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Abstract. We consider a class of Schrödinger operators on RN with
radial potentials. Viewing them as self-adjoint operators on the space
of radially symmetric functions in L2(RN ), we show that the following
properties are generic with respect to the potential:

(P1) the eigenvalues below the essential spectrum are nonresonant
(that is, rationally independent) and so are the square roots of
the moduli of these eigenvalues;

(P2) the eigenfunctions corresponding to the eigenvalues below the es-
sential spectrum are algebraically independent on any nonempty
open set.
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The genericity means that in suitable topologies the potentials having

the above properties form a residual set. As we explain, (P1), (P2)

are prerequisites for some applications of KAM-type results to non-

linear elliptic equations. Similar properties also play a role in optimal

control and other problems in linear and nonlinear partial differential

equations.

Key words : Schrödinger operators, radial potentials, rational indepen-
dence of eigenvalues, algebraic independence of eigenfunctions, generic prop-
erties.

AMS Classification: 35J10, 35P99, 47A75, 47A55.

Contents

1 Introduction 2

2 Statement of the main results 4

3 Proofs 9

1 Introduction

In this paper we consider Schrödinger operators −∆ + V , where ∆ is the
Laplacian in N variables (x1, . . . , xN) =: x and V is a radial function on
RN ; namely, V (x) = a(|x|) for some function a : [0,∞) → R bounded
from below. Assuming that a ∈ Cm[0,∞) for an integer m ≥ 0, we show
the genericity, with respect to a Cm-topology, of certain properties of the
eigenvalues and eigenfunctions of the self-adjoint operator A defined by −∆+
V on X := L2

rad(RN), the closed subspace of L2(RN) consisting of radially
symmetric functions. Specifically, denoting by β ∈ (−∞,∞] the bottom
of the essential spectrum of A, β := inf σess(A), let µ1 < µ2 < . . . be
the eigenvalues of A in (−∞, β) (there are finitely or countably many of
them). We show that, generically, the sets of numbers {µj} and {

√
|µj|} are

rationally independent and the eigenfunctions corresponding to µ1, µ2 . . . are
algebraically independent (the precise meaning of this is explained below).
Note that if A has only discrete spectrum (a sufficient condition for this is
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that lim|x|→∞ V (x) = ∞), then β = ∞ and the eigenvalues µ1 < µ2 < . . .
exhaust the whole spectrum of A.

Similar properties of eigenvalues and eigenfunctions of Schrödinger opera-
tors arise in several different contexts. The absence of any nontrivial rational
relation between the eigenvalues plays a role in optimal control problems in-
volving the Schrödinger and heat equations (see [5, 16, 31] and references
therein). The quadratic independence of a set of eigenfunctions, in partic-
ular, the linear independence of the squares of the eigenfunctions, is also
relevant in optimal control problems and in results on generic properties of
eigenvalues. Indeed, the derivatives of simple eigenvalues with respect to
parameters involve the squares of the eigenfunctions, and their linear inde-
pendence often allows one to move the eigenvalues into preferred positions
by adjusting the potential or the parameters (see the previous references
or [11, 23], for example; see also [12, 28] and references therein for related
perturbation results on bounded domains).

Higher powers of eigenfunctions and more general algebraic expressions
involving eigenfunctions of Schrödinger operators on bounded domains occur
frequently in realization problems in nonlinear parabolic equations. The goal
in such problems is to show that equations of a given structure can generate
complicated—in some sense arbitrary—dynamics on finite dimensional center
manifolds. The algebraic formulas arise in the computation of the Taylor
expansion of the center manifold reduction; their linear independence allows
one to “prescribe” the Taylor expansion arbitrarily up to any finite order (see
[7, 9, 20, 24, 25] or the survey [21]).

The square roots of the eigenvalues of Schrödinger operators on bounded
or unbounded domains appear naturally as frequencies in second order evo-
lution equations, such as the wave equation utt = ∆u+ au. The rational in-
dependence of (some of) the frequencies gives rise to quasiperiodic solutions
of the linear equations. In nonlinear perturbations of such equations, the ra-
tional independence of the frequencies plays an important role in the normal-
form computations [2, 3] as well in some KAM-type results (see [6, 15, 30],
for example).

Our main motivation to consider the genericity of the properties outlined
above stems from our investigation of nonlinear elliptic equations of the form

∆u+ uyy + a(x)u+ f(x, u) = 0, (x, y) ∈ RN × R, (1.1)

where ∆ is the Laplacian in x, as above, a : RN → R and f : RN × R → R
are sufficiently smooth functions, a is bounded, and f(·, 0) ≡ fu(·, 0) ≡ 0.
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We considered such equations in [22] with the main goal to give sufficient
conditions, in terms of a and f , for the existence of solutions which decay
to 0 as |x| → ∞ and are quasiperiodic in y ∈ R (related results for elliptic
equations on unbounded strips were previously obtained in [27, 29]). We were
especially interested in the case where a and f are radially symmetric in x
and the sought-after y-quasiperiodic solutions are also required to be radially
symmetric in x. In this case, the sufficient conditions found in [22] include the
following properties of the Schrödinger operator A := −∆ + a(x), considered
as a self-adjoint operator on L2

rad(RN) with domain H2(RN) ∩ L2
rad(RN):

(i) The bottom of the essential spectrum of A is positive.

(ii) For a given integer n ≥ 2, A has exactly n negative eigenvalues µ1 <
· · · < µn, and the square roots

√
|µj|, j = 1, . . . , n, of these eigenvalues

are rationally independent.

(iii) If ϕ1, . . . , ϕn are (radial) eigenfunctions of A corresponding to the eigen-
values µ1, . . . , µn, then the functions ϕ2

iϕ
2
j , 1 ≤ i ≤ j ≤ n are linearly

independent on some nonempty open set.

