in the previous subsection; this is our second
hypothesis:

(ND0) The matrix M(0) has rank n.

The main result of this subsection is the following theorem.

Theorem 2.2. Assume that n, d, and ` satisfy (2.6), f satisfies (2.7), and (G0)
and (ND0) hold. Then there is an uncountable set W ⊂ Rn consisting of rationally
independent vectors, no two of them being linearly dependent, such that for every
(ω̄1, . . . , ω̄n) ∈ W equation (2.8) has for some s ∈ Bδ a solution u such that (1.3)
holds, and u(x, y) is radially symmetric in x and quasiperiodic in y with frequencies
ω̄1, . . . , ω̄n.

For the proof of the theorem, we need some regularity statements from the fol-
lowing lemma (the analyticity statement in this lemma will be needed in the next
subsection).

Lemma 2.3. Assume that n, d, and ` satisfy (2.6), f satisfies (2.7), and (G0)
holds. Then, possibly after δ > 0 is made smaller, there is a neighborhood U of φ0 in
Crad,0(RN) and a family φs, s ∈ Bδ such that the following statements are valid:

(i) For each s ∈ Bδ, φ
s is a unique ground state of (2.9) in U .

(ii) The map s 7→ φs ∈ Crad,0(RN) is of class C` and it is analytic if the function
f : R×Bδ → R is analytic.

(iii) The function (x, s) 7→ φs(x) is of class C`, and it is bounded on RN×Bδ together
with all its partial derivatives up to order `.

(iv) For each s ∈ Bδ, the ground state φs is nondegenerate and has Morse index n.

Proof. Set a(x) := fu(φ
0(x); 0). By (G0), the operator −∆ − a(x) (considered on

L2
rad(RN)) has exactly n negative eigenvalues, all simple, and 0 is not its eigenvalue.

Also, due to the decay of the ground states, a(x) → fu(0; 0) < 0 as |x| → ∞,
so the essential spectrum of −∆ − a(x) is contained in a half-line (κ,∞) for some
κ > 0. These properties are preserved under small L∞ perturbations of the function
a. Therefore, statement (iv) is a direct consequence of statement (ii), once the latter
is established.

We now consider the operator −∆ − a(x) in a different setting, namely, as a
closed operator on the space X := Crad,0(RN). The X-realization of −∆− a(x) is the
operator L with domain

D(L) := {u ∈ ∩p>1W
2,p
loc (RN) : u,∆u ∈ X}.
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given by Lv = −∆v − av. For this realization, it is still true that 0 is not in its
spectrum (the essential spectrum is still away from 0 and 0 is not an eigenvalue
by elliptic regularity), so L−1 is a bounded linear operator on X. We now rewrite
equation (2.9) as an equation for u ∈ X:

H(u; s) := u− L−1(f̃(u; s)− au) = 0, (2.12)

where f̃ is the Nemytskii operator of the function f :

f̃(u; s)(x) := f(u(x); s) (u ∈ X, s ∈ Bδ, x ∈ RN).

It is well-known (and straightforward to prove) that the assumptions on f imply that
f̃ : X × Bδ → X is of class C`. Moreover, if f is analytic, so is f̃ . This can be
easily verified (cp. [5]) using bounds on the derivatives of analytic functions and the
fact that the ranges of all functions contained in any ball in X are contained in a
compact subset of R. Clearly, H(φ0; 0) = 0 and DuH(φ0; 0) is the identity on X.
Thus, the implicit function theorem applies to H, which yields a neighborhood U of
φ0 in Crad,0(RN) and—making δ > 0 smaller if necessary—a family φs, s ∈ Bδ, such
that statements (i) and (ii) hold.

We now show by induction in k = 0, 1, . . . , ` that the following statement is valid.
The function φs(x) is of class Ck on RN × Bδ and all its partial derivatives of order
k are bounded on RN × B̄δ (with δ > 0 made smaller if necessary). This will prove
statement (iii) and complete the proof of the theorem.

For k = 0, the statement follows immediately from (ii).
Assume the statement is valid for some k < `. Let δ̃ stand for any partial derivative

with respect to x1, . . . , xN , s1, . . . , sd of order k; that is, δ̃ is a “product” of k elements
from {δx1 , . . . , δxN , δs1 , . . . , δsd}. All we need to show is that the function δ̃φs(x) is of
class C1 and has bounded first-order partial derivatives on RN ×Bδ.

We use an integral representation of the solutions of the equation u−∆u = h(x)
on RN . Let G(x) be the Green function for the elliptic operator I − ∆ on RN . An
explicit form (for dimensions N = 2, 3) or a Bessel potential form of G are available,
but are not needed here. We recall some properties of G which are relevant for us.
The function G is smooth in RN \ {0}, and the functions G, ∂xiG, i = 1, . . . , N
(classical derivatives on RN \{0}) are integrable on RN . For any bounded continuous
function h, the convolution integral

u(x) =

∫
RN

G(x− y)h(y) dy =

∫
RN

G(y)h(x− y) dy (2.13)

defines a continuous function u which is a unique bounded weak solution of the
equation u−∆u = h on RN . Moreover, u ∈ C1

b(RN) and for i = 1, . . . , N one has

∂xiu(x) =

∫
RN

∂xiG(x− y)h(y) dy. (2.14)
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Except perhaps for the last statement, these are standard properties of Green’s func-
tions of general elliptic operators with constant coefficients (see, for example, [24,
Chapter 1]). For the proof of (2.14) and the C1 property of u, one can use the es-
timates on the derivatives of G (see Corollary 1.5.1 and Theorem 1.7.1 in [24]) and
follow the arguments given in the proof of [19, Lemma 4.1].

Denoting
h(x; s) := f(φs(x); s) + φs(x), (2.15)

and applying the above to φs, a bounded solution of u−∆u = f(u; s) + u, we obtain

φs(x) =

∫
RN

G(x− y)h(y; s) dy =

∫
RN

G(y)h(x− y; s) dy. (2.16)

Note that the induction hypothesis implies that h is of class Ck on RN ×Bδ and has
all its partial derivatives of order k bounded on RN ×Bδ.

Let us now return to the function δ̃φs(x). Clearly, due to the integrability of G,
we can differentiate the second integral in (2.16) to obtain

δ̃φs(x) =

∫
RN

G(y)δ̃h(x− y; s) dy =

∫
RN

G(x− y)δ̃h(y; s) dy.

By the above remarks, we can next take the derivatives with respect to xi, i ∈
{1, . . . , N}, to obtain

∂xi δ̃φ
s(x) =

∫
RN

∂xiG(x− y)δ̃h(y; s) dy =

∫
RN

∂xiG(y)δ̃h(x− y; s) dy.

