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Abstract

We consider the equation

∆u+ uyy + f(u) = 0, (x, y) ∈ RN × R, (1)

where N ≥ 2 and f is a smooth function satisfying f(0) = 0 and f ′(0) < 0. We show
that for suitable nonlinearities f of this form equation (1) possesses uncountably many
positive solutions which are quasiperiodic in y, radially symmetric in x, and decaying
as |x| → ∞ uniformly in y. Our method is based on center manifold and KAM-type
results and involves analysis of solutions of (1) in a vicinity of a y-independent solution
u∗(x)—a ground state of the equation ∆u+ f(u) = 0 on RN .
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1 Introduction

In this article, we consider the semilinear elliptic equation

∆u+ uyy + f(u) = 0, (x, y) ∈ RN × R, (1.1)

where N ≥ 2, ∆ is the Laplace operator in x, and f : R→ R is a smooth function satisfying

f(0) = 0, f ′(0) < 0. (1.2)

We are mainly concerned with positive solutions of this equation which decay to 0 in the
x-variables uniformly in y:

lim
|x|→∞

sup
y∈R

u(x, y) = 0. (1.3)

Equations of the above form arise in a number of problems. For example, one arrives at
such equations when looking for solitary waves or stationary states of various nonlinear evo-
lution problems including the Klein-Gordon, Schrödinger, and nonlinear heat equations (see
[4] for more details). Depending on the motivation, one may want to study solutions with
additional properties, such as nonnegative solutions or finite-energy solutions. Nonnegative
solutions of (1.1) are the only relevant steady states for the dynamics of the solutions of
the corresponding nonlinear heat equation ut = ∆u+ uyy + f(u) with positive initial data.
Indeed, by the comparison principle, these solutions stay positive at all times, as long as
they exist.

Best understood among positive solutions of (1.1) are the solutions which are (fully)
localized in the sense that they decay to 0 in all variables, including y. A classical result
of [18] says that such solutions are radially symmetric about some origin in RN+1. When
the decay condition is removed, the structure of solutions becomes very complicated and
their general classification is probably out of reach. Several authors have exposed possible
complexities in the solutions, such as the existence of infinitely many bumps forming along
some directions [28], saddle-shaped solutions [6, 12] and more general multiple-end solutions
[14, 15, 25], as well as positive solutions having both fronts (transitions) and infinitely many
bumps [41]. There is also extensive literature on solutions which are periodic in the first N
variables and in the remaining variable they exhibit one or multiple transitions (homoclinic
or heteroclinic behavior) between periodic solutions (see, for example, [31, 39] and references
therein). Solutions with symmetries instead of the periodicity in the first N variables have
also been found and examined for elliptic equations and systems (see [3] and references
therein).

Positive solutions of the kind we study in this paper, namely, solutions of (1.1) that
decay in all but one variable and do so uniformly with respect to the remaining variable—
occasionally, we refer to such solutions as partially localized solutions—form a class some-
where between fully localized and general bounded solutions. The decay in x rules out
most of the complexities mentioned above. Also, it is likely that the decay in x implies the
radial symmetry in x about some center in RN : although this has not been proved in the
full generality, interesting results in this direction can be found in [5, 16, 20]. Thus, the
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behavior in the y-variable is the only source of possible complexities in partially localized
solutions. To discuss this behavior, and quickly skipping over the simplest case—partially
localized solutions constant in y, we first recall Dancer’s seminal work [11], where he con-
sidered equations of the above form, with special focus on the nonlinearities g(u) = up − u
with a Sobolev subcritical p > 1. Using bifurcation analysis he proved the existence of par-
tially localized solutions which are periodic (and nonconstant) in y. By a different method
based on variational techniques, such periodic solutions were also found in [2]. In fact, a
one-parameter family, global in a sense, of such solutions was exhibited in that paper.

Looking beyond periodic solutions, the existence of quasiperiodic (partially localized)
solutions in equations of the form (1.1) is perhaps the next most natural problem to address.
We show that for suitable nonlinearities such solutions do indeed exist. Moreover, since our
theorem is derived from KAM-type results, it automatically yields an uncountable family
of quasiperiodic solutions with mutually distinct frequency vectors (see the next section for
a precise statement).

Our method of proving the existence of quasiperiodic solutions, partially localized or
other, of elliptic equations on the entire space has its grounding in our earlier work [37]. It
builds on spatial dynamics and center manifold techniques for elliptic equations (see [24] for
the origins of this method, and, for example, [7, 17, 19, 21, 29, 30, 34, 36, 45] and references
therein for further developments) and KAM-type results in a finite-differentiability setting
(similar methods had been previously applied to elliptic equations on the strip, see [42, 44]).

In general terms, the method of [37], used also in our subsequent paper [38], consists in
the following. We consider equations of the form

∆u+ uyy + a(x)u+ f1(x, u) = 0, (x, y) ∈ RN × R = RN+1, (1.4)

where
f1(x, u) = a2(x)u2 + a3(x)u3 + u4g(x, u), (1.5)

and all the listed functions are sufficiently smooth. First we verify that, under suitable
spectral assumptions on the operator ∆ + a(x), equation (1.4) admits a class of solutions
comprising a finite dimensional manifold, a center manifold of (1.4). Moreover, these so-
lutions are in one-to-one correspondence with solutions of an ordinary differential equation
(ODE) on this manifold, the variable y playing the role of time. The ODE has a Hamilto-
nian structure [29], and we use a sequence of transformations—a Darboux transformation,
a normal form procedure, and action-angle variables—to bring it to a form suitable for an
application of the KAM theory: it becomes a Hamiltonian system in a neighborhood of the
origin (in a Euclidean space R2n) with the canonical symplectic structure, and in this neigh-
borhood it is a small perturbation of an integrable Hamiltonian system. The main issue
in applying a suitable KAM theorem is then the verification of a nondegeneracy condition
for the integrable Hamiltonian system. Of course, for this to be applicable to equations of
the form (1.4), one needs to do all the aforementioned changes of coordinates with some
care, so that the nondegeneracy conditions can be formulated as some verifiable hypotheses
on the functions in (1.4), (1.5). This then yields sufficient conditions for the existence of
y-quasiperiodic solutions of (1.4). The papers [37], [38] both give such sufficient conditions,
with the following key difference. In [37], the cubic term is given some prominence. When
a small parameter is introduced in the coefficients a2, a3, the coefficient a2 vanishes, as the
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parameter approaches 0, at least at the same rate as a3. In particular, it is essential that
a3 is not identical to 0. In [38], we considered the complementary case: the coefficient a2
is dominant and there is no condition on a3, which may well vanish identically. Technically
this case is more involved and, for this reason, our conclusion in [38] is weaker in that
quasiperiodic solutions with only two frequencies are considered ([37] contains results on
quasiperiodic solutions with any given number n ≥ 2 of frequencies).

Our conditions on a2 in [38], or on a3, a2 in [37], require integrals of certain polynomial
expressions involving eigenfunctions of ∆ +a and the functions a2 or a3 to be nonzero. The
conditions are robust and they are particularly easy to achieve if a2, a3 can be perturbed
independently of a and of each other. This may not be possible in some specific classes of
equations, such as the homogeneous equations (1.1). Indeed, as we elaborate in the next
section, the only way to apply the general scheme from [37], [38] to (1.1) is by taking the
Taylor expansion of the nonlinearity f at some nonconstant solution of (1.1). The resulting
coefficients a, a2, a3 then all depend on f (and the nonconstant solution of (1.1)), and they
change simultaneously when f is perturbed. The verification of nondegeneracy conditions
for a given nonlinearity is therefore a highly nontrivial task; this will be our main technical
hurdle in the paper.

Let us comment on the condition N ≥ 2, which we assume here (we had no such
restriction in [37], [38]). A key prerequisite for our method in this paper is the existence of
a ground state (a localized positive solution) of the N -dimensional problem

∆u+ f(u) = 0, x ∈ RN , (1.6)

with Morse index greater than 1 (see Section 3.2 for details). It is well known that no such
ground state exists if N = 1, hence this case has to be excluded. By the same token, our
method does not apply to equations with some specific nonlinearities where the ground state
is known to be unique (up to translations) and to have Morse index 1. This is the case, for
example, if f(u) = up − u with p satisfying p > 1 and, if N > 2, also p < (N + 2)/(N − 2)
(see [26]). It is an interesting question, which we do not address here, whether partially
localized quasiperiodic solutions may exist for such specific equations or in any equation
(1.1) with N = 1.

The rest of the paper is organized as follows. Our main result and an outline of the proof
are given in Section 2. Nonlinearities for which quasiperiodic solutions exist are found using
Schrödinger operators whose eigenvalues and eigenfunctions satisfy certain conditions, as
described in Section 3. In Section 4, we complete the proof of our main result by showing
the existence of potentials in the Schrödinger operator such that all the needed conditions
are satisfied.

2 Statement of the main result

In this section we introduce some terminology and state our main result. Afterward, we
give an outline of the proof.