In [22], we gave examples of radial potentials satisfying these conditions. One
of the objectives of this paper is to show that these properties are generic in
a suitable sense. This will come out as a special case of our results below.
Of course, for (ii) and (iii) to make sense for a given n, one needs to take
potentials for which A has at least n eigenvalues below the essential spectrum
(the set of such potentials is nonempty and open in “reasonable” topologies).

Our main results are stated in detail in the next section. Their proofs are
given in Section 3.

2 Statement of the main results

To consider generic properties of the operators −∆ + V , we choose the fol-
lowing setup:

(A1) V (x) = a0(r) + b(r), where r = |x| and, for some integer m ≥ 0,
a0 ∈ Cm[0,∞), a0 ≥ 0, and b ∈ Cm

b [0,∞).

Here Cm
b [0,∞) stands for the space of all functions on [0,∞) which are

continuous and bounded on [0,∞) together with their derivatives up to order
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m. This space is equipped with the usual norm

‖f‖Cmb [0,∞) =
m∑
j=0

‖f (j)‖L∞(0,∞).

(We generally work with spaces of real-valued functions and real operators,
unless it is necessary to consider complexifications in the spectral theory.)

We say that some statement is generic (with respect to b, the function in
(A1)), or, that a property of −∆ +V is generic, if there is a residual set F in
Cm
b [0,∞) such that the statement holds (that is, −∆ + V has the property)

for each b ∈ F . Recall that a residual set is the intersection of a countable
collection of open and dense sets. In particular, a residual set is dense, since
Cm
b [0,∞) is a Banach space.

Using our techniques, we could also study more general potentials. For
example, some singularities of a0 at r = 0 could be allowed. For the sake of
simplicity, we refrain from considering such operators.

Given a nonempty open set U ⊂ RN , let D(U) be the space of smooth
(real-valued) functions on U with compact support. We write D for D(U) if
U = RN .

Recall that the L2(RN)-valued operatorA0 : u 7→ −∆u+a0u, with domain
D , is essentially self-adjoint (see [13, Sect. 8.6]). This means that the closure
of this operator, which we denote by Ã0, is self-adjoint on L2(RN). Also,
Ã0 is the unique self-adjoint extension of A0; in particular, it coincides with
the Friedrichs extension of A0 [8, 14]. For a0 bounded (in the L∞-norm),
the domain of Ã0 is given by D(Ã0) = H2(RN), but in general the domain
depends on a0 and it is not always the “natural domain” {u ∈ H2(RN) : a0u ∈
L2(RN)} [17, Example 3.7]. (For sufficient conditions for D(Ã0) to be equal
to the natural domain see [17, 18] and references therein.) Nevertheless, from
the assumption that a0 ≥ 0 and the characterization of Ã0 as the Friedrichs
extension it follows that

D(Ã0) ⊂ D(Ã
1
2
0 ) =

{
u ∈ H1(RN) :

∫
RN
a0u

2 <∞
}
, (2.1)

the set on the right being the domain of the closure of the quadratic form
u 7→ (u,A0u)L2 (the standard inner product of L2(RN)). Moreover, for any
u ∈ D(Ã0) there is f ∈ L2(RN) (namely, f = Ã0u) such that u is a weak
solution of the elliptic equation

−∆u+ a0(x)u = f(x), (2.2)
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in the sense that ∫
RN

(∇u · ∇v + a0uv − fv) = 0 (v ∈ D). (2.3)

We denote by Ã the operator defined on D(Ã) = D(Ã0) as the sum of
A0 and the multiplication operator u 7→ bu. For b ∈ C0

b , the multiplication
operator is bounded and self-adjoint on L2(RN), hence Ã is self-adjoint. Also,
Ã is bounded from below: for all u ∈ D(Ã) one has (u, Ãu)L2 ≥ c‖u‖L2 , where
c is a constant and (·, ·)L2 , ‖ · ‖L2 stand for the usual inner product and norm
of L2(RN), respectively.

Let now X := L2
rad(RN), the closed subspace of L2(RN) consisting of all

radially symmetric functions, that is, the common fixed points of the bounded
linear maps u 7→ u ◦R, R ∈ O(n). We denote by A the restriction of Ã to X
(with the domain X∩D(Ã)). Viewing X as a Hilbert space with the induced
inner product, A is self-adjoint and bounded from below. As usual, σ(A) and
σess(A) denote the spectrum and the essential spectrum of A, respectively.
Recall that σess(A) = σ(A) \ σd(A), where σd(A) (the discrete spectrum) is
the set of all eigenvalues of A of finite multiplicity which are isolated in σ(A).
Set

β = inf σess(A), (2.4)

with the understanding that β = ∞ if σess(A) = ∅. The fact that A is
bounded from below gives β ≥ inf σ(A) > −∞ [14].

We are concerned with the eigenvalues in σ(A) ∩ (−∞, β), that is, the
eigenvalues below the bottom of the essential spectrum. Since they are iso-
lated, they form a finite or countable sequence, which we label in an increas-
ing manner:

µ1 < µ2 < . . . ; σ(A) ∩ (−∞, β) = {µj : j ∈ N, j < ν + 1}, (2.5)

where ν is the cardinality of σ(A) ∩ (−∞, β). By the radial symmetry, the
eigenvalues µj are simple [26]. For each j < ν + 1, we denote by ϕj the
eigenfunction of A corresponding to µj, normalized in the L2(RN)-norm. The
normalization determines ϕj uniquely up to a sign; we select ϕj such that ϕj is
positive for all sufficiently large |x|. This requirement makes sense, since the
nodal set of ϕj is confined to a compact set (see [26]). Abusing the notation
slightly, we view ϕj and V as functions of x ∈ RN or r = |x| ∈ [0,∞),
depending on the context. This should cause no confusion.
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As a function of r, ϕj solves the following ordinary differential equation:

ϕ′′j +
N − 1

r
ϕ′j − V ϕj + µjϕj = 0, r > 0, (2.6)

and ϕ′j(0) = 0. We need to spend some words about the regularity of ϕj here.
A priori, the eigenfunction ϕj, as a function of x ∈ RN , is a weak solution of

−∆u+ (V (x)− µj)u = 0

(cp. (2.3)). Since V is continuous on RN , the elliptic interior Lp estimates
imply that ϕj ∈ W 2,p

loc (RN) for any p ∈ (1,∞). In particular, ϕj ∈ C1(RN).
This implies that ϕj, as a function of r, is in C1[0,∞), ϕ′j(0) = 0, and the
above equation (2.6) is satisfied in the classical sense (and ϕj ∈ C2(0,∞)).