Using the integrability of ∂xiG, the continuity and boundedness properties of δ̃h, and
the dominated convergence theorem, one shows easily that ∂xi δ̃φ

s(x) is continuous
and bounded on RN ×Bδ.

We now deal with the derivatives ∂sj δ̃φ
s(x), j = 1, . . . , d. We obtain the desired

continuity and boundedness of these derivatives directly from statement (ii) if δ̃ con-
tains no derivatives with respect to the variables x1, . . . , xN . Otherwise, if δ̃ contains
at least one derivative δxi for some i, we have, changing the order of the partial

derivatives in δ̃ if necessary, δ̃φs(x) = δxi δ̂φ
s(x), where δ̂ is a partial derivative of

order k − 1. Differentiating as above, we obtain, first,

δ̃φs(x) =

∫
RN

∂xiG(y)δ̂h(x− y; s) dy,

and then

∂sj δ̃φ
s(x) =

∫
RN

∂xiG(y)∂sj δ̂h(x− y; s) dy.

Arguing as above, we obtain the desired continuity and boundedness properties of
these functions as well.
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Proof of Theorem 2.2. Modifying the nonlinearity f(u; s) in {(u, s) : u < 0} only, we
will assume that the following additional condition holds:

f(u; s) > 0 (u < 0, s ∈ Bδ). (2.17)

This is at no cost to generality as positive solutions are unaffected by such a modifica-
tion. What we gain from this extra assumption is that all bounded solutions of (2.8)
are nonnegative, as one can easily show by employing negative constant subsolutions.
By the strong maximum principle, any nonnegative solution is either identical to zero
or strictly positive.

With φs as in (Gs), set

a(x; s) := fu(φ
s(x); s), (2.18)

f1(x, u; s) := f(φs(x) + u; s)− f(φs(x); s)− a(x; s)u. (2.19)

We verify that these functions satisfy the hypotheses of Theorem 2.1 with K := 4n+2,
m := `− 4n− 7 > N/2 (cp. (2.6), (2.3)). Obviously, f1 satisfies (2.2). Since ground
states are radially symmetric in x, so are the functions a and f1. Our choices of K
and m yield ` = K+m+5; the regularity assumption on f and Lemma 2.3(iii) imply
the regularity properties in (S1), (S2) with B = Bδ/2 (so that B̄ ⊂ Bδ). The decay of
the ground states and the second condition in (2.7) imply that (A1)(a) holds, possibly
after δ > 0 is made smaller. Condition (A1)(b) holds, as already noted before the
theorem (cp. (2.10)), and (ND0), which is a hypothesis of this theorem, is equivalent
to (ND). Thus, the hypotheses of Theorem 2.1 are all satisfied.

Now, with a and f1 as in (2.18), (2.19), u = u(x, y) is a solution of (2.8) for some
s ∈ Bδ if (and only if) u = φs+ ũ for a solution ũ of (2.1) (with the same s). Since φs

is a radial (in x) function, independent of y and satisfying φs(x)→ 0 as |x| → ∞, the
function u(x, y) is quasiperiodic in y, radially symmetric in x, and decaying to 0 as
|x| → ∞ uniformly in y, if ũ has all these properties. In this case, u and ũ share the
quasiperiodicity frequencies. Therefore, the conclusion of Theorem 2.2 follows from
Theorem 2.1; we just need to note that the solutions obtained this way are positive.
Indeed, they are bounded hence nonnegative due to (2.17), and, being quasiperiodic
in the sense of our definition (in particular, not periodic), they are nonzero, hence
strictly positive.

Remark 2.4. (i) Note that hypotheses (G0), (ND0) are “local” (in fact, they are
conditions on φs and M(s) at s = 0 only, but because of the gradient involved
in the definition of M(s), we need to consider ω(s) for s ≈ 0). Therefore, the
conclusion of the theorem remains valid when δ > 0 is shrunk arbitrarily. This
is useful for density results such as Theorems 1.2 and 1.3.

(ii) The assumption that M(0) has rank n can be replaced by the assumption that
there is a sequence sj converging to the origin such that M(sj) has rank n for
j = 1, 2, . . . . The conclusion of Theorem 2.2 and the previous remark remain
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valid under this weaker assumption. To see this, simply apply Theorem 2.2 for
j = 1, 2, . . . , with sj taking up the role of the origin, that is, with the function
f(u; sj + s) in place of f(u; s).

(iii) In this paper, we do not have much use of the property that no two vectors in
the frequency set W are linearly dependent. This is more meaningful in some
scaling invariant problems, such as those considered in [35].

(iv) While Theorems 2.1, 2.2 state that an uncountable set of quasiperiodic solutions
(whose frequencies form an uncountable set W ) can be found within a given
parametric family of equations, the theorems do not say anything about the
multiplicity of solutions for any single equation. Since the parameters can take
uncountably many values, the existence of uncountably many solutions for any
single one of them is not guaranteed. This is the reason for the lack of any
multiplicity statement in Theorems 1.1, 1.2.

For the verification of condition (ND0) in applications, some understanding of the
partial derivatives of the functions s 7→ µj(s) at s = 0 is needed. The rest of this
subsection is devoted to a computation of these derivatives.

Denote by ψ1(·; s), . . . , ψn(·; s) the eigenfunctions of the operator −∆−fu(φs(x); s)
(acting on L2

rad(RN)) associated with the eigenvalues µ1(s), . . . , µn(s), respectively, all
normalized in the L2(RN) norm. This determines the eigenfunctions uniquely up to
a sign. The signs can be chosen in such a way that the eigenfunctions are of class C1

as H2
rad(RN)-valued functions of s ∈ Bδ, and this is what we will assume below. We

derive the following formulas:

Proposition 2.5. Under the hypotheses of Theorem 2.2, the following relations hold
for i = 1, . . . , d, j = 1, . . . , n:

∂µj(s)

∂si


s=0

= −
∫
RN

(
fuu(φ

0(x); 0)φ̇i(x) + g′i(φ
0(x))

)
(ψj(x; 0))2 dx, (2.20)

where

gi(u) =
∂f(u; s)

∂si


s=0

(u ∈ R, i = 1, . . . , d), (2.21)

and φ̇i ∈ H2
rad(RN) is the unique solution of the equation

∆φ̇i + fu(φ
0(x); 0)φ̇i + gi(φ

0(x)) = 0. (2.22)

We remark that the existence and uniqueness of the solution φ̇i is a consequence
of the nondegeneracy of the ground state φ0. Note that gi(0) = 0 and gi ∈ C`−1,
which implies that gi(φ

0(x)) decays exponentially as |x| → ∞, just like φ0(x), and is
therefore in L2

rad(RN).
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Proof of Proposition 2.5. We first simplify the notation slightly. Clearly, it is suffi-
cient to consider the case d = 1 of just one parameter s (the others being fixed). Also,
since only the first derivative of f(u; s) with respect to s at s = 0 enters the compu-
tation and f is of class C` in all its arguments, it is sufficient to take the nonlinearity
f(u; s) in (2.9) in the form f(u) + sg(u), where we have written g1 = g.