Throughout the paper, for k ∈ N := {0, 1, 2, . . . } and N ≥ 2, the space L2
rad(RN ) is the

closed subspace of L2(RN ) consisting of radially symmetric functions (that is, the common
fixed points of the bounded linear maps u 7→ u ◦ R, R ∈ O(N)), and Hk(RN ) is the usual
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Sobolev space on RN . The space Crad(RN ) is the space of continuous, bounded, radially
symmetric real-valued functions on RN , while Ckrad(RN ) is the space of k times differentiable,
radially symmetric functions on RN with bounded, continuous derivatives up to order k.
When needed, we assume that these spaces are equipped with standard norms. At several
places, we abuse the notation slightly by viewing radially symmetric functions as functions
of x ∈ RN or functions of r ≥ 0, depending on the context. This should cause no confusion.

Given integers n ≥ 2, k ≥ 1, a vector ω = (ω1, . . . , ωn) ∈ Rn is said to be nonresonant
up to order k if

ω · α 6= 0 for all α ∈ Zn \ {0} such that |α| ≤ k. (2.1)

(Here |α| = |α1| + · · · + |αn|, and ω · α is the usual dot product.) If (2.1) holds for all
k = 1, 2, . . . , we say that ω is nonresonant, or, equivalently, that the numbers ω1, . . . , ωn
are rationally independent.

A function u : (x, y) 7→ u(x, y) : RN×R→ R is said to be quasiperiodic in y if there exist
an integer n ≥ 2, a nonresonant vector ω∗ = (ω∗1, . . . , ω

∗
n) ∈ Rn, and an injective function

U defined on Tn (the n-dimensional torus) with values in the space of real-valued functions
on RN such that

u(x, y) = U(ω∗1y, . . . , ω
∗
ny)(x) (x ∈ RN , y ∈ R). (2.2)

The vector ω∗ is called a frequency vector of u.
We emphasize that the nonresonance of the frequency vector is a part of our defini-

tion. In particular, a quasiperiodic function is not periodic and, if it has some regularity
properties, its image is dense in an n-dimensional manifold diffeomorphic to Tn.

We can now state our main result.

Theorem 2.1. For suitable C∞ functions f : R→ R with f(0) = 0, f ′(0) < 0 the following
holds. There exists a positive solution u(x, y) of equation (1.1) such that u(x, y) is radially
symmetric in x, u(x, y) → 0 as |x| → ∞ uniformly in y, and u(x, y) is quasiperiodic in
y. In fact, there exist uncountably many such solutions of (3.4) (disregarding translations),
their frequency vectors forming an uncountable subset of R2.

The theorem is proved in the sections below. It can be observed from the details of the
proof that the class of nonlinearities for which the conclusion is valid contains nonempty
open sets in suitable topologies on spaces of sufficiently smooth functions f satisfying f(0) =
0, f ′(0) < 0.

The outline of our proof is as follows. First, to make use of a result in [38], as recalled in
Section 3.1, we write equation (1.1) in the form (1.4). This is achieved by taking the Taylor
expansion of f at a ground state of (1.6). From [38], we obtain a sufficient condition on
f and the ground state for the existence of quasiperiodic solutions, see Section 3.2. In the
next step, we invoke a construction from [35]. It shows a relation between eigenfunctions
of the Schrödinger operator ∆ + a(r) with a suitable radial potential and a ground state of
a nonlinear equation (1.1) with f determined by a. This will allow us to reformulate the
sufficient conditions in terms of the potential a and some eigenfunctions of ∆ + a(r), see
Section 3.3. The last and most difficult step is the verification of the sufficient conditions
for some potentials a. This will be achieved by taking small perturbations of a specially
designed potential a(r), see Section 4.
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3 Sufficient conditions for the existence of quasiperiodic so-
lutions

3.1 A theorem from [38]

We recall a theorem on the existence of quasiperiodic solutions of non-homogeneous elliptic
equations on RN+1 from our previous paper [38]. To that end, consider the equation

∆u+ uyy + a1(r; s)u+ f1(r, u; s) = 0, x ∈ RN , y ∈ R, (3.1)

where r = |x|, s ∈ (−δ, δ), with δ > 0, is a parameter, and f1 is of the form

f1(r, u; s) = a2(r; s)u
2 + u3g(r, u; s), (3.2)

with a1, a2, g sufficiently smooth, as specified below. Fix constants K and m satisfying

K ≥ 18, m >
N

2
. (3.3)

The smoothness assumptions on a1, a2, and g are as follows:

(S1) a1(·; s) ∈ Cm+1
rad (RN ) for each s ∈ (−δ, δ), and the map s ∈ (−δ, δ) 7→ a1(·; s) ∈

Cm+1
rad (RN ) is of class CK+1.

(S2) a2(·; s) ∈ Cm+1
rad (RN ) for each s ∈ (−δ, δ), the map s ∈ (−δ, δ) 7→ a2(·; s) ∈ Cm+1

rad (RN )
is of class CK+1, g ∈ CK+m+4(RN ×R× (−δ, δ)), it is radially symmetric in x ∈ RN ,
and for all ϑ > 0, the function g is bounded on RN × [−ϑ, ϑ]× [0, δ) together with all
its partial derivatives up to order K +m+ 4.

The next hypotheses concern the Schrödinger operator A1(s) := −∆ − a1(r; s) acting
on L2

rad(RN ) with domain H2(RN ) ∩ L2
rad(RN ):

(A1)(a) There exists L < 0 such that lim supr→∞ a1(r; s) ≤ L for all s ∈ (−δ, δ).

(A1)(b) For all s ∈ [0, δ), A1(s) has exactly 2 nonpositive eigenvalues µ1(s) < µ2(s), and
one has µ2(s) < 0 for all s ∈ (0, δ), and µ2(0) = 0.

(NR) Denoting ωj(s) :=
√
|µj(s)|, j = 1, 2, the frequency vector ω(s) = (ω1(s), ω2(s)) is

nonresonant up to order K for all s ∈ (0, δ).

Note that, by the radial symmetry, the eigenvalues µ1(s), µ2(s) are automatically simple
[40]. For s ∈ [0, δ) and j ∈ {1, 2}, we denote by ϕj(·; s) the eigenfunction of A1(s) associated
to µj(s), normalized in the L2-norm. The normalization determines ϕj uniquely up to a
sign; we select ϕj such that ϕj(0; s) > 0 for each s ∈ [0, δ).

Our last hypothesis concerns both the coefficient a2 and the eigenfunction ϕ2 when
s = 0:

(A2) One has ∫
RN

a2(x; 0)ϕ3
2(x; 0)dx 6= 0.
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The main theorem proved in [38] is the following:

Theorem 3.1. Suppose that the hypotheses (S1), (S2), (A1), (NR) (with K, m as in (3.3))
and (A2) are satisfied. Then the following statements are valid for each s ∈ (0, δ), possibly
after making δ > 0 smaller. There exists a solution u(x, y) of equation (3.1) such that
u(x, y) is radially symmetric in x, u(x, y) → 0 as |x| → ∞, uniformly in y, and u(x, y) is
quasiperiodic in y. In fact, there is an uncountable family of such quasiperiodic solutions
(disregarding translations), their frequency vectors forming an uncountable subset of R2.

We remark that [37, Theorem 2.2] has a similar—and even stronger—conclusion to
Theorem 3.1: it yields quasiperiodic solutions with any n ≥ 2 number of frequencies if
certain conditions on a2, a3, and the eigenfunctions of A1 are satisfied. However, the fact
that both a2 and a3 are involved in the hypotheses—unlike in Theorem 3.1 above—makes
[37, Theorem 2.2] more difficult to apply in the context of homogeneous problems such as
(1.1).

3.2 Taylor expansion at a ground state on RN

In order to apply Theorem 3.1, we consider the Taylor expansion of a (parameter-dependent)
nonlinearity f around a solution of the N -dimensional problem (1.6). We want the expan-
sion to yield an equation of the form (3.1)–(3.2) such that the hypotheses of Theorem 3.1
are satisfied. Clearly, it would be of no use to take the expansion at the trivial solution
u ≡ 0: since −∆ − f ′(0) has only continuous spectrum, hypotheses (A1)(a) and (A1)(b)
would not be satisfied. Instead, the expansion will be taken at a ground state of (1.6).

By a ground state of (1.6) we mean a positive solution u∗ of (1.6) such that u∗(x)→ 0 as
|x| → ∞. Assuming (1.2), a classical result of [18] implies that, after a suitable translation,
u∗ is a radially symmetric (around 0) and radially decreasing function. Thus, u∗ depends
on x ∈ RN via r = |x| only.

To recall a few other relevant concepts, assume u∗ is a ground state of (1.6) and consider
the Schrödinger operator L(u∗) := −∆−f ′(u∗(r)). Unless stated otherwise, we always con-
sider such operators as unbounded operators on L2

rad(RN ) with domain H2(RN )∩L2
rad(RN ).