Definition 2.1. Given positive integers n, k, a finite set of numbers ω1, . . . , ωn
is said to be nonresonant up to order k if ω := (ω1, . . . , ωn) ∈ Rn satisfies

ω · α 6= 0 (α ∈ Zn \ {0}, |α| ≤ k). (2.7)

(Here |α| = |α1| + · · · + |αn| and ω · α is the usual dot product.) If (2.7)
holds for all k = 1, 2, . . . , we say that ω1, . . . , ωn are nonresonant, or, ratio-
nally independent. An infinite sequence of numbers is said to be rationally
independent (or, nonresonant) if all its finite subsequences are nonresonant.

It will be convenient to define that the empty set is rationally indepen-
dent.

Definition 2.2. Given positive integers n, k, a set of n continuous functions
ψ1, . . . , ψn on an interval I is said to be algebraically independent on I up
to order k if for any nonzero polynomial Q on Rn of degree at most k the
function y 7→ Q(ψ1(y), . . . , ψn(y)) is not identical to zero on I. If this is true
for all k = 1, 2, . . . , we say that ψ1, . . . , ψn are algebraically independent on I.
An infinite sequence of continuous functions on I is said to be algebraically
independent on I if all its finite subsequences are algebraically independent
on I.

In other words, ψ1, . . . , ψn are rationally independent on I if the functions

ψα, α ∈ Nn
0 , |α| ≤ k, (2.8)
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are linearly independent on I (that is, the only linear combination of these
functions which vanishes identically on I is the trivial one). Here, ψ =
(ψ1, . . . , ψn), N0 := N∪{0}, and, for any multi-index α = (α1, . . . , αn) ∈ Nn

0 ,

ψα = ψα1
1 ψα2

2 . . . ψαnn . (2.9)

Similarly as with rational independence, if a given set of functions is
empty, we consider it to be algebraically independent.

With the notation introduced above, consider the following properties of
the operator A:

(p1) The (finite or countable) sequence µ1, µ2, . . . is rationally independent.

(p2) The sequence
√
|µ1|,

√
|µ2|, . . . is rationally independent.

(p3) The sequence ϕ1, ϕ2, . . . is algebraically independent on any interval
I ⊂ (0,∞) (here, ϕ1, ϕ2, . . . are viewed as functions of r = |x|).

It is understood here that (p1)–(p3) are trivially satisfied if the sets in ques-
tion are void (i.e., if σ(A) ∩ (−∞, β) = ∅).

Our main result is that (p1)–(p3) are generic with respect to b ∈ Cm
b [0,∞):

Theorem 2.3. Given any integer m ≥ 0 and any nonnegative function a0 ∈
Cm[0,∞), there is a residual set F in Cm

b [0,∞) such that if b ∈ F , then
(p1)–(p3) hold for the operator A = −∆ + V , with V as in (A1).

It is reasonable to ask if the theorem remains valid if one puts additional
restrictions on the function b. For example, one may wish to work with
potentials decaying to 0 as r → ∞ (this guarantees that the operator A is
a relatively compact perturbation of −∆ [13, 14]). We state one genericity
result of this sort in the following theorem. Let Y 0

m be the closed subspace
of Cm

b [0,∞) consisting of all functions b ∈ Cm
b [0,∞) with limr→∞ b(r) = 0.

We equip it with the induced norm.

Theorem 2.4. The statement of Theorem 2.3 remains valid if the space
Cm
b [0,∞) is replaced by Y 0

m.

In this paper, we restrict our attention to Schrödinger operators with
radial potentials and we consider them in the space of radially symmetric
L2-functions. The restriction is essential: in the full space L2(RN), for a
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nonempty open set of potentials the operator has eigenvalues below the es-
sential spectrum which are not simple (each eigenvalue with a nonsymmetric
eigenfunction is a multiple eigenvalue). For such operators, some eigenvalues
in the sequence µ1 < µ2 ≤ µ3 ≤ . . . are repeated, rendering the sequence
resonant.

3 Proofs

For the whole section, we fix an integer m ≥ 0 and a function a0 as in (A1).
Set Ym := Cm

b [0,∞).
We use the notation introduced in the previous section. To stress the

dependence on b ∈ Ym, we sometimes use b as an argument of the operator
A, writing A(b), as well as for related quantities and functions defined above:
β = β(b)—the bottom of the essential spectrum, ν = ν(b)—the cardinality
of σ(A) ∩ (−∞, β), µj = µj(b) and ϕj = ϕj(b)—the eigenvalues in (−∞, β)
and the corresponding eigenfunctions, respectively.

Given q ∈ N = {1, 2, . . . } and b ∈ Ym, we define

βq := min{q, β − 1/q}, Jq := {j ∈ N : j < ν + 1 and µj ≤ βq}.

Again, we will write βq(b), Jq(b) when the dependence on b is to be explicitly
indicated. By the definition of the essential spectrum, the set Jq is finite,
whether ν is finite or infinite. Of course, the set may be empty.

For q = 1, 2, . . . ; k = 1, 2, . . . , denote by Gq,k the set of all b ∈ Ym such
that the operator A = A(b) has the following properties:

(p1qk) The set {µj : j ∈ Jq} is nonresonant up to order k.