Substituting u = φs in (2.9), we differentiate the equation with respect to s at
s = 0, noting that this operation can be performed thanks to Lemma 2.3. We obtain
the equation for φ̇ = dφs/ds


s=0

, which reads as (2.22) (with gi = g):

∆φ̇+ f ′(φ0(x))φ̇+ g(φ0(x)) = 0. (2.23)

Next, consider the equation for the eigenfunction ψj(·; s):

∆ψj +
(
f ′(φs(x)) + sg′(φs(x))

)
ψj + µj(s)ψj = 0. (2.24)

Differentiating with respect to s at s = 0, we obtain

∆ψ̇j + f ′(φ0(x))ψ̇j + µj(0)ψ̇j

+
(
f ′′(φ0(x))φ̇(x) + g′(φ0(x))

)
ψj(x; 0) + µ̇jψj(x; 0) = 0, (2.25)

where

ψ̇j =
dψj(·; s)
ds


s=0

, µ̇j =
dµj(s)

ds


s=0

.

Also, by the L2 normalization of ψj(·; s),∫
RN

ψj(x; 0)ψ̇j(x) dx = 0.

Multiplying equation (2.25) by ψj(x; 0) and integrating by parts over RN , we obtain∫
RN

(
f ′′(φ0(x))φ̇(x) + g′(φ0(x))

)
(ψj(x; 0))2 dx+ µ̇j = 0.

This verifies formula (2.20).

In the radial variable, the integrals in (2.20) read as follows:

∂µj(s)

∂si


s=0

= σN

∫ ∞
0

(
fuu(φ

0(r); 0)φ̇i(r) + g′i(φ
0(r))

)
(ψj(r; 0))2rN−1 dr, (2.26)

where σN is the surface area of the unit sphere in RN .

Remark 2.6. Clearly, condition (ND0) is satisfied if the matrix
[
∇ω(0)

]
has rank

n, and this is the case, due to the relations ωj(s) :=
√
−µj(s), if the n× d matrix[

∂µj(s)

∂si


s=0

]
j,i

,

whose entries are given in (2.26), has rank n.
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2.3 Two frequencies, one parameter

Obviously, for the matrix in (2.11) to have rank n the number of parameters has to
be at least n − 1, thus the assumption d ≥ n − 1 in the previous subsection. When
n = 2, that is, when quasiperiodic solutions with two frequencies are sought, just one
parameter is sufficient, which has some advantages. In this subsection, we prove a
few results, including Theorem 1.3, specific to the case n = 2.

For now, we continue to assume the hypotheses from the first paragraph of the
previous section (cp. (2.6), (2.7)), taking n = 2 and d = 1. Also, we assume condition
(G0), define the eigenvalues µ1(s), µ2(s) as in (2.10), and take ωj(s) :=

√
−µj(s) (j =

1, 2).
Consider first of all the determinant of the 2× 2 matrix M(s) in (2.11):

detM(s) = det

[
ω′1(s) ω1(s)
ω′2(s) ω2(s)

]
= ω1(s)ω2(s)

(
ω′1(s)

ω1(s)
− ω′2(s)

ω2(s)

)
= ω1(s)ω2(s)

(
log

ω1(s)

ω2(s)

)′
=

√
µ1(s)µ2(s)

2

(
log

µ1(s)

µ2(s)

)′
.

(2.27)

In view of this expression, Theorem 2.2 for n = 2 implies the following result.

Theorem 2.7. Assume that the hypotheses of Theorem 2.2 are satisfied with n =
2, d = 1, and with (ND0) replaced by the following condition: the function s 7→
µ1(s)/µ2(s) is not constant on any interval (−ε, ε) with ε ∈ (0, δ). Then there is a
sequence s̄j → 0 such that for j = 1, 2, . . . the following holds. Equation (2.8) with
s = s̄j has a positive solution u satisfying (1.3) such that u(x, y) is radially symmetric
in x and quasiperiodic in y (with 2 frequencies).

Proof. By (2.27), the assumption on the function s 7→ µ1(s)/µ2(s) implies that there
is a sequence sj → 0 such that detM(sj) 6= 0, that is, M(sj) has rank 2. The
conclusion of the theorem now follows from Theorem 2.2 and Remarks 2.4(i),(ii): we
choose a sequence δj → 0, with 0 < δj < δ and apply Theorem 2.2 with f(u; sj + s),
δj in place of f(u; s), δ, respectively. We then take s̄j to be any number s ∈ Bδj as
in the conclusion of Theorem 2.2.

Using the previous theorem, we now prove Theorems 1.3, 1.4, and related local
results for C` nonlinearities.

We consider equations (1.8), (1.10) with f(u;λ) satisfying (1.9). Assume for now
that f(u;λ) is of class C` with ` > N/2+15 (as in (2.6)), and the following assumption
(GP), copied here from the introduction, is satisfied:

(GP) There are positive constants λ0 < λ̂0 such that for each λ ∈ [λ0, λ̂0) equation
(1.10) has a ground state φλ such that the following conditions are satisfied:
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(c1) The map λ 7→ φλ : [λ0, λ̂0)→ L∞(RN) is continuous;

(c2) for each λ ∈ (λ0, λ̂0), φ
λ is a nondegenerate ground state with Morse index 2;

(c3) φλ0 is degenerate ground state with Morse index 1.

Theorem 2.8. Under the above assumptions, there is a sequence λ̄j in (λ0, λ̂0) such
that λ̄j → λ0 and for j = 1, 2, . . . the following holds. Equation (1.8) with λ = λ̄j has
a positive solution u satisfying (1.3) such that u(x, y) is radially symmetric in x and
quasiperiodic in y.

Proof. Denote by µ̄1(λ), µ̄2(λ), with µ̄1(λ) < µ̄2(λ), the two nonpositive eigenvalues
of the Schrödinger operator −∆ − fu(φλ(x);λ) (acting on L2

rad). By (c2) and (c3),

µ̄2(λ) < 0 for λ ∈ (λ0, λ̂0) and µ̄2(λ) = 0. By (c1), µ̄1(λ), µ̄2(λ) are continuous as
functions of λ, on the interval [λ0, λ̂0). Moreover, there is a constant γ < 0 such that
µ̄1(λ) ≤ γ < 0.