It is well known—see, e.g., [40] for all the basic properties of L(u∗) listed below—that L(u∗)
is a self-adjoint operator bounded from below whose essential spectrum, σess(L(u∗)), is con-
tained in [−f ′(0),∞) (the latter uses the fact that u∗(∞) = 0). In particular, the condition
f ′(0) < 0 implies that σ(L(u∗))∩ (−∞, 0] consists of a finite number of isolated eigenvalues,
all of which are simple as L(u∗) is acting on radial functions only. We define the Morse
index of u∗ as the number of negative eigenvalues of L(u∗). Further, we say that u∗ is a
degenerate ground state if 0 is an eigenvalue of L(u∗), otherwise, we say it is nondegenerate.

We now introduce a small parameter s in equations (1.1) and (1.6). Namely, we consider
the equations

∆u+ uyy + f(u; s) = 0, (x, y) ∈ RN+1, (3.4)

and
∆u+ f(u; s) = 0, x ∈ RN , (3.5)

where, for some δ > 0, f : R× (−δ, δ)→ R is a function of class C2 (at least) with

f(0, s) = 0, fu(0; s) < 0 (s ∈ (−δ, δ)). (3.6)
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Even though we will only deal with positive solutions, it will be convenient to assume also
that

f(u; s) > 0 (u < 0, s ∈ (−δ, δ)). (3.7)

Assuming that, for each s, us is a ground state of (3.5), set

a1(r; s) := fu(us(r); s),

a2(r; s) :=
1

2
fuu(us(r); s),

g(r, u; s) :=


1

u3
(f(us(r) + u; s)− f(us(r); s)− a1(r; s)u− a2(r; s)u2), if u 6= 0,

0, if u = 0.

(3.8)

Then

f(us(r) + u; s) = a1(r; s)u+ a2(r; s)u
2 + u3g(r, u; s) (u ∈ R, r ≥ 0, s ∈ (−δ, δ)), (3.9)

and, for any s ∈ (−δ, δ), u = u(x, y) is a solution of (3.4) if (and only if) u = us + ũ
for some solution ũ of (3.1). Moreover, since us is a radial function with us(∞) = 0, the
function u(x, y) is quasiperiodic in y, radially symmetric in x, and decaying to 0 as |x| → ∞,
uniformly in y, if ũ has all these properties. These remarks lead to the following sufficient
condition for the existence of quasiperiodic solutions of (3.4).

Theorem 3.2. Assume that for some δ > 0, f : R×(−δ, δ)→ R is a C2-function satisfying
(3.6), (3.7), and for each s ∈ (−δ, δ), us is a ground state of (3.5). Assume further that the
functions a1, a2, and g defined by (3.8) satisfy hypotheses (S1), (S2), (A1), (NR), and (A2)
with K, m as in (3.3). Then, possibly after making δ > 0 smaller, the following statements
are valid for each s ∈ (0, δ). There exists a positive solution u(x, y) of (3.4) such that
u(x, y) is radially symmetric in x, u(x, y) → 0 as |x| → ∞, uniformly in y, and u(x, y) is
quasiperiodic in y. In fact, there is an uncountable family of such quasiperiodic solutions,
their frequency vectors forming an uncountable subset of R2.

Proof. All these statements, except for the positivity of the solution u, follow directly from
Theorem 3.1 and the above remarks. To prove the positivity of u, we use the maximum
principle. It is sufficient to show that u ≥ 0. Indeed, u, being quasiperiodic in y, is a
nontrivial solution. Therefore, the relations u ≥ 0, f(0; s) = 0, and the strong comparison
principle give u > 0 in RN+1.

Suppose now, for a contradiction, that u < 0 on some nonempty open set Ω ⊂ RN+1.
We take Ω maximal, so that also u = 0 on ∂Ω. Since u(x, y) is quasiperiodic in y and
u(x, y)→ 0 as |x| → ∞, uniformly in y, u has a local minimum at some point in Ω. At that
point, equation (3.4) cannot be satisfied since f(u(x, y); s) > 0 for (x, y) ∈ Ω, due to (3.7).
This contradiction proves the positivity of u.

Let us ponder the sufficient conditions given by this theorem. First of all, for the
smoothness hypotheses (S1), (S2) to be satisfied by the functions in (3.8), the functions
(u, s) 7→ f(u; s) and (x, s) 7→ us(x) have to be sufficiently smooth.

Next, hypothesis (A1)(b) dictates that us has to be a nondegenerate ground state of
(3.5) with Morse index 2 when s > 0, while for s = 0 it has to be a degenerate ground state
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of Morse index 1. We have already mentioned in the introduction that no ground state
with Morse index 2 exists if N = 1, or if N > 1 and the nonlinearity is of some specific
form, such as f(u) = up − u with a subcritical p > 1 [26] (references [8, 9, 27, 33, 43] give
other structural conditions on the nonlinearity which imply that the ground state is unique
up to translations and has Morse index 1). The existence of a degenerate ground state is
also a nontrivial issue. Typically, the uniqueness of the ground state comes along with its
nondegeneracy (see, for example, [32]).

Examples of nonlinearities f for which (1.6) possesses a ground state of Morse index 2
are given in [10, 13]; nonlinearities with ground states of an arbitrary Morse index k ≥ 2
were found in [35]. Among these examples, the most explicit one is that of [13], where (1.6)
is considered on R3 and f is given by

f(u) = λup + uq − u, (3.10)

p, q being suitable exponents satisfying 1 < q < p < 5 and λ > 0 is sufficiently large. As
shown in [10, 35], once a nonlinearity which gives a ground state of Morse index greater
than 1 is found, taking a homotopy to another nonlinearity with a unique ground state of
Morse index 1, one obtains a nonlinearity with a degenerate ground state somewhere on
the homotopy. Thus, in principle, nonlinearities from any of the papers [10, 13, 35] could
be used as a starting point in our method. The results of [35], which we actually use here,
give us enough flexibility to verify all the hypotheses of Theorem 3.2. It is not clear to us
if our method, or a modification thereof, could be applied with specific nonlinearities, such
as the ones in (3.10). Letting the regularity issues aside, hypothesis (A2) is probably very
hard to verify for such nonlinearities.

3.3 Sufficient conditions in terms of a Schrödinger operator

As mentioned in the previous section, the results of [35] which yield nonlinearities f such
that (1.6) has degenerate and nondegenerate ground states with a prescribed Morse index
(see Theorems 1.1 and 1.3’ in [35]) are relevant for our method. However, we shall mainly
use two results from [35], Lemmas 2.1 and 3.1 in [35], which tell us how such nonlinearities
are found using a certain Schrödinger operator. We recall these results in Lemmas 3.3, 3.4,
and 3.5 below.

Lemma 3.3. Assume the following hypotheses.

(a) a(r) is a continuous function on [0,∞) which converges to a negative limit as
r →∞.

(b) w ∈ C1([0,∞)) is a positive solution of

wrr +
N − 1

r
wr +

(
a(r)− N − 1

r2

)
w = 0, r > 0, (3.11)

which satisfies the following conditions:

(i) w(0) = 0, wr(0) > 0,

(ii) eβrw(r)→ 0, eβrwr(r)→ 0 as r →∞ for some β > 0.
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Then

u∗(r) :=

∫ ∞
r

w(t) dt, r = |x| ≥ 0, (3.12)

defines a ground state of (1.6) for a C1 function f that satisfies (1.2) and for which

f ′(u∗(r)) = a(r) (r ≥ 0). (3.13)

On the interval [0, u∗(0)], f is given explicitly by

f(z) =

∫ z

0
a(ξ(τ))dτ, (3.14)

where ξ is the inverse of u∗ : [0,∞)→ (0, u∗(0)].

For a little bit of intuition about this statement, consider an equation of the form (1.6)
with a ground state u∗. In spherical coordinates, the (radial) function u∗ satisfies the
equation

u∗rr +
N − 1

r
u∗r + f(u∗) = 0, r > 0.

Differentiating this equation, we see that w(r) = −u∗r is a positive solution of equation (3.11)
with a(r) given by (3.13). The statement in Lemma 3.3 goes in the opposite direction: given
a(r) and a positive solution w(r) of (3.11), it yields a nonlinearity f and a ground state u∗.

Note also that the function w represents an eigenfunction of the operator −∆ − a(r)
if it is considered on the full space L2(RN ) with domain H2(RN ) (not restricted to the
space of radial functions). In fact, w(r) being a positive solution of equation (3.11) means
that 0 is an eigenvalue of this operator and it is the minimal eigenvalue with a nonradial
eigenfunction. This can be seen using separation of variables. The nonradial eigenfunctions
corresponding to the eigenvalue zero are the functions w(r)xj/r, j = 1, . . . , N , and their
linear combinations. Another interpretation of w is that w(r)x1/r is the principal eigen-
function for the operator −∆ − a(r) on the half-space RN+ := {x ∈ RN : x1 > 0} with
Dirichlet boundary condition on ∂RN+ .

Now, if the ground state u∗ given by Lemma 3.3 is to have a given Morse index k,
then the operator −∆ − a(r) must have exactly k negative eigenvalues. In particular, the
first k eigenvalues with radial eigenfunctions must come before the first eigenvalue with a
nonradial eigenfunction. Potentials with this property, and some additional useful features,
are provided by the following lemmas:

Lemma 3.4. For any integer n ≥ 2 there exists a C∞ function a0(r) on [0,∞) such that
the following statements are valid:

(a) There exist constants k0 > 0, k∞ > 0, and ` > 1 such that a0 ≡ k0 on [0, 1/`] and
a0 ≡ −k∞ on [`,∞).