(p2qk) The set {
√
|µj| : j ∈ Jq} is nonresonant up to order k.

(p3qk) The set of functions {ϕj : j ∈ Jq} is algebraically independent up
to order k on any interval I ⊂ [1/q, q] of length at least 1/(2q).

By definition, (p1qk)–(p3qk) are trivially satisfied if the sets in question are
empty, that is, if Jq = ∅.

Obviously, for any b ∈ ∩∞q=1∩∞k=1Gq,k the operator A(b) has the properties
(p1)–(p3). To prove Theorem 2.3, it is therefore sufficient to show that the
sets Gq,k are open and dense in Ym. For the proof of Theorem 2.4, it will then
suffice to prove that Y 0

m ∩ Gq,k is dense in Y 0
m.
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In the proof of the openness, we use results from the perturbation theory
for linear operators. Note that for b ∈ Ym the multiplication operator u 7→ bu
is bounded on X = L2

rad(RN) and its operator norm is bounded from above
by ‖b‖Ym . Moreover, the map associating b ∈ Ym with the multiplication
operator in L(L2

rad(RN)) is linear and bounded, therefore, standard results
from the analytic perturbation theory apply. We recall some results we will
need later on.

Lemma 3.1. Assume that b ∈ Y0 and ν(b) > 0 (that is, A(b) has some
eigenvalues below β(b)). Given any n ∈ N with n < ν(b) + 1, let ϑ ∈
(µn(b), β(b)) be such that

σ(A(b)) ∩ (−∞, ϑ] = {µj(b) : j = 1, . . . , n}.

Then there is ε > 0 such that the following statements hold.

(i) For each b̃ ∈ V := {b̃ ∈ Y0 : ‖b− b̃‖Y0 < ε} one has n < ν(b̃) + 1 (so the
eigenvalues µ1(b̃) < · · · < µn(b̃) are defined) and

σ(A(b̃)) \ {µj(b̃) : j = 1, . . . , n} ⊂ (ϑ,∞). (3.1)

(ii) For j = 1, . . . , n, the function b̃ 7→ µj(b̃) is analytic on V (the set
defined in (i)) and one has the following formula for its derivative:

µ′j(b̃)b̄ =

∫ ∞
0

ϕ2
j(r)b̄(r)r

N−1 dr. (3.2)

(iii) For j = 1, . . . , n, the function b̃ 7→ ϕj(b̃) is analytic on V as a C[R1, R2]-
valued function for any R2 > R1 > 0 (more precisely, here we are taking
the restriction of the radial function ϕj(b̃) to the interval [R1, R2]).

Obviously, the maps b̃ 7→ µj(b̃), b̃ 7→ ϕj(b̃) in statements (i) and (ii)
remain analytic when restricted to Ym ∩ V , m = 1, 2, . . . .

Proof of Lemma 3.1. Statements (i), (ii) combine well known results on the
the continuity and analyticity properties of simple eigenvalues (see [13, 14])
and the upper semicontinuity of the spectrum (in fact, for the specific per-
turbations considered here, the spectrum is both upper and lower semicon-
tinuous, see [14, Theorem V.4.10]).
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The analyticity of the eigenfunctions ϕj(b̃), as L2(RN)-valued functions of
b̃, is also a well-known consequence of the results in [14, Sections iv.3.3-iv.3.5].
This result can be improved using the resolvent of the operator Ã0 (see the
paragraph containing (2.1)). Since Ã0 is positive and Ã = Ã0 + b (viewing b
as a multiplication operator), the eigenfunction-eigenvalue relation gives

ϕj(b̃) = (Ã0 − I)−1((µn(b̃)− 1− b̃)ϕj(b̃)).

It follows that b̃ 7→ ϕj(b̃) is in fact analytic as a function taking values in the
space D(Ã0) equipped with the graph norm v 7→ ‖Ã0v‖L2 + ‖v‖L2 . As one
easily verifies (cp. (2.1)), this space is continuously imbedded in H1(RN).
Since we are restricting all operators to the radial space X and H1(RN)∩X
is continuously imbedded in C[R1, R2] for any R2 > R1 > 0 (see [4, Lemma
A.II]), we obtain the conclusion in (iii).

Finally, equation (3.2) can be found by differentiating (2.6) (here V =
a0 + b̃) with respect to b̃, using the differentiability of the maps b̃ 7→ µj(b̃)
and b̃ 7→ ϕj(b̃), multiplying the resulting equation by rN−1ϕj(b̃) and inte-
grating by parts. We remark that the integral in (3.2) makes sense since the
eigenfunctions decay exponentially as |x| → ∞ [1, 13].

We shall also use the fact that the bottom of the essential spectrum
depends continuously on b. This is surely a well-known property, but we were
unable to locate it in the literature. We give a proof here for completeness.

Lemma 3.2. The function b 7→ β(b) ∈ (−∞,∞] is continuous on Y0 (hence
also on Ym).

The continuity is understood in the usual sense: given b0 ∈ Y0 and a
neighborhood U of β(b0), one has β(b) ∈ U if b is close enough to b0 in
Y0—taking the intervals (θ,∞), θ ∈ R, as neighborhoods of ∞.

Proof of Lemma 3.2. We use Persson’s characterization of β(b):

β(b) = sup
R>0

inf

{
(ψ,A(b)ψ)L2

‖ψ‖2L2

: ψ ∈ X ∩D(RN \ B̄R), ψ 6= 0

}
, (3.3)

where B̄R := {x ∈ RN : |x| ≤ R}. This is proved in [19] (see also [1, 10, 13]).
Strictly speaking, the result in [19] is formulated for the Schrödinger operator
on the full space L2(RN), without restricting it to the radial space X, but the
proof works the same in the radial setting. Also, it is not difficult to prove—
using the spherical harmonics expansion, for example—that the infimum in
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(3.3) remains unchanged if ψ 6= 0 is allowed to vary in the whole space
D(RN \ B̄R)—in other words, the bottom of the essential spectrum in the
full space and in the radial space are the same.