In view of the nondegeneracy of the ground states in (GP) and the continuity in
(c1), the implicit function theorem implies (cp. Lemma 2.3) that the map in (c1) is
of class C` on the open interval (λ0, λ̂0), which in turn implies that the map λ 7→
fu(φ

λ(·);λ) ∈ Cb(RN) is of class C`−1. It then follows that the functions µ̄1(λ),
µ̄2(λ) are of class C`−1 on (λ0, λ̂0). These functions being continuous on [λ0, λ̂0), the
relations µ̄1(λ) < γ, µ̄2(λ0) = 0, and µ̄2(λ) < 0 for λ ∈ (λ0, λ̂0) clearly imply that
there is a sequence λj in (λ0, λ̂0) such that λj → λ0 and µ̄1(λ)/µ̄2(λ) has a nonzero
derivative at λ = λj, for j = 1, 2, . . . . Hence, for each j, Theorem 2.7 applies to the
equation

∆u+ uyy + f(u;λj + s) = 0, (x, y) ∈ RN × R, (2.28)

s ≈ 0. Indeed, the eigenvalues µ1(s), µ2(s) of−∆−fu(φλj+s(x);λj+s) clearly coincide
with µ̄1(λj + s), µ̄2(λj + s), so the hypotheses of Theorem 2.7 are satisfied. Denote
by s̄jk, k = 1, 2, . . . , the sequence from Theorem 2.7. Passing to a subsequence, we
may assume that s̄jj → 0 as j → ∞. Choosing the resulting approximating values

λ̄j := λj + s̄jj so that |λj − λ̄j| → 0, we obtain a sequence λ̄j for which the conclusion
of the theorem holds.

Note that the only use of condition (c3) in the previous proof was to guarantee
the existence of a sequence λj in (λ0, λ̂0) such that λj → λ0 and µ̄1(λ)/µ̄2(λ) has a
nonzero derivative at λ = λj, for j = 1, 2, . . . . Obviously, this is also guaranteed if
instead of (c3) one assumes the following condition:

(c3)” For any ε ∈ (0, λ̂0 − λ0) the function λ 7→ µ̄1(λ)/µ̄2(λ) is nonconstant on the
interval (λ0, λ0 + ε).

Thus, we obtain the following local version of Theorem 1.4:

Theorem 2.9. Theorem 2.8 remains valid if condition (c3) in (GP) is replaced by
condition (c3)”.
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We conclude this section with the proof of Theorems 1.3, 1.4.

Proof of Theorems 1.3, 1.4. We use similar arguments as in the proof of Theorem 2.8
combined with the analyticity of f(u;λ).

Under the analyticity assumption, the functions µ̄1(λ), µ̄2(λ) are analytic on
(λ0, λ̂0). As in the proof of Theorem 2.8, the assumption (GP) of Theorem 1.3 im-
plies that the function µ̄1(λ)/µ̄2(λ) is not constant on (λ0, λ̂0); in Theorem 1.4 this is
assumed directly in condition (c3)’. In either case, by the analyticity, µ̄1(λ)/µ̄2(λ) is
not constant on any interval. Therefore, we can again apply Theorem 2.7 to equation
(2.28), only this time we can take arbitrary λj ∈ (λ0, λ̂0). This implies that there

indeed exists a dense subset Λ ⊂ (λ0, λ̂0) as in the conclusion of Theorem 1.3.

3 Proof of Theorem 1.2

Assuming that f : R → R satisfies the hypotheses of Theorem 1.2, we prove the
conclusion of the theorem in two steps carried out in the following two subsections.
First, we show that f can be perturbed slightly (with respect to the C1 norm) in such
a way that after the perturbation condition (G) is still satisfied, with the same n, and
in addition the ground state in (G) is nondegenerate. After a further perturbation,
maintaining the previous properties, we can also assume that f is of class C∞. In the
second step, we put f in an n-parameter family of functions f(u) + s1g1(u) + · · · +
sngn(u), s = (s1, . . . , sn) ≈ 0. We show that smooth functions g1, . . . , gn can always
be chosen such that the matrix M(0) defined as in Subsection 2.2 has rank n. This
will make Theorem 2.2 applicable and the desired conclusion will follow.

We remark that in our approach, the two nondegeneracy properties—the nonde-
generacy of the ground state in condition (G) and the full-rank property of the matrix
in (ND0)—are obtained by a direct perturbation argument. An alternative approach
could be to prove that such properties are in some sense generic for functions f in
the considered class. Typically, the parametric Smale-Sard theorem, or transversality
theorem, is used in such an approach (see, for example, [12, Section 4], for an applica-
tion of transversality in the verification of a nondegeneracy condition in a bifurcation
problem involving elliptic equations with a similar structure). The question whether
the genericity of the two nondegeneracy properties can be established in our setting
could be of independent interest, but we have not pursued it. One of the reasons we
decided to take the direct perturbation route is that not only did we need to achieve
that an approximation f̃ of a given function f has nondegenerate ground states, we
had to make sure that one of those ground states has the same Morse index as φ, the
ground state given in condition (G). This would not be guaranteed by the genericity
result.
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3.1 Nondegeneracy of the ground state

Throughout this subsection we assume that f : R → R is a C1 function satisfying
conditions (1.2) and (G) for some n ≥ 2. We also recall the notation introduced in
Section 1: ‖g‖1 = sup{|g(u)|, |g′(u)| : u ∈ R}.

Lemma 3.1. For any ε > 0 there is a C1 function f̃ such that f̃(0) = 0 > f̃ ′(0),
‖f−f̃‖1 < ε, and condition (G) is satisfied with f replaced by f̃ and with the additional
property that the ground state in (G) is nondegenerate.

We prepare the proof of this lemma by some preliminary observations. Let φ be
a ground state of (1.4), as in (G). In spherical coordinates, the (radial) function φ
satisfies the equation

φrr +
N − 1

r
φr + f(φ) = 0, r > 0. (3.1)

Also, φr(0) = 0, φr(r) < 0 for r > 0, and φ(r), φr(r) decay exponentially to 0 as
r →∞. Differentiating (3.1), we see that W := −φr satisfies

wrr +
N − 1

r
wr +

(
a(r)− N − 1

r2

)
w = 0, r > 0, (3.2)

with
a(r) := f ′(φ(r)). (3.3)

Further, by the above properties of φ, we have W (0) = 0, W (r) = −φr(r) > 0 for
r > 0, and W (r) decays exponentially to 0 as r →∞. The last property and equation
(3.2) imply that Wr decays exponentially as well. Note that limr→∞ a(r) = f ′(0) < 0.
We will keep the notation a andW for the functions introduced above in the remainder
of this subsection.