(b) Equation (3.11) with a = a0 has a positive solution w as in Lemma 3.3(b).

(c) The nth eigenvalue of −∆−a0(r) (viewed as an unbounded operator on L2
rad(RN ) with

domain H2(RN ) ∩ L2
rad(RN )) is equal to zero.

This is the first part of [35, Lemma 3.1]; the result was proved there with k0 = k∞ = 1.
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Lemma 3.5. Let ` and a0 be as in Lemma 3.4. Then there exist δ > 0 and a smooth
function b(r; s) on [0,∞)× (−δ, δ) satisfying the identities

b(r; 0) = 0 (r ≥ 0), b(r; s) = 0 (r ∈ [0, 1/` ] ∪ [`,∞), s ∈ (−δ, δ)), (3.15)

and the following statement. For each s ∈ (−δ, δ) statement (b) of Lemma 3.4 holds with
a0 replaced by a(·; s) := a0 + b(·; s), and, denoting by µsn the nth eigenvalue of the operator
−∆− a(·; s) (on L2

rad(RN )), one has

d

ds
µsn

∣∣∣∣
s=0

< 0. (3.16)

Perhaps a word of explanation for the last statement is due here. Note that the first
identity in (3.15) implies that statement (a) of Lemma 3.4 holds with a0 replaced by a(·; s) :=
a0 + b(·; s). In particular, the essential spectrum of −∆− a(·; s) is contained in [k∞,∞) for
all s ≈ 0. Therefore, σ(−∆ − a(·; s)) ∩ (−∞, k∞) consists of simple isolated eigenvalues,
which we number in an increasing manner. For s ≈ 0, a(·; s) is a small perturbation of
a0. Hence, due to statement (c) and the simplicity of the eigenvalues (in the present radial
setting), the nth eigenvalue µsn is well defined and it is a smooth function of s (see [23] for
the underlying perturbation results).

Lemma 3.5 is essentially the second part of [35, Lemma 3.1]. Although it was not
emphasized there that the function b with the indicated properties exists for any smooth
function a0 satisfying (a)–(c) (from Lemma 3.4), this is how the lemma is proved in [35].
The only other difference of the present statement from [35, Lemma 3.1] is that in [35] the
constants k0, k∞ were specifically taken to be equal to 1. This makes almost no difference
in the proof; the only minor modification one needs to make is a rescaling of the Bessel
functions as in the following remark.

Remark 3.6. For s ∈ (−δ, δ) and a = a(·; s) as in Lemma 3.5, the solution w = w(·; s) of
(3.11) as in Lemma 3.3(b) is not unique (it is unique, up to a scalar multiple), but it can
be chosen in such a way that w(r; s) is a C∞ function on [0,∞)× (−δ, δ) satisfying

w(r; s) = w1(r) (r ∈ [0, 1/` ], s ∈ (−δ, δ)),
w(r; s) = γ(s)w2(r) (r ∈ [`,∞), s ∈ (−δ, δ)),

(3.17)

where γ : (−δ, δ) → R is smooth (see [35, Remark 3.2] for details), and w1(r), w2(r) are
independent of s: since the functions a = a(·; s), for s ∈ (−δ, δ), satisfy the identities

a(r; s) ≡ k0 (r ∈ [0, 1/`]), a(r; s) ≡ −k∞ (r ≥ `), (3.18)

w1(r), w2(r) are explicitly given by

w1(r) = c1r
1−N/2JN/2

(
r
√
k0
)
, w2(r) = c2r

1−N/2KN/2

(
r
√
k∞
)
, (3.19)

where c1, c2 are nonzero constants and JN/2, KN/2 are, respectively, the Bessel function (of
the first kind) and the modified Bessel function (of the second kind) of index N/2.
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Let now a0, a = a(r; s) be as in Lemmas 3.4, 3.5 with n = 2, and take the solution
w(r; s) of (3.11) as in Remark 3.6. Lemma 3.3 yields a family of nonlinearities f(u; s),
s ∈ (−δ, δ), along with corresponding ground states us of (3.5), to which we want to apply
Theorem 3.2.

In accord with (3.12), we first set

u(r; s) :=

∫ ∞
r

w(t; s) dt (r ≥ 0, s ∈ (−δ, δ)). (3.20)

By Remark 3.6, u is a smooth function on [0,∞)× (−δ, δ) and one has

u(r; s) = γ(s)u2(r) (r ∈ [`,∞), s ∈ (−δ, δ)),
u(r; s) = u1(r) + β(s) (r ∈ [0, 1/` ], s ∈ (−δ, δ)),

(3.21)

where

u2(r) =

∫ ∞
r

w2(t) dt (r ≥ `),

u1(r) =

∫ 1/`

r
w1(t) dt (r ∈ [0, 1/`]), (3.22)

β(s) =

∫ `

1/`
w(t; s) dt+ γ(s)

∫ ∞
`

w2(t) dt.

From this it also follows that u is smooth when considered as a function of x ∈ RN and
s ∈ (−δ, δ), radially symmetric in x (obviously, just the smoothness near x = 0 is an issue
here). Indeed, using (3.22), (3.19), and the Frobenius expansion for the Bessel function,
one can see that u1(r) is analytic near r = 0 and its Taylor series involves only even powers
of r.

Next, for each s ∈ (−δ, δ), we use (3.14) with a = a(r; s) and u∗ = u(r; s). This defines
a function f(z, s) on

U := {(z, s) ∈ R2 : z ∈ [0, u(0; s)], s ∈ (−δ, δ)}.

Clearly, f is smooth in the interior of U . Moreover, relations (3.14), (3.13), and (3.18) imply
that, for any s ∈ (−δ, δ), f(u; s) = −k∞u for u near 0, and fu(u; s) = k0 for u near u(0; s).
It is therefore easy to extend f to R × (−δ, δ) in such a way that the extension (which we
still denote by f) is of class C∞, f(u; s) > 0 if u < 0, and, possibly after making δ > 0
smaller, f and all its derivatives are bounded.

Consider the functions a1, a2, g as in (3.8):

a1(r; s) := fu(u(r; s); s), (3.23)

a2(r; s) :=
1

2
fuu(u(r; s); s), (3.24)

g(r, u; s) :=


1

u3
(
f(u(r; s) + u; s)− f(u(r; s))− a1(r; s)u− a2(r; s)u2

)
, if u 6= 0,

0, if u = 0.
(3.25)

According to our convention, when needed, the functions a1(·; s), a2(·; s), g(·, u; s) are viewed
as functions of x ∈ RN (depending on x via r = |x|). As we now demonstrate, the hypotheses
of Theorem 3.2, with the exception of (A2), are satisfied for these functions.
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Lemma 3.7. Making δ > 0 smaller, if necessary, one achieves that the functions a1, a2,
and g defined above satisfy hypotheses (S1), (S2), (A1), (NR) with K, m as in (3.3).

Proof. Using (3.23), (3.24), (3.13), and the definition of f (cp. (3.14)), we find the following
identities for a1, a2:

a1(r; s) = a(r; s),

2a2(r; s) =
a′(r; s)

u′(r; s)
= −a

′(r; s)

w(r; s)
,

(3.26)

where the prime denotes the derivative with respect to r. In particular, a1(r; s) = k0,
a2(r; s) = 0 for r near 0, and a1(r; s) = −k∞, a2(r; s) = 0 for all large enough r. It follows
that the regularity hypotheses (S1), (S2) with K, m as in (3.3)—in fact, with arbitrary
finite K and m—are satisfied by a1, a2, and also (A1)(a) is satisfied with L = −k∞. To
verify the regularity hypothesis (S2) for the function g, we use the Taylor expansion for
f(·; s) to write g in the integral form:

g(r, z; s) =
1

2

∫ 1

0
(1− t)2fuuu(u(r; s) + tz; s) dt.

As noted above, u is smooth when considered as a function of x ∈ RN and s ∈ (−δ, δ).
Moreover, in view of (3.21), (3.19), all derivatives of u are bounded (we may need to make
δ smaller here so that the derivatives of γ(s) are all bounded on (−δ, δ)). Using this and
the above definition of the (extended) function f , one shows easily that (S2) is satisfied.

Next, (3.16) and Lemmas 3.4 and 3.5 imply that µ02 = 0 and µs2 < 0 for s > 0, s ≈ 0
(remember that we have taken n = 2, and the eigenvalues below the essential spectrum of
−∆−a(·; s) are numbered in an increasing manner). Making δ > 0 smaller, we achieve that
for s ∈ [0, δ) the operator −∆ − a(·; s) has exactly two nonpositive eigenvalues, µs1 < µs2,
which are strictly negative for s ∈ (0, δ). Hypothesis (A1)(b) is thus satisfied.

Finally, consider the frequency vector ω(s) = (ω1(s), ω2(s)), ωj(s) :=
√
|µsj |, j = 1, 2.