If b, b̃ ∈ Y0 and ‖b− b̃‖Y0 < ε, then for any ψ ∈ D ⊃ D(RN \ B̄R), ψ 6= 0,
the Cauchy-Schwarz inequality gives∣∣∣∣∣(ψ,A(b)ψ)L2 − (ψ,A(b̃)ψ)L2

‖ψ‖2L2

∣∣∣∣∣ ≤
∥∥∥∥(A(b)− A(b̃))

ψ

‖ψ‖L2

∥∥∥∥
L2

< ε. (3.4)

This, (3.3), and an elementary consideration yield the continuity of b 7→
β(b).

Henceforth we fix an arbitrary pair (q, k) ∈ N2.

Proof of the openness of Gq,k. Fix any b ∈ Gq,k. We need to find a neighbor-
hood V ⊂ Ym of b contained in Gq,k.

If Jq(b) = ∅, then, using the definition of Jq = Jq(b) (note in particular
the nonstrict inequality µj ≤ βq in the definition) and Lemmas 3.1, 3.2, one
shows easily that Jq(b̃) = ∅ for all b̃ in a small enough neighborhood V ⊂ Ym
of b. Thus, (p1qk)–(p3qk) are trivially satisfied for all b̃ ∈ V , and in this case
we are done.

We proceed assuming that Jq(b) 6= ∅; that is, Jq(b) = {1, . . . , n} for some
n ∈ N. Since there are only finitely many vectors α ∈ Zn with |α| ≤ k,
we obtain from Lemma 3.1 that there is a neighborhood V ⊂ Ym of b such

that for each b̃ ∈ V the sets {µ1(b̃), . . . , µn(b̃)},
{√
|µj(b̃)|, . . . ,

√
|µn(b̃)|

}
are both nonresonant up to order k. Note that the eigenvalues µj(b̃) are
defined, due to Lemma 3.1, although it is not necessarily true that Jq(b̃) =
{1, . . . , n}. The latter holds, possibly after shrinking the neighborhood V , if
µn(b) < β(b)− 1/q. This follows from the continuity of µn(b̃) and β(b̃) with
respect to b̃ (Lemmas 3.1, 3.2). If µn(b) = β(b) − 1/q, then Lemmas 3.1,
3.2 imply that for b̃ ≈ b, either Jq(b̃) = {1, . . . , n} or Jq(b̃) = {1, . . . , n − 1}
(the latter set is empty if n = 1). Since the nonresonance of a set obviously
implies the nonresonance of any subset, we conclude that if the neighborhood
V is small enough, then (p1qk), (p2qk) hold for any b̃ ∈ V .

We now claim that if b̃ ∈ Ym is sufficiently close to b, then the functions

(ϕ(b̃))α, α ∈ Nn
0 , |α| ≤ k, (3.5)
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are linearly independent on any interval I ⊂ [1/q, q] of length at least 1/(2q).
Here (ϕ(b̃)) = (ϕ1(b̃), . . . , ϕn(b̃)) and we use the multi-index notation as in
(2.8). Since Jq(b̃) is equal to either {1, . . . , n} or {1, . . . , n − 1}, the linear
independence of the functions (3.5) implies that (p3qk) holds for b̃. Hence,
the proof of the openness of Gq,k will be complete once we prove the claim.

We use the Gram-determinant criterion for the linear independence on an
interval I. Specifically, arrange the multi-indices α ∈ Nn

0 with |α| ≤ k in a
finite sequence {αj}κj=1 (κ = κ(n, k) is the number of all such multi-indices)
and consider the following symmetric κ× κ matrix:(∫

I

(ϕ(b̃))α
i

(ϕ(b̃))α
j

rN−1 dr

)
i,j=1,...,κ

. (3.6)

The functions (3.5) are linearly independent on I if and only if the determi-
nant of this matrix is nonzero.

Suppose that our claim is not true. Then there is a sequence {b̃`} in
Ym converging to b satisfying the following. For each ` = 1, 2, . . . , there
is an interval I` ⊂ [1/q, q], of length 1/(2q), such that the determinant of
the matrix (3.6), with I = I`, is equal to zero. Passing to a subsequence,
we may assume that the centers of the intervals I` approach a number in
[5/(4q), q − 1/(4q)]. Using this and the continuity of the map b̃ 7→ ϕj(b̃) ∈
C[1/q, q] (cp. Lemma 3.1(iii)), we conclude that there is an interval I ⊂
[1/q, q] of length 1/(2q) such that the determinant in (3.6) vanishes for b̃ = b,
contradicting the assumption that b ∈ Gq,k. This contradiction proves the
claim and completes the proof of the openness of Gq,k.

In the proof of the density, we consider radial potentials which are con-
stant on an interval. On such an interval, the eigenvalue equation (2.6) yields
expressions for the eigenfunctions in terms of the eigenvalues. Using these
expressions, we can relate algebraic independence properties of the eigenfunc-
tions to rational independence properties of the eigenvalues (the idea to use
such relations goes back to [9], where it was exploited in a study of nonlocal
parabolic equations in one space dimension).

In the following lemma, b ∈ Ym is fixed, thus the argument b in β(b) and
related quantities is suppressed for notational simplicity.

Lemma 3.3. Assume that b ∈ Ym is such that for some constant c one has
V = a0 + b ≡ c on an interval I = (R1, R2) ⊂ (0,∞). Assume further that
for a positive integer n < ν + 1 one has µn(b) − c < 0. Then the following
statements are valid.
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(i) The functions
ϕ2
j , j = 1, . . . , n, (3.7)

are linearly independent on I.