The function W can viewed as an eigenfunction (corresponding to the eigenvalue
ν = 0) of the following (singular) eigenvalue problem in the radial variable r:

wrr +
N − 1

r
wr +

(
a(r)− N − 1

r2
+ ν

)
w = 0, r > 0, (3.4)

w(0) = 0, w(r)→ 0 as r →∞. (3.5)

In the variable x ∈ RN , W also represents an eigenfunction of a (regular) eigenvalue
problem. Namely, the function V (x) := W (|x|)x1/|x| = −φx1(x) is a positive eigen-
function of the operator −∆ − a(r) on the half-space RN

+ := {x ∈ RN : x1 > 0}
with Dirichlet boundary condition on ∂RN

+ ; equivalently, V (x) can be viewed as an
eigenfunction of the operator −∆ − a(r) considered on the closed subspace L2

o(RN)
of L2(RN) consisting of all functions odd in x1 with domain H2

o (RN) := H2(RN) ∩
L2
o(RN). We also define v(x) := w(|x|)x1/|x| where w is a constant multiple of W

such that v is positive on the half space RN
+ and v is normalized in the L2(RN)-norm.
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The functions v and w defined this way are assumed to be fixed in the rest of this
subsection.

Now, the ground state φ is degenerate if and only if 0 is also an eigenvalue of
−∆− a(r) in the radial space. The main idea of the proof of Lemma 3.1 consists in
the following. We first find a perturbation ã of the function a such that the perturbed
operator −∆ − ã(r) still has 0 as an eigenvalue for the operator on L2

o(RN), but 0
is no longer an eigenvalue in the radial space. We then use a reverse construction,
finding a nonlinearity f̃ and a ground state φ̃ of

∆u+ f̃(u) = 0, x ∈ RN , (3.6)

such that ã(r) = f̃ ′(φ̃(r)). The resulting function f̃ will have all the desired properties
if ã is close enough to a.

The reverse construction is described in the following results of [34].

Lemma 3.2. Assume the following hypotheses.

(a) ã(r) is a continuous function on [0,∞) which converges to a negative limit
as r →∞.

(b) w̃ ∈ C1([0,∞)) is a positive solution of (3.2), with a replaced by ã, which
satisfies the following conditions:

(i) w̃(0) = 0, w̃r(0) > 0,

(ii) eβrw̃(r)→ 0, eβrw̃r(r)→ 0 as r →∞ for some β > 0.

Then

φ̃(r) :=

∫ ∞
r

w̃(t) dt, r = |x| ≥ 0, (3.7)

defines a ground state of (3.6) for a C1 function f̃ that satisfies (1.2) and for which

f̃ ′(φ̃(r)) = ã(r) (r ≥ 0). (3.8)

On the interval [0, φ̃(0)], f̃ is given explicitly by

f̃(z) =

∫ z

0

ã(ξ(τ))dτ, (3.9)

where ξ : [0,∞)→ (0, φ̃(0)] is the inverse of φ̃.

Of course, we need to guarantee that the function f̃ resulting from the reverse
construction is a small perturbation of f if ã(r) is a small perturbation of a(r) =
f ′(φ(r)). This is the purpose of the following lemma.
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Lemma 3.3. Given any ε > 0 there is δ > 0 such that the following statement is
valid. Let ã be any function satisfying the hypotheses of Lemma 3.2 together with
the relation ‖ã − a‖L∞(0,∞) < δ, and let the positive solution w̃ in Lemma 3.2(b) be
normalized so that ∫ ∞

0

w̃(r) dr = φ(0). (3.10)

Then, with φ̃ and f̃ as in (3.7), (3.9), the function f̃ can be extended from [0, φ̃(0)]
to R in such a way that ‖f − f̃‖1 < ε.

In the proof of Lemma 3.3, and then again in the proof of Lemma 3.4, we will use
some perturbation results from [37, Section 4], which we now recall.

As noted above, ν = 0 is an eigenvalue of the operator −∆ − a(r) considered
on L2

o(RN) with domain H2
o (RN). The corresponding eigenfunction −φx1 is positive

in RN
+ , which means that ν = 0 is the principal eigenvalue. Here and below, the

principal eigenvalue refers to an eigenvalue below the essential spectrum admitting an
eigenfunction which is positive in the half space RN

+ . It is well known that, if it exists,
such an eigenvalue is unique and simple (also, being below the essential spectrum,
it is an isolated eigenvalue). Therefore, if U is a sufficiently small neighborhood of
a in Crad(RN), then for each ã ∈ U the principal eigenvalue ν(ã) of the operator
−∆− ã(r) on L2

o(RN) (with domain H2
o (RN)) is well defined, and the corresponding

eigenfunction—referred to as the principal eigenfunction—is defined uniquely up to
a scalar multiple. Denoting by v(ã) the principal eigenfunction which is normalized
in the L2(RN)-norm and positive in RN

+ , the functions

ã 7→ ν(ã) : U → R, ã 7→ v(ã) : U → H2
o (RN)

are both smooth. Combining this result with elliptic regularity, we obtain that, for
any p ≥ 2, v(ã) depends continuously (and smoothly) on ã ∈ U as a W 2,p(RN)-valued
function, and therefore also as a C1

b(RN)-valued function.
Since we are dealing with radial potentials, the above results can be interpreted

in terms of the eigenvalue problem

wrr +
N − 1

r
wr +

(
ã(r)− N − 1

r2
+ ν

)
w = 0, r > 0, (3.11)

w(0) = 0, w(r)→ 0 as r →∞. (3.12)

Indeed, using separation of variables in spherical coordinates on the eigenvalue prob-
lem ∆v + ã(|x|)v + νv = 0 in RN

+ , one shows that the principal eigenfunction v(ã)
(positive and normalized in the L2(RN)-norm, as above) can be written as

v(ã)(x) =
x1
r
w(ã)(r) (x = (x1, . . . , xN) ∈ RN , r = |x| > 0), (3.13)

where w(ã) satisfies (3.11), (3.12) with ν = ν(ã). Obviously, the function w(ã) in
(3.13) is determined uniquely by v(ã).
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On the other hand, if we are given a positive solution w̃ of (3.11), (3.12) with ã
close enough to a and ν close enough to 0, then necessarily ν = ν(ã) and w̃ is a scalar
multiple of the function w(ã) defined by w(ã)(r) = v(ã)(r, 0, . . . , 0) (so that relation
(3.13) holds). To verify this statement, note that suitable proximity relations ã ≈ a
and ν ≈ 0 in particular guarantee that ã + ν is bounded from above by a negative
constant on an interval [R,∞). This implies that the solution of (3.11), (3.12) is
unique up to a scalar multiple and it decays exponentially to 0 as r → ∞ together
with its derivative w̃′. The function v(x) = w̃(|x|)x1/|x| then gives an eigenfunction
of the operator −∆ − ã(r) on L2

o(RN) with the eigenvalue ν and the positivity of w̃
implies the relations ν = ν(ã) and w̃ = cw(ã) for some c > 0.

Below, for ã ≈ a (the function in (3.3)), the principal eigenvalue of (3.11), (3.12)
refers to the eigenvalue ν(ã). Also, the aforementioned fixed functions v and w satisfy
v = v(a), w = w(a) = −φr.