Since µ01 < µ02 = 0, appealing to the continuity of the eigenvalues in s, we infer that

0 < ω2(s) <
ω1(s)

2K

for all s ∈ (0, δ), possibly after δ > 0 is made smaller. This implies that hypothesis (NR) is
satisfied.

Before proceeding further, we summarize where we stand in terms of the applicability
of Theorem 3.2:

Corollary 3.8. Let a0(r), a(r; s) be as in Lemmas 3.4, 3.5 with n = 2, and w(r; s) as in
Remark 3.6. Let us := u(·; s) and f(u; s) be defined (and extended) as above. Assume that∫ ∞

0

a′0(r)

w(r; 0)
ϕ3
2(r)r

N−1 dr 6= 0, (3.27)

where ϕ2 is an eigenfunction of −∆−a0(r) corresponding to the eigenvalue µ02 = 0 (cp. state-
ment (c) of Lemma 3.4). Then all hypotheses of Theorem 3.2 are satisfied.
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Proof. Lemma 3.7 verifies all the hypotheses of Theorem 3.2 except for (A2). In view
of (3.26) and the relation a(·; 0) = a0 (see Lemma 3.5), hypothesis (A2) is the same as
(3.27).

Remark. The integral in (3.27) is well defined, since w is positive in (0,∞) and a′0 has
compact support (cp. Lemma 3.4(a)(b)).

4 Completion of the proof of Theorem 2.1

For the proof of our main result, we need to find a function satisfying the conditions of
Corollary 3.8. Specifically, we seek a smooth function a(r) on [0,∞) with the following
properties:

(a1) There exist constants k0 > 0, k∞ > 0, and ` > 1 such that a ≡ k0 on [0, 1/`] and
a ≡ −k∞ on [`,∞).

(a2) Equation (3.11) has a positive solution w as in Lemma 3.3(b).

(a3) The operator −∆−a(r) (viewed as an unbounded operator on L2
rad(RN ) with domain

H2(RN ) ∩ L2
rad(RN )) has exactly two nonpositive eigenvalues µ1 < µ2 with µ2 = 0.

(a4) One has ∫ ∞
0

a′(r)

w(r)
ϕ3
2(r)r

N−1 dr 6= 0,

where w is as in (a2) and ϕ2 is an eigenfunction of −∆ − a(r) corresponding to the
eigenvalue µ02 = 0.

Proposition 4.1. There exists a smooth function a on [0,∞) such that statements (a1)–
(a4) above are all satisfied.

Before taking on the proof of this proposition, we show how it is used to complete the
proof of Theorem 2.1.

Proof of Theorem 2.1. For the purpose of this proof, we denote the function provided by
Proposition 4.1 by a0. Then (a1)–(a3) are the same as statements (a)–(c) in Lemma 3.4
with n = 2. Let now a(r; s) be as in Lemma 3.5, w(r; s) as in Remark 3.6; and let us :=
u(·; s), f(u; s) be defined as in Lemma 3.3 (cp. Corollary 3.8). Recall from Lemma 3.5 that
a(·; 0) = a0. Therefore, the function w(r) in the above statement (a2) and the function
w(r; 0) differ only by a scalar factor (cp. Remark 3.6). Thus, from statement (a4) we infer
that (3.27) holds. Corollary 3.8 now tells us that all hypotheses of Theorem 3.2 are satisfied.
Using that theorem, we conclude that the statement of Theorem 2.1 holds with f = f(·; s),
for any s ∈ (0, δ).

The remainder of this section is devoted to proving Proposition 4.1. The outline is
as follows. We know that if we take a = a0 with a0 as in Lemma 3.4, statements (a1)–
(a3) are satisfied. If statement (a4) happens to be satisfied by this function, we are done:
Proposition 4.1 is proved. Otherwise, our goal is to find a suitable perturbation a of a0
such that all statements (a1)–(a4) are valid. Note that statements (a2) and (a3) are not
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robust. Therefore the perturbation has to be made carefully for (a2) and (a3) to remain
valid (we will perturb a0 in a compact subinterval of (0,∞) only, so there are no issues with
statement (a1)).

For the rest of this section, we fix a constant ` > 0 and a function a0 with the following
properties:

(A0) a0(r) is a smooth function on [0,∞) such that conditions (a1)–(a3) are satisfied with
a = a0 and k0 = k∞ = 1.

The existence of such a0 is guaranteed by [35, Lemma 3.1] (cp. Lemma 3.4 in this paper).
We took k0 = k∞ = 1 just for simplicity, it is not essential.

In our perturbation arguments, we use the following notation. For a ∈ Crad(RN ),
S(a) denotes the Schrödinger operator −∆ − a(r) on L2

rad(RN ) with domain D(S(a)) =
H2(RN ) ∩ L2

rad(RN ). If S(a) has at least two eigenvalues below its essential spectrum
(which is in particular the case if a is close to a0 in the supremum norm), µ2[a] stands for
the second smallest eigenvalue. By ϕ2[a] ∈ D(S(a)) we denote the eigenfunction of S(a)
corresponding to µ2[a] normalized in the L2-norm. The normalization determines ϕ2[a]
uniquely up to a sign; for definiteness, we choose ϕ2[a] such that ϕ2[a](0) > 0. We remark
here that, by a Sturm-Liouville property in the radial setting [40], the function r 7→ ϕ2[a](r)
has a unique zero, which is positive (in particular, ϕ2[a](0) 6= 0). As above, without fearing
confusion, we abuse the notation slightly and use the same symbol for the function ϕ2[a],
and other radial functions below, viewed as a function of x ∈ RN and as a function of
r ∈ [0,∞). Also, we may omit the argument a from µ2, ϕ, and related functions, for the
sake of notational simplicity.

For a ∈ Crad(RN ) close to a0, µ2[a] ∈ R and ϕ2[a] ∈ H2(RN )∩L2
rad(RN ) are well defined

and are smooth functions of a [23]. The eigenfunction ϕ2[a] ∈ D(S(a)) is a solution of the
following equation (with r = |x|):

∆ϕ+ a(r)ϕ+ µ2[a]ϕ = 0, x ∈ RN ; (4.1)

as a function of r, it is a solution of the following problem:ϕrr +
N − 1

r
ϕr + a(r)ϕ+ µ2[a]ϕ = 0, r > 0,

ϕr(0) = 0, ϕ2 → 0 as r →∞.
(4.2)

We shall also need to perturb the function w as in statement (a2). For that we introduce
the following eigenvalue problem:{

∆ψ + a(r)ψ + νψ = 0, x ∈ RN+ := {(x1, x′) ∈ R× RN−1 : x1 > 0},
ψ(0, x′) = 0, x′ ∈ RN−1.

(4.3)

Any eigenfunction ψ ∈ H2(RN ) of this problem can alternatively be viewed as an eigen-
function of the operator −∆ − a(r) considered on the closed subspace L2

o(RN ) of L2(RN )
consisting of all functions odd in x1 (with domain H2(RN ) ∩ L2

o(RN )). We temporarily
denote this operator by Ao(a).
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As noted in Section 3.3—and as one can see by separation of variables—if a satisfies
statements (a1), (a2), then ν = 0 is the principal (minimal) eigenvalue of (4.3) and it has
an eigenfunction

ψ(x) = w(r)x1/r (r = |x|).

Here w is a positive solution of the equation (with ν = 0)

wrr +
N − 1

r
wr +

(
a(r) + ν − N − 1

r2

)
w = 0, r > 0, (4.4)

satisfying w(0) = 0, w(r) → 0 as r → ∞. Since ψ > 0 and a(∞) = −k∞ < 0, it is a
standard consequence of the maximum principle that ν = 0 is a simple eigenvalue. Also,
ν = 0 is an isolated eigenvalue of the operator Ao(a): statement (A0) implies that ν = 0 is
below the essential spectrum of this operator. Applying these remarks to a0, we conclude
that for any a ∈ Crad(RN ) close enough to a0 the minimal eigenvalue ν[a] of (4.3) is defined
and it is a smooth function of a [23]. Moreover, there is a (uniquely determined) L2(RN )-
normalized eigenfunction ψ[a] of Ao(a0) with ψ[a] > 0 in RN+ (the positivity can be proved
by standard variational arguments [40]). The function a 7→ ψ[a] ∈ H2(RN ) ∩ Lo(RN ) is
smooth on a neighborhood of a0 in Crad(RN ). Separation of variables gives

ψ[a] = w[a](r)x1/r, (4.5)

where w[a] is a positive solution of (4.4) with ν = ν[a] (we take this as the definition of
w[a]).

For brevity, we set

ϕ2,0 := ϕ2[a0], w0 := w[a0], and ψ0 := ψ[a0]. (4.6)

We take a sufficiently small neighborhood U of a0 in Crad(RN ) so that

(U) µ2[a], ϕ2[a], ν(a), ψ[a] are defined and have the smoothness properties with respect
to a ∈ U , as specified above.