(ii) If for some k ∈ N the set {
√
|µj − c| : j = 1, . . . , n} is nonresonant up

to order k, then the set of functions {ϕj : j = 1, . . . , n} is algebraically
independent up to order k on the interval I.

Proof. First we prove statement (ii) and then explain why statement (i)
holds (without any nonresonance condition involving the µj). Statement (ii)
is a generalization of a result in [22, Section 2], and is proved by similar
arguments.

Assume first that N ≥ 2. For j = 1, . . . , n, consider the eigenfunction
equation (2.6). On the interval (R1, R2) the equation simplifies, due to V ≡ c:

ϕ′′j +
N − 1

r
ϕ′j + (µj − c)ϕj = 0. (3.8)

Since µj−c ≤ µn−c < 0, the general solution of this equation, and therefore
also the solution ϕj on (R1, R2), can be expressed in terms of modified Bessel
functions rescaled by ωj :=

√
|µj − c|. More specifically, for some constants

Cj1, Cj2 one has ϕj ≡ ϕ̃j on (R1, R2), where

ϕ̃j(r) := Cj1r
1−N/2IN/2−1(ωjr) + Cj2r

1−N/2KN/2−1(ωjr) (3.9)

and IN/2−1 and KN/2−1 are modified Bessel functions of the first and second
kind, respectively. Note that these functions are defined for all r ∈ (0,∞)
and are analytic in this interval (of course, the eigenfunctions ϕj themselves
may not be analytic outside (R1, R2)). For each j ∈ {1, . . . , n}, the constants
Cj1, Cj2 cannot be both equal to zero: otherwise, ϕj ≡ 0 on [R1, R2], hence
ϕj, as a solution of a second order equation, vanishes identically on (0,∞),
which is impossible for an eigenfunction.

We now recall the asymptotics of the modified Bessel functions as r →∞.
For j = 1, . . . , n, we have:

IN/2−1(ωjr) = Cje
ωjrr−1/2(1 +O(1/r)),

KN/2−1(ωjr) = C ′je
−ωjrr−1/2(1 +O(1/r)),

(3.10)

with some nonzero constants Cj, C
′
j.
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For any multi-index α = (α1, . . . , αn) ∈ N0 with |α| ≤ k, define

γ(α) =
n∑
j=1

sj αj ωj, (3.11)

where, for each j,

sj =

{
1 if Cj1 6= 0,

−1 if Cj1 = 0 (and Cj2 6= 0).
(3.12)

Note that, as r →∞, we have, by (3.9), (3.10),

ϕ̃α(r) ∼ r
−|α|
2 eγ(α)r. (3.13)

Here ϕ̃ = (ϕ̃1, . . . , ϕ̃n) and we are using the multi-index notation, as above.
Since, by assumption, the set {ω1, . . . , ωn} is nonresonant up to order k,

one has γ(α) 6= γ(α′) if α 6= α′. We can thus arrange the multi-indices α ∈ Nn
0

with |α| ≤ k in a finite sequence α`, ` = 1, . . . , κ (as above, κ = κ(n, k) is
the number of all multi-indices α ∈ Nn

0 with |α| ≤ k), such that

γ(α1) > γ(α2) > · · · > γ(ακ).

We now show that, on (R1, R2), the functions

ϕα
` ≡ ϕ̃α

`

, ` = 1, . . . , κ, (3.14)

are linearly independent, thereby concluding the proof of (ii) for N ≥ 2. To
that aim, assume that for some constants c`, ` = 1, . . . , κ, one has

κ∑
`=1

c`ϕ̃
α`(r) = 0 (3.15)

for all r ∈ (R1, R2). By the analyticity of ϕ̃`, (3.15) then holds for all
r ∈ (0,∞). Divide the identity by r−|α|/2eγ(α

1) to obtain

κ∑
`=1

c`
ϕ̃α

`
(r)

r−|α|/2eγ(α1)r
= 0 (r > 0). (3.16)

Since γ(α1) > γ(α`) for all ` ∈ {2, . . . , κ}, using (3.13) we obtain

lim
r→∞

ϕ̃α
`
(r)

r−|α|/2eγ(α1)r

{
= 0 for ` ∈ {2, . . . , κ},
6= 0 for ` = 1.
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Thus, taking r →∞ in (3.16), we deduce that c1 = 0. We then successively
divide by r−|α|/2eγ(α

`), ` = 2, . . . , κ, and take r →∞ to conclude that c` = 0
for ` = 2, . . . , κ. Hence, all the coefficients in (3.15) must vanish, which
proves the desired linear independence.

The case N = 1 can be treated similarly. This time, for r ∈ (R1, R2) the
eigenfunctions ϕj, j = 1, . . . , n, satisfy

ϕ′′j + (µj − c)ϕj = 0.

Letting again ωj =
√
|µj − c|, it follows that, on (R1, R2), one has ϕj ≡ ϕ̃j,

where
ϕ̃j(r) = Cj1e

ωjr + Cj2e
−ωjr

with Cj1, Cj2 not both equal to 0. The conclusion in (ii) can one be proved
by a growth-analyticity argument very similar to the one used above.

We now prove statement (i). We argue as above, except now we need to
consider the functions (3.7) instead of the functions (3.14). For the linear
independence of these functions on (R1, R2), where they coincide with the
functions

ϕ̃2
j , j = 1, . . . , n, (3.17)

the quantities to consider in place of the γ(α) (cp. (3.11)) are

sj2ωj, j = 1, . . . , n, (3.18)

where the sj are as in (3.12). Since the sequence ωj :=
√
|µj − c|, j =

1, . . . , n, is (strictly) decreasing, the numbers in (3.18) are mutually distinct.
Therefore, applying the above growth-analyticity arguments, one proves that
the functions ϕ2

j = ϕ̃2
j on (R1, R2) are linearly independent.

It is well known that the linear independence of the squares of the eigen-
functions allows one to control the (simple) eigenvalues locally, by adjusting
the potential. We state this precisely as follows.