Proof of Lemma 3.3. Note that the normalization (3.10) implies that φ̃(0) = φ(0). It
is clearly sufficient to prove that |f − f̃ |, |f ′ − f̃ ′| are uniformly small on the interval
[0, φ(0)]; an extension of f̃ such that |f − f̃ |, |f ′ − f̃ ′| are uniformly small on R is
then easy to construct.

To estimate |f ′(u) − f̃ ′(u)| for u ∈ [0, φ(0)], we can instead estimate |f ′(φ̃(r)) −
f̃ ′(φ̃(r))| for r ∈ [0,∞).

First, we estimate ‖φ − φ̃‖L∞(0,∞). By assumption, the function w̃ is a positive
solution of (3.11), (3.12) with ν = 0. As noted above, this means, if ‖ã− a‖L∞(0,∞) is
small enough, that (ν(ã) = 0 and) w̃ = cw(ã), where w(ã) is the function introduced
in (3.13) and the constant factor c is determined from the normalization (3.10). By the
continuous dependence of w(ã) on ã, ‖w(ã)−w‖L∞(0,∞) is small if ‖ã−a‖L∞(0,∞) < δ
with a sufficiently small δ. In addition, we have the following universal estimate

w(ã)(r) ≤ e−θrw(ã)(R) (r ≥ R) (3.14)

if δ > 0 is small enough. Here θ and R are positive constants independent of ã (they
depend on δ). This follows from an easy computation which shows that for some
θ, R > 0 the function e−θr is a supersolution of equation (3.11) on [R,∞), provided
‖ã − a‖L∞(0,∞) is small enough and ν is close enough to 0. Using (3.14) and the
smallness of ‖w(ã)−w‖L∞(0,∞) in (3.7), one shows easily that for any ε1 > 0 there is

δ > 0 such that ‖ã− a‖L∞(0,∞) < δ implies ‖φ− φ̃‖L∞(0,∞) < ε1.
Now,

|f ′(φ̃(r))− f̃ ′(φ̃(r))| ≤ |f ′(φ̃(r))− f ′(φ(r))|+ |f ′(φ(r))− f̃ ′(φ̃(r))|
= |f ′(φ̃(r))− f ′(φ(r))|+ |a(r)− ã(r)|.

By the uniform continuity of f ′ on [0, φ(0)] = [0, φ̃(0)], the last sum can be made
arbitrarily small by choosing δ > 0 small enough.
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We have thus obtained the desired smallness estimate on |f ′(u) − f̃ ′(u)|. The
smallness of |f(u)− f̃(u)| now follows from the mean value theorem and the relations
f(0) = f̃(0) = 0.

We now construct a suitable approximation of the function a(r) = f ′(φ(r)) in the
case that the ground state φ is degenerate.

Lemma 3.4. Assume that the ground state φ is degenerate. Then for any δ > 0
there is a function ã satisfying the hypotheses of Lemma 3.2 together with the relation
‖ã− a‖L∞(0,∞) < δ such that the Schrödinger operator −∆− ã(r) acting on L2

rad(RN)
(with domain H2

rad(RN)) has exactly n negative eigenvalues and 0 is not its eigenvalue.

Proof. Since φ is a degenerate ground state of Morse index n, the operator −∆−a(r)
acting on L2

rad(RN) has exactly n negative eigenvalues and 0 is its (n+1)th eigenvalue.
Let ψn+1 be an eigenfunction corresponding to the eigenvalue 0. Thus, in the radial
variable, ψn+1 satisfies the equation

ψrr +
N − 1

r
ψr + a(r)ψ = 0, r > 0. (3.15)

Comparing this equation to (3.2), it is clear that the functions ψn+1, w—and thus
also the functions ψ2

n+1, w
2—are linearly independent over any interval in (0,∞).

Therefore, we can choose a smooth function b(r) on (0,∞) with compact support
such that ∫ ∞

0

b(r)ψ2
n+1(r)r

N−1 dr < 0,

∫ ∞
0

b(r)w2(r)rN−1 dr = 0. (3.16)

Fixing such a function b, we take a(r) + τb(r) as a perturbed potential. First con-
sider the operator −∆− a(r)− τb(r) acting on L2

rad(RN). By standard perturbation
results, there is ε0 > 0 such that for all sufficiently small τ the spectrum of this opera-
tor in the interval (−∞, ε0) consists of n+ 1 eigenvalues µ1(τ) < µ2(τ) < . . . µn+1(τ),
these eigenvalues depend smoothly on τ , and µn+1(0) = 0. The derivative µ′n+1(0) is
computed by differentiating the equation for the corresponding eigenfunction, simi-
larly as the derivatives of the functions µj(s) were computed in the proof of Propo-
sition 2.5. We obtain (cp. [37, Lemma 4.5]) that, up to a positive scalar factor,
−µ′n+1(0) is given by the first integral in (3.16).

Next consider the principal eigenvalue ν(τ) := ν(a + τb) of (3.11), (3.12) with
ã = a+ τb. We have ν(0) = 0 and, as computed in [37, Lemma 4.5], −ν ′(0) is given,
up to a positive scalar factor, by the second integral in (3.16).

Thus, conditions (3.16) give µ′n+1(0) > 0 = ν ′(0). Therefore, for all sufficiently
small τ > 0 we have µn+1(τ) > ν(τ).

Take now the shifted potential ã(r) := a(r) + τb(r)− ν(τ). Clearly, the principal
eigenvalue of (3.11), (3.12) is 0. The corresponding positive solution w(ã)(r) of (3.11),
(3.12) satisfies conditions (b) of Lemma 3.2. For small τ , condition (a) of Lemma 3.2
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is obviously satisfied as well. Further, for τ small enough the first n + 1 eigenvalues
of the operator −∆− ã(r) (on L2

rad) are

µ1(τ)− ν(τ) < · · · < µn(τ)− ν(τ) < µn+1(τ)− ν(τ)

and they exhaust the spectrum of this operator in (−∞, ε0/2). Since µn(0) <
µn+1(0) = 0 and ν(0) = 0, for sufficiently small τ > 0 we have µn(τ) − ν(τ) <
0 < µn+1(τ)− ν(τ). So ã has all the properties required in the conclusion of Lemma
3.4, and, of course, ã is close (in L∞-norm) to a for τ ≈ 0. The proof is complete.

Proof of Lemma 3.1. There is nothing to prove if the ground state φ itself is nonde-
generate, simply take f̃ ≡ f . If φ is degenerate, we take a function ã as in Lemma 3.4
to construct f̃ as in Lemma 3.2, and we extend it to [0,∞) using Lemma 3.3. This
function f̃ satisfies all the given requirements.