If a ∈ U is of class C1 as a function of r ∈ [0,∞) and such that the support of a′ is a
compact subset of (0,∞), we denote

Ea :=

∫ ∞
0

a′(r)

w[a](r)
ϕ3
2[a](r)rN−1dr. (4.7)

This is the integral that we want to made different from zero by taking a suitable perturba-
tion of the function a0 (assuming Ea0 = 0). Note that Ea ∈ R is well defined, as w[a] > 0
on (0,∞).

We will look for a within a two-parameter family of potentials

ā(·; t, τ) = a0 + τb0 + tb1 (t ≈ 0, τ ≈ 0), (4.8)

where t and τ are so small that ā(·; t, τ) ∈ U and b0, b1 are suitably chosen smooth radial
functions. Specifically, we want b0, b1 to satisfy the following set of conditions (with ` > 1
as in (A0)):
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(B1) The support of the function b0(r) is a compact subset of (1/`, `).

(B2) The support of the function b1(r) is a compact subset of (`,∞).

(B3) −
∫
RN

b0ϕ
2
2,0dx > −

∫
RN

b0ψ
2
0dx, or, equivalently,

−
∫ ∞
0

b0(r)ϕ
2
2,0(r)r

N−1dr > −
∫ ∞
0

b0(r)w
2
0(r)rN−1dr.

(B4)

∫
RN

b1ϕ
2
2,0dx =

∫
RN

b1ψ
2
0dx.

Moreover, for a suitable constant C0 determined by a0, as specified below (see Lemma 4.6),
we want the following condition to be satisfied:

(B5)

∫ ∞
`

b1(r)

(
C0ϕ

2
2,0(r)r

N−1 − d

dr

(
ϕ3
2,0(r)

w0(r)
rN−1

))
dr 6= 0.

Note that if (B1) and (B2) hold, then the integrals in (B3), (B4)—written in spherical
coordinates—and (B5) are in effect integrals over compact subintervals of (0,∞) and are
thus well defined.

The existence of functions b1, b2 with the above properties, as guaranteed by the next
lemma, is key to our method.

Lemma 4.2. For any given constant C0 (and function a0 as in (A0)), there exist smooth,
radially symmetric functions b0, b1, such that (B1)–(B5) are satisfied.

We give a proof of this result, based on properties of modified Bessel functions, at the
end of this section.

Without specifying the constant C0 yet, assume that smooth radial functions b0, b1
satisfying (B1)–(B5) have been chosen. We take ε0 > 0 such that for |t|, |τ | < ε0 one has
ā(·; t, τ) ∈ U , so µ2[ā(·; t, τ)], ϕ2[ā(·; t, τ)], ν[ā(·; t, τ)], and ψ[ā(·; t, τ)] are all well defined and
depend smoothly on (t, τ). A priori, the eigenfunctions ϕ2[ā(·; t, τ)] and ψ[ā(·; t, τ)] depend
smoothly on (t, τ) as H2(RN )-valued functions, but combining this with elliptic regularity
results (and the smoothness of a0, b0, b1) we also have the smoothness in many other
spaces, for example Cm(RN ) for any m > 0. This is useful for justifying some computations
below. Note also that since we are dealing with eigenvalues below the essential spectrum,
the corresponding eigenfunctions always decay exponentially as |x| → ∞ (see [1, 22], for
example).

Lemma 4.3. Let ε0 be as above. There exists ε ∈ (0, ε0) such that the following statements
hold:

(a) ∂
∂τ

(
µ2[ā(·; t, τ)]− ν[ā(·; t, τ)]

)
> 0 for all (t, τ) ∈ [−ε, ε]2.

(b) There exists δ1 ∈ (0, ε) such that µ2[ā(·; t,−ε)] − ν[ā(·; t,−ε)] < 0 < µ2[ā(·; t, ε)] −
ν[ā(·; t, ε)] for all t ∈ (−δ1, δ1).
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(c) For each t ∈ (−δ1, δ1), with δ1 as in (b), there exists a unique solution τ = τ(t) of

µ2[ā(·; t, τ)]− ν[ā(·; t, τ)] = 0. (4.9)

Moreover, t 7→ τ(t) is a smooth function on (−δ1, δ1) satisfying τ(0) = τ ′(0) = 0.

Remark 4.4. A consequence of statement (c) of the lemma is that the one-parameter
family of potentials

ā(·; t, τ(t))− µ2[ā(·; t, τ(t))], t ≈ 0, (4.10)

satisfies that the second eigenvalue of (4.1) and the principal eigenvalue of (4.3) (both
equations considered with a given by (4.10)) do not change with t and remain equal to
zero. (This is also true for (4.4).) Hence, for all potentials in this family statements (a2),
(a3) are satisfied. By (B1), (B2), statement (a1) is also satisfied, after adjusting `, with the
constants k0 = 1 − µ2[ā(·; t, τ(t))], k∞ = 1 + µ2[ā(·; t, τ(t))]. These constants are close to
1 if t ≈ 0, due to µ2[ā(·; 0, τ(0))] = µ2[a0] = 0. In a subsequent step, we will address the
validity of statement (a4) for some potentials in this family. Note that the eigenfunctions
ϕ2[ā(·; t, τ)], w[ā(·; t, τ)], and hence the integral in (a4), are unaffected when the potential
is shifted by µ2.

We following result will be used in the proof of Lemma 4.3.

Lemma 4.5. Denoting by “ ˙” the derivative of a given function with respect to either t or
τ , one has:

(i) µ̇ = −
∫
RN

˙̄aϕ2
2dx, and ϕ̇2 is given by the unique solution (in the radial space) of


∆ϕ̇2 + āϕ̇2 + µ2ϕ̇2 = − ˙̄aϕ2 + ϕ2

∫
RN

˙̄aϕ2
2 dx,∫

RN

ϕ̇2ϕ2 dx = 0.

(4.11)

(ii) ν̇ = −
∫
RN

˙̄aψ2dx, and ψ̇ is given by the unique solution (in the space of functions odd

in x1) of 
∆ψ̇ + āψ̇ + νψ̇ = − ˙̄aψ + ψ

∫
RN

˙̄aψ2 dx,∫
RN

ψ̇ψ dx = 0.

Proof. For statement (i), recall (cp. (4.1)) that ϕ2 satisfies

∆ϕ2 + āϕ2 + µ2ϕ2 = 0,∫
RN

ϕ2
2 dx = 1.
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Differentiating these equations with respect to either t or τ , we find

∆ϕ̇2 + āϕ̇2 + µ2ϕ̇2 + ˙̄aϕ2 + µ̇2ϕ2 = 0,∫
RN

ϕ2ϕ̇2 dx = 0.

Multiplying the first equation by ϕ2 and integrating by parts, we obtain

µ̇2 = −
∫
RN

˙̄aϕ2
2 dx,

and the rest of statement (i) follows easily. Statement (ii) is proved in a similar way, using
(4.3) instead of (4.1).

Proof of Lemma 4.3. By definition, µ2[ā(·; 0, 0)] = µ2[a0] = 0 and ν[ā(·; 0, 0)] = ν[a0] =
0 (cp. (A0)). Similarly, ϕ2[ā(·; 0, 0)] = ϕ2,0 and ψ[ā(·; 0, 0)] = ψ0 (cp. (4.6)). Also,
∂
∂τ ā(·; t, τ)


τ=0

= b0. At (t, τ) = (0, 0) we have

∂

∂τ
(µ2[ā(·; t, τ)]− ν[ā(·; t, τ)])

∣∣∣∣
(t,τ)=(0,0)

= −
∫
RN

b0ϕ
2
2,0 dx+

∫
RN

b0ψ
2
0 dx > 0, (4.12)

by Lemma 4.5 and (B3). Since µ2 and ν depend smoothly on (t, τ), the τ -derivative is
positive for all (t, τ) ∈ [−ε, ε]2 if ε > 0 is sufficiently small. This proves statement (a).
Applying statement (a) with t = 0, and replacing ε by a smaller positive number, ε/2 say,
we obtain in particular that

µ2[ā(·; 0,−ε)]− ν[ā(·; 0,−ε)] < 0,

µ2[ā(·; 0, ε)]− ν[ā(·; 0, ε)] > 0.

Consequently, by continuity, there is δ1 ∈ (0, ε) such that

µ2[ā(·; t,−ε)]− ν[ā(·; t,−ε)] < 0, (|t| ≤ δ1),
µ2[ā(·; t, ε)]− ν[ā(·; t, ε)] > 0, (|t| ≤ δ1).