Lemma 3.4. Suppose that b ∈ Y0, n ∈ N, n < ν(b) + 1, and the functions
ϕ2
j(b), j = 1, . . . , n, are linearly independent on an open bounded interval

I ⊂ (0,∞). Then there is a neighborhood U0 of the origin in Y0 such that the
map

b̃ 7→ µ(b̃) := (µ1(b̃), . . . , µn(b̃)) : b+ (U0 ∩D(I))→ Rn (3.19)

is (defined and) locally surjective on b+ (U0 ∩D(I)).
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The meaning of the conclusion is that for any neighborhood U ⊂ U0 of 0
in Y0, the image of b+(U∩D(I)) under the map µ contains a neighborhood of
µ(b). We take the intersection of U with D(I) (the space of smooth functions
on I with compact support, extended trivially to [0,∞)) to guarantee that
we can choose smooth and localized perturbations of b.

Proof of Lemma 3.4. Set U0 := V − b, where V is a neighborhood of b ∈ Y0
as in Lemma 3.1. Then the map µ is defined on U0 and is smooth (even
analytic) on U0. We show that there is an n-dimensional subspace H of D(I)
such that the restriction of the derivative µ′(b) to H is an isomorphism of H
onto Rn. The conclusion of the lemma is then a direct consequence of the
implicit function theorem.

Using Lemma 3.1(ii) and writing the integrals in spherical coordinates,
we obtain

µ′(b)b̄ =

∫ ∞
0

ϕ2
j(r)b̄(r)r

N−1 dr.

We want to find functions b̄i ∈ D(I), i = 1, . . . , n, such that the matrix(∫
I

ϕ2
j(r)b̄i(r)r

N−1 dr

)n
j,i=1

(3.20)

in nonsingular. This can be done in two steps. First, take b̄i ∈ L2(I) such
that ∫

I

b̄i(r)ϕ
2
j(r)r

N−1 dr = δij (i, j = 1, . . . , n),

where δij is the Kronecker delta. Such b̄i exist due to the independence
condition on ϕ2

j , j = 1, . . . , n. In fact, one can find each b̄i as a linear
combination of the functions ϕ2

j(b), whose coefficients are determined from
a regular system of n equations (the matrix of the system is a Gram matrix
of linearly independent functions). In the second step, we replace the b̄i by
some functions in D(I). Due to the density of D(I) in L2(I), this can be
done in such a way that the matrix (3.20) is close to the identity matrix, and
is thus nonsingular. With b̄i ∈ D(I) ⊂ D , one can replace I by (0,∞) in the
integrals in (3.20). Hence, taking H = span{b̄1, . . . , b̄n}, we see that µ′(b)


H

is an isomorphism, as desired.

The foregoing lemma has the following consequence.
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Corollary 3.5. Suppose that the assumptions of Lemma 3.4 are satisfied,
and let c > µn(b), k ∈ N. Then, given any neighborhood U0 of the origin in
Y0, the set b+ (U0 ∩D(I)) contains a function b̃ such that the vectors

(µ1(b̃), . . . , µn(b̃)),(√
|µ1(b̃)|, . . . ,

√
|µn(b̃)|

)
,(√

|µ1(b̃)− c|, . . . ,
√
|µn(b̃)− c|

)
are nonresonant up to order k.

Proof. Since the set comprising all vectors in Rn which are nonresonant up
to order k is clearly open and dense in Rn, the conclusion is an immediate
consequence of the local surjectivity of the map b̃ 7→ (µ1(b̃), . . . , µn(b̃)), as
stated in Lemma 3.4.

Proof of the density of Gq,k. We prove that Gq,k is dense in Ym and Gq,k ∩ Y 0
m

is dense in Y 0
m. Fix any b ∈ Ym. We need to show that any neighborhood V

of b in Ym contains a function b̃ ∈ Gq,k. If b ∈ Y 0
m, we want b̃ to be in Y 0

m as
well.

If Jq(b) = ∅, then b itself belongs to Gq,k and there is nothing else to
prove. We proceed assuming that Jq(b) 6= ∅. As in the proof of the openness
of Gq,k, the following statements are valid for some n ∈ N: Jq(b) = {1, . . . , n}
and there is a neighborhood V0 of b in Y0 such that for each b̃ ∈ V0 one has
n < ν(b̃) + 1 (so the eigenvalues µ1(b̃) < · · · < µn(b̃) < β(b̃) are defined) and
either Jq(b̃) = {1, . . . , n} or Jq(b̃) = {1, . . . , n−1}. Thus, a function b̃ ∈ V0∩V

belongs to Gq,k if the vectors (µ1(b̃), . . . , µn(b̃)),

(√
|µj(b̃)|, . . . ,

√
|µn(b̃)|

)
are nonresonant up to order k, and the eigenfunctions ϕj(b̃) are algebraically
independent up to order k on any interval I ⊂ [1/q, q] of length 1/(2q) (or
more).

The rest of the proof consists of two steps. First we prove that at least
one function b̃ with the above properties can be found in V0 ∩ Ym. Then
we use an analyticity argument to show that such a function can also be
found in the given neighborhood V . This will be achieved by a sequence
of perturbations of the function b. The perturbed functions will always be
contained in V0∩Ym and will be identical to b outside a compact set (so they
will be in Y 0

m if b ∈ Y 0
m).
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We note, first of all, that the relation µn < β(b) implies that the function
a0 + b−µn is positive somewhere. To prove this, we use the characterization
of the bottom of the essential spectrum as given in (3.3). Suppose for a
contradiction that V − µn = a0 + b − µn ≤ 0 on (0,∞). Then for each
ψ ∈ X ∩D(RN)

(ψ, (−∆ + V − µn)ψ)L2

‖ψ‖2L2

=
(ψ,−∆ψ)L2

‖ψ‖2L2

+
(ψ, (V − µn)ψ)L2

‖ψ‖2L2

≤ (ψ,−∆ψ)L2

‖ψ‖2L2

.