3.2 Completion of the proof

Assume that f : R→ R is a given C1 function satisfying conditions (1.2) and (G) for
some n ≥ 2. We are seeking a perturbation of f satisfying the conclusion of Theorem
1.2.

Due to Lemma 3.1, perturbing f slightly we may assume without loss of generality
that the ground state in (G) is nondegenerate. By the implicit function theorem,
further small (in the C1-norm) perturbations of f will not alter condition (G) or the
nondegeneracy property. Thus, again without loss of generality, we may assume that
f also satisfies the following conditions:

f ∈ C∞(R) and for some α > 0, δ0 > 0 one has f(u) = −αu (|u| < δ0). (3.17)

A function f with all the above properties is assumed to be fixed for the remainder
of this subsection.

We will find a perturbation f̃ of this function f , as needed for the proof of Theorem
1.2, among functions of the form

f(u) +
n∑
i=1

sigi(u), (3.18)

where the gi, to be specified below, are C∞ functions on R vanishing at u = 0 and
s = (s1, . . . , sn) ≈ 0 ∈ Rn. We take the nonlinearity (3.18) in equations (2.8), (2.9)
in lieu of f(u; s). This clearly fits the framework of Subsection 2.2 with d = n. Our
goal is to apply Theorem 2.2, hence we want to choose the functions gi in such a way
that condition (ND0) holds. We will work with the sufficient condition for (ND0) as
given in Remark 2.6. In the present case—with the nonlinearity f(u; s) in (2.8), (2.9)
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replaced by (3.18)—the sufficient condition requires that the n × n matrix with the
following entries is nonsingular:∫ ∞

0

(
f ′′(φ(r))φ̇i(r) + g′i(φ(r))

)
(ψj(r))

2rN−1 dr, i, j = 1, . . . , n. (3.19)

Here, φ is the ground state as in (Gs), ψ1, . . . , ψn are the normalized eigenfunctions
of the operator −∆ − f ′(φ(x)) (acting on L2

rad(RN)) associated with its negative
eigenvalues µ1 < · · · < µn, and, for i = 1, . . . , n, φ̇i ∈ H2

rad(RN) is the unique solution
of the equation

∆φ̇i + f ′(φ(x))φ̇i + gi(φ(x)) = 0 (3.20)

(cp. Proposition 2.5). Functions gi with the all desired properties are provided by the
following lemma.

Lemma 3.5. There exist functions gi ∈ C∞(R), i = 1, . . . , n, each with compact
support contained in (0, φ(0)), such that the n× n matrix with entries (3.19) is non-
singular.

Before proving this lemma, we will use it to prove Theorem 1.2.

Proof of Theorem 1.2. Taking functions gi as in Lemma 3.5, Theorem 2.2 applies to
the nonlinearity (3.18). This implies (cp. Remark 2.4(i)), that we can find arbitrarily
small s1, . . . , sn such that the function

f̃(u) = f(u) +
n∑
i=1

sigi(u)

satisfies the conclusion of Theorem 1.2, save possibly for the smallness (in the C1

norm) of f−f̃ . Since the gi are compactly supported, we can make ‖f−f̃‖1 arbitrarily
small by taking s1, . . . , sn smaller if necessary. The theorem is thus proved.

The rest of this section is devoted to the proof of Lemma 3.5. We first reformulate
the desired properties of the functions gi in terms of the following functions on (0,∞):

bi(r) := gi(φ(r)) (i = 1, . . . , n). (3.21)

Note that since φ′(r) < 0, the functions gi can be determined from (3.21) if bi are
defined first, and that is how we will proceed in the proof.

Proof of Lemma 3.5. Suppose for a while that b1, . . . , bn are smooth, compactly sup-
ported functions on (0,∞) such that the following conditions are satisfied:

(B1) For i = 1, . . . , n, denoting by φ̄i ∈ H2
rad(RN) the unique solution of the equation

∆φ̄i + f ′(φ(x))φ̄i + bi(|x|) = 0, (3.22)

the supports of the functions φ̄i(r) and f ′′(φ̄(r)) (both viewed as functions of r ∈
(0,∞)) are disjoint.
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(B2) The n× n matrix with entries∫ ∞
0

b′i(r)

φr(r)
(ψj(r))

2rN−1 dr, i, j = 1, . . . , n, (3.23)

is nonsingular.

Then there are uniquely defined smooth functions gi, with compact support in (0, φ0(0)),
satisfying relations (3.21), namely gi(u) = bi(ξ(u)), where ξ : (0, φ(0)]→ R is the in-
verse function to φ. For such functions gi,

g′i(φ(r)) =
b′i(r)

φr(r)
,

and, in view of (B1), the integrals (3.19) coincide with (3.23). Therefore, the functions
gi have all the properties stated in Lemma 3.5.

It remains to prove the existence of smooth functions bi on (0,∞) with compact
supports such that conditions (B1), (B2) are satisfied.

Fix two numbers r1 > r0 > 0, where r0 is sufficiently large so that 0 < φ(r0) < δ0
with δ0 as in (3.17) (recall that φ(r)→ 0 as r →∞). Note that

f ′(φ(r)) = −α, f ′′(φ(r)) = 0 (r ≥ r0). (3.24)

The functions b̃i will be chosen such that their supports are contained in (r0, r1).
Let us first reformulate condition (B1) in a more explicit way. The homogeneous

equation corresponding to equation (3.22) reads, in the radial variable, as follows

vrr +
N − 1

r
vr + f ′(φ(r))v = 0, r > 0. (3.25)

We choose two linearly independent solutions ϕ(r), ψ(r) of this equation such that
ψ(r) → 0, |ϕ(r)| → ∞ as r → ∞. The existence of such solutions follows from the
behavior of f ′(φ(r)). In fact, by (3.24), f ′(φ(r)) = −α for r ∈ (r0,∞), and therefore
we can choose ψ(r) to coincide on (r0,∞) with the function r1−N/2KN/2−1(r

√
α),

where KN/2−1 is the modified Bessel function of the second kind. This function has
the following asymptotics as r →∞:

KN/2−1(r
√
α) = Ce−r

√
αr−1/2(1 +O(1/r)) (3.26)

with some positive constant C. For ϕ(r) we choose a linearly independent solution
with

rN−10 (ψ(r0)ϕ
′(r0)− ψ′(r0)ϕ(r0)) = 1.