This proves statement (b). The above relations and the positivity of the τ -derivative imply
that for each t ∈ (−δ1, δ1) there is a unique τ = τ(t) satisfying (4.9). The implicit function
theorem gives the smoothness of the map t 7→ τ(t). By uniqueness, τ(0) = 0. Expanding
the equality

d

dt

(
µ2[ā(·; t, τ(t))]− ν[ā(·; t, τ(t))]

)∣∣∣∣
t=0

= 0

and rearranging, we obtain

−
(
∂

∂τ

(
µ2[ā(·; 0, τ)]− ν[ā(·; 0, τ)]

)∣∣∣∣
τ=0

)
τ ′(0) =

∂

∂t

(
µ2[ā(·; t, 0)]− ν[ā(·; t, 0)]

)∣∣∣∣
t=0

= −
∫
RN

b1ϕ
2
2,0 dx+

∫
RN

b1ψ
2
0 dx

= 0,

where we have used the formulas from Lemma 4.5, the relation ∂
∂t ā(·; t, 0)

∣∣
t=0

= b1, and the
relation in (B4). Since the τ -derivative in the left hand side is positive by statement (a),
necessarily τ ′(0) = 0.
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With δ1 and τ(t) as in the previous lemma, consider the family

α(·; t) := ā(·; t, τ(t)) = a0 + τ(t)b0 + tb1, t ∈ (−δ1, δ1). (4.13)

Note that, since τ(0) = τ ′(0) = 0, we have

α(·; 0) = a0,

d

dt
α(·; t)

∣∣∣∣
t=0

= τ ′(0)b0 + b1 = b1 =
d

dt
a(·; t, 0)

∣∣∣∣
t=0

.
(4.14)

We examine the integral Eα(·;t) given by (4.7), with α(·; t) in place of a. Observe that by
conditions (A0), (B1), and (B2), the functions α′(·; t), |t| < ε, (the derivative with respect
to r) have support contained in a fixed compact subinterval of (0,∞). Thus the integral in
(4.7) is in effect an integral over this compact interval, which implies that Eα(·;t) is (well
defined and) a smooth function of t. Our goal is to show that Eα(·;t) 6= 0 for all sufficiently
small t > 0. This is obvious by continuity if Ea0 6= 0. If Ea0 = 0, that is,∫ ∞

0

a′0(r)

w0(r)
ϕ3
2,0(r)r

N−1dr = 0, (4.15)

we want to show that the derivative of Eα(·;t) at t = 0 is different from zero. We compute
the derivative in the following result.

Lemma 4.6. Assume that (4.15) holds. Then, regardless of how the functions b0, b1 are
defined, as long as they satisfy (B1)–(B4), one has

Ė :=
d

dt
Eα(·;t)

∣∣∣∣
t=0

= −
∫ ∞
`

b1(r)
d

dr

(
ϕ3
2,0(r)

w0(r)
rN−1

)
dr + C0

∫ ∞
`

b1(r)ϕ
2
2,0(r)r

N−1dr,

(4.16)
where C0 is a constant determined only by a0 (and independent of b0, b1).

Remark 4.7. Again, by (A0), (B1), and (B2), the integrals in (4.16), as well as similar
integrals in the proof of Lemma 4.6 below, are in effect integrals over a compact subinterval
of (0,∞).

In the proof of the lemma, the following elementary relations are used. If v is a radial
(integrable) function, then ∫

RN

v(x) dx = cN

∫ ∞
0

v(r)rN−1 dr,

and if ṽ(x) = w̃(r)r/x1 with r = |x|, then∫
RN

ṽ(x) dx = c̃N

∫ ∞
0

w̃(r)rN−1 dr.

Here cN , c̃N are positive constants depending only on the dimension N .
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Proof of Lemma 4.6. As in (4.16), we use “ ˙” to indicate the derivative of the functions
Eα(·;t), ϕ2[α(·; t)], ψ[α(·; t)], and w[α(·; t)] with respect to t at t = 0. Clearly, ẇ(r)x1/r =

ψ̇(x) (cp. (4.3), Lemma 4.5).
We first carry out the proof assuming the integrals in (B4) are different from zero. The

simpler special case when they are equal to zero is considered at the end.
Noting that

d

dt
(ϕ3

2[α(·; t)])
∣∣
t=0

= 3ϕ2
2,0ϕ̇2,

d

dt

(
(w[α(·; t)])−1

)∣∣
t=0

= −w−20 ẇ,

with ϕ2,0 and w0 as in (4.6), we find (cp. Remark 4.7, and recall that w(r) > 0 for r > 0)

Ė =

∫ ∞
0

b′1(r)
ϕ3
2,0(r)

w0(r)
rN−1dr +

+ 3

∫ ∞
0

a′0(r)
ϕ2
2,0(r)

w0(r)
ϕ̇2(r)r

N−1dr −
∫ ∞
0

a′0(r)
ϕ3
2,0(r)

w2
0(r)

ẇ(r)rN−1dr. (4.17)

We now write ϕ̇2 and ẇ in terms of b1, ϕ2,0, and w0. Since µ2[a0] = 0, ν[a0] = 0, from
(4.14), (4.11) we obtain

∆ϕ̇2 + a0ϕ̇2 = −b1ϕ2,0 + ϕ2,0

∫
RN

b1ϕ
2
2,0 dx∫

RN

ϕ2,0ϕ̇2 dx = 0.

(4.18)

Writing the equation in (4.18) in spherical coordinates and using that b1 ≡ 0 on [0, `], we
obtain the following equation for ϕ̇2 on (0, `):

(ϕ̇2)rr +
N − 1

r
(ϕ̇2)r + a0ϕ̇2 = ϕ2,0cN

∫ ∞
`

b1ϕ
2
2,0ρ

N−1dρ, r ∈ (0, `), (4.19)

with ϕ̇2 bounded near r = 0.
Let now ζ be any solution ofζrr +

N − 1

r
ζr + a0ζ = cNϕ2,0 r ∈ (0, `),

ζ bounded near r = 0.
(4.20)

The existence of ζ can be shown by standard ODE techniques, but it also follows from
the boundedness of ϕ̇2 (simply divide (4.19) by the nonzero integral appearing on the right
hand side). Whichever way ζ is found, it is a function determined only by a0, which we fix
for the rest of the proof.

Observe that up to a scalar multiple, the function ϕ2,0 is the only bounded solution of
the homogeneous equation associated with (4.19), that is, equation (4.19) with the right
hand side replaced by 0. This comes from the fact that a0 ≡ 1 on (0, `) (cp. (A0)), which
implies that the bounded solutions are all scalar multiples of r1−N/2JN/2−1, JN/2−1 being
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the Bessel function (of the first kind) of index N/2 − 1. This fact and the special form of
the right hand side of (4.19) imply that for r ∈ (0, `) one has

ϕ̇2(r) = ζ(r)

∫ ∞
`

b1ϕ
2
2,0ρ

N−1dρ+ Cζϕ2,0(r), (4.21)

where Cζ is a constant (depending on ζ and b1).
We can write ẇ in a similar form using analogous arguments: the equation for ẇ in

spherical coordinates is

ẇrr +
N − 1

r
ẇr +

(
a0(r)−

N − 1

r2

)
ẇ = −b1w0 + ϕ2,0c̃N

∫ ∞
`

b1w
2
0ρ
N−1 dρ, (4.22)

which on (0, `) reduces to

ẇrr +
N − 1

r
ẇr +

(
a0(r)−

N − 1

r2

)
ẇ = ϕ2,0c̃N

∫ ∞
`

b1w
2
0ρ
N−1 dρ, r ∈ (0, `). (4.23)

Since w0 is, up to a constant multiple, the unique bounded solution of the homogeneous
equation associated with (4.23)—this time the bounded solutions are scalar multiples of
r1−N/2JN/2(r), cp. (3.19)—we have

ẇ(r) = γ(r)

∫ ∞
`

b1w
2
0ρ
N−1dρ+ Cγw0(r) for r ∈ (0, `), (4.24)

where γ (unrelated to the function γ in Remark 3.6) is a particular solution of

γrr +
N − 1

r
γr +

(
a0(r)−

N − 1

r

)
γ = c̃Nϕ2,0 (4.25)

which is bounded near r = 0 and Cγ is a constant (depending on b1 and γ). The function
γ, which is determined by a0 alone, is fixed in the rest of the proof.

Substituting (4.21) and (4.24) in (4.17), and using Remark 4.7, we have

Ė =

∫ ∞
`

b′1(r)
ϕ3
2,0(r)

w0(r)
rN−1dr

+ 3

∫ ∞
`

b1(ρ)ϕ2
2,0(ρ)ρN−1dρ

∫ `

1/`
a′0(r)

ϕ2
2,0(r)

w0(r)
ζ(r)rN−1dr

−
∫ ∞
`

b1(ρ)w2
0(ρ)ρN−1dρ

∫ `

1/`
a′0(r)

ϕ3
2,0(r)

w2
0(r)

γ(r)rN−1dr

+ 3Cζ

∫ `

1/`
a′0(r)

ϕ2
2,0(r)

w0(r)
ϕ2,0(r)r

N−1dr − Cγ
∫ `

1/`
a′0(r)

ϕ3
2,0(r)

w2
0(r)

w0(r)r
N−1dr.

(4.26)

Since supp a′0 ⊂ (1/`, `), the last two integrals coincide with the integral in (4.15), so they
vanish. Also, using (B2) and (B4),∫ ∞

`
b1(ρ)w2

0(ρ)ρN−1dρ =

∫ ∞
0

b1(ρ)w2
0(ρ)ρN−1dρ =

1

cN

∫
RN

b1ψ
2
0dx

=
1

cN

∫
RN

b1ϕ
2
2,0dx =

∫ ∞
`

b1(ρ)ϕ2
2,0(ρ)ρN−1dρ.
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Using these relations in (4.26) and integrating by parts in the first integral in (4.26), we
obtain the desired result, (4.16), with

C0 := 3

∫ `

1/`
a′0(r)

ϕ2
2,0(r)

w0(r)
ζ(r)rN−1dr −

∫ `

1/`
a′0(r)

ϕ3
2,0(r)

w2
0(r)

γ(r)rN−1dr.