Using (3.3) and the fact that the bottom of the essential spectrum for −∆
(with domain H2(RN)∩X) is 0, we conclude that β(b−µn) ≤ 0. However, by
adding a constant to the potential we just shift the whole spectrum by that
constant; in particular, β(b− µn) = β(b)− µn > 0, which is a contradiction.

We have thus shown that there is r0 > 0 such that

c := a0(r0) + b(r0) > µn(b).

Due to the continuity of b̃→ µn(b̃), we can shrink the neighborhood V0 ⊂ Y0
of b, if necessary, so as to achieve that

µn(b̃) < c (b̃ ∈ V0). (3.21)

We choose a convex neighborhood V0 with this property.
We now introduce a first perturbation b1 of b, modifying b near r = r0

only, such that the perturbed function b1 satisfies

a0(r) + b1(r) ≡ c (r ∈ (r0 − ε, r0 + ε)),

b1(r) = b(r) (|r − r0| > 2ε),
(3.22)

for some ε ∈ (0, r0/2). Adjusting ε, as needed, we can clearly choose b1 such
that, in addition, b1 ∈ Cm[0,∞) (the same regularity as assumed of a0 and
b) and ‖b − b1‖Y0 is so small that b1 ∈ V0. (We remark that it may not be
possible to have ‖b− b1‖Ym small for m > 0 if (3.22) is to hold.)

By (3.21), (3.22), and Lemma 3.3(i), the functions ϕ2
j(b1), j = 1, . . . , n,

are linearly independent on the interval (r0, r0 + ε). Therefore, applying
Corollary 3.5, we find b2 ∈ V0 ∩ Ym such that

b2(r) = b1(r) (r ∈ R \ (r0, r0 + ε)), (3.23)
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and the vectors

(µ1(b2), . . . , µn(b2)),(√
|µ1(b2)|, . . . ,

√
|µn(b2)|

)
,(√

|µ1(b2)− c|, . . . ,
√
|µn(b2)− c|

)
are nonresonant up to order k. Relations (3.23), (3.22), and Lemma 3.3(ii)
subsequently imply that the set {ϕj(b2) : j = 1, . . . , n} is algebraically inde-
pendent up to order k on the interval (r0 − ε, r0).

We next use an analytic perturbation to “propagate” these properties of
b2 to the Ym-neighborhood V of b. For that aim, we introduce the functions
b̃t := b+ t(b2 − b), t ∈ [0, 1]. By the convexity of V0, b̃t ∈ V0 for all t ∈ [0, 1].
By Lemma 3.1, the eigenvalues µj(b̃t), j = 1, . . . , n, depend analytically on t
and the eigenfunctions ϕj(b̃t) depend analytically on t as C[r0− ε, r0]-valued
functions. Consider now the analytic function

t 7→ (µ1(b̃t), . . . , µn(b̃t)) · α (3.24)

for any of the finitely many vectors α ∈ Zn with 0 < |α| ≤ k. Since for t = 1
we have b̃t = b2, the function (3.24) is not identical to zero. Therefore, due to
the analyticity, the function is nonzero for all sufficiently small t > 0. From
this, we conclude that the set {µ1(b̃t), . . . , µn(b̃t)} is nonresonant up to order
k for all sufficiently small t > 0.

By very similar arguments, for all sufficiently small t > 0 the set{√
|µ1(b̃t)|, . . . ,

√
|µn(b̃t)|

}
is nonresonant up to order k, and the set {ϕj(b̃t) : j = 1, . . . , n} is al-
gebraically independent up to order k on the interval (r0 − ε, r0). For the
latter, we use the determinant of the Gram matrix (3.6) (with I = (r0−ε, r0)
and b̃ = b̃t), which is an analytic function of t, different from 0 at t = 1.

Choose now t > 0 so small that b̃ := b̃t has all the above properties and,
in addition, b̃ ∈ V—the originally given neighborhood of b in Ym. Note also
that b̃ ≡ b outside a compact interval (cp. (3.22), (3.23)). Thus b̃ belongs to
Y 0
m if b does.

We see that the function b̃ has the desired properties (p1qk)–(p3qk),
except that the algebraic independence in (p3qk) is valid for the specific
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interval (r0 − ε, r0), rather than for all subintervals of [1/q, q] of length at
least 1/(2q). To remedy the latter, we make one more small perturbation
of b̃ on a bounded interval so as to achieve that the perturbed potential is
analytic on that interval. Set q̄ := max{r0, q}. Using the Stone-Weierstrass
theorem, we modify Ṽ := a0 + b̃ slightly in the interval [0, q̄+ 1)—keeping Ṽ
intact on [q + 1,∞)—in such a way that Ṽ is analytic in (0, q̄) and the new
function b̃ (obtained by subtracting a0 from Ṽ ) still belongs to V (and to
Y 0
m if b ∈ Y 0

m). If the perturbation is small enough, which we will henceforth
assume, the above nonresonance and algebraic independence properties are
all preserved as well. From the analyticity of Ṽ we gain the extra property
that the functions ϕj(b̃), j = 1, . . . , n, are analytic on (0, q̄) (this follows
from the eigenfunction equation (2.6) with Ṽ in place of V ). Therefore, the
functions (2.8), with ψ = (ϕ1(b̃), . . . , ϕn(b̃)), are analytic on (0, q̄). Clearly,
for these analytic functions, linear independence on the interval (r0 − ε, r0)
implies linear independence on any other subinterval of (0, q̄). Hence, (p1qk)–
(p3qk) are all satisfied for b̃, that is, b̃ ∈ Gq,k, as desired. The proof of the
density of Gq,k and Gq,k ∩ Y 0

m is complete.
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