Note that this implies that the Wronskian of the two solutions satisfies

rN−1(ψ(r)ϕ′(r)− ψ′(r)ϕ(r)) = 1 (r > 0)
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(as one can easily verify by differentiation).
Consider now the solution vi of the nonhomogeneous equation

vrr +
N − 1

r
vr + f ′(φ(r))v = −bi(r), r > 0, (3.27)

satisfying the initial conditions vi(r0) = v′i(r0) = 0. By the variation of constants
formula, this solution is given by

vi(r) = ψ(r)

∫ r

r0

ηN−1bi(η)ϕ(η) dη − ϕ(r)

∫ r

r0

ηN−1bi(η)ψ(η) dη. (3.28)

If ∫ r1

r0

ηN−1bi(η)ψ(η) dη = 0 (3.29)

and the support of bi is contained in (r0, r1), then on the interval (r1,∞)

vi(r) = ψ(r)

∫ r1

r0

ηN−1bi(η)ϕ(η) dη (3.30)

and thus vi(r) decays to zero exponentially due to the decay of ψ; and on the interval
(0, r0], where bi ≡ 0, the initial conditions imply that vi ≡ 0. This means that, first, vi
coincides with the unique solution φ̄i ∈ H2

rad(RN) of (3.22); and, second, this solution
has its support disjoint from the support of the function f ′′(φ(r)), as required in (B1).

So conditions (3.29), i = 1, . . . , n, are sufficient for (B1); we take these conditions
as requirements on the functions bi to be met together with condition (B2). First, we
use integration by parts in (3.29), so both (B2) and (3.29) are stated in terms of the
derivatives b′i: ∫ r1

r0

b′i(r)

(∫ r

r0

ηN−1ψ(η) dη

)
dr = 0. (3.31)

We are now ready to define the functions bi. It is more convenient to first choose
the derivatives of these functions. We thus need to choose smooth functions b̃i with
supports in (r0, r1) such that conditions (3.31) and (B2) hold with b′i replaced by b̃i
and, in addition, ∫ r1

r0

b̃i(r) dr = 0 (i = 1, . . . , n). (3.32)

(Note that this last condition guarantees that b̃i = b′i for a smooth function bi with
compact support in (r0, r1).) Let us explain why such a choice of functions b̃i is
possible. We will verify shortly that the functions

1;

∫ r

r0

ηN−1ψ(η) dη;
(ψj(r))

2

φr(r)
rN−1, j = 1, . . . , n; (3.33)
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are linearly independent over the interval [r0, r1]. Therefore, we can choose functionals
on L2(r0, r1), represented by functions b̂i ∈ L2(r0, r1), i = 1, . . . , n (which we extend
as 0 outside (r0, r1)), taking the following values at the functions in (3.33):∫ ∞

0

b̂i(r)
(ψj(r))

2

φr(r)
rN−1 dr = δij (i, j = 1, . . . , n), (3.34)∫ r1

r0

b̂i(r)

(∫ r

r0

ηN−1ψ(η) dη

)
dr =

∫ r1

r0

b̃i(r) dr = 0, (3.35)

δij being the Kronecker symbol. Relations (3.34) mean, in other words, that the
matrix with entries ∫ ∞

0

b̂i(r)

φr(r)
(ψj(r))

2rN−1 dr, i, j = 1, . . . , n,

is actually the identity matrix. By approximations, one now easily shows the existence
of smooth functions b̃i, i = 1, . . . , n, with supports in (r0, r1) which are still L2(r0, r1)-
orthogonal to the first two functions in (3.33) and such that condition (B2) holds with
b′i replaced by b̃i. Such functions b̃i have all the needed properties.

To show that the functions (3.33) are linearly independent, first observe that by
(3.24) the equations satisfied by the eigenfunctions ψj, j = 1, ..., n, reduce on (r0,∞)
to

ψ′′j +
N − 1

r
ψ′ + (µj − α)ψ = 0. (3.36)

Thus, similarly as the function ψ above (see the paragraph containing (3.25)), the
function ψj coincides on (r0,∞) with a nonzero scalar multiple of the function

r1−N/2KN/2−1
(
r
√
−µj + α

)
.

The function φr is a negative decaying solution of equation (3.2) with a(r) = f ′(φ(r)).
On (r0,∞) this equation coincides with the equation

wrr +
N − 1

r
wr +

(
−α− N − 1

r2

)
w = 0.

Therefore, on (r0,∞), φr is a nonzero scalar multiple of the function r1−N/2KN/2(r
√
α).

The modified Bessel function KN/2 has the same asymptotics (3.26) as KN/2−1.
It follows that the functions (3.33) are analytic on (r0,∞) and, except for the

constant function 1, they decay to 0 exponentially with different exponential rates.
Using this, it is easy to show that these functions are linearly independent over
(r0,∞), hence, by analyticity, over any subinterval of (r0,∞). Indeed, take a linear
combination of the functions in (3.33) and assume it is identical to zero. Then clearly
the coefficient of the function with the slowest decay must be zero. Applying this
reasoning inductively, each coefficient of the linear combination can be shown to be
equal to zero. This implies the linear independence of the functions (3.33).

29



References

[1] T. Akahori, S. Ibrahim, N. Ikoma, H. Kikuchi, and H. Nawa, Uniqueness and
nondegeneracy of ground states to nonlinear scalar field equations involving the
Sobolev critical exponent in their nonlinearities for high frequencies, Calc. Var.
Partial Differential Equations 58 (2019), Paper No. 120.

[2] F. Alessio and P. Montecchiari, An energy constrained method for the existence
of layered type solutions of NLS equations, Ann. Inst. H. Poincaré Anal. Non
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[35] P. Poláčik and D. A. Valdebenito, The existence of partially localized periodic-
quasiperiodic solutions and related KAM-type results for elliptic equations on the
entire space, J. Dynam. Differential Equations, (to appear).

[36] , Existence of quasiperiodic solutions of elliptic equations on RN+1 via
center manifold and KAM theorems, J. Differential Equations 262 (2017), 6109–
6164.

[37] , Existence of partially localized quasiperiodic solutions of homogeneous
elliptic equations on RN+1, Ann. Scuola Norm. Sup. Pisa Cl. Sci. XXI (2020),
771-800.

[38] P. Pucci and J. Serrin, Uniqueness of ground states for quasilinear elliptic oper-
ators, Indiana Univ. Math. J. 47 (1998), 501–528.

[39] P. H. Rabinowitz, On a class of reversible elliptic systems, Netw. Heterog. Media
7 (2012), 927–939.

[40] M. Reed and B. Simon, Methods of mathematical physics, vol. IV, Academic
Press, New York, 1978.

[41] S. Santra and J. Wei, New entire positive solution for the nonlinear Schrödinger
equation: coexistence of fronts and bumps, Amer. J. Math. 135 (2013), 443–491.

32



[42] J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equa-
tions, Indiana Univ. Math. J. 49 (2000), 897–923.

[43] J. Scheurle, Quasiperiodic solutions of a semilinear equation in a two-dimensional
strip, Dynamical problems in mathematical physics (Oberwolfach, 1982), Meth-
oden Verfahren Math. Phys., vol. 26, Peter Lang, Frankfurt am Main, 1983,
pp. 201–223.

33