This concludes the proof in the case the integrals in (B4) do not vanish.
If the integrals in (B4) are equal to 0, one can take ζ ≡ 0 ≡ γ. The relations (4.21)

and (4.24) are then valid and the above computations still apply. They lead to (4.16) with
C0 = 0.

We can now complete the proof of Proposition 4.1.

Proof of Proposition 4.1. Assuming (A0), Lemma 4.2 guarantees the existence of smooth
radial functions b1, b0 satisfying conditions (B0)–(B4), as well as condition (B5) with C0

as in Lemma 4.6. For such functions we have, according to Lemma 4.6, Eα(·;0) 6= 0 or

Ė 6= 0. In either case, Eα(·;t) 6= 0 for all sufficiently small t > 0. Therefore, using Lemma
4.3 and Remark 4.4, we conclude that statements (a1)–(a4) are satisfied by a = α(·; t) =
a0 + τ(t)b0 + tb1 if t > 0 is sufficiently small.

It remains to prove Lemma 4.2.

Proof of Lemma 4.2. To simplify the notation, we set

ϕ2 = ϕ2,0 = ϕ2[a0], w = w0 = w[a0].

Let C0 be an arbitrary constant.
We start by noting that the functions ϕ2 and w are linearly independent on any interval

in (0,∞). This is obvious from equations (4.2) and (4.4) (with a = a0) satisfied by ϕ2 and
w, respectively. Therefore also the functions ϕ2

2 and w2 are linearly independent on any
interval in (0,∞). Using this observation with the interval (1/`, `), we infer that the linear
operator

b0 ∈ L2(1/`, `) 7→

(∫ `

1/`
b0(r)ϕ

2
2(r)r

N−1dr,

∫ `

1/`
b0(r)w

2(r)rN−1dr

)
∈ R2

is surjective onto R2. The surjectivity and the density of D(1/`, `)—the space of smooth,
compactly supported functions—in L2(1/`, `) clearly imply the existence of a smooth radial
function b0 satisfying (B1), (B3).

By a similar surjectivity argument, if the functions

(ϕ2
2(r)− w2(r))rN−1, C0ϕ

2
2(r)r

N−1 −
(
ϕ3
2(r)

w(r)
rN−1

)′
(4.27)

are linearly independent on (`,∞), we can find a smooth radial function b1 such that (B2),
(B5) hold simultaneously with∫ ∞

`
b1(r)

(
ϕ2
2(r)− w2(r)

)
rN−1dr = 0. (4.28)
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Since (4.28) and (B2) imply (B4), the proof will be completed once we show that the
functions (4.27) are linearly independent on (`,∞).

We prove this by contradiction. Assume that, to the contrary, there is a constant C1

such that

C0ϕ
2
2(r)r

N−1 −
(
ϕ3
2(r)

w(r)
rN−1

)′
= C1

(
ϕ2
2(r)− w2(r)

)
rN−1 (r ∈ (`,∞)). (4.29)

Dividing the equation in (4.29) by rN−1, we get

C0ϕ
2
2 −

(
ϕ3
2(r)

w(r)

)′
− N − 1

r

ϕ3
2(r)

w(r)
= C1

(
ϕ2
2(r)− w2(r)

)
(r ∈ (`,∞)). (4.30)

Since a0(r) ≡ −1 for r > ` and µ2[a0] = ν[a0] = 0, we can explicitly solve equations (4.2)
and (4.4) for r > `. In view of the boundedness of the functions ϕ2, w, we obtain that for
r ∈ (`,∞)

ϕ2(r) = ϕ̃2(r) := c̄2r
1−N/2KN/2−1(r),

w(r) = w̃(r) := c̄r1−N/2KN/2(r),

where c̄2, c̄ are constants, and Kj stands the modified Bessel function of the second kind of
index j, j ∈ {N/2− 1, N/2}. The constants c̄2, c̄ are both nonzero as none of the functions
ϕ2, w can vanish identically on (`,∞): since each function is a solution of a second order
ODE, if c̄2 = 0 or c̄ = 0, then ϕ2 or w would vanish identically in (0,∞), in contradiction
to the definition of the eigenfunctions ϕ2(r) and ψ0(x) = w(r)x1/r.

The above relations show that the identity (4.30) is valid with ϕ2 and w replaced by
ϕ̃2 and w̃, respectively. In addition to this identity holding on (`,∞), we have, for some
C3 6= 0,

w̃(r) = C3ϕ̃
′
2(r) (r > `). (4.31)

This (well-known identity between the modified Bessel functions) is obtained by differenti-
ating both sides of equation (4.2) (cp. (4.4)).

From (4.31) and (4.2)—the equation satisfied by ϕ̃2 on (`,∞)—we find the following
relation (which, again, is just one of well-known identities in the theory of Bessel functions):

w̃′ = C3ϕ̃
′′
2 = C3

(
−N − 1

r
ϕ̃′2 + ϕ̃2

)
= −N − 1

r
w̃ + C3ϕ̃2. (4.32)

Expanding the derivative in (4.30),

C0ϕ̃
2
2 −

3w̃ϕ̃2
2ϕ̃
′
2 − ϕ̃3

2w̃
′

w̃2
− N − 1

r

ϕ̃3
2

w̃
= C1(ϕ̃

2
2 − w̃2),

and substituting from (4.31) and (4.32), we find

C0ϕ̃
2
2 −

3

C3
ϕ̃2
2 +

ϕ̃3
2

w̃2

(
−N − 1

r
w̃ + C3ϕ̃2

)
− N − 1

r

ϕ̃3
2

w̃
= C1(ϕ̃

2
2 − w̃2),
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or, rearranging, (
C0 −

3

C3
− C1

)
ϕ̃2
2 − 2

N − 1

r

ϕ̃3
2

w̃
+ C3

ϕ̃4
2

w̃2
= −C1w̃

2.

Dividing by w̃2 and letting

h(r) :=
ϕ̃2(r)

w̃(r)
=
c̄2
c̄

KN/2−1(r)

KN/2(r)
,

we obtain (
C0 −

3

C3
− C1

)
h2 − 2

N − 1

r
h3 + C3h

4 = −C1. (4.33)

A priori, this identity holds on (`,∞). However, recalling that w̃ and ϕ̃2 extend to analytic
functions on C \ (−∞, 0] (see [46], for example) which are also continuous from above on
(−∞, 0) (that is, from the upper portion of the complex plane), the identity holds in C\{0},
save for the (isolated) points where KN/2 = 0.

We will use a few additional properties of the modified Bessel functions, all of which
can be found in [46]. If 0 < 2n ∈ N, then, as r → 0+ (on the real axis), one has

Kn(r) = Cr−n +O(r−n+1),

K0(r) = −C log r +O(r).

This implies

h(r) ≈

{
r if N > 2

r log r if N = 2;

in either case, h → 0, h3/r → 0 as r → 0+. Using this fact and (4.33), we deduce that
C1 = 0.

Dividing (4.33) by h2, we get the following identity for h:(
C0 −

3

C3

)
− 2

N − 1

r
h+ C3h

2 = 0. (4.34)

If N = 2, taking r → 0+, the second term in (4.34) diverges, while the others remain
bounded, so (4.34) cannot hold. This contradiction completes the proof in the case N = 2.

Now assume N ≥ 3. Dividing (4.33) by h4, we obtain the following identity(
C0 −

3

C3

)
h̄2 − 2

N − 1

r
h̄+ C3 = 0 (4.35)

for the function

h̄(r) :=
1

h
=

c̄

c̄2

KN/2(r)

KN/2−1(r)
.

Similarly to (4.33), this identity may be assumed to hold on C \ {0}, save for the isolated
points where KN/2−1 is equal to 0.
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Since N/2 ≥ 3/2, the function KN/2 has at least one zero r∗ ∈ C \ {0} (see [46, Section
15.7] for results concerning the zeros of the functions Kn). At the same time, r∗ is not a
zero of KN/2−1. This follows from the following recurrence relation

Kn−1(r)−Kn+1(r) =
−2n

r
Kn(r) (n > 0, r ∈ C \ (−∞, 0]) (4.36)

and the fact that Kσ has no zeros for 0 ≤ σ < 3/2. (If KN/2−1(r
∗) = 0, a successive

application of (4.36) leads to either K1(r
∗) = 0 or K1/2(r

∗) = 0.) Evaluating (4.35) at
r = r∗ (if r∗ ∈ (−∞, 0), which is necessarily the case for N = 3, the evaluation goes by
taking the limit of the values at r∗+ it as t→ 0+), we obtain C3 = 0. This and (4.31) give
w ≡ 0, which is a contradiction. With this contradiction, we have completed the proof in
the case N ≥ 3.
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